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Overview

� Model Combination
� Multiple Hypothesis Testing (2 weeks)
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The Standard Forecasting Model

� Standard forecasts are also popular for predicting economic variables
� Generically expressed

yt+1 = β0 + xtβ + εt+1
� xt is a 1 by k vector of predictors (k = 1 is common)
� Includes both exogenous regressors such as the term or default premium
and also autoregressive models

� Forecasts are ŷt+1|t
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The forecast combination problem

� Two level of aggregation in the combination problem

1. Summarize individual forecasters’ private information in point forecasts
ŷt+h,i|t
É Highlights that “inputs” are not the usual explanatory variables, but forecasts

2. Aggregate individual forecasts into consensus measure C
(
yt+h|t,wt+h|t

)
� Obvious competitor is the “super-model” or “kitchen-sink” – a model built
using all information in each forecasters information set

� Aggregation should increase the bias in the forecast relative to SM but may
reduce the variance

� Similar to other model selection procedures in this regard

4 / 104



Why not use the “Super Model”

� Could consider pooling information sets

F ct = ∪ni=1Ft,i
� Would contain all information available to all forecasters
� Could construct consensus directly C

(
F ct ; θ t+h|t

)
� Some reasons why this may not work

É Some information in individuals information sets may be qualitative, and so
expensive to quantitatively share

É Combined information sets may have a very high dimension, so that finding the
best super model may be hard
– Potential for lots of estimation error

� Classic bias-variance trade-off is main reason to consider forecasts
combinations over a super model
É Higher bias, lower variance
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Linear Combination under MSE Loss

� Models can be combined in many ways for virtually any loss function
� Most standard problem is for MSE loss using only linear combinations
� I will suppress time subscripts when it is clear that it is t + h|t
� Linear combination problem is

min
w
E
[
e2
]
= E

[(
yt+h −w′ŷ

)2]
� Requires information about first 2 moments of he joint distribution of the
realization yt+h and the time-t forecasts ŷ[

yt+h|t
ŷ

]
∼ F

([
µy
µŷ

]
,

[
σyy Σ

′
yŷ

Σyŷ Σŷŷ

])
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Linear Combination under MSE Loss

� The first order condition for this problem is

∂ E
[
e2
]

∂w
= −µyµŷ + µŷµ′ŷw + Σŷŷw− Σyŷ = 0

� The solution to this problem is

w? =
(
µŷµ

′
ŷ + Σŷŷ

)−1 (
Σyŷ + µyµŷ

)
� Similar to the solution to the OLS problem, only with extra terms since the
forecasts may not have the same conditional mean
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Linear Combination under MSE Loss

� Can remove the conditional mean if the combination is allowed to include a
constant, wc

wc = µy −w?µŷ
w? = Σ−1ŷŷ Σyŷ

� These are identical to the OLS where wc is the intercept and w∗ are the
slope coefficients

� The role of wc is the correct for any biases so that the squared bias term in
the MSE is 0

MSE [e] = B [e]2 + V [e]
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Understanding the Diversification Gains

� Simple setup

e1 ∼ F1
(
0,σ21

)
, e2 ∼ F2

(
0,σ22

)
, Corr [e1, e2] = ρ, Cov [e1e2] = σ12

� Assume σ22 ≤ σ21
� Assume weights sum to 1 so that w1 = 1− w2 (Will suppress the subscript
and simply write w)

� Forecast error is then
y − wŷ1 − (1− w) ŷ2

� Error is given by
ec = we1 + (1− w) e2

� Forecast has mean 0 and variance

w2σ21 + (1− w)2σ22 + 2w (1− w)σ12
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Understanding the Diversification Gains

� The optimal w can be solved by minimizing this expression, and is

w? =
σ22 − σ12

σ21 + σ
2
2 − 2σ12

, 1− w? = σ21 − σ12
σ21 + σ

2
2 − 2σ12

� Intuition is that the weight on a model is higher the:
É Larger the variance of the other model
É Lower the correlation between the models

� 1 weight will be larger than 1 if ρ ≥ σ2
σ1

� Weights will be equal if σ1 = σ2 for any value of correlation
É Intuitively this must be the case since model 1 and 2 are indistinguishable
from a MSE point-of-view

É When will “optimal” combinations out-perform equally weighted combinations?
Any time σ1 6= σ2

� If ρ = 1 then only select model with lowest variance (mathematical
formulation is not well posed in this case)
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Constrained weights

� The previous optimal weight derivation did not impose any restrictions on
the weights

� In general some of the weights will be negative, and some will exceed 1
� Many combinations are implemented in a relative, constrained scheme

min
w
E
[
e2
]
= E

[(
yt+h −w′ŷ

)2] subject to w′ι = 1
� The intercept is omitted (although this isn’t strictly necessary)
� If the biases are all 0, then the solution is dual to the usual portfolio
minimization problem, and is given by

w? =
Σ−1ŷŷ ι

ι′Σ−1ŷŷ ι

� This solution is the same as the Global Minimum Variance Portfolio
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Combinations as Hedge against Structural Breaks

� One often cited advantage of combinations is (partial) robustness to
structural breaks

� Best case is if two positively correlated variables have shifts in opposite
directions

� Combinations have been found to be more stable than individual forecasts
É This is mostly true for static combinations
É Dynamic combinations can be unstable since some models may produce large
errors from time-to-time
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Weight Estimation

� All discussion has focused on “optimal” weights, which requires information
on the mean and covariance of both yt+h and ŷt+h|t
É This is clearly highly unrealistic

� In practice weights must be estimated, which introduces extra estimation
error

� Theoretically, there should be no need to combine models when all
forecasting models are generated by the econometrician (e.g. when using
F c)

� In practice, this does not appear to be the case
É High dimensional search space for “true” model
É Structural instability
É Parameter estimation error
É Correlation among predictors

Clemen (1989): “Using a combination of forecasts amounts to an admission
that the forecaster is unable to build a properly specified model”
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Weight Estimation

� Whether a combination is needed is closely related to forecast
encompassing tests

� Model averaging can be thought of a method to avoid the risk of model
selection
É Usually important to consider models with a wide range of features and many
different model selection methods

� Has been consistently documented that prescreening models to remove the
worst performing is important before combining

� One method is to use the SIC to remove the worst models
É Rank models by SIC, and then keep the x% best

� Estimated weights are usually computed in a 3rd step in the usual procedure
É R: Regression
É P: Prediction
É S: Combination estimation
É T = P + R + S

� Many schemes have been examined
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Weight Estimation

� Standard least squares with an intercept

yt+h = w0 +w′ŷt+h|t + εt+h
� Least squares without an intercept

yt+h = w′ŷt+h|t + εt+h
� Linearly constrained least squares

yt+h − ŷt+h,n|t =
n−1∑
i=1

wi
(
ŷt+h,i|t − ŷt+h,n|t

)
+ εt+h

É This is just a constrained regression where
∑
wi = 1 has been implemented

where wn = 1−
∑n−1

i=1 wi
É Imposing this constraint is thought to help when the forecast is persistent

ect+h|t = −w0 +
(
1−w′ι

)
yt+h +w′et+h|t

É et+h|t are the forecasting errors from the n models
É Only matters if the forecasts may be biased
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Weight Estimation

� Constrained least squares

yt+h = w′ŷt+h|t + εt+h subject to w’ι=1, wi ≥ 0

É This is not a standard regression, but can be easily solved using quadratic
programming (MATLAB quadprog)

� Forecast combination where the covariance of the forecast errors is
assumed to be diagonal
É Produces weights which are all between 0 and 1
É Weight on forecast i is

wi =
1
σ2i∑n
j=1

1
σ2j

É May be far from optimal if ρ is large
É Protects against estimator error in the covariance
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Weight Estimation

� Median
É Can use the median rather than the mean to aggregate
É Robust to outliers
É Still suffers from not having any reduction in parameter variance in the actual
forecast

� Rank based schemes
É Weights are inversely proportional to model’s rank

wi =
R−1t+h,i|t∑n
j=1R−1t+h,j|t

É Highest weight to best model, ratio of weights depends only on relative ranks
É Places relatively high weight on top model

� Probability of being the best model-based weights
É Count the proportion that model i outperforms the other models

pt+h,i|t = T−1
T∑
t=1

∩nj=1,j6=iI
[
L
(
et+h,i|t

)
< L
(
et+h,j|t

)]
yct+h|t =

n∑
i=1

pt+h,i|t ŷt+h,i|t
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Broad Recommendations

� Simple combinations are difficult to beat
É 1/n often outperforms estimated weights
É Constant usually beat dynamic
É Constrained outperform unconstrained (when using estimated weights)

� Not combining and using the best fitting performs worse than combinations
– often substantially

� Trimming bad models prior to combining improves results
� Clustering similar models (those with the highest correlation of their errors)
prior to combining leads to better performance, especially when estimating
weights
É Intuition: Equally weighted portfolio of models with high correlation, weight
estimation using a much smaller set with lower correlations

� Shrinkage improves weights when estimated
� If using dynamic weights, shrink towards static weights
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Equal Weighting

� Equal weighting is hard to beat when the variance of the forecast errors are
similar

� If the variance are highly heterogeneous, varying the weights is important
É If for nothing else than to down-weight the forecasts with large error variances

� Equally weighted combinations are thought to work well when models are
unstable
É Instability makes finding “optimal” weights very challenging

� Trimmed equally-weighted combinations appear to perform better than
equally weighted, at least if there are some very poor models
É May be important to trim both “good” and “bad” models (in-sample
performance)
– Good models are over-fit
– Bad models are badly mis-specified
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Shrinkage Methods

� Linear combination
ŷct+h|t = w

′ŷt+h|t

Standard least squares estimates of combination weights are very noisy
� Often found that “shrinking” the weights toward a prior improves
performance

