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Overview

� Multiple Hypothesis Testing
É StepM
É Model Confidence Set
É False Discovery Rate Control
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Stepwise Multiple Testing

� The main issue with the Reality Check and the Test for SPA is the null
� These tests ultimately test one question:

É Is the largest out-performance consistent with a random draw from the
distribution when there are not superior models to the benchmark?

� If the null is rejected, only the best performing model can be determined to
be better than the benchmark

� What about the 2nd best model? Or the kth best model?
� The StepM extends that reality check by allowing individual models to be
tested

� It is implemented by repeatedly applying a RC-like algorithm which controls
the Familywise Error Rate (FWE)
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Basic Setup

� The basic setup is identical to that of the RC/SPA
� The test is based on δj,t = L

(
yt+h, ŷt+h,BM|t

)
− L

(
yt+h, ŷt+h,j|t

)
� Can be used in the same types of tests as RC/SPA

É Absolute return
É Sharpe Ratio
É Risk-adjusted α comparisons
É MSE/MAE
É Predictive Likelihood

� Can be implemented on both raw and Studentized loss differentials
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Null and Alternative Hypotheses

� The null and alternatives in StepM are not a single statement as they were
in the RC/SPA

� The nulls are
H0,j : E [δt] ≤ 0, j = 1, . . . ,m

� The alternatives are

H1,j : E [δt] > 0, j = 1, . . . ,m

� StepM will ultimately result in a set of rejections (if any are rejected)
� Goal of StepM is to identify as many false nulls as possible while controlling
the Familywise Error Rate
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Familywise Error Rate

Definition (Familywise Error Rate)

For a set of null and alternative hypotheses H0,i and H1,i for i = 1, . . . ,m, let I0
contain the indices of the correct null hypotheses. The Familywise Error Rate is
defined as

Pr
(
Rejecting at least one H0,i for i ∈ I0

)
= 1− Pr

(
Reject no H0,i for i ∈ I0

)
� The FWE is concerned only with the probability of making at least one Type
I error

� Making 1, 2 or m Type I errors is the same to FWE
É This is a criticism of FWE
É Other criteria exist such as False Discovery Rate which controls the percentage
of rejections which are false (# False Rejection/# Rejections)
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Bonferoni Bounds

� Bonferoni bounds are the first procedure to control FWE

Definition (Bonferoni Bound)

Let T1,T2, . . . ,Tm be a set of m test statistics, then

Pr
(
T1 ∪ . . . ∪ Tm|H1,0, . . .Hm,0

)︸ ︷︷ ︸
Joint Probability

≤
m∑
j=1

Pr
(
Tj|H0,j

)︸ ︷︷ ︸
Individual Probability

where Pr
(
Tj|H0,j

)
is the probability of observing Tjgiven the null H0,j is true.

� Bonferoni bounds are a simple method to test m hypotheses using only
univariate test statistics

� Let
{
pvj
}
be a set of m p-values from a set of tests

� The Bonferoni bound will reject the set of nulls is pvj ≤ α/m for all j
É α is the size of the test (e.g. 5%)

� When m is moderately large, this is a very conservative test
� Conservative since assumes worst case dependence among statistics
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Holm’s procedure

Definition (Holm’s Procedure)

Let T1,T2, . . . ,Tm be a set of m test statistics with associated p-values pvj,
j = 1, . . . ,m where it is assumed pvi < pvj if i < j. If

pvj ≤ α/
(
m− j + 1

)
then H0,j can be rejected in factor of H1,j while controlling the famliywise error
rate at α.

