arch.covariance.kernel.CovarianceEstimator¶
-
class arch.covariance.kernel.CovarianceEstimator(x: ndarray | DataFrame | Series, bandwidth: float | None =
None
, df_adjust: int =0
, center: bool =True
, weights: ndarray | DataFrame | Series | None =None
, force_int: bool =False
)[source]¶ %(kernel_name)s kernel covariance estimation.
- Parameters:¶
- x: ndarray | DataFrame | Series¶
The data to use in covariance estimation.
- bandwidth: float | None =
None
¶ The kernel’s bandwidth. If None, optimal bandwidth is estimated.
- df_adjust: int =
0
¶ Degrees of freedom to remove when adjusting the covariance. Uses the number of observations in x minus df_adjust when dividing inner-products.
- center: bool =
True
¶ A flag indicating whether x should be demeaned before estimating the covariance.
- weights: ndarray | DataFrame | Series | None =
None
¶ An array of weights used to combine when estimating optimal bandwidth. If not provided, a vector of 1s is used. Must have nvar elements.
- force_int: bool =
False
¶ Force bandwidth to be an integer.
Notes
The kernel weights are computed using
\[%(formula)s\]where \(z=\frac{h}{H}, h=0, 1, \ldots, H\) where H is the bandwidth.
Methods
Properties
The bandwidth used by the covariance estimator.
The power used in optimal bandwidth calculation.
Flag indicating whether the data are centered (demeaned).
The estimated covariances.
Flag indicating whether the bandwidth is restricted to be an integer.
The constant used in optimal bandwidth calculation.
Weights used in covariance calculation.
The covariance estimator's name.
Estimate optimal bandwidth.
The optimal rate used in bandwidth selection.