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Overview

= Model Combination
= Multiple Hypothesis Testing (2 weeks)
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The Standard Forecasting Model

= Standard forecasts are also popular for predicting economic variables
= Generically expressed

Ver1t = Bo + Xep + €11
X, is a 1 by k vector of predictors (k = 1 is common)

Includes both exogenous regressors such as the term or default premium
and also autoregressive models

= Forecasts are i1t
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The forecast combination problem

= Two level of aggregation in the combination problem

1. Summarize individual forecasters’ private information in point forecasts
Vewhiilt
» Highlights that “inputs” are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure C (yt+h|t,wt+h|t)

= Obvious competitor is the “super-model” or “kitchen-sink” - a model built
using all information in each forecasters information set

= Aggregation should increase the bias in the forecast relative to SM but may
reduce the variance

= Similar to other model selection procedures in this regard
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se the “Super Model”

Could consider pooling information sets
Fi = U e

= Would contain all information available to all forecasters
= Could construct consensus directly C (]-'f; 0t+h|t)
= Some reasons why this may not work

> Some information in individuals information sets may be qualitative, and so
expensive to quantitatively share

> Combined information sets may have a very high dimension, so that finding the
best super model may be hard

- Potential for lots of estimation error

= (Classic bias-variance trade-off is main reason to consider forecasts
combinations over a super model

> Higher bias, lower variance
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Linear Combination under MSE Loss

= Models can be combined in many ways for virtually any loss function
= Most standard problem is for MSE loss using only linear combinations
= | will suppress time subscripts when it is clear that it is t + h|t

= |Linear combination problem is

minE [¢?] = E [(th - W’i')z}

= Requires information about first 2 moments of he joint distribution of the
realization y.,; and the time-t forecasts ¥

312115 )
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Linear Combination under MSE Loss

= The first order condition for this problem is

= —Uyly + UgUgW + ZgyW — Sy = 0
= The solution to this problem is

w = (yyyg, + ZW> - (Zyg, + ,uyug,)

= Similar to the solution to the OLS problem, only with extra terms since the
forecasts may not have the same conditional mean
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Linear Combination under MSE Loss

= Can remove the conditional mean if the combination is allowed to include a
constant, w,

We = Uy —w*yg,
*

_ —1
W = EW ZW

= These are identical to the OLS where w, is the intercept and w* are the
slope coefficients

= The role of w, is the correct for any biases so that the squared bias term in
the MSE is 0
MSE [e] = B[e]* + V[e]
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Understanding the Diversification Gains

= Simple setup
e1 ~Fi(0,01), e~ F,(0,03), Corrler, e2] = p, Covleres] = 01z

= Assume o3 < o2
= Assume weights sum to 1 so that w; = 1 — wy (Will suppress the subscript
and simply write w)
= Forecast error is then
y—wy —(1-=w)y,
= Error is given by
e“=we;+(1 —w)ey

= Forecast has mean 0 and variance

wiol+(1—wiol+2w(l —w)or
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Understanding the Diversification Gains

= The optimal w can be solved by minimizing this expression, and is

2 2
Oy — 012 01— 012

W*:— 1—W*:—
o?+ok 201, o?+03—201,

Intuition is that the weight on a model is higher the:

> Larger the variance of the other model
» Lower the correlation between the models

1 weight will be larger than 1 if p > g—j
Weights will be equal if o1 = o for any value of correlation

> Intuitively this must be the case since model 1 and 2 are indistinguishable

from a MSE point-of-view
» When will “optimal” combinations out-perform equally weighted combinations?

Any time o1 # 03

= If p =1 then only select model with lowest variance (mathematical
formulation is not well posed in this case)
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Constrained weights

= The previous optimal weight derivation did not impose any restrictions on
the weights

= |n general some of the weights will be negative, and some will exceed 1
= Many combinations are implemented in a relative, constrained scheme

minE [e*] =E {()’ml - w’?)z} subject tow’t = 1

= The intercept is omitted (although this isn’t strictly necessary)

If the biases are all 0, then the solution is dual to the usual portfolio
minimization problem, and is given by

-1
W = ZWL

/ —1
LEWL

= This solution is the same as the Global Minimum Variance Portfolio
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Combinations as Hedge against Structural Breaksoxrorp

= One often cited advantage of combinations is (partial) robustness to
structural breaks

= Best case is if two positively correlated variables have shifts in opposite
directions

= Combinations have been found to be more stable than individual forecasts

> This is mostly true for static combinations
> Dynamic combinations can be unstable since some models may produce large
errors from time-to-time
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Weight Estimation

= All discussion has focused on ‘optimal” weights, which requires information
on the mean and covariance of both y;,, and Y,

> This is clearly highly unrealistic
= |n practice weights must be estimated, which introduces extra estimation
error

= Theoretically, there should be no need to combine models when all
forecasting models are generated by the econometrician (e.g. when using
F)
= |n practice, this does not appear to be the case
» High dimensional search space for “true” model
> Structural instability

> Parameter estimation error
> Correlation among predictors

Clemen (1989): “Using a combination of forecasts amounts to an admission
that the forecaster is unable to build a properly specified model”
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Weight Estimation

= Whether a combination is needed is closely related to forecast
encompassing tests

= Model averaging can be thought of a method to avoid the risk of model
selection

> Usually important to consider models with a wide range of features and many
different model selection methods

= Has been consistently documented that prescreening models to remove the
worst performing is important before combining

= One method is to use the SIC to remove the worst models
» Rank models by SIC, and then keep the x% best
= Estimated weights are usually computed in a 3rd step in the usual procedure

> R: Regression

» P: Prediction

» S: Combination estimation
»T=P+R+S

= Many schemes have been examined
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Weight Estimation

= Standard least squares with an intercept

N
Yeeh = Wo + W Vein|t + €r4hn

= | east squares without an intercept

Ye+n = W/?t+h|t t €tvh
= Linearly constrained least squares
n—1
Yerh — Yerhnje = Z Wi (Veehite — Jeehnie) + €ch
i=1
> This is just a constrained regression where >~ w; = 1 has been implemented
wherew, =1— 3" 'w;
> Imposing this constraint is thought to help when the forecast is persistent

C / !
€rine = —Wo + (1 - W '«) Yeeh + W €pipt

> €. are the forecasting errors from the n models
> Only matters if the forecasts may be biased
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Weight Estimation

= Constrained least squares

Yerh = W¥eine + €0 SUbject to w'e=1, w; > 0

> This is not a standard regression, but can be easily solved using quadratic
programming (MATLAB quadprog)

