# Forecast Combination and Multiple Testing 

The Econometrics of Predictability<br>This version: May 12, 2014

May 13, 2014

## Overview

- Model Combination
- Multiple Hypothesis Testing (2 weeks)


## The Standard Forecasting Model

- Standard forecasts are also popular for predicting economic variables
- Generically expressed

$$
y_{t+1}=\beta_{0}+\mathbf{x}_{t} \boldsymbol{\beta}+\epsilon_{t+1}
$$

- $\mathbf{x}_{t}$ is a 1 by $k$ vector of predictors ( $k=1$ is common)
- Includes both exogenous regressors such as the term or default premium and also autoregressive models
- Forecasts are $\hat{y}_{t+1 \mid t}$
- Two level of aggregation in the combination problem

1. Summarize individual forecasters' private information in point forecasts $\hat{y}_{t+h, i \mid t}$

- Highlights that "inputs" are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure $C\left(\mathbf{y}_{t+h \mid t}, \mathbf{w}_{t+h \mid t}\right)$

- Obvious competitor is the "super-model" or "kitchen-sink" - a model built using all information in each forecasters information set
- Aggregation should increase the bias in the forecast relative to SM but may reduce the variance
- Similar to other model selection procedures in this regard


## Why not use the "Super Model"

- Could consider pooling information sets

$$
\mathcal{F}_{t}^{c}=\cup_{i=1}^{n} \mathcal{F}_{t, i}
$$

- Would contain all information available to all forecasters
- Could construct consensus directly $C\left(\mathcal{F}_{t}^{c} ; \boldsymbol{\theta}_{t+h \mid t}\right)$
- Some reasons why this may not work
- Some information in individuals information sets may be qualitative, and so expensive to quantitatively share
- Combined information sets may have a very high dimension, so that finding the best super model may be hard
- Potential for lots of estimation error
- Classic bias-variance trade-off is main reason to consider forecasts combinations over a super model
- Higher bias, lower variance


## Linear Combination under MSE Loss

- Models can be combined in many ways for virtually any loss function
- Most standard problem is for MSE loss using only linear combinations
- I will suppress time subscripts when it is clear that it is $t+h \mid t$
- Linear combination problem is

$$
\min _{\mathbf{w}} \mathrm{E}\left[e^{2}\right]=\mathrm{E}\left[\left(y_{t+h}-\mathbf{w}^{\prime} \hat{\mathbf{y}}\right)^{2}\right]
$$

- Requires information about first 2 moments of he joint distribution of the realization $y_{t+h}$ and the time- $t$ forecasts $\hat{\mathbf{y}}$

$$
\left[\begin{array}{c}
y_{t+h \mid t} \\
\hat{\mathbf{y}}
\end{array}\right] \sim F\left(\left[\begin{array}{c}
\mu_{y} \\
\mu_{\hat{y}}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{y y} & \boldsymbol{\Sigma}_{\mathrm{yy}}^{\prime} \\
\boldsymbol{\Sigma}_{y \hat{y}} & \boldsymbol{\Sigma}_{\hat{\mathrm{y}}}
\end{array}\right]\right)
$$

## Linear Combination under MSE Loss

- The first order condition for this problem is

$$
\frac{\partial \mathrm{E}\left[e^{2}\right]}{\partial \mathbf{w}}=-\mu_{y} \mu_{\mathbf{y}}+\mu_{\mathrm{y}} \mu_{\mathrm{y}}^{\prime} \mathbf{w}+\boldsymbol{\Sigma}_{\hat{y} \hat{\mathbf{y}}} \mathbf{w}-\boldsymbol{\Sigma}_{y \hat{y}}=\mathbf{0}
$$

- The solution to this problem is

$$
\mathrm{w}^{\star}=\left(\begin{array}{cc}
0 & 0 \\
\left.\mu_{\mathrm{y}} \mu_{\mathrm{y}}^{\prime}+\Sigma_{\hat{y} \hat{y}}\right)^{-1} & \left.\begin{array}{c}
\left.\Sigma_{y \hat{y}}+\mu_{y} \mu_{\mathrm{y}}\right)
\end{array}\right)
\end{array}\right.
$$

- Similar to the solution to the OLS problem, only with extra terms since the forecasts may not have the same conditional mean


## Linear Combination under MSE Loss

- Can remove the conditional mean if the combination is allowed to include a constant, $w_{c}$

$$
\begin{aligned}
& w_{c}=\mu_{y}-w^{\star} \mu_{\hat{y}} \quad w_{c}+w^{* \prime} \hat{y}_{t+h 1 t} \\
& \mathbf{w}^{\star}=\Sigma_{\hat{y y}}^{-1} \Sigma_{y \hat{y}}
\end{aligned}
$$

- These are identical to the OLS where $w_{c}$ is the intercept and $\mathbf{w}^{*}$ are the slope coefficients
- The role of $w_{c}$ is the correct for any biases so that the squared bias term in the MSE is 0

$$
\operatorname{MSE}[e]=P /[e]^{2}+\mathrm{V}[e]
$$

## Understanding the Diversification Gains

- Simple setup $\boldsymbol{e}_{1}=V_{t+h}-\hat{Y}_{+ \text {th } H}^{1} \quad \boldsymbol{C}_{2}=Y_{t+h}-\hat{Y}_{++h 1 t}^{2}$

$$
\underline{e_{1} \sim F_{1}\left(0, \sigma_{1}^{2}\right), e_{2} \sim F_{2}\left(0, \sigma_{2}^{2}\right), \operatorname{Corr}\left[e_{1}, e_{2}\right]=\rho, \operatorname{Cov}\left[e_{1} e_{2}\right]=\sigma_{12}, ~}
$$

- Assume $\sigma_{2}^{2} \leq \sigma_{1}^{2}$
- Assume weights sum to 1 so that $w_{1}=1-w_{2}$ (Will suppress the subscript and simply write $w$ )
- Forecast error is then

$$
y-w \hat{y}_{1}-(1-w) \hat{y}_{2}
$$

- Error is given by

$$
e^{c}=\underline{w e_{1}}+\underline{(1-w) e_{2}}
$$

- Forecast has mean 0 and variance

$$
w^{2} \sigma_{1}^{2}+(1-w)^{2} \sigma_{2}^{2}+2 w(1-w) \sigma_{12}
$$



## Understanding the Diversification Gains

- The optimal $w$ can be solved by minimizing this expression, and is

$$
w^{\star}=\frac{\sigma_{2}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}}, 1-w^{\star}=\frac{\sigma_{1}^{2}-\sigma_{12}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}}
$$

- Intuition is that the weight on a model is higher the:
- Larger the variance of the other model
- Lower the correlation between the models
- 1 weight will be larger than 1 if $\rho \geq \frac{\sigma_{2}}{\sigma_{1}}$
- Weights will be equal if $\sigma_{1}=\sigma_{2}$ for any value of correlation
- Intuitively this must be the case since model 1 and 2 are indistinguishable from a MSE point-of-view
- When will "optimal" combinations out-perform equally weighted combinations? Any time $\sigma_{1} \neq \sigma_{2}$
- If $\rho=1$ then only select model with lowest variance (mathematical formulation is not well posed in this case)


## Constrained weights

- The previous optimal weight derivation did not impose any restrictions on the weights
- In general some of the weights will be negative, and some will exceed 1
- Many combinations are implemented in a relative, constrained scheme

$$
\min _{\mathbf{w}} \mathrm{E}\left[e^{2}\right]=\mathrm{E}\left[\left(y_{t+h}-\mathbf{w}^{\prime} \hat{\mathbf{y}}\right)^{2}\right] \text { subject to } \mathbf{w}^{\prime} \boldsymbol{\iota}=1
$$

- The intercept is omitted (although this isn't strictly necessary)
- If the biases are all 0 , then the solution is dual to the usual portfolio minimization problem, and is given by

$$
\mathbf{w}^{\star}=\frac{\boldsymbol{\Sigma}_{\hat{\mathrm{y}} \hat{\mathrm{y}}}^{-1} \iota^{\iota}}{\boldsymbol{\iota}^{\prime} \boldsymbol{\Sigma}_{\hat{\mathrm{y}} \hat{\mathrm{y}}}^{-1} \iota}
$$

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

- This solution is the same as the Global Minimum Variance Portfolio


## Combinations as Hedge against Structural Breaks oxfori

- One often cited advantage of combinations is (partial) robustness to structural breaks
- Best case is if two positively correlated variables have shifts in opposite directions
- Combinations have been found to be more stable than individual forecasts
- This is mostly true for static combinations
- Dynamic combinations can be unstable since some models may produce large errors from time-to-time

$$
y_{1+1}=\beta_{0}+B^{\prime} x_{+}+\varepsilon_{+}
$$

## Weight Estimation

- All discussion has focused on "optimal" weights, which requires information on the mean and covariance of both $y_{t+h}$ and $\hat{\mathbf{y}}_{t+h \mid t}$
- This is clearly highly unrealistic
- In practice weights must be estimated, which introduces extra estimation error
- Theoretically, there should be no need to combine models when all forecasting models are generated by the econometrician (e.g. when using $\mathcal{F}^{c}$ )
- In practice, this does not appear to be the case

$$
\hat{y}_{t}=\hat{B}_{L}+\hat{B}^{\prime} x_{1+-1}+\varepsilon_{+}
$$

- High dimensional search space for "true" model
- Structural instability
- Parameter estimation error
- Correlation among predictors $\hat{y}=\frac{B_{\nu}+\gamma_{0}}{2}+\frac{\hat{B}}{2} x_{1+1}+\hat{\gamma} / 2 x_{L+1}+u_{+}$ Clemen (1989): "Using a combination of forecasts amounts to an admission that the forecaster is unable to build a properly specified model"


