randomstate.prng.xorshift128.
vonmises
(mu, kappa, size=None)¶Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution.
Parameters: |
|
---|---|
Returns: | out – Drawn samples from the parameterized von Mises distribution. |
Return type: | ndarray or scalar |
See also
scipy.stats.vonmises()
Notes
The probability density for the von Mises distribution is
where \(\mu\) is the mode and \(\kappa\) the dispersion, and \(I_0(\kappa)\) is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science.
References
[1] | Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing,” New York: Dover, 1972. |
[2] | von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964. |
Examples
Draw samples from the distribution:
>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)
Display the histogram of the samples, along with the probability density function:
>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, normed=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()