= Forecast combination where the covariance of the forecast errors is
assumed to be diagonal

> Produces weights which are all between 0 and 1
~ Weight on forecast i is

S

Wi =

L
S~

> May be far from optimal if p is large
» Protects against estimator error in the covariance
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Weight Estimation

= Median
> Can use the median rather than the mean to aggregate
> Robust to outliers
> Still suffers from not having any reduction in parameter variance in the actual
forecast

= Rank based schemes
> Weights are inversely proportional to model’s rank

—1
Rt+h,i|t

;1:1 Rt;;l,ilt
> Highest weight to best model, ratio of weights depends only on relative ranks
> Places relatively high weight on top model
= Probability of being the best model-based weights
» Count the proportion that model i outperforms the other models

T
T 0yl [L (ecsnie) <L (ecnie)]
t=1

w; =

Dt+hit

n
c _ ~
Yerne = Zthrh,i\t.VtJrh,ﬂt
i=1
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Broad Recommendations

= Simple combinations are difficult to beat

> 1/n often outperforms estimated weights
» Constant usually beat dynamic
> Constrained outperform unconstrained (when using estimated weights)
= Not combining and using the best fitting performs worse than combinations
- often substantially

= Trimming bad models prior to combining improves results

Clustering similar models (those with the highest correlation of their errors)
prior to combining leads to better performance, especially when estimating
weights

> Intuition: Equally weighted portfolio of models with high correlation, weight
estimation using a much smaller set with lower correlations

= Shrinkage improves weights when estimated
= |f using dynamic weights, shrink towards static weights
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Equal Weighting

= Equal weighting is hard to beat when the variance of the forecast errors are
similar
= |f the variance are highly heterogeneous, varying the weights is important
>~ If for nothing else than to down-weight the forecasts with large error variances
= Equally weighted combinations are thought to work well when models are
unstable
» Instability makes finding “optimal” weights very challenging
= Trimmed equally-weighted combinations appear to perform better than
equally weighted, at least if there are some very poor models

» May be important to trim both ‘good” and “bad” models (in-sample
performance)

- Good models are over-fit
- Bad models are badly mis-specified
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Shrinkage Methods

Linear combination
yf+h|t =W ¥rint
Standard least squares estimates of combination weights are very noisy

Often found that “shrinking” the weights toward a prior improves
performance

Standard prior is that w; = 1

However, do not want to be dogmatic and so use a distribution for the
weights

Generally for an arbitrary prior weight wy,
w72 ~ N (wo, )

N is a correlation matrix and 72 is a parameter which controls the amount of
shrinkage
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Shrinkage Methods OXFOF

= | eads to a weighted average of the prior and data

Alo A

_ asa\ —1
W= (+979) (2w +9IW)
= W is the usual least squares estimator of the optimal combination weight
= If N is very large compared to y'y = Zthl yt+h|ty;+h‘t then w =~ wy
= On the other hand, if y'y dominates, then w ~ W
= Other implementation use a g-prior, which is scalar

W= (g9 +Y'9) " (89'IWo+¥'IW)

= Large values of g > 0 least to large amounts of shrinkage
= 0 corresponds to OLS

Wt
W=Wor 9%
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Inference for Many Forecasts

= Six papers:

» White, H. ‘A reality check for data snooping”. Econometrica

» Hansen, P. “A Test for Superior Predictive Ability”. JBES

> Sullivan, Timmermann & White. “Data-Snooping, Technical Trading Rule
Performance, and the Bootstrap”. Journal of Finance

» Romano & Wolf. “Stepwise Multiple Testing as Formalized Data Snooping”.
Econometrica

» Hansen, Lunde & Nason. “The Model Confidence Set”. Econometrica

» Bajgrowicz & Scaillet. “Technical trading revisited: false discoveries,
persistence tests and transaction costs”. Journal of Financial Economics
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Diebold-Mariano-West

= The Diebold-Mariano-West test examines whether two forecasts have equal
predictive ability

DMW tests are all based on the difference of two loss functions
o0r=L (}’Hh;yﬁh“) - L ()’Hh,f’ah“)

= The test statistic is based on the asymptotic normality of § = P! ZtT:RH Ot
If P/R — 0 then

VP (5 —E[6]) % N (0,0?)

= g2 is the long-run variance, that is

o?=1lim Vv
P—oo

T
p-i 3 5t]

t=R+1

= Must account for autocovariances, so a HAC estimator is used (Newey-West)
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DMW with the Bootstrap

= Alternatively could estimate the variance using the bootstrap

= For example, the stationary bootstrap could be used as long as the window
length grows with the size of the evaluation sample

= To implement the stationary bootstrap, the loss differentials would be
directly re-sampled to construct 6; forb=1,...,B

= The variance would then be computed as

The test statistic is then

» Note: the +/P term is implicit in the denominator since o2 will decline as the
sample size grows (G35 ~ 6%/P)
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DMW using percentile method

= Alternatively, inference could be made using the percentile method

= To implement the percentile method, it is necessary to enforce the null
Hy:E[6:]=0

= This can be done by re-centering the loss differentials around the average
in the data: 6; = 6; — 6

» The centered loss differentials §; could then be re-sampled to compute an
estimate of the average loss-differential 6;,

= Inference using the percentile method would be based on the empirical
frequency where 6 < 6; or 6 > 6;,

25/104



DMW using percentile method

= Since the test is 2-sided||

2xBIZB:1[

b=1

53| < 15|

> If many of the re-sampled centered means are less then §, then the loss

differential does not appear large
> If few of the re-sampled centered means are less than &, then the loss

differential appears large

= Since the distribution is asymptotically normal, there is no need to use the
percentile method since the bootstrap t-stat is simple to construct
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Reality Check

The Reality Check extends DMW to testing for Superior Predictive Ability (SPA)

Tests of SPA examine whether a set of forecasting models can outperform a
benchmark

= Suppose forecasts were available for m forecasts,j=1,...,m

= The vector of loss differentials relative to a benchmark could be constructed
as . A
L (YI+h,¥t+h,BM|t) - L (Yt+h,)’t+h,1|t)
L (Yerhs Veenmmie) — L (Yerhs Jeen21e)
t — .
L (Yerhs Jeenamie) — L (Verhs Ieehmye)
® YernBume IS the loss from the benchmark forecast
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Asymptotic distribution in the RC