� Example: p-values of .001, .01, .03, .05, m = 4, α = .05
� Improves Bonferoni by ordering the p-values and using a stepwise
procedure

� Allows subsets of hypotheses to be tested – Bonferoni is joint
� Less strict, except when j = 1 (same as Bonferoni)
� Note: Holm’s procedure ends as soon as a null cannot be rejected
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Relationships between testing procedures

� The RC/SPA, Bonferoni and Holm are all related

Worst-case Dependence Accounts for Dependence in Data
Single-step Bonferoni RC, SPA
Stepwise Holm StepM

9 / 48



StepM Algorithm

Algorithm (StepM)

1. Begin with the active set A = {1, 2, . . . ,m}, superior set S = {}
2. Construct B bootstraps sample

{
δ?b,t
}
, b = 1, . . . ,B

3. For each bootstrap sample, compute T?StepMk,b = maxj∈A
{
δ̄?b,j − δ̄j

}
4. Compute qk,α as the 1− α quantile of

{
T?StepMk,b

}
5. If maxj∈A

(
δ̄j
)
< qk,α stop

6. Otherwise for each j ∈ A
a. If δ̄j ≥ qk,α add j to S and delete from A
b. Return to 2
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Comments

� StepM would be virtually identical to RC if only the largest δ̄j was tested
� Improves on the RC since (weakly more) individual out-performing models
can be identified

� If no model outperforms, will stop with none and RC p-value will be larger
than α

� Steps 2–4 are identical to the RC using the models in A
� The stepwise testing can improve power by removing models

É The improvement comes if a model with substantial out-performance also has
large variance

É Removing this model allows the critical value to be reduced

� StepM only guarantees that FWE≤ α, and in general will be < α
É Will only = α if E

[
δj,t
]
= 0 for all j

É Example: N
(
µ,σ2

)
when µ < 0, H0 : µ = 0
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Studentization

� Like the SPA to the RC, the StepM can be implemented using Studentized
loss differentials

� Romano & Wolf argue that the Studentization should be done inside each
bootstrap sample, not globally as in the SPA

� Theoretically both are justified and neither makes a difference
asymptotically

� Computing the variance inside each bootstrap will more closely match the
re-sampled data than when using a global estimate
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Studentized StepM Algorithm

Algorithm (Studentized StepM)

1. Begin with the active setA = {1, 2, . . . ,m}, superior set S = {}

2. Compute z̄j = δ̄j/
√
ω̂2j /P where ω̂

2
j was previously defined

3. Construct B bootstraps sample {δ?b,t
}
, b = 1, . . . , B

4. For each bootstrap sample, compute

T?StepMk,b = max
j∈A

{
δ̄?b,j − δ̄j
ω̂?j

}

where ω̂2?j is an estimate of the long-run variance of the bootstrapped data

5. Compute qzk,α as the 1− α quantile of
{
T?StepMk,b

}
6. If maxj∈A

(
z̄j
)
< qzk,α stop

7. Otherwise for each j ∈ A
a. If z̄j ≥ qzk,α add j to S and delete fromA
b. Return to 2
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Why Studentization Help

� StepM is built around confidence intervals of the form[
δ̄1 − q1,α,∞

]
× . . .×

[
δ̄m − q1,α,∞

]
� Null hypotheses are rejected for models where 0 is not in its confidence
interval

� In the raw form, the confidence interval is a square – the same for every
loss differential

� When Studentization is used, the confidence intervals take the form[
δ̄1 −

√
ω21/Pq

z
1,α,∞

]
× . . .×

[
δ̄m −

√
ω2m/Pq

z
1,α,∞

]
� This “customization” allows for more rejections if the loss differentials have
cross-sectional heteroskedasticity
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Block-size Selection

� Paper proposes a procedure to make data driven block size
� Basic idea is to use a (V)AR on

{
δj,t
}
to approximate the dependence

É Similar to Den Hann-Levine HAC

� Fit AR & estimate residual covariance (or use short block bootstrap on
errors)

� Simulate from model
� For w = 1, . . . ,W compute the bootstrap confidence region with size
1− αusing percentile method

� For each block size, compute the empirical coverage – percentage of
simulated δ̄ in their confidence region

� Choose optimal w which most closely matches 1− α
É Alternative: Use Politis & White
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Empirical Application