## Weight Estimation

- Whether a combination is needed is closely related to forecast encompassing tests
- Model averaging can be thought of a method to avoid the risk of model selection
- Usually important to consider models with a wide range of features and many different model selection methods
- Has been consistently documented that prescreening models to remove the worst performing is important before combining
- One method is to use the SIC to remove the worst models
- Rank models by SIC, and then keep the $x \%$ best
- Estimated weights are usually computed in a 3rd step in the usual procedure $\left\{\begin{array}{l}R: \text { Regression } \\ P: \text { Prediction }\end{array}\right\}$
- $S$ : Combination estimation
- $T=P+R+S$
- Many schemes have been examined



## Weight Estimation

- Standard least squares with an intercept

$$
y_{t+h}=w_{0}+\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h}
$$

- Least squares without an intercept

$$
y_{t+h}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h}
$$

- Linearly constrained least squares

$$
\min e^{2} c+\sum w_{i}=1
$$

$$
\underbrace{y_{t+h}-\hat{y}_{t+h, n \mid t}}=\sum_{i=1}^{n-1} w_{i}\left(\hat{y}_{t+h, i \mid t}-\hat{y}_{t+h, n \mid t}\right)+\epsilon_{t+h}
$$



- This is just a constrained regression where $\sum w_{i}=1$ has been implemented where $w_{n}=1-\sum_{i=1}^{n-1} w_{i}$
- Imposing this constraint is thought to help when the forecast is persistent

$$
e_{t+h \mid t}^{c}=-w_{0}+\left(1-\mathbf{w}^{\prime} \iota\right) y_{t+h}+\mathbf{w}^{\prime} \mathbf{e}_{t+h \mid t}
$$

- $\mathbf{e}_{t+h \mid t}$ are the forecasting errors from the $n$ models
- Only matters if the forecasts may be biased
- Constrained least squares $\underset{\omega}{\min _{\sim}} \sum\left(y_{++h}-\omega^{\prime} \hat{y}_{++h}\right)^{2}$

$$
y_{t+h}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}+\epsilon_{t+h} \text { subject to } \mathbf{w}^{\prime} \iota=1, w_{i} \geq 0
$$

- This is not a standard regression, but can be easily solved using quadratic programming (MATLAB quadprog)
- Forecast combination where the covariance of the forecast errors is assumed to be diagonal
- Produces weights which are all between 0 and 1
- Weight on forecast $i$ is

$$
w_{i}=\frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}
$$

- May be far from optimal if $\rho$ is large
- Protects against estimator error in the covariance

$$
\begin{aligned}
& \sum=\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right) \\
& \sum^{-1}=\left(\begin{array}{cc}
\frac{1}{6_{1}^{2}} & 0 \\
0 & \frac{1}{6_{2}^{2}}
\end{array}\right)
\end{aligned}
$$

## Weight Estimation

- Median
- Can use the median rather than the mean to aggregate
- Robust to outliers
- Still suffers from not having any reduction in parameter variance in the actual forecast
- Rank based schemes
- Weights are inversely proportional to model's rank

$$
w_{i}=\frac{\mathcal{R}_{t+h, i \mid t}^{-1}}{\sum_{j=1}^{n} \mathcal{R}_{t+h, j \mid t}^{-1}}
$$

- Highest weight to best model, ratio of weights depends only on relative ranks
- Places relatively high weight on top model
- Probability of being the best model-based weights
- Count the proportion that model $i$ outperforms the other models

$$
\begin{aligned}
p_{t+h, i \mid t} & =T^{-1} \sum_{t=1}^{T} \cap_{j=1, j \neq i}^{n} I\left[L\left(e_{t+h, i \mid t}\right)<L\left(e_{t+h, j \mid t}\right)\right] \\
y_{t+h \mid t}^{c} & =\sum_{i=1}^{n} p_{t+h, i \mid t} \hat{y}_{t+h, i \mid t} \quad C_{t+i}^{2}, i \mid+
\end{aligned}
$$

## Broad Recommendations

- Simple combinations are difficult to beat
- $1 / n$ often outperforms estimated weights
- Constant usually beat dynamic
- Constrained outperform unconstrained (when using estimated weights)
- Not combining and using the best fitting performs worse than combinations - often substantially
- Trimming bad models prior to combining improves results
- Clustering similar models (those with the highest correlation of their errors) prior to combining leads to better performance, especially when estimating weights
- Intuition: Equally weighted portfolio of models with high correlation, weight estimation using a much smaller set with lower correlations
- Shrinkage improves weights when estimated
- If using dynamic weights, shrink towards static weights


## Equal Weighting

- Equal weighting is hard to beat when the variance of the forecast errors are similar
- If the variance are highly heterogeneous, varying the weights is important
- If for nothing else than to down-weight the forecasts with large error variances
- Equally weighted combinations are thought to work well when models are unstable
- Instability makes finding "optimal" weights very challenging
- Trimmed equally-weighted combinations appear to perform better than equally weighted, at least if there are some very poor models
- May be important to trim both "good" and "bad" models (in-sample performance)
- Good models are over-fit
- Bad models are badly mis-specified


## Shrinkage Methods

- Linear combination

$$
\hat{\mathbf{y}}_{t+h \mid t}^{c}=\mathbf{w}^{\prime} \hat{\mathbf{y}}_{t+h \mid t}
$$

Standard least squares estimates of combination weights are very noisy

- Often found that "shrinking" the weights toward a prior improves performance
- Standard prior is tha $w_{i}=\frac{1}{n}$
- However, do not want to be forgmatic and so use a distribution for the weights
- Generally for an arbitrary prior weight $\mathbf{w}_{0}$, ( $\bar{n}$

$$
\mathbf{w} \mid \tau^{2} \sim N\left(\mathbf{w}_{0}, \boldsymbol{\Omega}\right)
$$

$$
\frac{1}{\tau_{2}} \Omega \rightarrow g y^{\prime} y
$$

- $\boldsymbol{\Omega}$ is a correlation matrix and $\tau^{2}$ is a parameter which controls the amount of shrinkage


## Shrinkage Methods

- Leads to a weighted average of the prior and data


$$
\left(x^{\prime} x\right)^{-1}
$$

$$
\overline{\mathbf{w}}=\left(\left(\sqrt{2}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}\right)^{1}\right.
$$

$$
\text { or and data }\left(\frac{1}{\imath^{2}} \Omega\right)^{-1}
$$



- $\hat{\mathbf{w}}$ is the usual least squares estimator of the optimal combination weight
- If $\frac{\boldsymbol{\Omega} \boldsymbol{~ i s ~}}{\tau^{2}}$ very large compared to $\mathbf{y}^{\prime} \mathbf{y}=\sum_{t=1}^{T} \mathbf{y}_{t+h \mid t} \mathbf{y}_{t+h \mid t}^{\prime}$ then
- On the other hand, if $\mathbf{y}^{\prime} \mathbf{y}$ dominates, then $\overline{\mathbf{w}} \approx \hat{\mathbf{w}}$
- Other implementation use a $g$-prior, which is scalar

$$
\overline{\mathbf{w}}=\left(g \hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}-\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}\right)^{-1}\left(g \hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}} \mathbf{y}+\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}} \hat{\mathbf{w}}\right)
$$

- Large values of $g \geq 0$ least to large amounts of shrinkage
- 0 corresponds to OLS

$$
\overline{\mathbf{w}}=\mathbf{w}_{0}+\frac{\hat{\mathbf{w}}-\mathbf{w}_{0^{\prime}}}{1+(\overparen{g}} \rightarrow \infty
$$

## Inference for Many Forecasts

- Six papers:
- White, H. "A reality check for data snooping". Econometrica
- Hansen, P. "A Test for Superior Predictive Ability". JBES
- Sullivan, Timmermann \& White. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap". Journal of Finance
- Romano \& Wolf. "Stepwise Multiple Testing as Formalized Data Snooping". Econometrica
- Hansen, Lunde \& Nason. "The Model Confidence Set". Econometrica
- Bajgrowicz \& Scaillet. "Technical trading revisited: false discoveries, persistence tests and transaction costs". Journal of Financial Economics



## Diebold-Mariano-West

- The Diebold-Mariano-West test examines whether two forecasts have equal predictive ability
- DMW tests are all based on the difference of two loss fiunctions

$$
\text { MSE } \delta_{t}=L\left(y_{t+h}, \hat{y}_{t+h \mid t}^{A}\right)-L \underbrace{l}\left(y_{t+h}, \hat{\hat{y}_{t+h \mid t}^{B}}\right)
$$

- The test statistic is based on the asymptetic normatity of $\delta=\underbrace{P^{-1} \sum_{t=R+1}^{T} \delta_{t}}$
- If $P / R \rightarrow 0$ then

$$
\sqrt{\Gamma}(\overline{\bar{O}}-\overline{\mathrm{E}}[\bar{\delta}]) \xrightarrow{d} N\left(0, \sigma^{2}\right)
$$

- $\sigma^{2}$ is the long-run variance, that is

$$
\begin{aligned}
& \operatorname{LR} \\
& v_{o r}
\end{aligned}
$$



- Must account for autocovariances, so a HAC estimator is used (Newey-West)


## DMW with the Bootstrap

- Alternatively could estimate the variance using the bootstrap
- For example, the stationary bootstrap could be used as long as the window length grows with the size of the evaluation sample
- To implement the stationary bootstrap, the loss differentials would be directly resampled to construct $\bar{\delta}_{b}^{*}$ for $b=1, \ldots, B$
- The variance would then be computed as

$$
\hat{\sigma}_{B S}^{2}=\frac{1}{B} \sum_{b=1}^{b}\left(\bar{\delta}_{b}^{\star}-\bar{\delta}\right)^{2}
$$