= Under similar arguments as in Diebold & Mariano and West,
VP (5 -E[5]) SN (O,
= ¥ is the asymptotic covariance matrix of the average loss differentials

p? 3 1
ZZEt

t=R+1

Y= 1limV
P—oo

= This looks virtually identical to the case of the univariate DMW test
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Hypotheses of SPA

= |f the benchmark model is as good as the other models, then the mean of
each element of 6, should be 0 or negative

» These are losses, so if the BM is better, then its loss is smaller then the loss
from the other model

= A total of m models
= The null in a test of SPA is

Hy: max (E[6j]) <0

= Note: If no models are statistically better than the benchmark, then there is no
point in implementing the RC
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Examples of SPA: MSE

= The standard example is for comparing models using MSE (or MAE, or
similar)

N N 2
L (Yest Vesnjie) = (Veeh — Jeaijie)
= The vector of loss differentials is then

(Yt+h - yt+h,BM\t)§ - ()’t+h - yt+h,l\t)§

5. = (Yt+h - yt+h,BM\t) - (.Vt+h - yt+h,2\t)
t= .

(Yt+h - S’t+h,BM\t)2 - (Yt+h - yt+h,m|t)2

= This is the simplest form of an SPA test
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Examples of SPA: Return Predictability

= SPA can also be used to test whether the returns of a set of trading models
are equal

= In this case the “loss” function is the negative of the return from the strategy

L (Yesh Yesnjie) = —In (1 +YeenS (Jenjie) )

= S (Je+hjjc) is a signal which indicates the size of the portfolio

> Vuin IS the holding period return of the asset
» Could be -1, 0, 1 for short, out, long strategies
> Jeenjie is the input for the signal function, e.g. a Moving Average Oscillator

= The vector of loss differentials is then
In (1 + YesnS (5’t+h,1|t)) —In (1 + YesnS (5’t+h,BM|t))
o= :
In (1 + Ye+nS (5’t+h,m\t)) —In (1 + YesnS (5’t+h,BM|t))
= The benchmark could be a simple strategy, e.g. buy-and-hold (S(-) = 1)

= Ultimately the “loss differential” is the difference between the returns of a
set of strategies and the benchmark strategy

31/104



Example: Predictive Likelihood

= SPA can be used to test distribution fit
= The loss function is just the negative of the likelihood

L (Yest Vesnjie) = =1 Vesn|Vesnjie)

> Jienjie CONtains any time-t information needed to compute the log-likelihood

= The vector of loss differentials is then

i (Yeshleene) — Iave (Vesn|Jesnsmie)
Iy (Yesh|een2ie) — Iave (Vesn|Vesnmmye)

n (Ve |Sernmie) — I (Vesn[Jenmmie)

The benchmark could be a simple strategy, e.g. buy-and-hold (S(-) = 1)

Ultimately the differential is just the difference between the returns of a set
of strategies and the benchmark strategy
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Example: a from a multifactor model

= Suppose you were interested in testing for excess performance

Usual APT type regression

ré

— . / .
=0 +Ep €

The “benchmark a” is 0 - the test is implemented directly on the estimated
as

= Loss function is just —a (negative excess performance)
= The vector of loss differentials is then

rit—f{fh ay+ €1
5[ = X = :
rfn,t - ft/ﬁm
= Used to test fund manager skill

dm + ém,t
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Implementing the Reality Check

= The Reality Check is implemented using the P by m matrix of loss
differentials

» P out-of-sample periods
> m models

= The original article describes two methods

» Monte Carlo Reality Check
> Bootstrap Reality Check

= |n practice, only the Bootstrap Reality Check is used

The distribution of the maximum of normals is not normal, and so only the
percentile method is applicable
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Algorithm (Bootstrap Reality Check)

1. Compute TR¢ = max (6)

2. Forb=1,...,B re-sample the vector of loss differentials 6, to construct a
bootstrap sample {5{,_t} using the stationary bootstrap

3. Using the bootstrap sample, compute

T
T;R¢ = max (P‘l > by - 3)

t=R+1

4. Compute the Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

b
p —value =B~ ) "I [T;*¢ > T
b=1
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Intuition

= The bootstrap means are like draws (simulation) from the asymptotic
distribution N (0, %)
= Taking the maximum of these draws simulates the distribution of a set of
correlated normals
= Each bootstrap mean is centered at the sample mean
> This is known as using the Least Favorable Configuration (LFC) point
> Simulation is done assuming any model could as good as the benchmark
= Since the asymptotic distribution can be simulated, asymptotic critical
values and p-values can be constructed directly
= The Monte Carlo Reality Check works by first estimating X using a HAC
estimator, and then simulating random normals directly
» MCRC is equivalent to BRC, only requires estimating:

- A potentially large covariance is m is big
- The Choleski decomposition of this covariance
- Bdrawn from this Choleski
> In practice, m may be so large that the covariance matrix won'’t fit in a normal
computer’s memory
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= The original formulation had

rit—f{ﬁ1 a1+ €1
0: = . = .

rlc;l,t _. ft/[}m
= Alternatively distribution could be built up by directly re-sampling the
returns and factors jointly

am + ém,t

.....

cross-sectional regression in each bootstrap

= Reality check allow for parameter estimation error as long as
(P/R)InInR — 0 which is similar to P/R — 0

= Also works if P/R — oo, in which case it is essential to re-sample returns
and factors and re-estimate f3;, in each bootstrap
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Application in Original Paper

= The original paper is applied to the BLL-type trading rules
= Used S&P 500 rather than DJIA
= Constructed 4 types of trading rule primitives:

» Momentum measures: (p; — p;—;j) /p.—; forj € {1,...,11} (11 rules)

> Trend: p,j = a+ f (m — i) + ¢ for m € {5,10, 15, 20} day periods (4 rules)

» Relative strength: 771 320 T [(Pe—i — Pe—i—1) > 0] for T € {5,10, 15,20} (4
rules)

» Moving average oscillator for fast speeds of {1, 5, 10, 15} and slow speeds of
(5,10, 15,20} (10 rules)

- Note: Slow has to be strictly longer than fast, so a total of 4 + 3+ 2 + 1 = 10 rules

= All combinations of 3 of these 29 variables were fed into a linear regression
to produce forecasts

et = B+ BoXir + BsXir + BaXir + €r41

» Fori,j, ke {1,...,29} without repetition, so 39C3 = 3654 rules

38/104



Application in Original Paper

= Benchmark is a model which includes only a constant
Ter1 = P11+ €
= Models compared in terms of MSE
L (Y1, D) = (Ver1 — Bo — Buixie — Paxie — /33?(1<,t)2
= Models also compared in terms of directional accuracy
L (Yt+1:yt+1|t) =-1 [Yt+1 (/30 + ﬁlxi,t + ﬁZXj,t + ﬁsxk,t) > 0]
» The negative is used to turn a “‘good” (same sign) into a “bad”

