arch.bootstrap.IndependentSamplesBootstrap.apply¶
-
IndependentSamplesBootstrap.apply(func: Callable[[...], ndarray | DataFrame | Series], reps: int =
1000
, extra_kwargs: dict[str, Any] | None =None
) ndarray[Any, dtype[float64]] ¶ Applies a function to bootstrap replicated data
- Parameters:¶
- func: Callable[[...], ndarray | DataFrame | Series]¶
Function the computes parameter values. See Notes for requirements
- reps: int =
1000
¶ Number of bootstrap replications
- extra_kwargs: dict[str, Any] | None =
None
¶ Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap
- Returns:¶
reps by nparam array of computed function values where each row corresponds to a bootstrap iteration
- Return type:¶
Notes
When there are no extra keyword arguments, the function is called
func(params, *args, **kwargs)
where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func
Examples
>>> import numpy as np >>> x = np.random.randn(1000,2) >>> from arch.bootstrap import IIDBootstrap >>> bs = IIDBootstrap(x) >>> def func(y): ... return y.mean(0) >>> results = bs.apply(func, 100)