CABS CB B $S_{B}=$

- The test statistic is then

$$
D M W=\frac{\bar{\delta}}{\sqrt{\hat{\sigma}_{B S}^{2}}}
$$

- Note: the $\sqrt{P}$ term is implicit in the denominator since $\sigma_{B S}^{2}$ will decline as the sample size grows ( $\left.\hat{\sigma}_{B S}^{2} \approx \hat{\sigma}^{2} / P\right)$


## DMW using percentile method

- Alternatively, inference could be made using the percentile method
- To implement the percentile method, it is necessary to enforce the null $H_{0}: \mathrm{E}\left[\delta_{t}\right]=0$
- This can hedone by re-centering the loss differentials around the average in the data: $\tilde{\delta}_{t}=\delta_{t}-\bar{\delta}$
- The centered loss differentials $\tilde{\delta}_{t}$ could then be re-sampled to compute an estimate of the average loss-differential $\overline{\tilde{\delta}}_{b}^{\star}$
- Inference using trie paxentile method would be based on the empirical frequency where $\left.\bar{\delta}<\tilde{\delta}_{b}^{*}\right)$ or $\bar{\delta}>\tilde{\tilde{\delta}}_{b}^{\star}$



## DMW using percentile method

- Since the test is 2 -sided||
- If many of the re-sampled centered means are less then $\bar{\delta}$, then the loss differential does not appear large
- If few of the re-sampled centered means are less than $\bar{\delta}$, then the loss differential appears large
- Since the distribution is asymptotically normal, there is no need to use the percentile method since the bootstrap $t$-stat is simple to construct


## Reality Check

- The Reality Check extends DMW to testing for Superior Predictive Ability (SPA)
- Tests of SPA examine whether a set of forecasting models can outperform a benchmark
- Suppose forecasts were available for $m$ forecasts, $j=1, \ldots, m$
- The vector of loss differentials relative to a benchmark could be constructed as
- $\hat{y}_{t+h, B M \mid t}$ is the loss from the benchmark forecast


## Asymptotic distribution in the RC

- Under similar arguments as in Diebold \& Mariano and West,

$$
\sqrt{P}(\overline{\boldsymbol{\delta}}-\mathrm{E}[\overline{\boldsymbol{\delta}}]) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

- $\mathbf{\Sigma}$ is the asymptotic covariance matrix of the average loss differentials

$$
\boldsymbol{\Sigma}=\lim _{P \rightarrow \infty} \mathrm{~V}\left[P^{-\frac{1}{2}} \sum_{t=R+1}^{T} \boldsymbol{\delta}_{t}\right]
$$

- This looks virtually identical to the case of the univariate DMW test


## Hypotheses of SPA

- If the benchmark model is as good as the other models, then the mean of each element of $\boldsymbol{\delta}_{t}$ should be 0 or negative
- These ard losses, sy if the BM is better, then its loss is smaller then the loss from the otier model
- A total of $m$ models
- The null in a test of SPA is

$$
H_{0}: \max _{j=1, \ldots, m}\left(\mathrm{E}\left[\delta_{j, t}\right]\right) \leq 0
$$

- The alternative is the natural one,

$$
H_{1}: \max _{j=1, \ldots, m}\left(\mathrm{E}\left[\delta_{j, t}\right]\right)>0
$$

- Note: If no models are statistically better than the benchmark, then there is no point in implementing the $R C$


## Examples of SPA: MSE

- The standard example is for comparing models using MSE (or MAE, or similar)

$$
L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)=\left(y_{t+h}-\hat{y}_{t+h, j \mid t}\right)^{2}
$$

- The vector of loss differentials is then

$$
\boldsymbol{\sigma}_{t}=\left[\begin{array}{c}
\left.\left(y_{t+h}-\hat{y}_{t+h, B M \mid t}\right)^{2}\right)\left(y_{t+h}-\hat{y}_{t+h, 1 \mid t}\right)^{2} \\
\left(y_{t+h}-\hat{y}_{t+h, B M \mid t}\right)^{2}-\left(y_{t+h}-\hat{y}_{t+h, 2 \mid t}\right)^{2} \\
\vdots \\
\left(y_{t+h}-\hat{y}_{t+h, B M \mid t}\right)^{2}-\left(y_{t+h}-\hat{y}_{t+h, m \mid t}\right)^{2}
\end{array}\right]
$$

- This is the simplest form of an SPA test


## Examples of SPA: Return Predictability

- SPA can also be used to test whether the returns of a set of trading models are equal
- In this case the "loss" function is the negative of the return from the strategy

$$
L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)=-\ln \left(1+y_{t+h} S\left(\hat{y}_{t+h, j \mid t}\right)\right)
$$

$S\left(\hat{y}_{t+h, j \mid t}\right)$ is a signal which indicates the size of the pultolio

- $y_{t+h}$ is the holding period return of the asset
- Could be -1, 0, 1 for short, out, long strategies
$\hat{y}_{t+h, j \mid t}$ is the input for the signal function, e.g. a Moving Average Oscillator
- The vector of loss differentials is then

$$
\boldsymbol{\sigma}_{t}=\left[\begin{array}{c}
\ln \left(1+y_{t+h} S\left(\hat{y}_{t+h, 1 \mid t}\right)\right)-\ln \left(1+y_{t+h} S\left(\hat{y}_{t+h, B M \mid t}\right)\right) \\
\vdots \\
\ln \left(1+y_{t+h} S\left(\hat{y}_{t+h, m \mid t}\right)\right)-\ln \left(1+y_{t+h} S\left(\hat{y}_{t+h, B M \mid t}\right)\right)
\end{array}\right]
$$

- The benchmark could be a simple strategy, egg. buy-and-hold $(S(\cdot)=1)$
- Ultimately the "loss differential" is the difference between the returns of a set of strategies and the benchmark strategy


## Example: Predictive Likelihood

- SPA can be used to test distribution fit log
- The loss function is just the negative of the likelihood

$$
L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)=-l_{j}\left(y_{t+h} \mid \hat{y}_{t+h, j \mid t}\right)
$$

- $\hat{y}_{t+h, j \mid t}$ contains any time- $t$ information needed to compute the log-likelihood
- The vector of loss differentials is then

$$
\boldsymbol{\sigma}_{t}=\left[\begin{array}{c}
l_{1}\left(y_{t h h} \mid \hat{y}_{t+h, 1 \mid t}\right)-l_{B M}\left(y_{t+h} \mid \hat{y}_{t+h, B M \mid t}\right) \\
l_{2}\left(y_{t+h} \mid \hat{y}_{t+h, 2 \mid t}\right)-l_{B M}\left(y_{t+h} \mid \hat{y}_{t+h, B M \mid t}\right) \\
\vdots \\
l_{m}\left(y_{t+h} \mid \hat{y}_{t+h, m \mid t}\right)-l_{B M}\left(y_{t+h} \mid \hat{y}_{t+h, B M \mid t}\right)
\end{array}\right]
$$

- The benchmark could be a simple strategy, e.g. buy-and-hold $(S(\cdot)=1)$
- Ultimately the differential is just the difference between the returns of a set of strategies and the benchmark strategy


## Example: $\alpha$ from a multifactor model

- Suppose you were interested in testing for excess performance
- Usual APT type regression

$$
r_{j, t}^{e}=\alpha_{j}+\mathbf{f}_{t}^{\prime} \boldsymbol{\beta}_{j}+\epsilon_{j, t}
$$

- The "benchmark $\alpha$ " is 0 - the test is implemented directly on the estimated $\alpha$
- Loss function is just - $\hat{\alpha}$ (negative excess performance)
- The vector of loss differentials is then

$$
\boldsymbol{\delta}_{t}=\left[\begin{array}{c}
r_{1, t}^{e}-\mathbf{f}_{t}^{\prime} \hat{\boldsymbol{\beta}}_{1} \\
\vdots \\
r_{m, t}^{e}-\mathbf{f}_{t}^{\prime} \hat{\boldsymbol{\beta}}_{m}
\end{array}\right]=\left[\begin{array}{c}
-\hat{\alpha}_{1}+\hat{\epsilon}_{1, t} \\
\vdots \\
-\hat{\alpha}_{m} \boldsymbol{\tau} \hat{\epsilon}_{m, t}
\end{array}\right]
$$

- Used to test fund manager skill


## Implementing the Reality Check

- The Reality Check is implemented using the $P$ by $m$ matrix of loss differentials
- $P$ out-of-sample periods
- m models
- The original article describes two methods
- Monte Carlo Reality Check
- Bootstrap Reality Check
- In practice, only the Bootstrap Reality Check is used
- The distribution of the maximum of normals is not normal, and so only the percentile method is applicable


## Implementing the Reality Check

## Algorithm (Bootstrap Reality Check)

1. Compute $T^{R C}=\max (\bar{\delta})$
2. For $b=1, \ldots, B$ re-sample the vector of loss differentials $\boldsymbol{\delta}_{t}$ to construct $a$ bootstrap sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}$ using the stationary bootstrap
3. Using the bootstrap sample, compute

$$
T_{b}^{\star R C}=\max \left(P^{-1} \sum_{t=R+1}^{T} \boldsymbol{\delta}_{b, t}^{\star}-\overline{\boldsymbol{\delta}}\right)
$$

4. Compute the Reality Check $p$-value as the percentage of the bootstrapped maxima which are larger than the sample maximum

$$
p-\text { value }=B^{-1} \sum_{b=1}^{b} I\left[T_{b}^{* R C}>T^{R C}\right]
$$