> Modification allows application of RC without modification since null is
Hp : max (E [6;,]) <0

39/104



MSE Differential
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= Negative MSE differential plotted (higher is better)

40/104



UN \

Sign Prediction OXFORD

REALITY CHECK RESULTS: DIRECTIONAL ACCURACY PERFORMANCE

Best predictor variables: Z, 13, Z, 14, Z, 2

Best
Experiment Benchmark
Percent Correct 54.7493 50.7916
Difference in Prediction Directional Accuracy: .0396
Bootstrap Reality Check p-value: 2040
Naive p-value: .0036
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Sign Prediction OXFORD
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s Test of SPA

= Hansen (2005, JBES) provided two refinements of the RC

1. Studentized loss differentials
2. Omission of very bad models from the distribution of the test statistic

= From a practical point-of-view, the first is a very important consideration
= From a theoretical point-of-view, the second is the important issue

» The second can be ignored if no models are are very poor
> This may be difficult if using automated model generation schemes
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Studentization of Loss Differentials

= The RC uses the loss differentials directly

= This can lead to a loss of power if there is a large amount of cross-sectional
heteroskedasticity

= Bad, high variance model can mask a good, low variance model

= The solution is to use the Studentized loss differential

= The test statistic is is based on

T = max /

j=1,...m \/@

= (DIZ is an estimator of the asymptotic (long-run) variance of §;
pP—-1
af =70 +2) kit
i=1
> 7jiis the i™ sample autocovariance of the sequence {0j+}
» k=25 (1= 1) 4 1 (1= )" where wis the window length in Stationary
Bootstrap)

) N2
= Alternatively use bootstrap variance cblz = %Zle ( bj — 5;)
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Studentized SPA

1. Estimate &} and compute T;™ = max (5 /4 @} /P)

2. Forb=1,...,B re-sample the vector of loss differentials &. to construct a bootstrap
sample {6}, } using the stationary bootstrap

3. Using the bootstrap sample, compute

p! ZtT=R+1 i*,b,t - Si
\ /c?)iZ/P

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

T;5 = max

b
p—value=B""Y "I [T,ﬁPA > T,fPA]
b=l

45/104



Gains from Studentization

M \ SPA Power under local alternative
' Y (for level 0=5% test)
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The u in T5™is for upper

= The U is included to indicate that the p-value derived using the LFC may not be the
best p-value

= Suppose the some of the models have a very low mean and a high standard
deviation

= In the RC and SPA-U, all models are assumed to be as good as the benchmark
= This is implemented by always re-centering the bootstrap samples around 5,—

= |f a model is rejectably bad, then it may be possible to improve the power of the
RC/SPA-U by excluding this model

= This is implemented using a “pre-test” of the form

Q]l

I'=1, I = /> _+2InlnP, I,-l=5,->0

\J@2/P

> The first (c for consistent) tests whether the standardized mean loss differential
is greater than a HQ-Llike lower bound

> The second (L for lower) only re-centers if the loss-differential is positive (e.g.
the benchmark is out-performed)
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General SPA

Algorithm (Test of SPA)

1. Estimate &} and compute T** = max (5 /4 @} /P)

2. Forb=1,...,B re-sample the vector of loss differentials &. to construct a bootstrap
sample {6}, } using the stationary bootstrap

3. Using the bootstrap sample, compute

p! ZZ;RH e — 50
o /c?)]z/P

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

T;f,PA = max , s=1Lcu

b
p — value = B! ZI [T;iPA > TSPA] . s=Luc
b1
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Comments on SPA

= The three versions only differ on whether a model is re-centered

= |f a model is not re-centered, then it is unlikely to be the maximum in the
re-sample distribution

» This is how “bad” models are discarded in the SPA
= Can compute 6 different p-values statistics

» Studentized or unmodified
> Indicator functioninl,c,u

- Test statistic does not depend on [, ¢, u, only p-value does
= Reality Check uses unmodified loss differentials and u
= |n practice Studentization beings important gains

= Using c is important if using SPA on large universe of automated rules if
some may be very poor
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Power Gains in SPA from Re-centering
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Combined Power Gains
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Application of RC to Technical Trading Rules

= Sullivan, Timmermann and White (1999) apply the RC to a large universe of
technical trading rules

Rules include:

» Filter Rules

» Moving Average Oscillators

> Support and Resistance

» Channel Breakout

» On-balance Volume Averages

- Tracks volume times return sign
- Similar to Moving Average rules for prices

Total of 7,846 trading rules

= Only use 1 at a time

Use DJIA as in BLL, updated to 1996

= Consider mean return criteria and Sharpe Ratio
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Mean Return Performance BLL Universe L

BLL Universe of Trading Rules

Sample Mean Return White’s p-Value  Nominal p-Value

In-sample

Subperiod 1 (1897-1914) 9.52 0.021 0.000

Subperiod 2 (1915-1938) 13.90 0.000 0.000

Subperiod 3 (1939-1962) 9.46 0.000 0.000

Subperiod 4 (1962-1986) 7.87 0.004 0.000

90 years (1897-1986) 10.11 0.000 0.000

100 years (1897-1996) 9.39 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 8.63 0.154 0.055

S&P 500 Futures (1984-1996) 4.25 0.421 0.204
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Mean Return Performance Expanded

Full Universe of Trading Rules

Sample Mean Return  White’s p-Value  Nominal p-Value

In-sample

Subperiod 1 (1897-1914) 16.48 0.000 0.000

Subperiod 2 (1915-1938) 20.12 0.000 0.000

Subperiod 3 (1939-1962) 25.51 0.000 0.000

Subperiod 4 (1962-1986) 23.82 0.000 0.000

90 years (1897-1986) 18.65 0.000 0.000

100 years (1897-1996) 17.17 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 14.41 0.341 0.004

S&P 500 Futures (1984--1996) 9.43 0.908 0.042
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RC based on Sharpe Ratio

= From any strategy it is simple to compute the Sharpe Ratio

_ T -
_ p! Et:R+1 Ter1 — Ifeet
T -~ =2
\/FF1 >terst (Fer1 = F)

The strategy return is e = oS (§je1)e)