� Applied StepM to a set of 105 Hedge Fund Returns with long histories
� Returns net of management fees
� Benchmark model was risk-free rate
� m = 105, P = 147 (all out-of-sample)
� Results:

É Raw data: No out-performers
Â Max ratio of standard deviation ω̂i/ω̂j = 22

É Studentized: 7 funds identified

� Note: Will always identify funds with the largest δ̄ (or z̄) first
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Empirical Application

1268 J. P. ROMANO AND M. WOLF

Our universe consists of all hedge funds in the Center for International Secu-
rities and Derivatives Markets (CISDM) data base that have a complete return
history from 01/1992 until 03/2004. There are S = 105 such funds and the num-
ber of monthly observations is T = 147. All returns are net of management
and incentive fees, that is, they are the returns obtained by the investors. As is
standard in the hedge fund industry, we benchmark the funds against the risk-
free rate27 and all returns are log returns. So we are in the general situation of
Example 2.1: a basic test statistic is given by (1) and a studentized test statistic
is given by (2). It is well known that hedge fund returns, unlike mutual fund
returns, tend to exhibit nonnegligible serial correlations; for example, see Lo
(2002) and Kat (2003). Indeed, the median first-order autocorrelation of the
105 funds in our universe is 0.172. Accordingly, one has to account for this time
series nature to obtain valid inference. Studentization for the original data uses
a kernel variance estimator based on the prewhitened QS kernel and the cor-
responding automatic choice of bandwidth of Andrews and Monahan (1992).
The bootstrap method is the circular block bootstrap, based on M = 5�000 rep-
etitions. The studentization in the bootstrap world uses the corresponding nat-
ural variance estimator; for details, see Götze and Künsch (1996) or Romano
and Wolf (2003). The block sizes for the circular bootstrap are chosen via Al-
gorithm 7.1. The semiparametric model P̃T used in this algorithm is a VAR(1)
model in conjunction with bootstrapping the residuals.28

Table VIII lists the ten largest basic and studentized test statistics, together
with the corresponding hedge funds. While one expects the two lists to be

TABLE VIII

THE TEN LARGEST BASIC AND STUDENTIZED TEST STATISTICS, TOGETHER WITH THE
CORRESPONDING HEDGE FUNDS, IN OUR EMPIRICAL APPLICATION

x̄T�s − x̄T�S+1 Fund (x̄T�s − x̄T�S+1)/σ̂T�s Fund

1.70 Libra Fund 10.63 Market Neutral∗

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage∗

1.36 Aggressive Appreciation 8.43 Univest (B)∗

1.27 Gamut Investments 6.33 TQA Arbitrage Fund∗

1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage∗

1.14 FBR Weston 5.29 Gabelli Associates∗

1.11 Berkshire Partnership 5.24 Elliott Associates∗∗

1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund
1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust

aThe return unit is 1%. Funds identified in the first step are indicated by the superscript * and funds identified
in the second step are indicated by the superscript **.

27The risk-free rate is a simple and widely accepted benchmark. Of course, our methods also
apply to alternative benchmarks such as hedge fund indices or multifactor hedge fund bench-
marks; for example, see Kosowski, Naik, and Teo (2005).

28To account for leftover dependence not captured by the VAR(1) model, we use the stationary
bootstrap with average block size b = 5 to bootstrap the residuals.
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Improving StepM using SPA

� The main step in the StepM algorithm is identical to the RC
� The important difference is that the test is implemented for each null,
rather than globally

� StepM will suffer if very poor models are included with a large variance
É Especially true for raw version, but also relevant for Studentized version
É Example [

δ̄1
δ̄2

]
∼ N

([
0
−5

]
,

[
1 0
0 1

])
É Reality Check critical value will be 1.95, while “best” critical value would be
1.645 (since only 1 relevant for asymptotic distribution)

� The RC portions of StepM can be replaced by SPA versions which addresses
this problem