� Standard prior is that wi = 1
n

� However, do not want to be dogmatic and so use a distribution for the
weights

� Generally for an arbitrary prior weight w0,

w|τ2 ∼ N (w0,Ω)

� Ω is a correlation matrix and τ2 is a parameter which controls the amount of
shrinkage
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Shrinkage Methods

� Leads to a weighted average of the prior and data

w̄ =
(
Ω + ŷ′ŷ

)−1 (
Ωw0 + ŷ′ŷŵ

)
� ŵ is the usual least squares estimator of the optimal combination weight
� If Ω is very large compared to y′y =

∑T
t=1 yt+h|ty

′
t+h|t then w̄ ≈ w0

� On the other hand, if y′y dominates, then w̄ ≈ ŵ
� Other implementation use a g-prior, which is scalar

w̄ =
(
gŷ′ŷ + ŷ′ŷ

)−1 (gŷ′ŷw0 + ŷ′ŷŵ)
� Large values of g ≥ 0 least to large amounts of shrinkage
� 0 corresponds to OLS

w̄ = w0 +
ŵ−w0
1 + g
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Inference for Many Forecasts

� Six papers:
É White, H. “A reality check for data snooping”. Econometrica
É Hansen, P. “A Test for Superior Predictive Ability”. JBES
É Sullivan, Timmermann & White. “Data-Snooping, Technical Trading Rule
Performance, and the Bootstrap”. Journal of Finance

É Romano & Wolf. “Stepwise Multiple Testing as Formalized Data Snooping”.
Econometrica

É Hansen, Lunde & Nason. “The Model Confidence Set”. Econometrica
É Bajgrowicz & Scaillet. “Technical trading revisited: false discoveries,
persistence tests and transaction costs”. Journal of Financial Economics
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Diebold-Mariano-West

� The Diebold-Mariano-West test examines whether two forecasts have equal
predictive ability

� DMW tests are all based on the difference of two loss functions

δt = L
(
yt+h, ŷAt+h|t

)
− L

(
yt+h, ŷBt+h|t

)
� The test statistic is based on the asymptotic normality of δ̄ = P−1

∑T
t=R+1 δt

� If P/R→ 0 then √
P
(
δ̄ − E [δ]

) d→ N
(
0,σ2

)
� σ2 is the long-run variance, that is

σ2 = lim
P→∞

V

[
P−

1
2

T∑
t=R+1

δt

]

� Must account for autocovariances, so a HAC estimator is used (Newey-West)
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DMW with the Bootstrap

� Alternatively could estimate the variance using the bootstrap
� For example, the stationary bootstrap could be used as long as the window
length grows with the size of the evaluation sample

� To implement the stationary bootstrap, the loss differentials would be
directly re-sampled to construct δ̄∗b for b = 1, . . . ,B

� The variance would then be computed as

σ̂2BS =
P
B

b∑
b=1

(
δ̄?b − δ̄

)2
� The test statistic is then

DMW =
δ̄√
σ̂2BS

É Note: the
√
P term is implicit in the denominator since σ2BS will decline as the

sample size grows (σ̂2BS ≈ σ̂2/P)
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DMW using percentile method

� Alternatively, inference could be made using the percentile method
� To implement the percentile method, it is necessary to enforce the null
H0 : E [δt] = 0

� This can be done by re-centering the loss differentials around the average
in the data: δ̃t = δt − δ̄

� The centered loss differentials δ̃t could then be re-sampled to compute an
estimate of the average loss-differential ¯̃δ?b

� Inference using the percentile method would be based on the empirical
frequency where δ̄ < ¯̃δ?b or δ̄ >

¯̃δ?b
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DMW using percentile method

� Since the test is 2-sided||

2× B−1
B∑
b=1

I
[∣∣∣ ¯̃δ?b

∣∣∣ < ∣∣δ̄∣∣]
É If many of the re-sampled centered means are less then δ̄, then the loss
differential does not appear large

É If few of the re-sampled centered means are less than δ̄, then the loss
differential appears large

� Since the distribution is asymptotically normal, there is no need to use the
percentile method since the bootstrap t-stat is simple to construct

26 / 104



Reality Check

� The Reality Check extends DMW to testing for Superior Predictive Ability (SPA)
� Tests of SPA examine whether a set of forecasting models can outperform a
benchmark

� Suppose forecasts were available for m forecasts, j = 1, . . . ,m
� The vector of loss differentials relative to a benchmark could be constructed
as

δt =


L
(
yt+h, ŷt+h,BM|t

)
− L

(
yt+h, ŷt+h,1|t

)
L
(
yt+h, ŷt+h,BM|t

)
− L

(
yt+h, ŷt+h,2|t

)
...

L
(
yt+h, ŷt+h,BM|t

)
− L

(
yt+h, ŷt+h,m|t

)


� ŷt+h,BM|t is the loss from the benchmark forecast
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Asymptotic distribution in the RC

� Under similar arguments as in Diebold & Mariano and West,

√
P
(
δ̄ − E

[
δ̄
]) d→ N (0,Σ)

� Σ is the asymptotic covariance matrix of the average loss differentials

Σ = lim
P→∞

V

[
P−

1
2

T∑
t=R+1

δt

]

� This looks virtually identical to the case of the univariate DMW test
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Hypotheses of SPA

� If the benchmark model is as good as the other models, then the mean of
each element of δt should be 0 or negative
É These are losses, so if the BM is better, then its loss is smaller then the loss
from the other model

� A total of m models
� The null in a test of SPA is

H0 : max
j=1,...,m

(
E
[
δj,t
])
≤ 0

� The alternative is the natural one,

H1 : max
j=1,...,m

(
E
[
δj,t
])
> 0

� Note: If no models are statistically better than the benchmark, then there is no
point in implementing the RC
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Examples of SPA: MSE

� The standard example is for comparing models using MSE (or MAE, or
similar)

L
(
yt+h, ŷt+h,j|t

)
=
(
yt+h − ŷt+h,j|t

)2
� The vector of loss differentials is then

δt =


(
yt+h − ŷt+h,BM|t

)2 − (yt+h − ŷt+h,1|t
)2(

yt+h − ŷt+h,BM|t
)2 − (yt+h − ŷt+h,2|t

)2
...(

yt+h − ŷt+h,BM|t
)2 − (yt+h − ŷt+h,m|t

)2


� This is the simplest form of an SPA test
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Examples of SPA: Return Predictability

� SPA can also be used to test whether the returns of a set of trading models
are equal

� In this case the “loss” function is the negative of the return from the strategy

L
(
yt+h, ŷt+h,j|t

)
= − ln

(
1 + yt+hS

(
ŷt+h,j|t

))
� S
(
ŷt+h,j|t

)
is a signal which indicates the size of the portfolio

É yt+h is the holding period return of the asset
É Could be -1, 0, 1 for short, out, long strategies
É ŷt+h,j|t is the input for the signal function, e.g. a Moving Average Oscillator

� The vector of loss differentials is then

δt =


ln
(
1 + yt+hS

(
ŷt+h,1|t

))
− ln

(
1 + yt+hS

(
ŷt+h,BM|t

))
...

ln
(
1 + yt+hS

(
ŷt+h,m|t

))
− ln

(
1 + yt+hS

(
ŷt+h,BM|t

))


� The benchmark could be a simple strategy, e.g. buy-and-hold (S (·) = 1)
� Ultimately the “loss differential” is the difference between the returns of a
set of strategies and the benchmark strategy
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Example: Predictive Likelihood

� SPA can be used to test distribution fit
� The loss function is just the negative of the likelihood

L
(
yt+h, ŷt+h,j|t

)
= −lj

(
yt+h|ŷt+h,j|t

)
É ŷt+h,j|t contains any time-t information needed to compute the log-likelihood

� The vector of loss differentials is then

δt =


l1
(
yt+h|ŷt+h,1|t

)
− lBM

(
yt+h|ŷt+h,BM|t

)
l2
(
yt+h|ŷt+h,2|t

)
− lBM

(
yt+h|ŷt+h,BM|t

)
...

lm
(
yt+h|ŷt+h,m|t

)
− lBM

(
yt+h|ŷt+h,BM|t

)


� The benchmark could be a simple strategy, e.g. buy-and-hold (S (·) = 1)
� Ultimately the differential is just the difference between the returns of a set
of strategies and the benchmark strategy
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Example: α from a multifactor model

� Suppose you were interested in testing for excess performance
� Usual APT type regression

rej,t = αj + f
′
tβ j + εj,t

� The “benchmark α” is 0 – the test is implemented directly on the estimated
αs

� Loss function is just −α̂ (negative excess performance)
� The vector of loss differentials is then

δt =


re1,t − f′t β̂1

...
rem,t − f′t β̂m

 =
 α̂1 + ε̂1,t

...
α̂m + ε̂m,t


� Used to test fund manager skill
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Implementing the Reality Check

� The Reality Check is implemented using the P by m matrix of loss
differentials
É P out-of-sample periods
É m models

� The original article describes two methods
É Monte Carlo Reality Check
É Bootstrap Reality Check

� In practice, only the Bootstrap Reality Check is used
� The distribution of the maximum of normals is not normal, and so only the
percentile method is applicable
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Implementing the Reality Check

Algorithm (Bootstrap Reality Check)

1. Compute TRC = max
(
δ̄
)

2. For b = 1, . . . ,B re-sample the vector of loss differentials δt to construct a
bootstrap sample

{
δ?b,t
}
using the stationary bootstrap

3. Using the bootstrap sample, compute

T?RCb = max

(
P−1

T∑
t=R+1

δ?b,t − δ̄
)

4. Compute the Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

p− value = B−1
b∑
b=1

I
[
T?RCb > TRC

]
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Intuition

� The bootstrap means are like draws (simulation) from the asymptotic
distribution N (0,Σ)