SR

» 7 is the mean of the strategy return
" Iyt IS the risk-free rate
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RC based on Sharpe Ratio

= The bootstrap can be used to compute a bootstrap version of the same rule
by jointly re-sampling {71, 7741}
= The bootstrap Sharpe Ratio is then

a
SR, = ——
b
Vb —c?
T
1 -
a = P71 Py b
t=R+1
T
_ p-1 -2
b = P Z bt+1
t=R+1
T
-1 -~
c = P'Y P
t=R+1

= The SR can be computed for all models
= The RC can then be applied to the (negative) SR, rather than the (negative)
return
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Sharpe Ratio Performance: BLL Universe

BLL Universe of Trading Rules

Sample Sharpe Ratio  White’s p-Value  Nominal p-Value

In-sample

Subperiod 1 (1897-1914) 0.51 0.147 0.016

Subperiod 2 (1915-1938) 0.51 0.037 0.000

Subperiod 3 (1939-1962) 0.79 0.000 0.000

Subperiod 4 (1962-1986) 0.53 0.051 0.003

90 years (1897-1986) 0.45 0.000 0.000

100 years (1897-1996) 0.39 0.000 0.000
Out-of-sample

Subperiod 5 (1987-1996) 0.28 0.721 0.127

S&P 500 Futures (1984-1996) 0.23 0.702 0.165
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Sharpe Ratio Performance: Expanded

Sample

Full Universe of Trading Rules

Sharpe Ratio

White’s p-Value

Nominal p-Value

In-sample
Subperiod 1 (1897-1914)
Subperiod 2 (1915-1938)
Subperiod 3 (1939-1962)
Subperiod 4 (1962-1986)
90 years (1897-1986)
100 years (1897-1996)

Out-of-sample
Subperiod 5 (1987-1996)
S&P 500 Futures (1984-1996)
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1.15
0.76
2.18
1.41
0.91
0.82

0.87
0.66

0.000
0.056
0.000
0.000
0.000
0.000

0.903
0.987

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000



Stepwise Multiple Testing

= The main issue with the Reality Check and the Test for SPA is the null
= These tests ultimately test one question:

> |s the largest out-performance consistent with a random draw from the
distribution when there are not superior models to the benchmark?

= |f the null is rejected, only the best performing model can be determined to
be better than the benchmark
» What about the 2nd best model? Or the k™ best model?

= The StepM extends that reality check by allowing individual models to be
tested

= |t is implemented by repeatedly applying a RC-like algorithm which controls
the Familywise Error Rate (FWE)

59/104



Basic Setup

= The basic setup is identical to that of the RC/SPA

= The test is based on &;¢ = L (Ven Jesnpmie) — L (Vesn Jesnjie)
= Can be used in the same types of tests as RC/SPA

> Absolute return

» Sharpe Ratio

> Risk-adjusted a comparisons
MSE/MAE

» Predictive Likelihood

v

= Can be implemented on both raw and Studentized loss differentials
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Null and Alternative Hypotheses

= The null and alternatives in StepM are not a single statement as they were
in the RC/SPA

= The nulls are
Hyj:E[6,]<0, j=1,...,m

= The alternatives are
Hl,i :E[6:]>0, j= 1,...,m

= StepM will ultimately result in a set of rejections (if any are rejected)

= Goal of StepM is to identify as many false nulls as possible while controlling
the Familywise Error Rate
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Familywise Error Rate

Definition (Familywise Error Rate)

For a set of null and alternative hypotheses Hy; and Hy; fori=1,...,m, let Zy
contain the indices of the correct null hypotheses. The Familywise Error Rate is

defined as

Pr (Rejecting at least one Hy; for i € Zy) = 1 — Pr (Reject no Hy; for i € Z)

= The FWE is concerned only with the probability of making at least one Type
| error
= Making 1, 2 or m Type | errors is the same to FWE

> This is a criticism of FWE
> Other criteria exist such as False Discovery Rate which controls the percentage

of rejections which are false (# False Rejection/# Rejections)
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= Bonferoni bounds are the first procedure to control FWE

Definition (Bonferoni Bound)

Let T1, Ty, ..., Ty be a set of m test statistics, then

Pr(TyU...U TylHig,...Hno) <Y Pr(Tj|Ho))
J Individual Probability

m
. . =1
Joint Probability

where Pr (Tj|Hy;) is the probability of observing T;given the null Hy; is true.

= Bonferoni bounds are a simple method to test m hypotheses using only
univariate test statistics
Let {pv;} be a set of m p-values from a set of tests
The Bonferoni bound will reject the set of nulls is pv; < a/m for all j
> a is the size of the test (e.g. 5%)
= When m is moderately large, this is a very conservative test
= Conservative since assumes worst case dependence among statistics
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Definition (Holm’s Procedure)

Let Ty, Ty, ..., Ty, be a set of m test statistics with associated p-values pv;,
j=1,...,m where it is assumed pv; < py; if i <j. If

pv; < a/ (m—j+1)

then Hy; can be rejected in factor of H; ; while controlling the famliywise error
rate at a.

= Example: p-values of .001, .01, .03, .05, m =4, a = .05

= Improves Bonferoni by ordering the p-values and using a stepwise
procedure

= Allows subsets of hypotheses to be tested — Bonferoni is joint
= Less strict, except when j = 1 (same as Bonferoni)
Note: Holm’s procedure ends as soon as a null cannot be rejected
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Relationships between testing procedures

= The RC/SPA, Bonferoni and Holm are all related

| | Worst-case Dependence | Accounts for Dependence in Data |

Single-step Bonferoni RC, SPA
Stepwise Holm StepM
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Algorithm (StepM)

1. Begin with the active set A ={1,2,...,m}, superior set S = {}
Construct B bootstraps sample {6} .} ,b=1,...,B

W N

For each bootstrap sample, compute T,:ife”M = MaXje 4 {5;”- -0 1'}
Compute qy, as the 1 — a quantile of { T,:ffepM }

If max;jc 4 (6;) < qxq Stop
Otherwise for each j € A

a. If6; > quq addj to S and delete from A
b. Returnto 2

SO
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Comments

= StepM would be virtually identical to RC if only the largest 51 was tested

= Improves on the RC since (weakly more) individual out-performing models
can be identified

= |f no model outperforms, will stop with none and RC p-value will be larger
than a

= Steps 2-4 are identical to the RC using the models in A
= The stepwise testing can improve power by removing models

» The improvement comes if a model with substantial out-performance also has
large variance
> Removing this model allows the critical value to be reduced