� Simple as adding in the indicator function Icj when subtracting the mean in
step 3 (step 4 in Studentized version)

� Using SPA modification will always find more out-performing models
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Model Confidence Set (MCS)

� RC, SPA and StepM were all testing superior predictive ability
� This type hypothesis is common when there is a natural benchmark
� In some scenarios there may not be a single benchmark, or there may more
than one models which could be considered benchmarks

� When this occurs, it is not clear
É How to implement RC/SPA/StepM
É How to make sound conclusions about superior predictive ability

� The model confidence set addresses this problem by bypassing the
benchmark

� The MCS aims to find the best model and all models which are
indistinguishable from the best
É The model with the lowest loss will always be the best – identifying the others
is more challenging

� Also returns p-values for models with respect to the MCS
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Notation Preliminaries

� The outcome of the MCS is a set of models
É All model sets will be denoted usingM

� The initial model set isM0

� The goal is to findM? which is the set of all models which are
indistinguishable from the best

� The output of the MCS algorithm is M̂1−α where α is the size of the test
É The size is interpreted as a Familywise Error Rate – same as StepM
É In general M̂1−α will contain more than 1 model

� In betweenM0 and M̂1−α are other sets of models

M0 ⊃M1 ⊃ . . . ⊃ M̂1−α
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Notation Preliminaries

� To construct the model confidence set, two tools are needed
É An equivalence test dM: Determines whether the model inM are equal in
terms of loss

É An elimination rule eM: Determines which model to eliminate if dM finds that
the models are not equivalent

� The generic form of the algorithm, starting at i = 0:
1. Apply dM toMi

2. If dM rejects equivalence, use eMto eliminate 1 model to produceMi+1

a. If not, stop

3. Increment i, return to 1

� Has a similar flavor to StepM
É Also gains from eliminating models with high variance
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The Model Confidence Set

� When the algorithm ends, the final set M̂1−α has the property

lim
P→∞

Pr
(
M? ⊂ M̂1−α

)
≥ 1− α

� The result follows directly since the FWE is ≤ α
� If there is only 1 “best” model, then the result can be strengthened

lim
P→∞

Pr
(
M? ⊂ M̂1−α

)
= 1

É The MCS will find the “best” model asymptotically
É The intuition behind this is that the “best” model will have:

Â Lower loss than all other models
Â The variance of the average loss differential will decline as P →∞

� When 2 or more models are equally good, there is always a α chance that at
least 1 will be rejected

� In large samples, models which are not inM? will be eliminated with
probability 1 since the individual test statistics are consistent
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Model Confidence Set

� The MCS takes loss functions as inputs, but ultimately works on loss
differentials

� Since there is no benchmark model, all loss differentials are considered

δij,t = L
(
yt+h, ŷt+h,i|t

)
− L

(
yt+h, ŷt+h,j|t

)
� There are many pairs, and so the actual test examines whether the average
loss for model j is different from that of all models

δ̄i =
1

m− 1
m∑

i=1,i 6=j

δ̄ij

� If δ̄i is sufficiently positive, then model i is worse then the other models in
the set
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Null and Alternative

� The MCS can be based on two test statistics
� Both satisfy some technical conditions on dM and eM
� The first is based on T = maxi∈M (z̄i) where z̄i = δ̄i/σ̂i and σ̂2i is an
estimate of the (log-run) variance of δ̄i
É The elimination rule is eM = argmaxi∈M zi

� The second is based on TR = maxi,j∈M
∣∣z̄ij∣∣ where z̄ij = δ̄ij/σ̂ij and σ̂ij is an

estimate of the (log-run) variance of δ̄ij
É The elimination rule is eR,M = argmaxi∈M supj∈M z̄ij
É Eliminate the model which has the largest loss differential to some other
model, relative to its standard deviation

� At each step the null is H0 :M =M? and the alternative is H1 :M )M?
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Model Confidence Set Setup