� Taking the maximum of these draws simulates the distribution of a set of
correlated normals

� Each bootstrap mean is centered at the sample mean
É This is known as using the Least Favorable Configuration (LFC) point
É Simulation is done assuming any model could as good as the benchmark

� Since the asymptotic distribution can be simulated, asymptotic critical
values and p-values can be constructed directly

� The Monte Carlo Reality Check works by first estimating Σ using a HAC
estimator, and then simulating random normals directly
É MCRC is equivalent to BRC, only requires estimating:

– A potentially large covariance is m is big
– The Choleski decomposition of this covariance
– B drawn from this Choleski

É In practice, m may be so large that the covariance matrix won’t fit in a normal
computer’s memory
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Revisiting: α from a multifactor model

� The original formulation had

δt =


re1,t − f′t β̂1

...
rem,t − f′t β̂m

 =
 α̂1 + ε̂1,t

...
α̂m + ε̂m,t


� Alternatively distribution could be built up by directly re-sampling the
returns and factors jointly

� This would allow T?RCb = maxj=1,...,m

(
α∗j,b − α̂j

)
to be computed form a

cross-sectional regression in each bootstrap
� Reality check allow for parameter estimation error as long as
(P/R) ln lnR→ 0 which is similar to P/R→ 0

� Also works if P/R→∞, in which case it is essential to re-sample returns
and factors and re-estimate β̂

?

j,b in each bootstrap

37 / 104



Application in Original Paper

� The original paper is applied to the BLL-type trading rules
� Used S&P 500 rather than DJIA
� Constructed 4 types of trading rule primitives:

É Momentum measures:
(
pt − pt−j

)
/pt−j for j ∈ {1, . . . , 11} (11 rules)

É Trend: pt−i = α + β
(
m− i

)
+ εj for m ∈ {5, 10, 15, 20} day periods (4 rules)

É Relative strength: τ−1
∑0

i=−τ+1 I
[(
pt−i − pt−i−1

)
> 0
]
for τ ∈ {5, 10, 15, 20}(4

rules)
É Moving average oscillator for fast speeds of {1, 5, 10, 15} and slow speeds of
{5, 10, 15, 20} (10 rules)
– Note: Slow has to be strictly longer than fast, so a total of 4 + 3 + 2 + 1 = 10 rules

� All combinations of 3 of these 29 variables were fed into a linear regression
to produce forecasts

rt+1 = β1 + β2xi,t + β3xj,t + β4xk,t + εt+1

� For i, j, k ∈ {1, . . . , 29} without repetition, so 29C3 = 3654 rules
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Application in Original Paper

� Benchmark is a model which includes only a constant

rt+1 = β1 + εt+1

� Models compared in terms of MSE

L
(
yt+1, ŷt+1|t

)
=
(
yt+1 − β̂0 − β̂1xi,t − β̂2xj,t − β̂3xk,t

)2
� Models also compared in terms of directional accuracy

L
(
yt+1, ŷt+1|t

)
= −I

[
yt+1

(
β̂0 + β̂1xi,t + β̂2xj,t + β̂3xk,t

)
> 0
]

É The negative is used to turn a “good” (same sign) into a “bad”
É Modification allows application of RC without modification since null is
H0 : max

(
E
[
δj,t
])
≤ 0
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MSE Differential

max δ̄i RC P-val
Experiment Number

� Negative MSE differential plotted (higher is better)
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Sign Prediction
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Sign Prediction

max δ̄i RC P-val
Experiment Number
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Hansen’s Test of SPA

� Hansen (2005, JBES) provided two refinements of the RC
1. Studentized loss differentials
2. Omission of very bad models from the distribution of the test statistic

� From a practical point-of-view, the first is a very important consideration
� From a theoretical point-of-view, the second is the important issue

É The second can be ignored if no models are are very poor
É This may be difficult if using automated model generation schemes
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Studentization of Loss Differentials
� The RC uses the loss differentials directly
� This can lead to a loss of power if there is a large amount of cross-sectional
heteroskedasticity

� Bad, high variance model can mask a good, low variance model
� The solution is to use the Studentized loss differential
� The test statistic is is based on

TSPA = max
j=1,...,m

 δ̄j√
ω̂2
j /P


� ω̂2

j is an estimator of the asymptotic (long-run) variance of δ̄j

ω̂2
j = γ̂j,0 + 2

P−1∑
i=1

kiγ̂j,i

É γj,i is the ith sample autocovariance of the sequence {δj,t}
É ki = P−i

P

(
1− 1

w

)i
+ i

P

(
1− 1

w

)P−i where w is the window length in Stationary
Bootstrap)

� Alternatively use bootstrap variance ω̂2j =
P
B
∑B

b=1

(
δ̄?b,j − δ̄j

)2
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Studentized SPA

Algorithm (Studentized Bootstrap Reality Check)

1. Estimate ω̂2
j and compute T

SPA
u = max

(
δ̄/
√
ω̂2
j /P
)

2. For b = 1, . . . ,B re-sample the vector of loss differentials δt to construct a bootstrap
sample

{
δ?b,t
}
using the stationary bootstrap

3. Using the bootstrap sample, compute

T?SPAu,b = max

P−1∑T
t=R+1 δ

?
j,b,t − δ̄j√

ω̂2
j /P


4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

p− value = B−1
b∑
b=1

I
[
T?SPAu,b > TSPAu

]
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ments, but is merely to handle this nuisance parameter problem.
We analyze this testing problem in the remainder of this sec-

tion, and our findings motivate the following two recommenda-
tions that spell out the differences between the RC and our new
test for SPA:

1. Use the studentized test statistic,

TSPA
n ≡ max

[

max
k=1,...,m

n1/2d̄k

ω̂k
,0

]

,

where ω̂2
k is some consistent estimator of ω2

k ≡ var(n1/2d̄k).

2. Invoke a null distribution that is based on Nm(µ̂c
, �̂),

where µ̂c is a carefully chosen estimator for µ that con-
forms with the null hypothesis. Specifically, we suggest
the estimator

µ̂c
k = d̄k1{n1/2d̄k/ω̂k≤−√

2 log log n}, k = 1, . . . ,m,

where 1{·} denotes the indicator function.

We explain our reasons for this choice of µ-estimator in Sec-
tion 2.4, but it is important to understand that using a consistent
estimator of µ need not produce a valid test.

2.2 Choice of Test Statistic

When the benchmark has the best sample performance
(d̄ ≤ 0), the test statistic is normalized to 0. In this case there
is no evidence against the null hypothesis, and consequently
the null should not be rejected. The normalization is convenient
for theoretical reasons, because we avoid a divergence problem
(to −∞) that would otherwise occur when µ < 0.

As discussed in Section 1, there are few optimality results in
the context of composite hypothesis testing. This is particularly
the case for the present problem of testing multiple inequalities.
However, some arguments that justify our choice of test sta-
tistic TSPA

n (instead of TRC
n ) are called on. Although we argue

that TSPA
n is preferable to TRC

n , it cannot be shown that the for-
mer uniformly dominates the latter in terms of power. In fact,
there are situations where TRC

n leads to a more powerful test

(such as the case where ω2
j = ω2

k ∀ j, k = 1, . . . ,m). However,
such exceptions are unlikely to be of much empirical relevance,
as we discuss later. So we are comfortable recommending the
use of TSPA

n in practice, and it is worth pointing out that stu-
dentization of the individual statistics is the conventional ap-
proach to multiple comparisons (see Miller 1981; Savin 1984).
This studentization is also embedded in the related approach
where the individual statistics are converted into “p values,”
with the smallest p value used as the test statistic (see Tippett
1931; Folks 1984; Marden 1985; Westfall and Young 1993;
Dufour and Khalaf 2002). In the present context, Romano and
Wolf (2005) also adopted the studentized test statistic (see also
Lehmann and Romano 2005, chap. 9).

Our main argument for studentization is that it typically will
improve the power. This can be understood from the following
simple example.

Example 4. Consider the case where m = 2 and suppose that

n1/2(d̄ − µ) ∼ N2

(

0,

(
4 0
0 1

))

,

where the covariance is 0 (a simplification that is not nec-
essary for our argument). Now consider the particular local
alternative where µ2 = 2n−1/2 > 0. Here d̄2 is expected to
yield a fair amount of evidence against H0 :µ ≤ 0, because
the t-statistic, n1/2d̄2/ω̂k, will be centered about 2. It fol-
lows that the null distributions (using µ = 0) are given by
TRC

n ∼ F0(x) ≡ �(x/2)�(x) and TSPA
n

a∼ G0(x) ≡ �(x)�(x),

whereas TRC
n ∼ F1(x) ≡ �(x/2)�(x + 2) and TSPA

n
a∼ G1(x) ≡

�(x)�(x+2) under the local alternative. Here �(·) denotes the
standard Gaussian distribution and

a∼ means “asymptotically
distributed as.” Figure 1 shows the upper tails of the null distrib-
utions, 1 − F0(x) and 1 − G0(x) (thick lines) and the upper tails
of 1 − F1(x) and 1 − G1(x) (thin lines) that represent the distri-
butions of the test statistics under the local alternative. Dotted

Figure 1. (One minus) The cdfs for the Test Statistics T RC and TSPA Under the Null Hypothesis, µ1 = µ2 = 0, and the Local Alternative,
µ2 = 2/

√
n > 0. [ 1−F0(x); 1−F1(x); 1−G0(x); 1−G1(x).] Studentization improves the power from about 15% to about 53%.
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The u in TSPAu is for upper

� The U is included to indicate that the p-value derived using the LFC may not be the
best p-value

� Suppose the some of the models have a very low mean and a high standard
deviation