= StepM only guarantees that FWE< @, and in general will be < a

» Willonly = a ifE [5;& =0 forallj
» Example: N (1, 0*) when < 0,Hp: u =0
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Studentization

= |ike the SPA to the RC, the StepM can be implemented using Studentized
loss differentials

= Romano & Wolf argue that the Studentization should be done inside each
bootstrap sample, not globally as in the SPA

= Theoretically both are justified and neither makes a difference
asymptotically

= Computing the variance inside each bootstrap will more closely match the
re-sampled data than when using a global estimate
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Studentized StepM Algorithm

Algorithm denti StepM)
1. Begin with the active set A = {1,2,..., m}, superior set S = {}
. Compute zj = 6;/ cb}.z /P where (D,-z was previously defined

. Construct B bootstraps sample {&},} ,b=1,...,B

A NN

. For each bootstrap sample, compute

5 4,
" bj — 9j

kafepM = maxq 2~
g jeA /‘

5% is an estimate of the long-run variance of the bootstrapped data

where @;
5. Compute d},o 05 the 1 — a quantile of { T SeeM }
6. Ifmaxje 4 (%) < qi, Stop
7. Otherwise for eachj € A

a. Ifz > q;, addj to S and delete from A
b. Returnto2



Why Studentization Help

= StepM is built around confidence intervals of the form

(61— qra 0] X ... X [6m — qrar ]

Null hypotheses are rejected for models where O is not in its confidence
interval

In the raw form, the confidence interval is a square - the same for every
loss differential

= When Studentization is used, the confidence intervals take the form

[51 — w%/Pqﬁ,a,oo} X ... X [Sm - \/mqu{m}

This “customization” allows for more rejections if the loss differentials have
cross-sectional heteroskedasticity
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Block-size Selection

= Paper proposes a procedure to make data driven block size
= Basic idea is to use a (V)AR on {§;,} to approximate the dependence
> Similar to Den Hann-Levine HAC

= Fit AR & estimate residual covariance (or use short block bootstrap on
errors)

= Simulate from model

» Forw=1,..., W compute the bootstrap confidence region with size
1 — ausing percentile method

= For each block size, compute the empirical coverage - percentage of
simulated ¢ in their confidence region

» Choose optimal w which most closely matches 1 — «
> Alternative: Use Politis & White
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Empirical Application

= Applied StepM to a set of 105 Hedge Fund Returns with long histories
= Returns net of management fees

= Benchmark model was risk-free rate

= m =105, P = 147 (all out-of-sample)

= Results:

» Raw data: No out-performers

- Max ratio of standard deviation @;/®; = 22

» Studentized: 7 funds identified

Note: Will always identify funds with the largest 6 (or Z) first
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Empirical Application

X7, — XT,841 Fund (X7,5 = X7,541)/07,5 Fund

1.70 Libra Fund 10.63 Market Neutral*

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage*
1.36 Aggressive Appreciation 8.43 Univest (B)*

1.27 Gamut Investments 6.33 TQA Arbitrage Fund*
1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage*
1.14 FBR Weston 5.29 Gabelli Associates*
1.11 Berkshire Partnership 5.24 Elliott Associates**
1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund

1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust
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Improving StepM using SPA

The main step in the StepM algorithm is identical to the RC

The important difference is that the test is implemented for each null,
rather than globally

StepM will suffer if very poor models are included with a large variance

~ Especially true for raw version, but also relevant for Studentized version

» Example {g;]ww({_osHé ?D

» Reality Check critical value will be 1.95, while “best” critical value would be
1.645 (since only 1 relevant for asymptotic distribution)

The RC portions of StepM can be replaced by SPA versions which addresses
this problem

Simple as adding in the indicator function II.C when subtracting the mean in
step 3 (step 4 in Studentized version)

Using SPA modification will always find more out-performing models
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Model Confidence Set (MCS

RC, SPA and StepM were all testing superior predictive ability
This type hypothesis is common when there is a natural benchmark

= |[n some scenarios there may not be a single benchmark, or there may more
than one models which could be considered benchmarks

= When this occurs, it is not clear

> How to implement RC/SPA/StepM
» How to make sound conclusions about superior predictive ability

= The model confidence set addresses this problem by bypassing the
benchmark

= The MCS aims to find the best model and all models which are
indistinguishable from the best

> The model with the lowest loss will always be the best - identifying the others
is more challenging

= Also returns p-values for models with respect to the MCS
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Notation Preliminaries

= The outcome of the MCS is a set of models
> ALl model sets will be denoted using M
= The initial model set is My

= The goal is to find M* which is the set of all models which are
indistinguishable from the best

= The output of the MCS algorithm is M\l_a where a is the size of the test

> The size is interpreted as a Familywise Error Rate - same as StepM
> In general M;_, will contain more than 1 model

In between My and M\l,a are other sets of models

MODMlD...DM\I—a
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Notation Preliminaries

= To construct the model confidence set, two tools are needed

> An equivalence test da: Determines whether the model in M are equal in
terms of loss

> An elimination rule ex: Determines which model to eliminate if d, finds that
the models are not equivalent

= The generic form of the algorithm, starting at i = 0:

1. Apply da to M;
2. If da rejects equivalence, use eqto eliminate 1 model to produce M; 4
a. If not, stop

3. Increment i, return to 1
= Has a similar flavor to StepM

> Also gains from eliminating models with high variance
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The Model Confidence Set

= When the algorithm ends, the final set /\//\ll_a has the property
lim Pr (M* C /(/l\l,a) >1—-«a
P—oo

= The result follows directly since the FWE is < a

= If there is only 1 “best” model, then the result can be strengthened

lim Pr (M* C /(/l\lfa) =1

P—oo

» The MCS will find the “best” model asymptotically
» The intuition behind this is that the “best” model will have:
- Lower loss than all other models
- The variance of the average loss differential will decline as P — oo
= When 2 or more models are equally good, there is always a a chance that at
least 1 will be rejected
= |n large samples, models which are not in M* will be eliminated with
probability 1 since the individual test statistics are consistent
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Model Confidence Set

= The MCS takes loss functions as inputs, but ultimately works on loss
differentials

= Since there is no benchmark model, all loss differentials are considered

5ij,t =L (Yt+h»yt+h,i\t) —L (}’t+h,5’t+h,j|t)

= There are many pairs, and so the actual test examines whether the average
loss for model j is different from that of all models

