arch.covariance.kernel.CovarianceEstimator¶
- 
class arch.covariance.kernel.CovarianceEstimator(x: ndarray | DataFrame | Series, bandwidth: float | None = None, df_adjust: int =0, center: bool =True, weights: ndarray | DataFrame | Series | None =None, force_int: bool =False)[source]¶
- %(kernel_name)s kernel covariance estimation. - Parameters:¶
- x: ndarray | DataFrame | Series¶
- The data to use in covariance estimation. 
- bandwidth: float | None = None¶
- The kernel’s bandwidth. If None, optimal bandwidth is estimated. 
- df_adjust: int = 0¶
- Degrees of freedom to remove when adjusting the covariance. Uses the number of observations in x minus df_adjust when dividing inner-products. 
- center: bool = True¶
- A flag indicating whether x should be demeaned before estimating the covariance. 
- weights: ndarray | DataFrame | Series | None = None¶
- An array of weights used to combine when estimating optimal bandwidth. If not provided, a vector of 1s is used. Must have nvar elements. 
- force_int: bool = False¶
- Force bandwidth to be an integer. 
 
 - Notes - The kernel weights are computed using \[%(formula)s\]- where \(z=\frac{h}{H}, h=0, 1, \ldots, H\) where H is the bandwidth. - Methods - Properties - The bandwidth used by the covariance estimator. - The power used in optimal bandwidth calculation. - Flag indicating whether the data are centered (demeaned). - The estimated covariances. - Flag indicating whether the bandwidth is restricted to be an integer. - The constant used in optimal bandwidth calculation. - Weights used in covariance calculation. - The covariance estimator's name. - Estimate optimal bandwidth. - The optimal rate used in bandwidth selection.