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model

L̄j = P−1
T∑

t=R+1

Lj,t

where Lj,t = L
(
yt+h, ŷt+h,j|t

)
3. For each bootstrap replication, compute centered the bootstrap average loss

η?b,j = P
−1

T∑
t=R+1

L∗b,j,t − L̄j
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Model Confidence Set

Algorithm (Model Confidence Set)

1. Being withM =M0 containing all models where m is the number of models in
M

2. Calculate L̄ = m−1
∑m

j=1 L̄j, η
?
b = m

−1∑m
j=1 η

?
b,j, and

σ̂2j = B
−1∑B

b=1

(
η?b,j − η̄?j

)2
where η̄?j is the average of η

∗
b,j for model j

3. Define T = maxj∈M
(
z̄j
)
where z̄j = L̄j/σ̂j

4. For each bootstrap sample, compute
T?b = maxj∈M

((
L̄?b,j − L̄?b

)
/σ̂j

)
= maxj∈M

((
η?b,j − η?b

)
/σ̂j

)
5. Compute the p-value ofM as p̂ = B−1

∑B
b=1 I

[
T?b > T

]
6. If p̂ > α stop
7. If p̂ < α, set eM = argmaxj∈M

(
z̄j
)
and eliminate the model with the largest

test statistic fromM
8. Return to step 2, using the reduced model set
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Comments

� It is important that the variance estimates are re-computed in each step of
algorithm

� This allows the standard errors to decline if poor models are excluded since
the cross-sectional variance of L̄j should be smaller when a bad model is
dropped

� In practice the MCS should be implemented by computing in order
1. A set of bootstrap indices
2. The P by m set of bootstrapped losses L∗b,j,t
3. The 1 by m vector containing η?b,j

� By iterating over these B times only the B by m matrix containing η?b,j has to
be retained
É Plus the 1 by m vector containing L̄j
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Model Confidence P-value

� The MCS can also provide p-values for each model
� If model i is eliminated, then the p-value of model i is the maximum of the
p̂ found when model i is eliminated and all previous p-values

� Suppose α = .05, and the first three rounds eliminated models with p̂ of
.01,.04,.02, respectively

� The three p-values would then be:
É .01(nothing to compare against)
É .04 = max(.01, .04)
É .04 = max(.02, .04)

� The output of the MCS algorithm is M̂1−α which contains the true set of
best models with probability weakly larger than 1− α

� This is similar to a standard frequentist confidence interval which contains
the true parameter with probability of at least 1− α

� The MCS p-value is not a statement about the probability that a model is
the best
É For example, the model with the lowest loss always has p-value = 1
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Model Confidence P-value

Model Confidence Set

Then for some j � k we have PH0,M j
� α, in which case H0,M j is accepted at significance level α which

terminates the MCS procedure before the elimination rule gets to eMk D i. So Opi � α implies i 2 M̂�
1�α.

This completes the proof.

Table 1: Computation of MCS p-values
Elimination Rule p-value for H0,Mk MCS p-value

eM1 PH0,M1
D 0.01 OpeM1

D 0.01

eM2 PH0,M2
D 0.04 OpeM2

D 0.04

eM3 PH0,M3
D 0.02 OpeM3

D 0.04

eM4 PH0,M4
D 0.03 OpeM4

D 0.04

eM5 PH0,M5
D 0.07 OpeM5

D 0.07

eM6 PH0,M6
D 0.04 OpeM6

D 0.07

eM7 PH0,M7
D 0.11 OpeM7

D 0.11

eM8 PH0,M8
D 0.25 OpeM8

D 0.25
...

...
...

eM(m0)
PH0,Mm0

� 1.00 OpeMm0
D 1.00

The table illustrates the computation of MCS p-values. Note that MCS p-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For example, the MCS p-value for eM3 (the third model to
be eliminated) exceeds the p-value for H0,M3 because the p-value associated with H0,M2 – a null hypothesis tested
prior to H0,M3 – is larger.