� In the RC and SPA-U, all models are assumed to be as good as the benchmark
� This is implemented by always re-centering the bootstrap samples around δ̄j
� If a model is rejectably bad, then it may be possible to improve the power of the
RC/SPA-U by excluding this model

� This is implemented using a “pre-test” of the form

Iuj = 1, Icj =
δ̄j√
ω̂2
j /P

> −
√
2 ln lnP, I lj = δ̄j > 0

É The first (c for consistent) tests whether the standardized mean loss differential
is greater than a HQ-like lower bound

É The second (l for lower) only re-centers if the loss-differential is positive (e.g.
the benchmark is out-performed)
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General SPA

Algorithm (Test of SPA)

1. Estimate ω̂2
j and compute T

SPA = max
(
δ̄/
√
ω̂2
j /P
)

2. For b = 1, . . . ,B re-sample the vector of loss differentials δt to construct a bootstrap
sample

{
δ?b,t
}
using the stationary bootstrap

3. Using the bootstrap sample, compute

T?SPAs,b = max

P−1∑T
t=R+1 δ

?
j,b,t − Isj δ̄j√

ω̂2
j /P

 , s = l, c, u

4. Compute the Studentized Reality Check p-value as the percentage of the bootstrapped
maxima which are larger than the sample maximum

p− value = B−1
b∑
b=1

I
[
T?SPAs,b > TSPA

]
, s = l, u, c
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Comments on SPA

� The three versions only differ on whether a model is re-centered
� If a model is not re-centered, then it is unlikely to be the maximum in the
re-sample distribution
É This is how “bad” models are discarded in the SPA

� Can compute 6 different p-values statistics
É Studentized or unmodified
É Indicator function in l, c, u

– Test statistic does not depend on l, c, u, only p-value does

� Reality Check uses unmodified loss differentials and u
� In practice Studentization beings important gains
� Using c is important if using SPA on large universe of automated rules if
some may be very poor
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Figure 2. A Situation Where the RC Fails to Reject a False Null Hy-
pothesis. The true parameter value is µ = (µ1, µ2) ′, the sample es-
timate is d̄ = (d̄1, d̄2 ) ′, and CRC represents the critical value derived
from a null distribution that tacitly assumes that µ = (0, 0) ′.

alternatives in the analysis. Naturally, we would want to avoid
such properties to the extent possible.

Because the test statistics have asymptotic distributions that
depend on µ and �, these are nuisance parameters. The tradi-
tional way to proceed in this case is to substitute a consistent
estimator for � and use the LFC over the values of µ that sat-
isfy the null hypothesis. In the present situation, the point least
favorable to the alternative is µ = 0, which presumes that all al-
ternatives are as good as the benchmark. In the next section we
explore an alternative way to handle the nuisance dependence
on µ, where we use a data-dependent choice for µ rather than
µ = 0 as dictated by the LFC.

Figure 2 illustrates a situation for m = 2, where the two-
dimensional plane represents the sampling space for d̄ =
(d̄1, d̄2)

′. We have plotted a realization of d̄, that is in the neigh-
borhood of its true expected value, µ = (µ1,µ2)

′, and the el-
lipse around µ is meant to illustrate the covariance structure
of d̄. The shaded area represents the values of µ that conform
with the null hypothesis. Because we have placed µ outside
this shaded area, the situation in Figure 2 is one where the null
hypothesis is false. The RC is an LFC-based test, so it derives
critical values as if µ = 0 [the origin, o = (0,0)′, of the figure].
The critical value, CRC, is represented by the dashed line, such
that the area above and to the right of the dashed line defines
the critical region of the RC. The shape of the critical region
follows from the definition of TRC

n . Because d̄ is outside the
critical region in this example, the RC fails to reject the false
null hypothesis in this case.

2.4 The Distribution Under the Null Hypothesis

Hansen (2003) proposed an alternative to the LFC approach
that leads to more powerful tests of composite hypotheses. The
LFC is based on a supremum taken over the null hypothesis,

whereas the idea of Hansen (2003) is to take the supremum
over a smaller (confidence) set chosen such that it contains the
true parameter with a probability that converges to 1. In this
article, we use a closely related procedure based directly on the
asymptotic distributions of Theorem 1 and Corollary 1.

In the preceding section, we saw that the poor alternatives
are irrelevant for the asymptotic distribution. So a proper test
should reduce the influence of these models while preserving
the influence of the models with µk = 0. It may be tempting to
simply exclude the alternatives with d̄k < 0 from the analysis.
But this approach does not lead to valid inference in general, be-
cause the models that are (or appear to be) a little worse than the
benchmark can have a substantial influence on the distribution
of the test statistic in finite samples (and even asymptotically
if µk = 0). So we construct our test in a way that incorporates
all models, while reducing the influence of alternatives that the
data suggest are poor.

Our choice of estimator, µ̂c, is motivated by the law of the
iterated logarithm stating that

P

(

lim inf
n→∞

n1/2(d̄k − µk)

ωk
= −√

2 log log n

)

= 1

and

P

(

lim sup
n→∞

n1/2(d̄k − µk)

ωk
= +√

2 log log n

)

= 1.

The first equality shows that µ̂c
k effectively captures all of the

elements of µ that are 0, such that µk = 0 ⇒ µ̂c
k = 0 almost

surely. Similarly, if µk < 0, then the second equality states that
d̄k is very close to µk; in fact, n1/2d̄k is smaller than −n1/2−ε

for any ε > 0 and n sufficiently large. Thus n1/2d̄k/ωk is, in
particular, smaller than the threshold rate, −√

2 log log n, for
n sufficiently large, demonstrating that d̄k eventually will stay
below the implicit threshold in our definition of µ̂c

k, such that
µk < 0 ⇒ µ̂c

k 
 0 almost surely. So µ̂c meets the necessary
asymptotic requirements that we identified in Theorem 1 and
Corollary 1.

Although the poor alternatives should be discarded asymp-
totically, this is not the case in finite samples, as we discussed
earlier. Our estimator, µ̂c, explicitly accounts for this by keep-
ing all alternatives in the analysis. A poor alternative, µk < 0,
has an impact on the critical value whenever µk/(ωkn1/2) is
only moderately negative, say between −1 and 0. This is the
reason that the poorly performing alternatives cannot simply
be omitted from the analysis. We emphasize this point because
an earlier version of this article has been incorrectly quoted for
“discarding the poor models.”

Although µ̂c leads to a correct separation of good and poor
alternatives, other threshold rates also produce valid tests. The
rate

√
2 log log n is the slowest rate that captures all alternatives

with µk = 0, whereas the faster rate, n1/2−ε for any ε > 0, guar-
antees that all of the poor models are discarded asymptotically.
So a range of rates can be used to asymptotically discriminate
between good and poor alternatives. One example is 1

4 n1/4,
which was used in a previous version of this article. Because
different threshold rates will lead to different p values in finite
samples, it is convenient to determine an upper and lower bound
for the p values in which different threshold rates can result.
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These are easily obtained using the “estimators,” µ̂l and µ̂u,
given by µ̂l

k ≡ min(d̄k,0) and µ̂u
k = 0, k = 1, . . . ,m, where

the latter yields the LFC-based test. It is simple to verify that
µ̂l ≤ µ̂c ≤ µ̂u, which in part motivates the superscripts, and we
have the following result, where F0 is the cdf of ϕ(Z,v0) that
we defined in Theorem 1.

Theorem 2. Let Fi
n be the cdf of ϕ(n1/2Zi

n,Vn), for i = l, c,

or u, where n1/2(Zi
n − µ̂i

)
d→ Nm(0,�). Suppose that Assump-

tions 1 and 2 hold; then Fc
n → F0 as n → ∞, for all continuity

points of F0 and Fl
n(x) ≤ Fc

n(x) ≤ Fu
n(x) for all n and all x ∈ R.

Theorem 2 demonstrates that µ̂c leads to a consistent esti-
mate of the asymptotic distribution of our test statistic. The the-
orem also demonstrates that µ̂l and µ̂u provide upper and lower
bound for the distribution Fc

n that can be useful in practice; for
example, a substantial difference between these bounds is in-
dicative of the presence of poor alternatives, in which case the
sample-dependent null distribution is useful.

Given a value for the test statistic t = Tn(d1, . . . ,dn), it is nat-
ural to define the true asymptotic p value as p0(t) ≡ 1 − F0(t).
The empirical p value is deduced from an estimate of Fi

n,
i = l, c,u, and the following corollary demonstrates that µ̂c

yields a consistent p value.

Corollary 2. Consider the studentized test statistic, t =
TSPA

n (d1, . . . ,dn). Let the empirical p value, p̂c
n(t), be in-

ferred from F̂c
n, where F̂c

n(t) − Fc
n(t) = o(1) for all t. Then

p̂c
n(t)

p→ p0(t) for any t > 0.

The two other choices, µ̂l and µ̂u, do not produce consis-
tent p values in general. It follows directly from Theorem 1
that µ̂u will not produce a consistent p value unless µ = 0.
That the p value from using µ̂l is inconsistent is easily under-
stood by noting that a critical value based on Nm(0,�) will
be greater than one based on the mixed Gaussian distribution,
Nm(n1/2µ̂l

,�). So a p value based on µ̂l is (asymptotically)
smaller than the correct p value, which makes this a liberal test

despite the fact that µ̂l p→ µ under the null hypothesis. This
problem is closely related to the inconsistency of the bootstrap,
when a parameter is on the boundary of the parameter space,
as analyzed by Andrews (2000). In our situation the inconsis-
tency arises because µ is on the boundary of the null hypothesis,
which leads to a violation of a similarity on the boundary con-
dition (see Hansen 2003). (See Cox and Hinkley 1974, p. 150,
and Gouriéroux and Monfort 1995, chap. 16, for discussions of
the finite-sample version of this similarity condition.)