- The bootstrap means are like draws (simulation) from the asymptotic distribution $N(\mathbf{0}, \mathbf{\Sigma})$
- Taking the maximum of these draws simulates the distribution of a set of correlated normals
- Each bootstrap mean is centered at the sample mean
- This is known as using the Least Favorable Configuration (LFC) point
- Simulation is done assuming any model could as good as the benchmark
- Since the asymptotic distribution can be simulated, asymptotic critical values and $p$-values can be constructed directly
- The Monte Carlo Reality Check works by first estimating $\Sigma$ using a HAC estimator, and then simulating random normals directly
- MCRC is equivalent to BRC, only requires estimating:
- A potentially large covariance is $m$ is big
- The Choleski decomposition of this covariance
- B drawn from this Choleski
- In practice, $m$ may be so large that the covariance matrix won't fit in a normal computer's memory


## Revisiting: $\alpha$ from a multifactor model

- The original formulation had

$$
\boldsymbol{\delta}_{t}=\left[\begin{array}{c}
r_{1, t}^{e}-\mathbf{f}_{t}^{\prime} \hat{\boldsymbol{\beta}}_{1} \\
\vdots \\
r_{m, t}^{e}-\mathbf{f}_{t}^{\prime} \hat{\boldsymbol{\beta}}_{m}
\end{array}\right]=\left[\begin{array}{c}
\hat{\alpha}_{1}+\hat{\epsilon}_{1, t} \\
\vdots \\
\hat{\alpha}_{m}+\hat{\epsilon}_{m, t}
\end{array}\right]
$$

- Alternatively distribution could be built up by directly re-sampling the returns and factors jointly
- This would allow $T_{b}^{\star R C}=\max _{j=1, \ldots, m}\left(\alpha_{j, b}^{*}-\hat{\alpha}_{j}\right)$ to be computed form a cross-sectional regression in each bootstrap
- Reality check allow for parameter estimation error as long as $(P / R) \ln \ln R \rightarrow 0$ which is similar to $P / R \rightarrow 0$
- Also works if $P / R \rightarrow \infty$, in which case it is essential to re-sample returns and factors and re-estimate $\hat{\boldsymbol{\beta}}_{j, b}^{\star}$ in each bootstrap


## Application in Original Paper

- The original paper is applied to the BLL-type trading rules
- Used S\&P 500 rather than DJIA
- Constructed 4 types of trading rule primitives:
- Momentum measures: $\left(p_{t}-p_{t-j}\right) / p_{t-j}$ for $j \in\{1, \ldots, 11\}$ (11 rules)
- Trend: $p_{t-i}=\alpha+\beta(m-i)+\epsilon_{j}$ for $m \in\{5,10,15,20\}$ day periods (4 rules)
- Relative strength: $\tau^{-1} \sum_{i=-\tau+1}^{0} I\left[\left(p_{t-i}-p_{t-i-1}\right)>0\right]$ for $\tau \in\{5,10,15,20\}(4$ rules)
- Moving average oscillator for fast speeds of $\{1,5,10,15\}$ and slow speeds of $\{5,10,15,20\}$ (10 rules)
- Note: Slow has to be strictly longer than fast, so a total of $4+3+2+1=10$ rules
- All combinations of 3 of these 29 variables were fed into a linear regression to produce forecasts

$$
r_{t+1}=\beta_{1}+\beta_{2} x_{i, t}+\beta_{3} x_{j, t}+\beta_{4} x_{k, t}+\epsilon_{t+1}
$$

- For $i, j, k \in\{1, \ldots, 29\}$ without repetition, so ${ }_{29} C_{3}=3654$ rules


## Application in Original Paper

- Benchmark is a model which includes only a constant

$$
r_{t+1}=\beta_{1}+\epsilon_{t+1}
$$

- Models compared in terms of MSE

$$
L\left(y_{t+1}, \hat{y}_{t+1 \mid t}\right)=\left(y_{t+1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i, t}-\hat{\beta}_{2} x_{j, t}-\hat{\beta}_{3} x_{k, t}\right)^{2}
$$

- Models also compared in terms of directional accuracy

$$
L\left(y_{t+1}, \hat{y}_{t+1 \mid t}\right)=-I\left[y_{t+1}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i, t}+\hat{\beta}_{2} x_{j, t}+\hat{\beta}_{3} x_{k, t}\right)>0\right]
$$

- The negative is used to turn a "good" (same sign) into a "bad"
- Modification allows application of RC without modification since null is $H_{0}: \max \left(\mathrm{E}\left[\delta_{j, t}\right]\right) \leq 0$


## MSE Differential

$\max \bar{\delta}_{i}$


RC P-val

- Negative MSE differential plotted (higher is better)


## Sign Prediction

## Reality Check Results: Directional Accuracy Performance

| Best predictor variables: $Z_{t, 13}, Z_{t, 14}, Z_{t, 26}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| Best |  |  |  |
| Experiment |  |  |  |$\quad$| Benchmark |
| :---: | :---: | :---: |

## The $u$ in $T_{u}^{S P A}$ is for upper

- The $U$ is included to indicate that the $p$-value derived using the LFC may not be the best $p$-value
- Suppose the some of the models have a very low mean and a high standard deviation
- In the RC and SPA-U, all models are assumed to be as good as the benchmark
- This is implemented by always re-centering the bootstrap samples around $\bar{\delta}_{j}$
- If a model is rejectably bad, then it may be possible to improve the power of the RC/SPA-U by excluding this model
- This is implemented using a "pre-test" of the form

$$
I_{j}^{u}=1, \quad I_{j}^{c}=\frac{\bar{\delta}_{j}}{\sqrt{\hat{\omega}_{j}^{2} / P}}>-\sqrt{2 \ln \ln P}, \quad I_{j}^{l}=\bar{\delta}_{j}>0
$$

- The first (c for consistent) tests whether the standardized mean loss differential is greater than a HQ-like lower bound
- The second (l for lower) only re-centers if the loss-differential is positive (e.g. the benchmark is out-performed)


## General SPA

## Algorithm (Test of SPA)

1. Estimate $\hat{\omega}_{j}^{2}$ and compute $T^{S P A}=\max \left(\bar{\delta} / \sqrt{\hat{\omega}_{j}^{2} / P}\right)$
2. For $b=1, \ldots, B$ re-sample the vector of loss differentials $\boldsymbol{\delta}_{t}$ to construct a bootstrap sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}$ using the stationary bootstrap
3. Using the bootstrap sample, compute

$$
T_{s, b}^{\star S P A}=\max \left(\frac{P^{-1} \sum_{t=R+1}^{T} \delta_{j, b, t}^{\star}-I_{j}^{s} \bar{\delta}_{j}}{\sqrt{\hat{\omega}_{j}^{2} / P}}\right), s=l, c, u
$$

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped maxima which are larger than the sample maximum

$$
p-\text { value }=B^{-1} \sum_{b=1}^{b} I\left[T_{s, b}^{* S P A}>T^{S P A}\right], s=l, u, c
$$

## Comments on SPA

- The three versions only differ on whether a model is re-centered
- If a model is not re-centered, then it is unlikely to be the maximum in the re-sample distribution
- This is how "bad" models are discarded in the SPA
- Can compute 6 different p-values statistics
- Studentized or unmodified
- Indicator function in $l, c, u$
- Test statistic does not depend on $l, c, u$, only $p$-value does
- Reality Check uses unmodified loss differentials and $u$
- In practice Studentization beings important gains
- Using $c$ is important if using SPA on large universe of automated rules if some may be very poor


## Power Gains in SPA from Re-centering



## Combined Power Gains



## Application of RC to Technical Trading Rules

- Sullivan, Timmermann and White (1999) apply the RC to a large universe of technical trading rules
- Rules include:
- Filter Rules
- Moving Average Oscillators
- Support and Resistance
- Channel Breakout
- On-balance Volume Averages
- Tracks volume times return sign
- Similar to Moving Average rules for prices
- Total of 7,846 trading rules
- Only use 1 at a time
- Use DJIA as in BLL, updated to 1996
- Consider mean return criteria and Sharpe Ratio


## Mean Return Performance BLL Universe

BLL Universe of Trading Rules

| Sample | Mean Return | White's $p$-Value | Nominal $p$-Value |
| :--- | :---: | :---: | :---: |
| In-sample |  |  |  |
| $\quad$ Subperiod 1 (1897-1914) | 9.52 | 0.021 | 0.000 |
| Subperiod 2 (1915-1938) | 13.90 | 0.000 | 0.000 |
| Subperiod 3 (1939-1962) | 9.46 | 0.000 | 0.000 |
| Subperiod 4 (1962-1986) | 7.87 | 0.004 | 0.000 |
| 90 years (1897-1986) | 10.11 | 0.000 | 0.000 |
| 100 years (1897-1996) | 9.39 | 0.000 | 0.000 |
| Out-of-sample |  |  |  |
| $\quad$ Subperiod 5 (1987-1996) | 8.63 | 0.154 | 0.055 |
| S\&P 500 Futures (1984-1996) | 4.25 | 0.421 | 0.204 |

## Mean Return Performance Expanded

|  | Full Universe of Trading Rules |  |  |
| :--- | :---: | :---: | :---: |
| Sample | Mean Return | White's $p$-Value | Nominal $p$-Value |
| In-sample |  |  |  |
| Subperiod 1 (1897-1914) | $\mathbf{1 6 . 4 8}$ | 0.000 | 0.000 |
| Subperiod 2 (1915-1938) | 20.12 | 0.000 | 0.000 |
| Subperiod 3(1939-1962) | 25.51 | 0.000 | 0.000 |
| Subperiod 4 (1962-1986) | 23.82 | 0.000 | 0.000 |
| 90 years (1897-1986) | 18.65 | 0.000 | 0.000 |
| 100 years (1897-1996) | 17.17 | 0.000 | 0.000 |
| Out-of-sample |  |  |  |
| Subperiod 5 (1987-1996) | $\mathbf{1 4 . 4 1}$ | 0.341 | 0.004 |
| S\&P 500 Futures (1984-1996) | 9.43 | 0.908 | 0.042 |