The interpretation of a MCS p-value is analogous to that of a classical p-value. The analogy is to a

(1�α) confidence interval that contains the ‘true’ parameter with a probability no less than 1�α. The MCS

p-value also cannot be interpreted as the probability that a particular model is the best model, exactly as a

classical p-value is not the probability that the null hypothesis is true. Rather, the probability interpretation

of a MCS p-value is tied to the random nature of the MCS because the MCS is a random subset of models

that contains M� with a certain probability.

3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimination rule that satisfy Assumption 1. The following

assumption is sufficiently strong to enable us to implement the MCS procedure with bootstrap methods.

Assumption 2 For some r > 2 and γ > 0 it holds that Ejdi j,t jrCγ < 1 for all i, j 2 M0, and that

fdi j,tgi, j2M0 is strictly stationary with var(di j,t) > 0 and α-mixing of order �r/(r � 2).

Assumption 2 places restrictions on the relative performance variables, fdi j,tg, not directly on the loss

variables fL i,tg. For example, a loss function need not be stationary as long as the loss differentials, fdi j,tg,

10
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Model Confidence Set using TR

Algorithm (Model Confidence Set Components)

1. Construct a set of bootstrap indices which will be reused throughout the MCS
construction using a bootstrap appropriate for the data

2. Construct the average loss for each model L̄j = P−1
∑T

t=R+1 Lj,t where
Lj,t = L

(
yt+h, ŷt+h,j|t

)
3. For each bootstrap replication, compute centered the bootstrap average loss

L̄?b,j = P
−1

T∑
t=R+1

L∗b,j,t − L̄j

4. Calculate

σ̂2ij = B
−1

B∑
b=1

((
L̄?b,i − L̄?i

)
−
(
L̄?b,j − L̄?j

))2
where L̄?j is the average of L̄

?
b,j for the model j across all bootstraps
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Model Confidence Set

Algorithm (Model Confidence Set)

1. Being withM =M0 containing all models where m is the number of models in
M

2. Define TR = maxi,j∈M
(
z̄ij
)
where z̄ij =

∣∣L̄i − L̄j∣∣ /σ̂ij
3. For each bootstrap sample, compute T?R,b = maxi,j∈M

(∣∣∣L̄?i − L̄?j ∣∣∣ /σ̂ij)
4. Compute the p-value ofM as

p̂ = B−1
B∑
b=1

I
[
T?R,b > TR

]
5. If p̂ > α stop
6. If p̂ < α, set eM = argmaxi∈M supj∈M

(
z̄ij
)
and eliminate the model with the

largest test statistic fromM
7. Return to step 2, using the reduced model set

31 / 48



Comments

� The main difference is that the variance is not re-estimated in each iteration
� This happens since TR is based on the maximum DMW test statistic in each
iteration
É DMW only depends on the properties of the pair

� However, the bootstrapped distribution does depend on which models are
included and so this will vary across the iterations

� This version of the algorithm requires storing the B by m matrix of L̄?j
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Confidence sets for ICs

� The MCS can be used to construct confidence sets for ICs
� This type of comparison does not directly use forecasts, and so is in-sample
� This differs from traditional model selection where only the model with the
best IC is chosen

� The MCS for an IC could be used as a pre-filtering mechanism prior to
combining

� Implementing the MCS on an IC is slightly more complicated than the
default MCS since it is necessary to jointly bootstrap the vector

{
yt,xj,t

}
where xj,t are the regressors in model j

� Paper recommends using TR statistic to compare models using IC
� The object of interest is

ICj = T ln σ̂2j + cj
� cj is the penalty term

É AIC: 2kj, BIC: kj lnT
É AIC?: 2k?j , BIC

?: k?j lnT
� k?j is known as effective degrees of freedom (in mis-specified model k

? 6= k)
� MCS paper discusses how to estimate k?
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Confidence sets for ICs