Figure 3 shows how the consistent estimate of the null dis-
tribution can improve the power. Recall the situation from Fig-
ure 2, where the null hypothesis is false. The data-dependent
null distribution is defined from a projection of d̄ = (d̄1, d̄2)

′
onto the set of parameter values that conform with the null hy-
pothesis. This yields the point a, which represents µ̂l = µ̂c (as-
suming that d̄2 is below the relevant 2 log log n-threshold). The
critical region of the SPA test (induced by d̄) is the area above
and to the right of the dotted line marked by CSPA. Because d̄ is
in the critical region, the SPA test (correctly) rejects the null
hypothesis in this case.

Figure 3. How the Power Is Improved by Using the Sam-
ple-Dependent Null Distribution. This distribution is centered about
µ̂c = a, which leads to the critical value CSPA. In contrast, the RC fails to
reject the null hypothesis, because the LFC-based null distribution leads
to the larger critical value CRC.

3. BOOTSTRAP IMPLEMENTATION OF THE TEST
FOR SUPERIOR PREDICTIVE ABILITY

In this section we describe a bootstrap implementation of the
SPA tests in detail. The implementation is based on the station-
ary bootstrap of Politis and Romano (1994), but it is straight-
forward to modify the implementation to the block bootstrap
of Künsch (1989). Although there are arguments that favor the
block bootstrap over the stationary bootstrap (see Lahiri 1999),
these advantages require the use of an optimal block length that
is difficult to determine when m is large relative to n, as will
often be the case when testing for SPA.

The stationary bootstrap of Politis and Romano (1994) is
based on pseudo-time series of the original data. The pseudo-
time series {d∗

b,t} ≡ {dτb,t}, b = 1, . . . ,B, are resamples of dt,
where {τb,1, . . . , τb,n} is constructed by combining blocks of
{1, . . . ,n} with random lengths. The leading case is that where
the block length is chosen to be geometrically distributed with
parameter q ∈ (0,1], but the block length may be randomized
differently, as discussed by Politis and Romano (1994). The
number of bootstrap resamples, B, should be chosen to be suffi-
ciently large such that the results are not affected by the actual
draws of τb,t. This can be achieved by increasing B until the re-
sults are robust to increments, or more formal methods, such as
the three-step method of Andrews and Buchinsky (2000), can
be applied. Here we follow the conventional setup of the sta-
tionary bootstrap and generate B resamples from two random
B × n matrices, U and V, where the elements, ub,t and vb,t,
are independent and uniformly distributed on (0,1]. The first
element of each resample is defined by τb,1 = �nub,1�, where
�x� is the smallest integer that is larger than or equal to x. For
t = 2, . . . ,n, the elements are given recursively by

τb,t =
{ �nub,1� if vb,t < q

1{τb,t−1<n}τb,t−1 + 1 if vb,t ≥ q.
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Table 4. Rejection Frequencies Under the Null and Alternative (m = 1,000 and n = 200)

Level: α = .05 Level: α = .10

Λ1 RCl RCc RCu SPAl SPAc SPAu RCl RCc RCu SPAl SPAc SPAu

Panel A: �0 = 0
0 .049 .047 .047 .064 .062 .062 .106 .100 .100 .125 .119 .119

−1 .049 .047 .047 .066 .064 .064 .106 .101 .100 .128 .122 .122
−2 .061 .058 .058 .173 .164 .164 .128 .121 .121 .269 .252 .252
−3 .288 .262 .262 .658 .598 .596 .434 .388 .388 .770 .699 .697
−4 .815 .720 .719 .980 .937 .933 .917 .828 .824 .994 .967 .963
−5 .998 .971 .967 1.000 .999 .998 1.000 .991 .988 1.000 1.000 1.000

Panel B: �0 = 1
0 .009 .007 .007 .025 .022 .022 .022 .017 .017 .054 .045 .045

−1 .009 .007 .007 .029 .025 .025 .022 .017 .017 .059 .050 .050
−2 .010 .008 .008 .150 .127 .127 .026 .020 .020 .229 .192 .191
−3 .066 .049 .049 .652 .555 .548 .150 .103 .102 .759 .652 .643
−4 .502 .345 .339 .980 .924 .916 .701 .500 .488 .993 .956 .947
−5 .965 .813 .794 1.000 .998 .997 .994 .907 .886 1.000 1.000 .999

Panel C: �0 = 2
0 .001 .000 .000 .015 .011 .011 .005 .002 .002 .035 .026 .025

−1 .001 .000 .000 .020 .015 .015 .005 .002 .002 .043 .032 .032
−2 .002 .000 .000 .155 .115 .113 .006 .003 .003 .233 .172 .167
−3 .016 .007 .007 .669 .544 .525 .054 .022 .022 .779 .636 .616
−4 .291 .125 .117 .985 .923 .906 .516 .243 .224 .994 .954 .940
−5 .901 .576 .529 1.000 .999 .996 .980 .744 .683 1.000 1.000 .998

Panel D: �0 = 5
0 .000 .000 .000 .011 .005 .004 .002 .000 .000 .029 .012 .009

−1 .000 .000 .000 .019 .010 .008 .002 .000 .000 .044 .020 .016
−2 .000 .000 .000 .199 .122 .101 .002 .000 .000 .291 .180 .148
−3 .011 .000 .000 .748 .570 .505 .045 .004 .002 .843 .664 .589
−4 .303 .036 .017 .993 .939 .897 .575 .098 .050 .998 .967 .930
−5 .936 .387 .207 1.000 .999 .996 .992 .605 .356 1.000 1.000 .998

Panel E: �0 = 10
0 .001 .000 .000 .012 .004 .003 .002 .000 .000 .029 .011 .004

−1 .001 .000 .000 .025 .012 .007 .002 .000 .000 .054 .024 .011
−2 .001 .000 .000 .259 .156 .097 .004 .000 .000 .366 .226 .141
−3 .031 .001 .000 .815 .633 .495 .109 .006 .000 .891 .726 .579
−4 .508 .064 .005 .996 .958 .892 .765 .175 .018 .999 .981 .926
−5 .983 .531 .099 1.000 1.000 .995 .998 .753 .210 1.000 1.000 .998

NOTE: Estimated rejection frequencies for the six tests for SPA under the null hypothesis (�1 = 0) and local alternatives (�1 < 0). The rejection frequencies in italic type correspond to type I
errors, and those in regular type correspond to local powers. The reality check of White (2000) is denoted by RCu, and the test advocated in this article is denoted by SPAc.

Figure 4. Local Power Curves of the Four Tests, SPAc, SPAu, RCc, and RCu, for the Simulation Experiment Where m = 100, Λ0 = 20, and
µ1/

√
n ( = −Λ1) Ranges From 0 to 8 (the x-axis). The power curves quantify the power improvements that are achieved by the two modifications

of the reality check. Both the studentization and the data-dependent null distribution lead to substantial power gains in this design.
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Application of RC to Technical Trading Rules

� Sullivan, Timmermann and White (1999) apply the RC to a large universe of
technical trading rules

� Rules include:
É Filter Rules
É Moving Average Oscillators
É Support and Resistance
É Channel Breakout
É On-balance Volume Averages

– Tracks volume times return sign
– Similar to Moving Average rules for prices

� Total of 7,846 trading rules
� Only use 1 at a time
� Use DJIA as in BLL, updated to 1996
� Consider mean return criteria and Sharpe Ratio
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RC based on Sharpe Ratio

� From any strategy it is simple to compute the Sharpe Ratio

SR =
P−1

∑T
t=R+1 r̃t+1 − rf ,t+1√

P−1
∑T

t=R+1
(
r̃t+1 − r̃

)2
� The strategy return is r̃t+1 = rt+1S

(
ŷj,t+1|t

)
� r̃ is the mean of the strategy return
� rf ,t+1 is the risk-free rate
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RC based on Sharpe Ratio

� The bootstrap can be used to compute a bootstrap version of the same rule
by jointly re-sampling

{
r̃t+1, rf ,t+1

}
� The bootstrap Sharpe Ratio is then

SR?b =
a√
b− c2

a = P−1
T∑

t=R+1

r̃b,t+1 − rf ,b,t+1

b = P−1
T∑

t=R+1

r̃2b,t+1

c = P−1
T∑

t=R+1

r̃b,t+1

� The SR can be computed for all models
� The RC can then be applied to the (negative) SR, rather than the (negative)
return
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Sharpe Ratio Performance: BLL Universe
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Sharpe Ratio Performance: Expanded
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Stepwise Multiple Testing

� The main issue with the Reality Check and the Test for SPA is the null
� These tests ultimately test one question:

É Is the largest out-performance consistent with a random draw from the
distribution when there are not superior models to the benchmark?

