arch.unitroot.cointegration.FullyModifiedOLS¶
-
class arch.unitroot.cointegration.FullyModifiedOLS(y: ndarray | Series, x: ndarray | DataFrame, trend: 'n' | 'c' | 'ct' | 'ctt' =
'c'
, x_trend: 'n' | 'c' | 'ct' | 'ctt' | None =None
)[source]¶ Fully Modified OLS cointegrating vector estimation.
- Parameters:¶
- y: ndarray | Series¶
The left-hand-side variable in the cointegrating regression.
- x: ndarray | DataFrame¶
The right-hand-side variables in the cointegrating regression.
- trend: 'n' | 'c' | 'ct' | 'ctt' =
'c'
¶ Trend to include in the cointegrating regression. Trends are:
”n”: No deterministic terms
”c”: Constant
”ct”: Constant and linear trend
”ctt”: Constant, linear and quadratic trends
- x_trend: 'n' | 'c' | 'ct' | 'ctt' | None =
None
¶ Trends that affects affect the x-data but do not appear in the cointegrating regression. x_trend must be at least as large as trend, so that if trend is “ct”, x_trend must be either “ct” or “ctt”.
Notes
The cointegrating vector is estimated from the regressions
\[\begin{split}Y_t & = D_{1t} \delta + X_t \beta + \eta_{1t} \\ X_t & = D_{1t} \Gamma_1 + D_{2t}\Gamma_2 + \epsilon_{2t} \\ \eta_{2t} & = \Delta \epsilon_{2t}\end{split}\]or if estimated in differences, the last two lines are
\[\Delta X_t = \Delta D_{1t} \Gamma_1 + \Delta D_{2t} \Gamma_2 + \eta_{2t}\]Define the vector of residuals as \(\eta = (\eta_{1t},\eta'_{2t})'\), and the long-run covariance
\[\Omega = \sum_{h=-\infty}^{\infty} E[\eta_t\eta_{t-h}']\]and the one-sided long-run covariance matrix
\[\Lambda_0 = \sum_{h=0}^\infty E[\eta_t\eta_{t-h}']\]The covariance matrices are partitioned into a block form
\[\begin{split}\Omega = \left[\begin{array}{cc} \omega_{11} & \omega_{12} \\ \omega'_{12} & \Omega_{22} \end{array} \right]\end{split}\]The cointegrating vector is then estimated using modified data
\[Y^\star_t = Y_t - \hat{\omega}_{12}\hat{\Omega}_{22}\hat{\eta}_{2t}\]as
\[\begin{split}\hat{\theta} = \left[\begin{array}{c}\hat{\gamma}_1 \\ \hat{\beta} \end{array}\right] = \left(\sum_{t=2}^T Z_tZ'_t\right)^{-1} \left(\sum_{t=2}^t Z_t Y^\star_t - T \left[\begin{array}{c} 0 \\ \lambda^{\star\prime}_{12} \end{array}\right]\right)\end{split}\]where the bias term is defined
\[\lambda^\star_{12} = \hat{\lambda}_{12} - \hat{\omega}_{12}\hat{\Omega}_{22}\hat{\omega}_{21}\]See [1] for further details.
References
Methods
fit
([kernel, bandwidth, force_int, diff, ...])Estimate the cointegrating vector.