= If §; is sufficiently positive, then model i is worse then the other models in
the set
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Null and Alternative

= The MCS can be based on two test statistics
= Both satisfy some technical conditions on d 4 and e

= The first is based on T' = max;c o (Z;) where z; = 6i/6; and 6? isan
estimate of the (log-run) variance of 6;
» The elimination rule is exq = argmax;c , Zi
= The second is based on Tr = max;je v |Z;j| where Z; = 6;;/6 and & is an
estimate of the (log-run) variance of o;;

> The elimination rule is eg v = argmax;c 4 SUPje a1 Zij
> Eliminate the model which has the largest loss differential to some other
model, relative to its standard deviation

= At each step the null is Hy : M = M* and the alternative is H; : M 2 M*
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Model Confidence Set Setup

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model

T
l_q' =p! Z Lj,t
t=R+1

where L;, = L (Yt+h»5’t+h,j|t)
3. For each bootstrap replication, compute centered the bootstrap average loss
T

* _ p—1 * T
My =P Y L1
t=R+1
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Algorithm (Model Confidence Set)

1. Being with M = My containing all models where m is the number of models in
M

2. Calculate L=m=" Y2 L,y =m~' 322 ., and

2
6} =B! S (n;”- - r‘;;) where 7 is the average of n;,; for model j

3. Define T = maxje v (Z;) where zj = Lj/6;
4. For each bootstrap sample, compute
T; = maxien ((Lj; — L3 ) /67) = maxjend ((my; = 15) /)
5. Compute the p-value of M as p=B~'S"p_ I [T; > T|
6. If D> a stop

7. If p < a, set exq = argmax;c v, () and eliminate the model with the largest
test statistic from M

8. Return to step 2, using the reduced model set
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Comments

= |t is important that the variance estimates are re-computed in each step of
algorithm

This allows the standard errors to decline if poor models are excluded since
the cross-sectional variance of L; should be smaller when a bad model is
dropped

= |n practice the MCS should be implemented by computing in order

1. Aset of bootstrap indices
2. The P by m set of bootstrapped losses Ly ;.
3. The 1 by m vector containing nj,;

= By iterating over these B times only the B by m matrix containing n;vj has to
be retained

> Plus the 1 by m vector containing L;
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Model Confidence P-value

= The MCS can also provide p-values for each model

= |f model i is eliminated, then the p-value of model i is the maximum of the
p found when model i is eliminated and all previous p-values

= Suppose a = .05, and the first three rounds eliminated models with p of
.01,.04,.02, respectively

= The three p-values would then be:

> .01(nothing to compare against)
> .04 = max(.01, .04)
> .04 = max(.02,.04)

= The output of the MCS algorithm is M\l_a which contains the true set of
best models with probability weakly larger than 1 — «

= This is similar to a standard frequentist confidence interval which contains
the true parameter with probability of at least 1 — «

= The MCS p-value is not a statement about the probability that a model is
the best

> For example, the model with the lowest loss always has p-value = 1
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Table 1: Computation of MCS p-values

Elimination Rule p-value for Hy a, MCS p-value
em, Py 5y, = 0.01 ﬁeM, =0.01
eM, Py i, = 0.04 136/\42 =0.04
eMs, Py py, =0.02 ﬁfM3 =0.04
e, Py py, =0.03 Per, =0.04
eMs Py iy = 0.07 I;eMS =0.07
€M Prigpig = 0.04 De My = 0.07
e, Py, = 0.11 Pepr, = 0.11
ey Py pu = 0.25 Pepy, =025

€My PHo,M,,,U = 1.00 ﬁeMmU = 1.00
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Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model L; = P~! ZtT: re1 Lit where
Lt = L (Yeshs Veshjit)
3. For each bootstrap replication, compute centered the bootstrap average loss

T
7x _ p—1 * T.
L;;=P Z Ly, — I
t=R+1

4. Calculate 5
:B 12 Lbz 1 (LbjiL*))
b=1

where I,]? is the average of L,;J. for the model j across all bootstraps
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Algorithm (Model Confidence Set)

1. Being with M = My containing all models where m is the number of models in
M

2. Define Tp = max;je p (2;) where z; = |L; — Lj| /0

3. For each bootstrap sample, compute Ty , = MaX;jc (

I - L;( /64)
4. Compute the p-value of M as

B
p = B_1 ZI I:Ti;,b > TR]
b=1
5. If > a stop

6. If p < a, set exq = argmax; ,, SUp;c 4 (Zj) and eliminate the model with the
largest test statistic from M

7. Return to step 2, using the reduced model set
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Comments

The main difference is that the variance is not re-estimated in each iteration

= This happens since Ty is based on the maximum DMW test statistic in each
iteration

~ DMW only depends on the properties of the pair

However, the bootstrapped distribution does depend on which models are
included and so this will vary across the iterations

This version of the algorithm requires storing the B by m matrix of ZIT
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Confidence sets for ICs

The MCS can be used to construct confidence sets for ICs
This type of comparison does not directly use forecasts, and so is in-sample
This differs from traditional model selection where only the model with the
best IC is chosen
The MCS for an IC could be used as a pre-filtering mechanism prior to
combining
Implementing the MCS on an IC is slightly more complicated than the
default MCS since it is necessary to jointly bootstrap the vector {yt,xi,t}
where Xx;; are the regressors in model j
Paper recommends using Ty statistic to compare models using IC
The object of interest is
IC;=TIné} +¢

¢ is the penalty term

> AIC: 2k;, BIC: k;In T

» AIC': 2k, BIC: K InT
k;* is known as effective degrees of freedom (in mis-specified model k* # k)
MCS paper discusses how to estimate k*
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Confidence sets for ICs

= Using Tr MCS construction algorithm, the test statistic is based on

Tr :[%ﬁuﬂn&? +¢| — [TIno? +¢|

= The bootstrap critical values are computed from

Thp = ”ng\y/(t ([TIné# +¢ —Tlne?] - [Tlnérjz* +¢— Tll’l@'iz])

. 61.2* is the variance computed using

X% * B*
€bt = Yoo — XpjtBp,

. /3;] is re-estimated using the bootstrapped data {YZ,pXZ,;‘,t}

= Errors are computed using the bootstrapped data and parameter estimates
= Aside from these changes, the remainder of the algorithm is unmodified
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False Discovery Rate and FWER

= Controlling False Discover Rate (FDR) is an alternative to controlling Family
Wise Error Rate (FWER)

Definition (k-Familywise Error Rate)

For a set of null and alternative hypotheses Hy; and Hy; fori=1,...,m, let Zy
contain the indices of the correct null hypotheses. The k-Familywise Error Rate
is defined as

Pr (Rejecting at least k Hy, for i € Zy) = 1 — Pr (Reject no Hy; for i € Zy)

= kis typically 1, so the testing procedures control the probability of any
number of false rejections

> Type | errors
= The makes FWER tests possibly conservative
> Depends on what the actual intent of the study is
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The False Discovery Rate is the percentage of false null hypothesis relative to
the total number of rejections, and is defined

FDR = F/g

where F is the number of false rejections and R is the total number of rejections.