## RC based on Sharpe Ratio

- From any strategy it is simple to compute the Sharpe Ratio

$$
S R=\frac{P^{-1} \sum_{t=R+1}^{T} \tilde{r}_{t+1}-r_{f, t+1}}{\sqrt{P^{-1} \sum_{t=R+1}^{T}\left(\tilde{r}_{t+1}-\bar{r}\right)^{2}}}
$$

- The strategy return is $\tilde{r}_{t+1}=r_{t+1} S\left(\hat{y}_{j, t+1 \mid t}\right)$
- $\overline{\tilde{r}}$ is the mean of the strategy return
- $r_{f, t+1}$ is the risk-free rate


## RC based on Sharpe Ratio

- The bootstrap can be used to compute a bootstrap version of the same rule by jointly re-sampling $\left\{\tilde{r}_{t+1}, r_{f, t+1}\right\}$
- The bootstrap Sharpe Ratio is then

$$
\begin{aligned}
S R_{b}^{\star} & =\frac{a}{\sqrt{b-c^{2}}} \\
a & =P^{-1} \sum_{t=R+1}^{T} \tilde{r}_{b, t+1}-r_{f, b, t+1} \\
b & =P^{-1} \sum_{t=R+1}^{T} \tilde{r}_{b, t+1}^{2} \\
c & =P^{-1} \sum_{t=R+1}^{T} \tilde{r}_{b, t+1}
\end{aligned}
$$

- The SR can be computed for all models
- The RC can then be applied to the (negative) SR, rather than the (negative) return


## Sharpe Ratio Performance: BLL Universe

BLL Universe of Trading Rules

| Sample | Sharpe Ratio | White's $p$-Value | Nominal $p$-Value |
| :--- | :---: | :---: | :---: |
| In-sample |  |  |  |
| $\quad$ Subperiod 1 (1897-1914) | 0.51 | 0.147 | 0.016 |
| Subperiod 2 (1915-1938) | 0.51 | 0.037 | 0.000 |
| Subperiod 3 (1939-1962) | 0.79 | 0.000 | 0.000 |
| Subperiod 4 (1962-1986) | 0.53 | 0.051 | 0.003 |
| 90 years (1897-1986) | 0.45 | 0.000 | 0.000 |
| 100 years (1897-1996) | 0.39 | 0.000 | 0.000 |
| Out-of-sample |  |  |  |
| Subperiod 5 (1987-1996) | 0.28 | 0.721 | 0.127 |
| S\&P 500 Futures (1984-1996) | 0.23 | 0.702 | 0.165 |

## Sharpe Ratio Performance: Expanded

Full Universe of Trading Rules
Sample
Sharpe Ratio White's $p$-Value Nominal $p$-Value
In-sample
Subperiod 1 (1897-1914)
Subperiod 2 (1915-1938)
Subperiod 3 (1939-1962)
Subperiod 4 (1962-1986)
90 years (1897-1986)
100 years (1897-1996)
1.15
0.76
0.000
0.000
0.056
0.000
2.18
0.000
0.000
1.41
0.91
0.000
0.000
0.000
0.000
0.82
0.000
0.000

Out-of-sample
Subperiod 5 (1987-1996)
S\&P 500 Futures (1984-1996)
0.87
0.903
0.000
0.66
0.987
0.000

## Stepwise Multiple Testing

- The main issue with the Reality Check and the Test for SPA is the null
- These tests ultimately test one question:
- Is the largest out-performance consistent with a random draw from the distribution when there are not superior models to the benchmark?
- If the null is rejected, only the best performing model can be determined to be better than the benchmark
- What about the 2nd best model? Or the $\mathrm{k}^{\text {th }}$ best model?
- The StepM extends that reality check by allowing individual models to be tested
- It is implemented by repeatedly applying a RC-like algorithm which controls the Familywise Error Rate (FWE)


## Basic Setup

- The basic setup is identical to that of the RC/SPA
- The test is based on $\delta_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, B M \mid t}\right)-L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
- Can be used in the same types of tests as RC/SPA
- Absolute return
- Sharpe Ratio
- Risk-adjusted $\alpha$ comparisons
- MSE/MAE
- Predictive Likelihood
- Can be implemented on both raw and Studentized loss differentials


## Null and Alternative Hypotheses

- The null and alternatives in StepM are not a single statement as they were in the RC/SPA
- The nulls are

$$
H_{0, j}: \mathrm{E}\left[\delta_{t}\right] \leq 0, \quad j=1, \ldots, m
$$

- The alternatives are

$$
H_{1, j}: \mathrm{E}\left[\delta_{t}\right]>0, j=1, \ldots, m
$$

- StepM will ultimately result in a set of rejections (if any are rejected)
- Goal of StepM is to identify as many false nulls as possible while controlling the Familywise Error Rate


## Familywise Error Rate

## Definition (Familywise Error Rate)

For a set of null and alternative hypotheses $H_{0, i}$ and $H_{1, i}$ for $i=1, \ldots, m$, let $\mathcal{I}_{0}$ contain the indices of the correct null hypotheses. The Familywise Error Rate is defined as
$\operatorname{Pr}\left(\operatorname{Rejecting}\right.$ at least one $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)=1-\operatorname{Pr}\left(\right.$ Reject no $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)$

- The FWE is concerned only with the probability of making at least one Type I error
- Making 1, 2 or $m$ Type I errors is the same to FWE
- This is a criticism of FWE
- Other criteria exist such as False Discovery Rate which controls the percentage of rejections which are false (\# False Rejection/\# Rejections)


## Bonferoni Bounds

- Bonferoni bounds are the first procedure to control FWE


## Definition (Bonferoni Bound)

Let $T_{1}, T_{2}, \ldots, T_{m}$ be a set of $m$ test statistics, then

$$
\underbrace{\operatorname{Pr}\left(T_{1} \cup \ldots \cup T_{m} \mid H_{1,0}, \ldots H_{m, 0}\right)}_{\text {Joint Probability }} \leq \sum_{j=1}^{m} \underbrace{\operatorname{Pr}\left(T_{j} \mid H_{0, j}\right)}_{\text {Individual Probability }}
$$

where $\operatorname{Pr}\left(T_{j} \mid H_{0, j}\right)$ is the probability of observing $T_{j}$ given the null $H_{0, j}$ is true.

- Bonferoni bounds are a simple method to test $m$ hypotheses using only univariate test statistics
- Let $\left\{p v_{j}\right\}$ be a set of $m p$-values from a set of tests
- The Bonferoni bound will reject the set of nulls is $p v_{j} \leq \alpha / m$ for all $j$
- $\alpha$ is the size of the test (e.g. 5\%)
- When $m$ is moderately large, this is a very conservative test
- Conservative since assumes worst case dependence among statistics


## Holm's procedure

## Definition (Holm's Procedure)

Let $T_{1}, T_{2}, \ldots, T_{m}$ be a set of $m$ test statistics with associated $p$-values $p v_{j}$, $j=1, \ldots, m$ where it is assumed $p v_{i}<p v_{j}$ if $i<j$. If

$$
p v_{j} \leq \alpha /(m-j+1)
$$

then $H_{0, j}$ can be rejected in factor of $H_{1, j}$ while controlling the famliywise error rate at $\alpha$.

- Example: p-values of $.001, .01, .03, .05, m=4, \alpha=.05$
- Improves Bonferoni by ordering the p -values and using a stepwise procedure
- Allows subsets of hypotheses to be tested - Bonferoni is joint
- Less strict, except when $j=1$ (same as Bonferoni)
- Note: Holm's procedure ends as soon as a null cannot be rejected


## Relationships between testing procedures

- The RC/SPA, Bonferoni and Holm are all related

|  | Worst-case Dependence | Accounts for Dependence in Data |
| :---: | :---: | :---: |
| Single-step | Bonferoni | RC, SPA |
| Stepwise | Holm | StepM |

## StepM Algorithm

## Algorithm (StepM)

1. Begin with the active set $\mathcal{A}=\{1,2, \ldots, m\}$, superior set $\mathcal{S}=\{ \}$
2. Construct $B$ bootstraps sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}, b=1, \ldots, B$
3. For each bootstrap sample, compute $T_{k, b}^{\star \text { StepM }}=\max _{j \in \mathcal{A}}\left\{\bar{\delta}_{b, j}^{\star}-\bar{\delta}_{j}\right\}$
4. Compute $q_{k, \alpha}$ as the $1-\alpha$ quantile of $\left\{T_{k, b}^{* \text { Step } M}\right\}$
5. If $\max _{j \in \mathcal{A}}\left(\bar{\delta}_{j}\right)<q_{k, \alpha}$ stop
6. Otherwise for each $j \in \mathcal{A}$
a. If $\bar{\delta}_{j} \geq q_{k, \alpha}$ add $j$ to $\mathcal{S}$ and delete from $\mathcal{A}$
b. Return to 2

## Comments

- StepM would be virtually identical to RC if only the largest $\bar{\delta}_{j}$ was tested
- Improves on the RC since (weakly more) individual out-performing models can be identified
- If no model outperforms, will stop with none and RC p-value will be larger than $\alpha$
- Steps 2-4 are identical to the RC using the models in $\mathcal{A}$
- The stepwise testing can improve power by removing models
- The improvement comes if a model with substantial out-performance also has large variance
- Removing this model allows the critical value to be reduced
- StepM only guarantees that $\mathrm{FWE} \leq \alpha$, and in general will be $<\alpha$
- Will only $=\alpha$ if $\mathrm{E}\left[\delta_{j, t}\right]=0$ for all $j$
- Example: $N\left(\mu, \sigma^{2}\right)$ when $\mu<0, H_{0}: \mu=0$


## Studentization

- Like the SPA to the RC, the StepM can be implemented using Studentized loss differentials
- Romano \& Wolf argue that the Studentization should be done inside each bootstrap sample, not globally as in the SPA
- Theoretically both are justified and neither makes a difference asymptotically
- Computing the variance inside each bootstrap will more closely match the re-sampled data than when using a global estimate


