arch.unitroot.DFGLS¶
-
class arch.unitroot.DFGLS(y: ndarray | DataFrame | Series, lags: int | None =
None
, trend: 'c' | 'ct' ='c'
, max_lags: int | None =None
, method: 'aic' | 'bic' | 't-stat' ='aic'
, low_memory: bool | None =None
)[source]¶ Elliott, Rothenberg and Stock’s ([ers]) GLS detrended Dickey-Fuller
- Parameters:¶
- y: ndarray | DataFrame | Series¶
The data to test for a unit root
- lags: int | None =
None
¶ The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.
- trend: 'c' | 'ct' =
'c'
¶ The trend component to include in the test
”c” - Include a constant (Default)
”ct” - Include a constant and linear time trend
- max_lags: int | None =
None
¶ The maximum number of lags to use when selecting lag length. When using automatic lag length selection, the lag is selected using OLS detrending rather than GLS detrending ([pq]).
- method: 'aic' | 'bic' | 't-stat' =
'aic'
¶ The method to use when selecting the lag length
”AIC” - Select the minimum of the Akaike IC
”BIC” - Select the minimum of the Schwarz/Bayesian IC
”t-stat” - Select the minimum of the Schwarz/Bayesian IC
Notes
The null hypothesis of the Dickey-Fuller GLS is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then the null cannot be rejected and the series appears to be a unit root.
DFGLS differs from the ADF test in that an initial GLS detrending step is used before a trend-less ADF regression is run.
Critical values and p-values when trend is “c” are identical to the ADF. When trend is set to “ct”, they are from novel simulations.
Examples
>>> from arch.unitroot import DFGLS >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load().data >>> inflation = np.diff(np.log(data["cpi"])) >>> dfgls = DFGLS(inflation) >>> print(f"{dfgls.stat:0.4f}") -2.7611 >>> print(f"{dfgls.pvalue:0.4f}") 0.0059 >>> dfgls.lags 2 >>> dfgls = DFGLS(inflation, trend = "ct") >>> print(f"{dfgls.stat:0.4f}") -2.9036 >>> print(f"{dfgls.pvalue:0.4f}") 0.0447
References
[ers]Elliott, G. R., T. J. Rothenberg, and J. H. Stock. 1996. Efficient bootstrap for an autoregressive unit root. Econometrica 64: 813-836
[pq]Perron, P., & Qu, Z. (2007). A simple modification to improve the finite sample properties of Ng and Perron’s unit root tests. Economics letters, 94(1), 12-19.
Methods
summary
()Summary of test, containing statistic, p-value and critical values
Properties
The alternative hypothesis
Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.
Sets or gets the number of lags used in the model.
Sets or gets the maximum lags used when automatically selecting lag length
The number of observations used when computing the test statistic.
The null hypothesis
Returns the p-value for the test statistic
Returns the OLS regression results from the ADF model estimated
The test statistic for a unit root
Sets or gets the deterministic trend term used in the test.
List of valid trend terms.
Returns the data used in the test statistic