� Using TR MCS construction algorithm, the test statistic is based on

TR = max
i,j∈M

∣∣[T ln σ̂2i + ci]− [T ln σ̂2j + cj]∣∣
� The bootstrap critical values are computed from

T?R,b = maxi,j∈M

([
T ln σ̂2?i + ci − T ln σ̂2i

]
−
[
T ln σ̂2?j + cj − T ln σ̂2j

])
� σ̂2?i is the variance computed using

ε?b,t = y
?
b,t − x?′b,j,tβ̂

?

b,j

� β̂
?

b,j is re-estimated using the bootstrapped data
{
y?b,t,x

?
b,j,t

}
� Errors are computed using the bootstrapped data and parameter estimates
� Aside from these changes, the remainder of the algorithm is unmodified
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False Discovery Rate and FWER

� Controlling False Discover Rate (FDR) is an alternative to controlling Family
Wise Error Rate (FWER)

Definition (k-Familywise Error Rate)
For a set of null and alternative hypotheses H0,i and H1,i for i = 1, . . . ,m, let I0
contain the indices of the correct null hypotheses. The k-Familywise Error Rate
is defined as

Pr
(
Rejecting at least k H0,i for i ∈ I0

)
= 1− Pr

(
Reject no H0,i for i ∈ I0

)
� k is typically 1, so the testing procedures control the probability of any
number of false rejections
É Type I errors

� The makes FWER tests possibly conservative
É Depends on what the actual intent of the study is
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False Discovery Rate

Definition
The False Discovery Rate is the percentage of false null hypothesis relative to
the total number of rejections, and is defined

FDR = F/R

where F is the number of false rejections and R is the total number of rejections.

� Unlike FWER, methods that control FDR explicitly assume that some
rejections are false.

� Ultimately this leads to a (potentially) procedure that might discover more
actual rejections

� For standard DMW-type tests, both FWER and FDR control fundamentally
reduce to choosing a critical value different from the usual ±1.96
É Most of the time larger in magnitude
É Can be smaller in the case of FDR when there are many false nulls
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False Discovery Rate

� FDR is naturally adaptive
� When the number of false nulls is small (~0), then FDR should choose a
critical value similar to the FWER-based procedures
É R ≈ F, F/R ≈ 1 so any F is too large
É On the other hand, when the percentage of false nulls is near 100%, can reject
all nulls
Â F ≈ 0, F/R ≈ 0 and all nulls can be rejected
Â Critical value can be arbitrarily small since virtually no tests have small values
Â Hypothetically, could have a critical value of 0 if all nulls were actually false

� FDR controls the false rejection rate, and it is common to use rates in the
range of 5-10%
É Ultimately should depend on risk associated with trading a bad strategy
against the cost of missing a good strategy

É Adding a small percentage of near 0 excess return strategies to a large set of
useful strategies shouldn’t deteriorate performance substantially
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Operationalizing FDR

� Operationalizing FDR requires some estimates
� In standard trading strategy setup, H0 : µ = 0, HA : µ 6= 0 where µ is the
expected return in excess of some benchmark
É Benchmark might be risk-free rate, or could be buy-and-hold strategy

� π is the proportion of false nulls
É Estimated using information about the distribution of p-values “near” 1 since
these should all be generated from true nulls

É Entire procedure relies on only p-values
Â Similar to Bonferoni or Bonferoni-Holm

É For standard 2-sided alternative

pi = 2
(
1− Φ

(
|ti|
))

where ti is (normalized) test statistic for strategy i.
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Computing FDR

� Key idea is to find γ, which is some number in [0, 1] such that

α = F̂DR ≡ π̂lγ∑l
i=1 I [pi < γ]

� where
É α is the target FDR rate
É π̂ and an estimate of the percentage of nulls that are true (no abnormal
performance)