= Unlike FWER, methods that control FDR explicitly assume that some
rejections are false.

= Ultimately this leads to a (potentially) procedure that might discover more
actual rejections

= For standard DMW-type tests, both FWER and FDR control fundamentally
reduce to choosing a critical value different from the usual +1.96

> Most of the time larger in magnitude
> Can be smaller in the case of FDR when there are many false nulls
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False Discov

= FDR is naturally adaptive
= When the number of false nulls is small (~0), then FDR should choose a
critical value similar to the FWER-based procedures
» R~ F,F/R~ 1soanyF is too large
» On the other hand, when the percentage of false nulls is near 100%, can reject

all nulls

- F=~0,F/R =~ 0andall nulls can be rejected
- Critical value can be arbitrarily small since virtually no tests have small values
- Hypothetically, could have a critical value of 0 if all nulls were actually false

= FDR controls the false rejection rate, and it is common to use rates in the
range of 5-10%

> Ultimately should depend on risk associated with trading a bad strategy

against the cost of missing a good strategy
> Adding a small percentage of near O excess return strategies to a large set of

useful strategies shouldn’t deteriorate performance substantially
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Operationalizing FDR

= Operationalizing FDR requires some estimates

= |n standard trading strategy setup, Hyp : 4 = 0, Hy : u # 0 where u is the
expected return in excess of some benchmark

> Benchmark might be risk-free rate, or could be buy-and-hold strategy
= 77 is the proportion of false nulls

» Estimated using information about the distribution of p-values “near” 1 since
these should all be generated from true nulls
> Entire procedure relies on only p-values

- Similar to Bonferoni or Bonferoni-Holm

» For standard 2-sided alternative

pi=2(1-a(t])

where t; is (normalized) test statistic for strategy i.
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Computing FDR

= where
> ¢ is the target FDR rate
> 7t and an estimate of the percentage of nulls that are true (no abnormal
performance)
> 1is the number of rules
> 7 is the parameter that is used to find the p-value cutoff
> ZLI I[p; < r]is the number of rejections using y

= The numerator is simply an estimate of the number of false rejections,

which is

Probability of Null True x Number of Hypotheses = Number of True
Hypotheses

Number of False Hypotheses x Cutoff = Number of False that are Rejected
using

= Exploits the fact that under the null p-values have a uniform distribution, so

that if there are M false nulls, then, usini a threshold of i will reject iM



Positive and Negative FDR

= Can further decompose FDR into upper (better) and lower (worse) measures

aftlyy 1aftlyy
I I
YiciIpi<yu,ti>0] YiciIpi<yLti<0]
= This version assumes a symmetric 2-sided test statistic, so that on average
50% of the false rejections are in each tail

= Allows for tail-specific choice of y which would naturally vary if the number
of correct rejections was different

— _—
FDR = , FDR =

> Suppose for example that many rules were bad, then y;, would be relatively
large
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Estimation of 7

= 77 is estimated as
D VY| 7Y
I1-2
= Ais a tuning parameter

» Simple to choose using visual inspection
> Recall that true nulls lead to a flat p-value histogram
> Find point where histogram looks non-flat, use cutoff for A

= Histogram from BS

p-values
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Estimating

= # allows percentage of correct rejections to be computed as A4 =1 — #
= |n the decomposed FDR the number of good (bad) rules can be computed as

!
GXZI[Pi<TU,ti>0]

i=1

> Note that yy is fixed here
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Bajgrowicz & Scaillet

= Apply FDR to technical trading rules of STW
= Use DJIA
» 1897-2011

= Find similar results, although importantly consider transaction costs for
break even

> Strategies that trade more can have higher means while not violating EMH
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Background on Competitor Methods OXFORD

Sample RW portfolio Best rule DJIA
period
Sharpe Portfolio Sharpe  BRC p- Sharpe
ratio size ratio value ratio
1: 1897- 1.24 45 1.18 0.00 -0.12
1914
2:1915- - 0 0.73 0.11 0.06
1938
3:1939- 1.49 62 2.34 0.00 0.41
1962
4: 1962- 1.52 15 1.45 0.00 -0.16
1986
5:1987- - 0 0.84 0.93 0.66
1996
6: 1997- - 0 0.48 1.00 0.12
2011
1897- 0.70 88 0.82 0.00 0.12
1996
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Good and Bad Rules

100%

75% | i

50% ]

25%

oP

Sample periods
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0 1,000 2,000 3000 4,000 5000 6,000 7,000
Strategies

= Transaction costs are important when assessing rules
= Rather than apply arbitrary TC, look for break even
= Transaction costs are a function of mean and number of transactions

0 = u; — TC x #{trades}

u; is the full-sample mean, not the annualized
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Break-even transact on costs (bps)
\

0 1,000 2000 3000 4000 5000 6000 7,000
Strategies

= Transaction for break even are lower

= Actual transaction costs are lower
= Unclear whether this is driven by more trading signals or worse mean
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Persistence of Ru OXFORD

Sample period FDR portfolio RW portfolio 50 best rules Best rule

IS 00s Median size IS 00s Median size IS 00Ss IS 00s
1: 1897-1914 3.41 0.47 14 131 0.51 0 5.79 0.50 6.34 0.03
2:1915-1938 4.62 0.01 13 0.90 0.17 0 539 —0.03 5.98 0.09
3: 1939-1962 4.77 0.55 15 1.85 0.09 0 5.78 043 6.70 0.12
4: 1962-1986 534 -031 13 1.36 0.14 0 6.17 -0.18 6.95 -0.59
5: 1987-1996 4.52 —-0.34 12 - - - 5.44 -037 6.07 0.08
6: 1997-2011 4.55 —0.74 12 0.78 0.07 ] 522 —0.51 597 —-0.27

= Sharpe-Ratios

= Persistence is low

= Conservative Romano-Wolf appears to have more persistence
= Combination appears to be not help
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