� If the null is rejected, only the best performing model can be determined to
be better than the benchmark

� What about the 2nd best model? Or the kth best model?
� The StepM extends that reality check by allowing individual models to be
tested

� It is implemented by repeatedly applying a RC-like algorithm which controls
the Familywise Error Rate (FWE)
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Basic Setup

� The basic setup is identical to that of the RC/SPA
� The test is based on δj,t = L

(
yt+h, ŷt+h,BM|t

)
− L

(
yt+h, ŷt+h,j|t

)
� Can be used in the same types of tests as RC/SPA

É Absolute return
É Sharpe Ratio
É Risk-adjusted α comparisons
É MSE/MAE
É Predictive Likelihood

� Can be implemented on both raw and Studentized loss differentials
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Null and Alternative Hypotheses

� The null and alternatives in StepM are not a single statement as they were
in the RC/SPA

� The nulls are
H0,j : E [δt] ≤ 0, j = 1, . . . ,m

� The alternatives are

H1,j : E [δt] > 0, j = 1, . . . ,m

� StepM will ultimately result in a set of rejections (if any are rejected)
� Goal of StepM is to identify as many false nulls as possible while controlling
the Familywise Error Rate
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Familywise Error Rate

Definition (Familywise Error Rate)

For a set of null and alternative hypotheses H0,i and H1,i for i = 1, . . . ,m, let I0
contain the indices of the correct null hypotheses. The Familywise Error Rate is
defined as

Pr
(
Rejecting at least one H0,i for i ∈ I0

)
= 1− Pr

(
Reject no H0,i for i ∈ I0

)
� The FWE is concerned only with the probability of making at least one Type
I error

� Making 1, 2 or m Type I errors is the same to FWE
É This is a criticism of FWE
É Other criteria exist such as False Discovery Rate which controls the percentage
of rejections which are false (# False Rejection/# Rejections)
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Bonferoni Bounds

� Bonferoni bounds are the first procedure to control FWE

Definition (Bonferoni Bound)

Let T1,T2, . . . ,Tm be a set of m test statistics, then

Pr
(
T1 ∪ . . . ∪ Tm|H1,0, . . .Hm,0

)︸ ︷︷ ︸
Joint Probability

≤
m∑
j=1

Pr
(
Tj|H0,j

)︸ ︷︷ ︸
Individual Probability

where Pr
(
Tj|H0,j

)
is the probability of observing Tjgiven the null H0,j is true.

� Bonferoni bounds are a simple method to test m hypotheses using only
univariate test statistics

� Let
{
pvj
}
be a set of m p-values from a set of tests

� The Bonferoni bound will reject the set of nulls is pvj ≤ α/m for all j
É α is the size of the test (e.g. 5%)

� When m is moderately large, this is a very conservative test
� Conservative since assumes worst case dependence among statistics
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Holm’s procedure

Definition (Holm’s Procedure)

Let T1,T2, . . . ,Tm be a set of m test statistics with associated p-values pvj,
j = 1, . . . ,m where it is assumed pvi < pvj if i < j. If

pvj ≤ α/
(
m− j + 1

)
then H0,j can be rejected in factor of H1,j while controlling the famliywise error
rate at α.

� Example: p-values of .001, .01, .03, .05, m = 4, α = .05
� Improves Bonferoni by ordering the p-values and using a stepwise
procedure

� Allows subsets of hypotheses to be tested – Bonferoni is joint
� Less strict, except when j = 1 (same as Bonferoni)
� Note: Holm’s procedure ends as soon as a null cannot be rejected
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Relationships between testing procedures

� The RC/SPA, Bonferoni and Holm are all related

Worst-case Dependence Accounts for Dependence in Data
Single-step Bonferoni RC, SPA
Stepwise Holm StepM
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StepM Algorithm

Algorithm (StepM)

1. Begin with the active set A = {1, 2, . . . ,m}, superior set S = {}
2. Construct B bootstraps sample

{
δ?b,t
}
, b = 1, . . . ,B

3. For each bootstrap sample, compute T?StepMk,b = maxj∈A
{
δ̄?b,j − δ̄j

}
4. Compute qk,α as the 1− α quantile of

{
T?StepMk,b

}
5. If maxj∈A

(
δ̄j
)
< qk,α stop

6. Otherwise for each j ∈ A
a. If δ̄j ≥ qk,α add j to S and delete from A
b. Return to 2
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Comments

� StepM would be virtually identical to RC if only the largest δ̄j was tested
� Improves on the RC since (weakly more) individual out-performing models
can be identified

� If no model outperforms, will stop with none and RC p-value will be larger
than α

� Steps 2–4 are identical to the RC using the models in A
� The stepwise testing can improve power by removing models

É The improvement comes if a model with substantial out-performance also has
large variance

É Removing this model allows the critical value to be reduced

� StepM only guarantees that FWE≤ α, and in general will be < α
É Will only = α if E

[
δj,t
]
= 0 for all j

É Example: N
(
µ,σ2

)
when µ < 0, H0 : µ = 0

67 / 104



Studentization

� Like the SPA to the RC, the StepM can be implemented using Studentized
loss differentials

� Romano & Wolf argue that the Studentization should be done inside each
bootstrap sample, not globally as in the SPA

� Theoretically both are justified and neither makes a difference
asymptotically

� Computing the variance inside each bootstrap will more closely match the
re-sampled data than when using a global estimate
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Studentized StepM Algorithm

Algorithm (Studentized StepM)

1. Begin with the active setA = {1, 2, . . . ,m}, superior set S = {}

2. Compute z̄j = δ̄j/
√
ω̂2j /P where ω̂

2
j was previously defined

3. Construct B bootstraps sample {δ?b,t
}
, b = 1, . . . , B

4. For each bootstrap sample, compute

T?StepMk,b = max
j∈A

{
δ̄?b,j − δ̄j
ω̂?j

}

where ω̂2?j is an estimate of the long-run variance of the bootstrapped data

5. Compute qzk,α as the 1− α quantile of
{
T?StepMk,b

}
6. If maxj∈A

(
z̄j
)
< qzk,α stop

7. Otherwise for each j ∈ A
a. If z̄j ≥ qzk,α add j to S and delete fromA
b. Return to 2
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Why Studentization Help

� StepM is built around confidence intervals of the form[
δ̄1 − q1,α,∞

]
× . . .×

[
δ̄m − q1,α,∞

]
� Null hypotheses are rejected for models where 0 is not in its confidence
interval

� In the raw form, the confidence interval is a square – the same for every
loss differential

� When Studentization is used, the confidence intervals take the form[
δ̄1 −

√
ω21/Pq

z
1,α,∞

]
× . . .×

[
δ̄m −

√
ω2m/Pq

z
1,α,∞

]
� This “customization” allows for more rejections if the loss differentials have
cross-sectional heteroskedasticity
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Block-size Selection

� Paper proposes a procedure to make data driven block size
� Basic idea is to use a (V)AR on

{
δj,t
}
to approximate the dependence

É Similar to Den Hann-Levine HAC

� Fit AR & estimate residual covariance (or use short block bootstrap on
errors)

� Simulate from model
� For w = 1, . . . ,W compute the bootstrap confidence region with size
1− αusing percentile method

� For each block size, compute the empirical coverage – percentage of
simulated δ̄ in their confidence region

� Choose optimal w which most closely matches 1− α
É Alternative: Use Politis & White
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Empirical Application

� Applied StepM to a set of 105 Hedge Fund Returns with long histories
� Returns net of management fees
� Benchmark model was risk-free rate
� m = 105, P = 147 (all out-of-sample)
� Results:

É Raw data: No out-performers
– Max ratio of standard deviation ω̂i/ω̂j = 22

É Studentized: 7 funds identified

� Note: Will always identify funds with the largest δ̄ (or z̄) first
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Empirical Application

1268 J. P. ROMANO AND M. WOLF

Our universe consists of all hedge funds in the Center for International Secu-
rities and Derivatives Markets (CISDM) data base that have a complete return
history from 01/1992 until 03/2004. There are S = 105 such funds and the num-
ber of monthly observations is T = 147. All returns are net of management
and incentive fees, that is, they are the returns obtained by the investors. As is
standard in the hedge fund industry, we benchmark the funds against the risk-
free rate27 and all returns are log returns. So we are in the general situation of
Example 2.1: a basic test statistic is given by (1) and a studentized test statistic
is given by (2). It is well known that hedge fund returns, unlike mutual fund
returns, tend to exhibit nonnegligible serial correlations; for example, see Lo
(2002) and Kat (2003). Indeed, the median first-order autocorrelation of the
105 funds in our universe is 0.172. Accordingly, one has to account for this time
series nature to obtain valid inference. Studentization for the original data uses
a kernel variance estimator based on the prewhitened QS kernel and the cor-
responding automatic choice of bandwidth of Andrews and Monahan (1992).
The bootstrap method is the circular block bootstrap, based on M = 5�000 rep-
etitions. The studentization in the bootstrap world uses the corresponding nat-
ural variance estimator; for details, see Götze and Künsch (1996) or Romano
and Wolf (2003). The block sizes for the circular bootstrap are chosen via Al-
gorithm 7.1. The semiparametric model P̃T used in this algorithm is a VAR(1)
model in conjunction with bootstrapping the residuals.28

Table VIII lists the ten largest basic and studentized test statistics, together
with the corresponding hedge funds. While one expects the two lists to be

TABLE VIII

THE TEN LARGEST BASIC AND STUDENTIZED TEST STATISTICS, TOGETHER WITH THE
CORRESPONDING HEDGE FUNDS, IN OUR EMPIRICAL APPLICATION

x̄T�s − x̄T�S+1 Fund (x̄T�s − x̄T�S+1)/σ̂T�s Fund

1.70 Libra Fund 10.63 Market Neutral∗

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage∗

1.36 Aggressive Appreciation 8.43 Univest (B)∗

1.27 Gamut Investments 6.33 TQA Arbitrage Fund∗

1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage∗

1.14 FBR Weston 5.29 Gabelli Associates∗

1.11 Berkshire Partnership 5.24 Elliott Associates∗∗

1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund
1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust

aThe return unit is 1%. Funds identified in the first step are indicated by the superscript * and funds identified
in the second step are indicated by the superscript **.

27The risk-free rate is a simple and widely accepted benchmark. Of course, our methods also
apply to alternative benchmarks such as hedge fund indices or multifactor hedge fund bench-
marks; for example, see Kosowski, Naik, and Teo (2005).