## Studentized StepM Algorithm

## Algorithm (Studentized StepM)

1. Begin with the active set $\mathcal{A}=\{1,2, \ldots, m\}$, superior set $\mathcal{S}=\{ \}$
2. Compute $\bar{z}_{j}=\bar{\delta}_{j} / \sqrt{\omega_{j}^{2} / P}$ where $\omega_{j}^{2}$ was previously defined
3. Construct $B$ bootstraps sample $\left\{\boldsymbol{\delta}_{b, t}^{\star}\right\}, b=1, \ldots, B$
4. For each bootstrap sample, compute

$$
T_{k, b}^{s t e p M}=\max _{j \in \mathcal{A}}\left\{\frac{\bar{\delta}_{b, j}^{*}-\bar{\delta}_{j}}{\hat{\omega}_{j}^{*}}\right\}
$$

where $\omega_{j}^{2 *}$ is an estimate of the long-run variance of the bootstrapped data
5. Compute $q_{k, \alpha}^{z}$ as the $1-\alpha$ quantile of $\left\{T_{k, b}^{s \text { step } M}\right\}$
6. If $\max _{j \in \mathcal{A}}\left(\bar{z}_{j}\right)<q_{k, \alpha}^{z}$ stop
7. Otherwise for each $j \in \mathcal{A}$
a. If $\bar{z}_{j} \geq q_{k, \alpha}^{z}$ add $j$ to $\mathcal{S}$ and delete from $\mathcal{A}$
b. Return to 2

## Why Studentization Help

- StepM is built around confidence intervals of the form

$$
\left[\bar{\delta}_{1}-q_{1, \alpha}, \infty\right] \times \ldots \times\left[\bar{\delta}_{m}-q_{1, \alpha}, \infty\right]
$$

- Null hypotheses are rejected for models where 0 is not in its confidence interval
- In the raw form, the confidence interval is a square - the same for every loss differential
- When Studentization is used, the confidence intervals take the form

$$
\left[\bar{\delta}_{1}-\sqrt{\omega_{1}^{2} / P} q_{1, \alpha}^{z}, \infty\right] \times \ldots \times\left[\bar{\delta}_{m}-\sqrt{\omega_{m}^{2} / P} q_{1, \alpha}^{z}, \infty\right]
$$

- This "customization" allows for more rejections if the loss differentials have cross-sectional heteroskedasticity


## Block-size Selection

- Paper proposes a procedure to make data driven block size
- Basic idea is to use a (V)AR on $\left\{\delta_{j, t}\right\}$ to approximate the dependence
- Similar to Den Hann-Levine HAC
- Fit AR \& estimate residual covariance (or use short block bootstrap on errors)
- Simulate from model
- For $w=1, \ldots, \bar{W}$ compute the bootstrap confidence region with size $1-\alpha$ using percentile method
- For each block size, compute the empirical coverage - percentage of simulated $\bar{\delta}$ in their confidence region
- Choose optimal $w$ which most closely matches $1-\alpha$
- Alternative: Use Politis \& White


## Empirical Application

- Applied StepM to a set of 105 Hedge Fund Returns with long histories
- Returns net of management fees
- Benchmark model was risk-free rate
- $m=105, P=147$ (all out-of-sample)
- Results:
- Raw data: No out-performers
- Max ratio of standard deviation $\hat{\omega}_{i} / \hat{\omega}_{j}=22$
- Studentized: 7 funds identified
- Note: Will always identify funds with the largest $\bar{\delta}$ (or $\bar{z}$ ) first


## Empirical Application

| $\bar{x}_{T, s}-\bar{x}_{T, S+1}$ | Fund | $\left(\bar{x}_{T, s}-\bar{x}_{T, S+1}\right) / \hat{\sigma}_{T, s}$ | Fund |
| :---: | :---: | :---: | :---: |
| 1.70 | Libra Fund | 10.63 | Market Neutra** |
| 1.41 | Private Investment Fund | 9.26 | Market Neutral Arbitrage* |
| 1.36 | Aggressive Appreciation | 8.43 | Univest (B)* |
| 1.27 | Gamut Investments | 6.33 | TQA Arbitrage Fund* |
| 1.26 | Turnberry Capital | 5.48 | Event-Driven Risk Arbitrage* |
| 1.14 | FBR Weston | 5.29 | Gabelli Associates* |
| 1.11 | Berkshire Partnership | 5.24 | Elliott Associates** |
| 1.09 | Eagle Capital | 5.11 | Event Driven Median |
| 1.07 | York Capital | 4.97 | Halcyon Fund |
| 1.07 | Gabelli Intl. | 4.65 | Mesirow Arbitrage Trust |

## Improving StepM using SPA

- The main step in the StepM algorithm is identical to the RC
- The important difference is that the test is implemented for each null, rather than globally
- StepM will suffer if very poor models are included with a large variance
- Especially true for raw version, but also relevant for Studentized version
- Example

$$
\left[\begin{array}{l}
\bar{\delta}_{1} \\
\bar{\delta}_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
0 \\
-5
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

- Reality Check critical value will be 1.95 , while "best" critical value would be 1.645 (since only 1 relevant for asymptotic distribution)
- The RC portions of StepM can be replaced by SPA versions which addresses this problem
- Simple as adding in the indicator function $I_{j}^{c}$ when subtracting the mean in step 3 (step 4 in Studentized version)
- Using SPA modification will always find more out-performing models


## Model Confidence Set (MCS)

- RC, SPA and StepM were all testing superior predictive ability
- This type hypothesis is common when there is a natural benchmark
- In some scenarios there may not be a single benchmark, or there may more than one models which could be considered benchmarks
- When this occurs, it is not clear
- How to implement RC/SPA/StepM
- How to make sound conclusions about superior predictive ability
- The model confidence set addresses this problem by bypassing the benchmark
- The MCS aims to find the best model and all models which are indistinguishable from the best
- The model with the lowest loss will always be the best - identifying the others is more challenging
- Also returns p-values for models with respect to the MCS


## Notation Preliminaries

- The outcome of the MCS is a set of models
- All model sets will be denoted using $\mathcal{M}$
- The initial model set is $\mathcal{M}_{0}$
- The goal is to find $\mathcal{M}^{\star}$ which is the set of all models which are indistinguishable from the best
- The output of the MCS algorithm is $\widehat{\mathcal{M}}_{1-\alpha}$ where $\alpha$ is the size of the test
- The size is interpreted as a Familywise Error Rate - same as StepM
- In general $\widehat{\mathcal{M}}_{1-\alpha}$ will contain more than 1 model
- In between $\mathcal{M}_{0}$ and $\widehat{\mathcal{M}}_{1-\alpha}$ are other sets of models

$$
\mathcal{M}_{0} \supset \mathcal{M}_{1} \supset \ldots \supset \widehat{\mathcal{M}}_{1-\alpha}
$$

## Notation Preliminaries

- To construct the model confidence set, two tools are needed
- An equivalence test $d_{\mathcal{M}}$ : Determines whether the model in $\mathcal{M}$ are equal in terms of loss
- An elimination rule $e_{\mathcal{M}}$ : Determines which model to eliminate if $d_{\mathcal{M}}$ finds that the models are not equivalent
- The generic form of the algorithm, starting at $i=0$ :

1. Apply $d_{\mathcal{M}}$ to $\mathcal{M}_{i}$
2. If $d_{\mathcal{M}}$ rejects equivalence, use $e_{\mathcal{M}}$ to eliminate 1 model to produce $\mathcal{M}_{i+1}$
a. If not, stop
3. Increment $i$, return to 1

- Has a similar flavor to StepM
- Also gains from eliminating models with high variance


## The Model Confidence Set

- When the algorithm ends, the final set $\widehat{\mathcal{M}}_{1-\alpha}$ has the property

$$
\lim _{P \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M}^{\star} \subset \widehat{\mathcal{M}}_{1-\alpha}\right) \geq 1-\alpha
$$

- The result follows directly since the FWE is $\leq \alpha$
- If there is only 1 "best" model, then the result can be strengthened

$$
\lim _{P \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M}^{\star} \subset \widehat{\mathcal{M}}_{1-\alpha}\right)=1
$$

- The MCS will find the "best" model asymptotically
- The intuition behind this is that the "best" model will have:
- Lower loss than all other models
- The variance of the average loss differential will decline as $P \rightarrow \infty$
- When 2 or more models are equally good, there is always a $\alpha$ chance that at least 1 will be rejected
- In large samples, models which are not in $\mathcal{M}^{\star}$ will be eliminated with probability 1 since the individual test statistics are consistent


## Model Confidence Set

- The MCS takes loss functions as inputs, but ultimately works on loss differentials
- Since there is no benchmark model, all loss differentials are considered

$$
\delta_{i j, t}=L\left(y_{t+h}, \hat{y}_{t+h, i \mid t}\right)-L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)
$$

- There are many pairs, and so the actual test examines whether the average loss for model $j$ is different from that of all models

$$
\bar{\delta}_{i}=\frac{1}{m-1} \sum_{i=1, i \neq j}^{m} \bar{\delta}_{i j}
$$

- If $\bar{\delta}_{i}$ is sufficiently positive, then model $i$ is worse then the other models in the set