É l is the number of rules
É γ is the parameter that is used to find the p-value cutoff
É
∑l

i=1 I [pi < γ] is the number of rejections using γ
� The numerator is simply an estimate of the number of false rejections,
which is
Probability of Null True × Number of Hypotheses = Number of True
Hypotheses
Number of False Hypotheses × Cutoff = Number of False that are Rejected
using γ

� Exploits the fact that under the null p-values have a uniform distribution, so
that if there are M false nulls, then, using a threshold of γ will reject γM
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Positive and Negative FDR

� Can further decompose FDR into upper (better) and lower (worse) measures

F̂DR
+
≡

1/2π̂lγU∑l
i=1 I [pi < γU , ti > 0]

, F̂DR
+
≡

1/2π̂lγL∑l
i=1 I [pi < γL, ti < 0]

� This version assumes a symmetric 2-sided test statistic, so that on average
50% of the false rejections are in each tail

� Allows for tail-specific choice of γ which would naturally vary if the number
of correct rejections was different
É Suppose for example that many rules were bad, then γL would be relatively
large
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Estimation of π

� π is estimated as

π̂ =
∑l

i=1 I [pk > λ]
l (1− λ)

� λis a tuning parameter
É Simple to choose using visual inspection
É Recall that true nulls lead to a flat p-value histogram
É Find point where histogram looks non-flat, use cutoff for λ

� Histogram from BS
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Estimating π

� π̂ allows percentage of correct rejections to be computed as π̂A = 1− π̂
� In the decomposed FDR the number of good (bad) rules can be computed as

α×
l∑
i=1

I [pi < γU , ti > 0]

É Note that γU is fixed here
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Bajgrowicz & Scaillet (JFE, 2012)

� Apply FDR to technical trading rules of STW
� Use DJIA

É 1897-2011

� Find similar results, although importantly consider transaction costs for
break even
É Strategies that trade more can have higher means while not violating EMH
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Background on Competitor Methods

Sample

period

RW portfolio Best rule DJIA

Sharpe

ratio

Portfolio

size

Sharpe

ratio

BRC p-

value

Sharpe

ratio

1: 1897–

1914

1.24 45 1.18 0.00 �0.12

2: 1915–

1938

– 0 0.73 0.11 0.06

3: 1939–

1962

1.49 62 2.34 0.00 0.41

4: 1962–

1986

1.52 15 1.45 0.00 �0.16

5: 1987–

1996

– 0 0.84 0.93 0.66

6: 1997–

2011

– 0 0.48 1.00 0.12

1897–

1996

0.70 88 0.82 0.00 0.12
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Good and Bad Rules
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Transaction Costs Required for 0-profit (-1962)
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� Transaction costs are important when assessing rules
� Rather than apply arbitrary TC, look for break even
� Transaction costs are a function of mean and number of transactions

0 = µi − TC × # {trades}

� µi is the full-sample mean, not the annualized
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Transaction Costs Required for 0-profit (1962-)
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� Transaction for break even are lower
� Actual transaction costs are lower
� Unclear whether this is driven by more trading signals or worse mean
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Persistence of Rules

Sample period FDR portfolio RW portfolio 50 best rules Best rule

IS OOS Median size IS OOS Median size IS OOS IS OOS

1: 1897–1914 3.41 0.47 14 1.31 0.51 0 5.79 0.50 6.34 0.03

2: 1915–1938 4.62 0.01 13 0.90 0.17 0 5.39 �0.03 5.98 0.09

3: 1939–1962 4.77 0.55 15 1.85 0.09 0 5.78 0.43 6.70 0.12

4: 1962–1986 5.34 �0.31 13 1.36 0.14 0 6.17 �0.18 6.95 �0.59

5: 1987–1996 4.52 �0.34 12 – – – 5.44 �0.37 6.07 0.08

6: 1997–2011 4.55 �0.74 12 0.78 0.07 0 5.22 �0.51 5.97 �0.27

� Sharpe-Ratios
� Persistence is low
� Conservative Romano-Wolf appears to have more persistence
� Combination appears to be not help
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