28To account for leftover dependence not captured by the VAR(1) model, we use the stationary
bootstrap with average block size b = 5 to bootstrap the residuals.
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Improving StepM using SPA

� The main step in the StepM algorithm is identical to the RC
� The important difference is that the test is implemented for each null,
rather than globally

� StepM will suffer if very poor models are included with a large variance
É Especially true for raw version, but also relevant for Studentized version
É Example [

δ̄1
δ̄2

]
∼ N

([
0
−5

]
,

[
1 0
0 1

])
É Reality Check critical value will be 1.95, while “best” critical value would be
1.645 (since only 1 relevant for asymptotic distribution)

� The RC portions of StepM can be replaced by SPA versions which addresses
this problem

� Simple as adding in the indicator function Icj when subtracting the mean in
step 3 (step 4 in Studentized version)

� Using SPA modification will always find more out-performing models
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Model Confidence Set (MCS)

� RC, SPA and StepM were all testing superior predictive ability
� This type hypothesis is common when there is a natural benchmark
� In some scenarios there may not be a single benchmark, or there may more
than one models which could be considered benchmarks

� When this occurs, it is not clear
É How to implement RC/SPA/StepM
É How to make sound conclusions about superior predictive ability

� The model confidence set addresses this problem by bypassing the
benchmark

� The MCS aims to find the best model and all models which are
indistinguishable from the best
É The model with the lowest loss will always be the best – identifying the others
is more challenging

� Also returns p-values for models with respect to the MCS
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Notation Preliminaries

� The outcome of the MCS is a set of models
É All model sets will be denoted usingM

� The initial model set isM0

� The goal is to findM? which is the set of all models which are
indistinguishable from the best

� The output of the MCS algorithm is M̂1−α where α is the size of the test
É The size is interpreted as a Familywise Error Rate – same as StepM
É In general M̂1−α will contain more than 1 model

� In betweenM0 and M̂1−α are other sets of models

M0 ⊃M1 ⊃ . . . ⊃ M̂1−α
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Notation Preliminaries

� To construct the model confidence set, two tools are needed
É An equivalence test dM: Determines whether the model inM are equal in
terms of loss

É An elimination rule eM: Determines which model to eliminate if dM finds that
the models are not equivalent

� The generic form of the algorithm, starting at i = 0:
1. Apply dM toMi

2. If dM rejects equivalence, use eMto eliminate 1 model to produceMi+1

a. If not, stop

3. Increment i, return to 1

� Has a similar flavor to StepM
É Also gains from eliminating models with high variance
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The Model Confidence Set

� When the algorithm ends, the final set M̂1−α has the property

lim
P→∞

Pr
(
M? ⊂ M̂1−α

)
≥ 1− α

� The result follows directly since the FWE is ≤ α
� If there is only 1 “best” model, then the result can be strengthened

lim
P→∞

Pr
(
M? ⊂ M̂1−α

)
= 1

É The MCS will find the “best” model asymptotically
É The intuition behind this is that the “best” model will have:

– Lower loss than all other models
– The variance of the average loss differential will decline as P →∞

� When 2 or more models are equally good, there is always a α chance that at
least 1 will be rejected

� In large samples, models which are not inM? will be eliminated with
probability 1 since the individual test statistics are consistent
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Model Confidence Set

� The MCS takes loss functions as inputs, but ultimately works on loss
differentials

� Since there is no benchmark model, all loss differentials are considered

δij,t = L
(
yt+h, ŷt+h,i|t

)
− L

(
yt+h, ŷt+h,j|t

)
� There are many pairs, and so the actual test examines whether the average
loss for model j is different from that of all models

δ̄i =
1

m− 1
m∑

i=1,i 6=j

δ̄ij

� If δ̄i is sufficiently positive, then model i is worse then the other models in
the set
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Null and Alternative

� The MCS can be based on two test statistics
� Both satisfy some technical conditions on dM and eM
� The first is based on T = maxi∈M (z̄i) where z̄i = δ̄i/σ̂i and σ̂2i is an
estimate of the (log-run) variance of δ̄i
É The elimination rule is eM = argmaxi∈M zi

� The second is based on TR = maxi,j∈M
∣∣z̄ij∣∣ where z̄ij = δ̄ij/σ̂ij and σ̂ij is an

estimate of the (log-run) variance of δ̄ij
É The elimination rule is eR,M = argmaxi∈M supj∈M z̄ij
É Eliminate the model which has the largest loss differential to some other
model, relative to its standard deviation

� At each step the null is H0 :M =M? and the alternative is H1 :M )M?

80 / 104



Model Confidence Set Setup

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model

L̄j = P−1
T∑

t=R+1

Lj,t

where Lj,t = L
(
yt+h, ŷt+h,j|t

)
3. For each bootstrap replication, compute centered the bootstrap average loss

η?b,j = P
−1

T∑
t=R+1

L∗b,j,t − L̄j

81 / 104



Model Confidence Set

Algorithm (Model Confidence Set)

1. Being withM =M0 containing all models where m is the number of models in
M

2. Calculate L̄ = m−1
∑m

j=1 L̄j, η
?
b = m

−1∑m
j=1 η

?
b,j, and

σ̂2j = B
−1∑B

b=1

(
η?b,j − η̄?j

)2
where η̄?j is the average of η

∗
b,j for model j

3. Define T = maxj∈M
(
z̄j
)
where z̄j = L̄j/σ̂j

4. For each bootstrap sample, compute
T?b = maxj∈M

((
L̄?b,j − L̄?b

)
/σ̂j

)
= maxj∈M

((
η?b,j − η?b

)
/σ̂j

)
5. Compute the p-value ofM as p̂ = B−1

∑B
b=1 I

[
T?b > T

]
6. If p̂ > α stop
7. If p̂ < α, set eM = argmaxj∈M

(
z̄j
)
and eliminate the model with the largest

test statistic fromM
8. Return to step 2, using the reduced model set
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Comments

� It is important that the variance estimates are re-computed in each step of
algorithm

� This allows the standard errors to decline if poor models are excluded since
the cross-sectional variance of L̄j should be smaller when a bad model is
dropped

� In practice the MCS should be implemented by computing in order
1. A set of bootstrap indices
2. The P by m set of bootstrapped losses L∗b,j,t
3. The 1 by m vector containing η?b,j

� By iterating over these B times only the B by m matrix containing η?b,j has to
be retained
É Plus the 1 by m vector containing L̄j
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Model Confidence P-value

� The MCS can also provide p-values for each model
� If model i is eliminated, then the p-value of model i is the maximum of the
p̂ found when model i is eliminated and all previous p-values

� Suppose α = .05, and the first three rounds eliminated models with p̂ of
.01,.04,.02, respectively

� The three p-values would then be:
É .01(nothing to compare against)
É .04 = max(.01, .04)
É .04 = max(.02, .04)

� The output of the MCS algorithm is M̂1−α which contains the true set of
best models with probability weakly larger than 1− α

� This is similar to a standard frequentist confidence interval which contains
the true parameter with probability of at least 1− α

� The MCS p-value is not a statement about the probability that a model is
the best
É For example, the model with the lowest loss always has p-value = 1
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Model Confidence P-value

Model Confidence Set

Then for some j � k we have PH0,M j
� α, in which case H0,M j is accepted at significance level α which

terminates the MCS procedure before the elimination rule gets to eMk D i. So Opi � α implies i 2 M̂�
1�α.

This completes the proof.

Table 1: Computation of MCS p-values
Elimination Rule p-value for H0,Mk MCS p-value

eM1 PH0,M1
D 0.01 OpeM1

D 0.01

eM2 PH0,M2
D 0.04 OpeM2

D 0.04

eM3 PH0,M3
D 0.02 OpeM3

D 0.04

eM4 PH0,M4
D 0.03 OpeM4

D 0.04

eM5 PH0,M5
D 0.07 OpeM5

D 0.07

eM6 PH0,M6
D 0.04 OpeM6

D 0.07

eM7 PH0,M7
D 0.11 OpeM7

D 0.11

eM8 PH0,M8
D 0.25 OpeM8

D 0.25
...

...
...

eM(m0)
PH0,Mm0

� 1.00 OpeMm0
D 1.00

The table illustrates the computation of MCS p-values. Note that MCS p-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For example, the MCS p-value for eM3 (the third model to
be eliminated) exceeds the p-value for H0,M3 because the p-value associated with H0,M2 – a null hypothesis tested
prior to H0,M3 – is larger.

The interpretation of a MCS p-value is analogous to that of a classical p-value. The analogy is to a

(1�α) confidence interval that contains the ‘true’ parameter with a probability no less than 1�α. The MCS

p-value also cannot be interpreted as the probability that a particular model is the best model, exactly as a

classical p-value is not the probability that the null hypothesis is true. Rather, the probability interpretation

of a MCS p-value is tied to the random nature of the MCS because the MCS is a random subset of models

that contains M� with a certain probability.

3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimination rule that satisfy Assumption 1. The following

assumption is sufficiently strong to enable us to implement the MCS procedure with bootstrap methods.

Assumption 2 For some r > 2 and γ > 0 it holds that Ejdi j,t jrCγ < 1 for all i, j 2 M0, and that

fdi j,tgi, j2M0 is strictly stationary with var(di j,t) > 0 and α-mixing of order �r/(r � 2).