## Null and Alternative

- The MCS can be based on two test statistics
- Both satisfy some technical conditions on $d_{\mathcal{M}}$ and $e_{\mathcal{M}}$
- The first is based on $T=\max _{i \in \mathcal{M}}\left(\bar{z}_{i}\right)$ where $\bar{z}_{i}=\bar{\delta}_{i} / \hat{\sigma}_{i}$ and $\hat{\sigma}_{i}^{2}$ is an estimate of the (log-run) variance of $\bar{\delta}_{i}$
- The elimination rule is $e_{\mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} z_{i}$
- The second is based on $T_{R}=\max _{i, j \in \mathcal{M}}\left|\bar{z}_{i j}\right|$ where $\bar{z}_{i j}=\bar{\delta}_{i j} / \hat{\sigma}_{i j}$ and $\hat{\sigma}_{i j}$ is an estimate of the (log-run) variance of $\bar{\delta}_{i j}$
- The elimination rule is $e_{R, \mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} \sup _{j \in \mathcal{M}} \bar{z}_{i j}$
- Eliminate the model which has the largest loss differential to some other model, relative to its standard deviation
- At each step the null is $H_{0}: \mathcal{M}=\mathcal{M}^{\star}$ and the alternative is $H_{1}: \mathcal{M} \supsetneq \mathcal{M}^{\star}$


## Model Confidence Set Setup

## Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS construction using a bootstrap appropriate for the data
2. Construct the average loss for each model

$$
\bar{L}_{j}=P^{-1} \sum_{t=R+1}^{T} L_{j, t}
$$

where $L_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
3. For each bootstrap replication, compute centered the bootstrap average loss

$$
\eta_{b, j}^{*}=P^{-1} \sum_{t=R+1}^{T} L_{b, j, t}^{*}-\bar{L}_{j}
$$

## Model Confidence Set

## Algorithm (Model Confidence Set)

1. Being with $\mathcal{M}=\mathcal{M}_{0}$ containing all models where $m$ is the number of models in M
2. Calculate $\bar{L}=m^{-1} \sum_{j=1}^{m} \bar{L}_{j}, \eta_{b}^{\star}=m^{-1} \sum_{j=1}^{m} \eta_{b, j}^{\star}$, and $\hat{\sigma}_{j}^{2}=B^{-1} \sum_{b=1}^{B}\left(\eta_{b, j}^{\star}-\bar{\eta}_{j}^{\star}\right)^{2}$ where $\bar{\eta}_{j}^{\star}$ is the average of $\eta_{b, j}^{*}$ for model $j$
3. Define $T=\max _{j \in \mathcal{M}}\left(\bar{z}_{j}\right)$ where $\bar{z}_{j}=\bar{L}_{j} / \hat{\sigma}_{j}$
4. For each bootstrap sample, compute
$T_{b}^{\star}=\max _{j \in \mathcal{M}}\left(\left(\bar{L}_{b, j}^{\star}-\bar{L}_{b}^{\star}\right) / \hat{\sigma}_{j}\right)=\max _{j \in \mathcal{M}}\left(\left(\eta_{b, j}^{\star}-\eta_{b}^{\star}\right) / \hat{\sigma}_{j}\right)$
5. Compute the $p$-value of $\mathcal{M}$ as $\hat{p}=B^{-1} \sum_{b=1}^{B} I\left[T_{b}^{\star}>T\right]$
6. If $\hat{p}>\alpha$ stop
7. If $\hat{p}<\alpha$, set $e_{\mathcal{M}}=\operatorname{argmax}_{j \in \mathcal{M}}\left(\bar{z}_{j}\right)$ and eliminate the model with the largest test statistic from $\mathcal{M}$
8. Return to step 2, using the reduced model set

## Comments

- It is important that the variance estimates are re-computed in each step of algorithm
- This allows the standard errors to decline if poor models are excluded since the cross-sectional variance of $\bar{L}_{j}$ should be smaller when a bad model is dropped
- In practice the MCS should be implemented by computing in order

1. A set of bootstrap indices
2. The $P$ by $m$ set of bootstrapped losses $L_{b, j, t}^{*}$
3. The 1 by $m$ vector containing $\eta_{b, j}^{\star}$

- By iterating over these $B$ times only the $B$ by $m$ matrix containing $\eta_{b, j}^{\star}$ has to be retained
- Plus the 1 by $m$ vector containing $\bar{L}_{j}$


## Model Confidence P-value

- The MCS can also provide p-values for each model
- If model $i$ is eliminated, then the $p$-value of model $i$ is the maximum of the $\hat{p}$ found when model $i$ is eliminated and all previous $p$-values
- Suppose $\alpha=.05$, and the first three rounds eliminated models with $\hat{p}$ of .01,.04,.02, respectively
- The three p-values would then be:
- .01(nothing to compare against)
- $.04=\max (.01, .04)$
- $.04=\max (.02, .04)$
- The output of the MCS algorithm is $\widehat{\mathcal{M}}_{1-\alpha}$ which contains the true set of best models with probability weakly larger than $1-\alpha$
- This is similar to a standard frequentist confidence interval which contains the true parameter with probability of at least $1-\alpha$
- The MCS p-value is not a statement about the probability that a model is the best
- For example, the model with the lowest loss always has p-value $=1$


## Model Confidence P-value

Table 1: Computation of MCS $p$-values

| Elimination Rule | $p$-value for $H_{0, \mathcal{M}_{k}}$ | MCS $p$-value |
| :---: | :---: | :---: |
| $e_{\mathcal{M}_{1}}$ | $P_{H_{0, \mathcal{M}_{1}}}=0.01$ | $\hat{p}_{e_{\mathcal{M}_{1}}}=0.01$ |
| $e_{\mathcal{M}_{2}}$ | $P_{H_{0, \mathcal{M}_{2}}}=0.04$ | $\hat{p}_{\text {eM }^{\prime}}=0.04$ |
| $e_{\mathcal{M}_{3}}$ | $P_{H_{0, \mathcal{M}_{3}}}=0.02$ | $\hat{p}_{e_{\mathcal{M}_{3}}}=0.04$ |
| $e_{\mathcal{M}_{4}}$ | $P_{H_{0, \mathcal{M}_{4}}}=0.03$ | $\hat{p}_{e_{\mathcal{M}_{4}}}=0.04$ |
| $e_{\mathcal{M}_{5}}$ | $P_{H_{0, \mathcal{M}_{5}}}=0.07$ | $\hat{p}_{e_{\mathcal{M}_{5}}}=0.07$ |
| $e_{\mathcal{M}_{6}}$ | $P_{H_{0, \mathcal{M}_{6}}}=0.04$ | $\hat{p}_{e_{\mathcal{M}_{6}}}=0.07$ |
| $e_{\mathcal{M}_{7}}$ | $P_{H_{0, \mathcal{M}_{7}}}=0.11$ | $\hat{p}_{\mathcal{M}_{\mathcal{M}_{7}}}=0.11$ |
| $e_{\mathcal{M}_{8}}$ | $P_{H_{0, \mathcal{M}_{8}}}=0.25$ | $\hat{p}_{e_{\mathcal{M}_{8}}}=0.25$ |
| ! | 仡 | . |
| $e^{\mathcal{M}_{\left(m_{0}\right)}}$ | $P_{H_{0, \mathcal{M}_{m_{0}}}} \equiv 1.00$ | $\hat{p}_{e \mathcal{M}_{m_{0}}}=1.00$ |

## Model Confidence Set using $T_{R}$

## Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS construction using a bootstrap appropriate for the data
2. Construct the average loss for each model $\bar{L}_{j}=P^{-1} \sum_{t=R+1}^{T} L_{j, t}$ where $L_{j, t}=L\left(y_{t+h}, \hat{y}_{t+h, j \mid t}\right)$
3. For each bootstrap replication, compute centered the bootstrap average loss

$$
\bar{L}_{b, j}^{\star}=P^{-1} \sum_{t=R+1}^{T} L_{b, j, t}^{*}-\bar{L}_{j}
$$

4. Calculate

$$
\hat{\sigma}_{i j}^{2}=B^{-1} \sum_{b=1}^{B}\left(\left(\bar{L}_{b, i}^{\star}-\bar{L}_{i}^{\star}\right)-\left(\bar{L}_{b, j}^{\star}-\bar{L}_{j}^{\star}\right)\right)^{2}
$$

where $\bar{L}_{j}^{\star}$ is the average of $\bar{L}_{b, j}^{\star}$ for the model $j$ across all bootstraps

## Model Confidence Set

## Algorithm (Model Confidence Set)

1. Being with $\mathcal{M}=\mathcal{M}_{0}$ containing all models where $m$ is the number of models in M
2. Define $T_{R}=\max _{i, j \in \mathcal{M}}\left(\bar{z}_{i j}\right)$ where $\bar{z}_{i j}=\left|\bar{L}_{i}-\bar{L}_{j}\right| / \hat{\sigma}_{i j}$
3. For each bootstrap sample, compute $T_{R, b}^{\star}=\max _{i, j \in \mathcal{M}}\left(\left|\bar{L}_{i}^{\star}-\bar{L}_{j}^{\star}\right| / \hat{\sigma}_{i j}\right)$
4. Compute the $p$-value of $\mathcal{M}$ as

$$
\hat{p}=B^{-1} \sum_{b=1}^{B} I\left[T_{R, b}^{\star}>T_{R}\right]
$$

5. If $\hat{p}>\alpha$ stop
6. If $\hat{p}<\alpha$, set $e_{\mathcal{M}}=\operatorname{argmax}_{i \in \mathcal{M}} \sup _{j \in \mathcal{M}}\left(\bar{z}_{i j}\right)$ and eliminate the model with the largest test statistic from $\mathcal{M}$
7. Return to step 2, using the reduced model set

## Comments

- The main difference is that the variance is not re-estimated in each iteration
- This happens since $T_{R}$ is based on the maximum DMW test statistic in each iteration
- DMW only depends on the properties of the pair
- However, the bootstrapped distribution does depend on which models are included and so this will vary across the iterations
- This version of the algorithm requires storing the $B$ by matrix of $\bar{L}_{j}^{\star}$


## Confidence sets for ICs

- The MCS can be used to construct confidence sets for ICs
- This type of comparison does not directly use forecasts, and so is in-sample
- This differs from traditional model selection where only the model with the best IC is chosen
- The MCS for an IC could be used as a pre-filtering mechanism prior to combining
- Implementing the MCS on an IC is slightly more complicated than the default MCS since it is necessary to jointly bootstrap the vector $\left\{y_{t}, \mathbf{x}_{j, t}\right\}$ where $\mathbf{x}_{j, t}$ are the regressors in model $j$
- Paper recommends using $T_{R}$ statistic to compare models using IC
- The object of interest is

$$
I C_{j}=T \ln \hat{\sigma}_{j}^{2}+c_{j}
$$

- $c_{j}$ is the penalty term
- AIC: $2 k_{j}$, BIC: $k_{j} \ln T$
- $\mathrm{AIC}^{\star}: 2 k_{j}^{\star}, \mathrm{BIC}^{*}: k_{j}^{*} \ln T$
- $k_{j}^{\star}$ is known as effective degrees of freedom (in mis-specified model $k^{\star} \neq k$ )
- MCS paper discusses how to estimate $k^{\star}$


## Confidence sets for ICs

- Using $T_{R}$ MCS construction algorithm, the test statistic is based on

$$
T_{R}=\max _{i, j \in \mathcal{M}}\left|\left[T \ln \hat{\sigma}_{i}^{2}+c_{i}\right]-\left[T \ln \hat{\sigma}_{j}^{2}+c_{j}\right]\right|
$$

- The bootstrap critical values are computed from

$$
T_{R, b}^{\star}=\max _{i, j \in \mathcal{M}}\left(\left[T \ln \hat{\sigma}_{i}^{2 \star}+c_{i}-T \ln \hat{\sigma}_{i}^{2}\right]-\left[T \ln \hat{\sigma}_{j}^{2 \star}+c_{j}-T \ln \hat{\sigma}_{j}^{2}\right]\right)
$$

- $\hat{\sigma}_{i}^{2 \star}$ is the variance computed using

$$
\epsilon_{b, t}^{\star}=y_{b, t}^{\star}-\mathbf{x}_{b, j, t}^{\star} \hat{\boldsymbol{\beta}}_{b, j}^{\star}
$$

- $\hat{\boldsymbol{\beta}}_{b, j}^{\star}$ is re-estimated using the bootstrapped data $\left\{y_{b, t}^{\star}, \mathbf{x}_{b, j, t}^{\star}\right\}$
- Errors are computed using the bootstrapped data and parameter estimates
- Aside from these changes, the remainder of the algorithm is unmodified


## False Discovery Rate and FWER

- Controlling False Discover Rate (FDR) is an alternative to controlling Family Wise Error Rate (FWER)


## Definition (k-Familywise Error Rate)

For a set of null and alternative hypotheses $H_{0, i}$ and $H_{1, i}$ for $i=1, \ldots, m$, let $\mathcal{I}_{0}$ contain the indices of the correct null hypotheses. The $k$-Familywise Error Rate is defined as
$\operatorname{Pr}\left(\right.$ Rejecting at least $k H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)=1-\operatorname{Pr}\left(\right.$ Reject no $H_{0, i}$ for $\left.i \in \mathcal{I}_{0}\right)$

- $k$ is typically 1 , so the testing procedures control the probability of any number of false rejections
- Type I errors
- The makes FWER tests possibly conservative
- Depends on what the actual intent of the study is


## False Discovery Rate

## Definition

The False Discovery Rate is the percentage of false null hypothesis relative to the total number of rejections, and is defined

$$
F D R=F / R
$$

where $F$ is the number of false rejections and $R$ is the total number of rejections.

- Unlike FWER, methods that control FDR explicitly assume that some rejections are false.
- Ultimately this leads to a (potentially) procedure that might discover more actual rejections
- For standard DMW-type tests, both FWER and FDR control fundamentally reduce to choosing a critical value different from the usual $\pm 1.96$
- Most of the time larger in magnitude
- Can be smaller in the case of FDR when there are many false nulls


## False Discovery Rate

- FDR is naturally adaptive
- When the number of false nulls is small ( $\sim 0)$, then FDR should choose a critical value similar to the FWER-based procedures
- $R \approx F, F / R \approx 1$ so any $F$ is too large
- On the other hand, when the percentage of false nulls is near $100 \%$, can reject all nulls
- $F \approx 0, F / R \approx 0$ and all nulls can be rejected
- Critical value can be arbitrarily small since virtually no tests have small values
- Hypothetically, could have a critical value of 0 if all nulls were actually false
- FDR controls the false rejection rate, and it is common to use rates in the range of 5-10\%
- Ultimately should depend on risk associated with trading a bad strategy against the cost of missing a good strategy
- Adding a small percentage of near 0 excess return strategies to a large set of useful strategies shouldn't deteriorate performance substantially


## Operationalizing FDR

- Operationalizing FDR requires some estimates
- In standard trading strategy setup, $H_{0}: \mu=0, H_{A}: \mu \neq 0$ where $\mu$ is the expected return in excess of some benchmark
- Benchmark might be risk-free rate, or could be buy-and-hold strategy
- $\pi$ is the proportion of false nulls
- Estimated using information about the distribution of $p$-values "near" 1 since these should all be generated from true nulls
- Entire procedure relies on only p-values
- Similar to Bonferoni or Bonferoni-Holm
- For standard 2-sided alternative

$$
p_{i}=2\left(1-\Phi\left(\left|t_{i}\right|\right)\right)
$$

where $t_{i}$ is (normalized) test statistic for strategy $i$.

## Computing FDR

- Key idea is to find $\gamma$, which is some number in $[0,1]$ such that

$$
\alpha=\widehat{F D R} \equiv \frac{\hat{\pi} l \gamma}{\sum_{i=1}^{l} I\left[p_{i}<\gamma\right]}
$$

- where
- $\alpha$ is the target FDR rate
- $\hat{\pi}$ and an estimate of the percentage of nulls that are true (no abnormal performance)
- $l$ is the number of rules
- $\gamma$ is the parameter that is used to find the p-value cutoff
- $\sum_{i=1}^{l} I\left[p_{i}<\gamma\right]$ is the number of rejections using $\gamma$
- The numerator is simply an estimate of the number of false rejections, which is
Probability of Null True $\times$ Number of Hypotheses $=$ Number of True Hypotheses
Number of False Hypotheses $\times$ Cutoff $=$ Number of False that are Rejected using $\gamma$
- Exploits the fact that under the null p-values have a uniform distribution, so that if there are $M$ false nulls, then, using a threshold of $\gamma$ will reject $\gamma M$


## Positive and Negative FDR

- Can further decompose FDR into upper (better) and lower (worse) measures

$$
\widehat{F D R}^{+} \equiv \frac{1 / 2 \hat{\pi} l \gamma_{U}}{\sum_{i=1}^{l} I\left[p_{i}<\gamma_{U}, t_{i}>0\right]}, \quad \widehat{F D R}^{+} \equiv \frac{1 / 2 \hat{\pi} l \gamma_{L}}{\sum_{i=1}^{l} I\left[p_{i}<\gamma_{L}, t_{i}<0\right]}
$$

- This version assumes a symmetric 2 -sided test statistic, so that on average $50 \%$ of the false rejections are in each tail
- Allows for tail-specific choice of $\gamma$ which would naturally vary if the number of correct rejections was different
- Suppose for example that many rules were bad, then $\gamma_{L}$ would be relatively large


## Estimation of $\pi$

- $\pi$ is estimated as

$$
\hat{\pi}=\frac{\sum_{i=1}^{l} I\left[p_{k}>\lambda\right]}{l(1-\lambda)}
$$

- $\lambda$ is a tuning parameter
- Simple to choose using visual inspection
- Recall that true nulls lead to a flat p-value histogram
- Find point where histogram looks non-flat, use cutoff for $\lambda$
- Histogram from BS



## Estimating $\pi$

- $\hat{\pi}$ allows percentage of correct rejections to be computed as $\hat{\pi}^{A}=1-\hat{\pi}$
- In the decomposed FDR the number of good (bad) rules can be computed as

$$
\alpha \times \sum_{i=1}^{l} I\left[p_{i}<\gamma_{U}, t_{i}>0\right]
$$

- Note that $\gamma_{U}$ is fixed here


## Bajgrowicz \& Scaillet (JFE, 2012)

- Apply FDR to technical trading rules of STW
- Use DJIA
- 1897-2011
- Find similar results, although importantly consider transaction costs for break even
- Strategies that trade more can have higher means while not violating EMH


## Background on Competitor Methods

| Sample period | RW portfolio |  | Best rule |  | DJIA |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sharpe ratio | Portfolio size | Sharpe ratio | BRC pvalue | Sharpe ratio |
| $\begin{aligned} & 1: 1897- \\ & 1914 \end{aligned}$ | 1.24 | 45 | 1.18 | 0.00 | -0.12 |
| $\begin{aligned} & 2: 1915- \\ & 1938 \end{aligned}$ | - | 0 | 0.73 | 0.11 | 0.06 |
| $\begin{aligned} & 3: 1939- \\ & 1962 \end{aligned}$ | 1.49 | 62 | 2.34 | 0.00 | 0.41 |
| $\begin{aligned} & 4: 1962- \\ & 1986 \end{aligned}$ | 1.52 | 15 | 1.45 | 0.00 | -0.16 |
| $\begin{aligned} & 5: 1987- \\ & 1996 \end{aligned}$ | - | 0 | 0.84 | 0.93 | 0.66 |
| $\begin{aligned} & \text { 6: } 1997- \\ & 2011 \end{aligned}$ | - | 0 | 0.48 | 1.00 | 0.12 |
| $\begin{aligned} & 1897- \\ & 1996 \end{aligned}$ | 0.70 | 88 | 0.82 | 0.00 | 0.12 |