Assumption 2 places restrictions on the relative performance variables, fdi j,tg, not directly on the loss

variables fL i,tg. For example, a loss function need not be stationary as long as the loss differentials, fdi j,tg,

10
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Model Confidence Set using TR

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model L̄j = P−1
∑T

t=R+1 Lj,t where
Lj,t = L

(
yt+h, ŷt+h,j|t

)
3. For each bootstrap replication, compute centered the bootstrap average loss

L̄?b,j = P
−1

T∑
t=R+1

L∗b,j,t − L̄j

4. Calculate

σ̂2ij = B
−1

B∑
b=1

((
L̄?b,i − L̄?i

)
−
(
L̄?b,j − L̄?j

))2
where L̄?j is the average of L̄

?
b,j for the model j across all bootstraps
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Model Confidence Set

Algorithm (Model Confidence Set)

1. Being withM =M0 containing all models where m is the number of models in
M

2. Define TR = maxi,j∈M
(
z̄ij
)
where z̄ij =

∣∣L̄i − L̄j∣∣ /σ̂ij
3. For each bootstrap sample, compute T?R,b = maxi,j∈M

(∣∣∣L̄?i − L̄?j ∣∣∣ /σ̂ij)
4. Compute the p-value ofM as

p̂ = B−1
B∑
b=1

I
[
T?R,b > TR

]
5. If p̂ > α stop
6. If p̂ < α, set eM = argmaxi∈M supj∈M

(
z̄ij
)
and eliminate the model with the

largest test statistic fromM
7. Return to step 2, using the reduced model set
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Comments

� The main difference is that the variance is not re-estimated in each iteration
� This happens since TR is based on the maximum DMW test statistic in each
iteration
É DMW only depends on the properties of the pair

� However, the bootstrapped distribution does depend on which models are
included and so this will vary across the iterations

� This version of the algorithm requires storing the B by m matrix of L̄?j

88 / 104



Confidence sets for ICs

� The MCS can be used to construct confidence sets for ICs
� This type of comparison does not directly use forecasts, and so is in-sample
� This differs from traditional model selection where only the model with the
best IC is chosen

� The MCS for an IC could be used as a pre-filtering mechanism prior to
combining

� Implementing the MCS on an IC is slightly more complicated than the
default MCS since it is necessary to jointly bootstrap the vector

{
yt,xj,t

}
where xj,t are the regressors in model j

� Paper recommends using TR statistic to compare models using IC
� The object of interest is

ICj = T ln σ̂2j + cj
� cj is the penalty term

É AIC: 2kj, BIC: kj lnT
É AIC?: 2k?j , BIC

?: k?j lnT
� k?j is known as effective degrees of freedom (in mis-specified model k

? 6= k)
� MCS paper discusses how to estimate k?
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Confidence sets for ICs

� Using TR MCS construction algorithm, the test statistic is based on

TR = max
i,j∈M

∣∣[T ln σ̂2i + ci]− [T ln σ̂2j + cj]∣∣
� The bootstrap critical values are computed from

T?R,b = maxi,j∈M

([
T ln σ̂2?i + ci − T ln σ̂2i

]
−
[
T ln σ̂2?j + cj − T ln σ̂2j

])
� σ̂2?i is the variance computed using

ε?b,t = y
?
b,t − x?′b,j,tβ̂

?

b,j

� β̂
?

b,j is re-estimated using the bootstrapped data
{
y?b,t,x

?
b,j,t

}
� Errors are computed using the bootstrapped data and parameter estimates
� Aside from these changes, the remainder of the algorithm is unmodified
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False Discovery Rate and FWER

� Controlling False Discover Rate (FDR) is an alternative to controlling Family
Wise Error Rate (FWER)

Definition (k-Familywise Error Rate)
For a set of null and alternative hypotheses H0,i and H1,i for i = 1, . . . ,m, let I0
contain the indices of the correct null hypotheses. The k-Familywise Error Rate
is defined as

Pr
(
Rejecting at least k H0,i for i ∈ I0

)
= 1− Pr

(
Reject no H0,i for i ∈ I0

)
� k is typically 1, so the testing procedures control the probability of any
number of false rejections
É Type I errors

� The makes FWER tests possibly conservative
É Depends on what the actual intent of the study is
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False Discovery Rate

Definition
The False Discovery Rate is the percentage of false null hypothesis relative to
the total number of rejections, and is defined

FDR = F/R

where F is the number of false rejections and R is the total number of rejections.

� Unlike FWER, methods that control FDR explicitly assume that some
rejections are false.

� Ultimately this leads to a (potentially) procedure that might discover more
actual rejections

� For standard DMW-type tests, both FWER and FDR control fundamentally
reduce to choosing a critical value different from the usual ±1.96
É Most of the time larger in magnitude
É Can be smaller in the case of FDR when there are many false nulls
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False Discovery Rate

� FDR is naturally adaptive
� When the number of false nulls is small (~0), then FDR should choose a
critical value similar to the FWER-based procedures
É R ≈ F, F/R ≈ 1 so any F is too large
É On the other hand, when the percentage of false nulls is near 100%, can reject
all nulls
– F ≈ 0, F/R ≈ 0 and all nulls can be rejected
– Critical value can be arbitrarily small since virtually no tests have small values
– Hypothetically, could have a critical value of 0 if all nulls were actually false

� FDR controls the false rejection rate, and it is common to use rates in the
range of 5-10%
É Ultimately should depend on risk associated with trading a bad strategy
against the cost of missing a good strategy

É Adding a small percentage of near 0 excess return strategies to a large set of
useful strategies shouldn’t deteriorate performance substantially
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Operationalizing FDR

� Operationalizing FDR requires some estimates
� In standard trading strategy setup, H0 : µ = 0, HA : µ 6= 0 where µ is the
expected return in excess of some benchmark
É Benchmark might be risk-free rate, or could be buy-and-hold strategy

� π is the proportion of false nulls
É Estimated using information about the distribution of p-values “near” 1 since
these should all be generated from true nulls

É Entire procedure relies on only p-values
– Similar to Bonferoni or Bonferoni-Holm

É For standard 2-sided alternative

pi = 2
(
1− Φ

(
|ti|
))

where ti is (normalized) test statistic for strategy i.
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Computing FDR
� Key idea is to find γ, which is some number in [0, 1] such that

α = F̂DR ≡ π̂lγ∑l
i=1 I [pi < γ]

� where
É α is the target FDR rate
É π̂ and an estimate of the percentage of nulls that are true (no abnormal
performance)

É l is the number of rules
É γ is the parameter that is used to find the p-value cutoff
É
∑l

i=1 I [pi < γ] is the number of rejections using γ
� The numerator is simply an estimate of the number of false rejections,
which is
Probability of Null True × Number of Hypotheses = Number of True
Hypotheses
Number of False Hypotheses × Cutoff = Number of False that are Rejected
using γ

� Exploits the fact that under the null p-values have a uniform distribution, so
that if there are M false nulls, then, using a threshold of γ will reject γM
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Positive and Negative FDR

� Can further decompose FDR into upper (better) and lower (worse) measures

F̂DR
+
≡

1/2π̂lγU∑l
i=1 I [pi < γU , ti > 0]

, F̂DR
+
≡

1/2π̂lγL∑l
i=1 I [pi < γL, ti < 0]

� This version assumes a symmetric 2-sided test statistic, so that on average
50% of the false rejections are in each tail

� Allows for tail-specific choice of γ which would naturally vary if the number
of correct rejections was different
É Suppose for example that many rules were bad, then γL would be relatively
large
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Estimation of π

� π is estimated as

π̂ =
∑l

i=1 I [pk > λ]
l (1− λ)

� λis a tuning parameter
É Simple to choose using visual inspection
É Recall that true nulls lead to a flat p-value histogram
É Find point where histogram looks non-flat, use cutoff for λ

� Histogram from BS
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Estimating π

� π̂ allows percentage of correct rejections to be computed as π̂A = 1− π̂
� In the decomposed FDR the number of good (bad) rules can be computed as

α×
l∑
i=1

I [pi < γU , ti > 0]

É Note that γU is fixed here
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Bajgrowicz & Scaillet (JFE, 2012)

� Apply FDR to technical trading rules of STW
� Use DJIA

É 1897-2011

� Find similar results, although importantly consider transaction costs for
break even
É Strategies that trade more can have higher means while not violating EMH
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Background on Competitor Methods

Sample

period

RW portfolio Best rule DJIA

Sharpe

ratio

Portfolio

size

Sharpe

ratio

BRC p-

value

Sharpe

ratio

1: 1897–

1914

1.24 45 1.18 0.00 �0.12

2: 1915–

1938

– 0 0.73 0.11 0.06

3: 1939–

1962

1.49 62 2.34 0.00 0.41

4: 1962–

1986

1.52 15 1.45 0.00 �0.16

5: 1987–

1996

– 0 0.84 0.93 0.66

6: 1997–

2011

– 0 0.48 1.00 0.12

1897–

1996

0.70 88 0.82 0.00 0.12

100 / 104



Good and Bad Rules
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Transaction Costs Required for 0-profit (-1962)
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� Transaction costs are important when assessing rules
� Rather than apply arbitrary TC, look for break even
� Transaction costs are a function of mean and number of transactions

0 = µi − TC × # {trades}

� µi is the full-sample mean, not the annualized
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Transaction Costs Required for 0-profit (1962-)
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� Transaction for break even are lower
� Actual transaction costs are lower
� Unclear whether this is driven by more trading signals or worse mean
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Persistence of Rules

Sample period FDR portfolio RW portfolio 50 best rules Best rule

IS OOS Median size IS OOS Median size IS OOS IS OOS

1: 1897–1914 3.41 0.47 14 1.31 0.51 0 5.79 0.50 6.34 0.03

2: 1915–1938 4.62 0.01 13 0.90 0.17 0 5.39 �0.03 5.98 0.09

3: 1939–1962 4.77 0.55 15 1.85 0.09 0 5.78 0.43 6.70 0.12

4: 1962–1986 5.34 �0.31 13 1.36 0.14 0 6.17 �0.18 6.95 �0.59

5: 1987–1996 4.52 �0.34 12 – – – 5.44 �0.37 6.07 0.08

6: 1997–2011 4.55 �0.74 12 0.78 0.07 0 5.22 �0.51 5.97 �0.27

� Sharpe-Ratios
� Persistence is low
� Conservative Romano-Wolf appears to have more persistence
� Combination appears to be not help
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