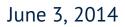
Forecasting With Many predictors

The Econometrics of Predictability This version: June 4, 2014



- Dynamic Factor Models
- The 3-Pass Regression Filter
- Regularized Reduced Rank Regression
- Time permitting
 - Bagging
 - Filters and decompositions

How Many is Many?

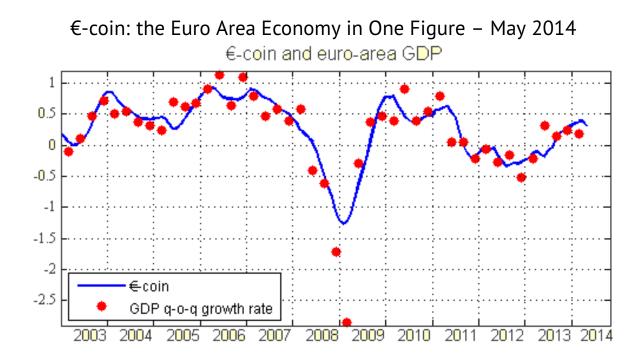
- Many here means 25 or more
- Often many more, 100s of series

New challenges

Why factor models

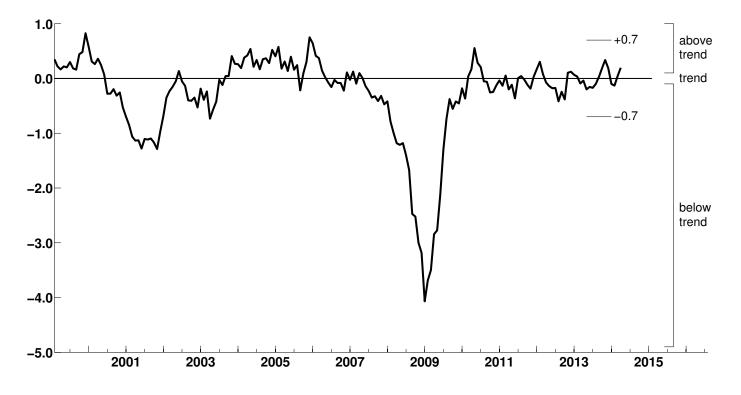
- Are parsimonious while effectively including many regressors
- Can remove measurement error or other useless information from predictors
- Factor may be of interest
 - Leading indicators:
 - ⊳ €-coin
 - Chicago Fed National Activity Index
 - > Aruoba-Diebold-Scotti Business Conditions Index
 - Real and Nominal factors
 - Global and Local factors

- European Coincident Indicator
- First factor in a Europe-wide model



Chicago Fed National Activity Index

- Factor extracted from 85 series
- Based on research in forecasting inflation



ADS Business Conditions Index

- Based on factor model in Aruoba, Diebold & Scotti
- Extracts common factor in:
 - weekly initial jobless claims
 - monthly payroll employment
 - industrial production
 - personal income less transfer payments, manufacturing and trade sales
 - quarterly real GDP

The Model

Scalar *latent* factor

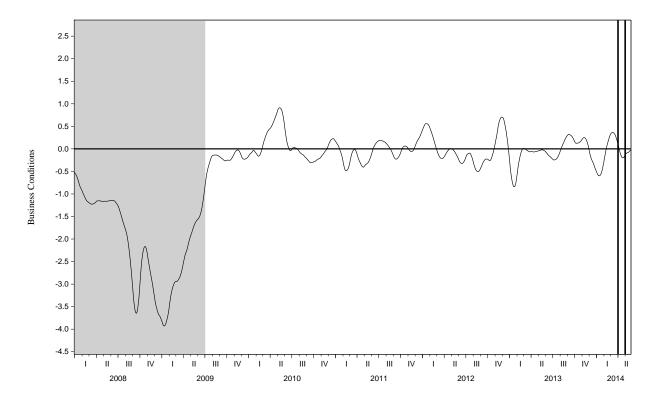
$$x_t = \sum_{i=1}^q \rho_i x_{t-i} + \eta_i$$

Indicators

$$y_{it} = c_i + \beta_i x_t + \sum_{j=1}^{p_i} \gamma y_{it-\Delta_i} + \epsilon_i$$

• Δ_i allows series to have different observational frequencies

Aruoba-Diebold-Scotti Business Conditions Index (12/31/2007-05/24/2014)



Notation

- *T* number of time series observations
- *k* number of series available to forecast
- **y**_t series to be forecast, *m* by 1
 - ► *m* will often be 1
- **x**_t series used to forecast, k by 1
 - Usually assume $E[\mathbf{x}_t] = \mathbf{0}$ and $Cov[\mathbf{x}_t] = \mathbf{I}_k$
 - Demeaned and standardized
 - Suppose $\mathbf{x}_t = \mathbf{\Sigma}_{\mathbf{x}}^{-1/2} \left(\tilde{\mathbf{x}}_t \boldsymbol{\mu}_X \right)$
- **f**_t factors, *r* by 1
- **x**_t may be **y**_t, but not necessarily
 - \mathbf{y}_t could be subset of \mathbf{x}_t (common)
 - y_t could be excluded from factor estimation (uncommon)

- Factor models help avoid issues with large, kitchen-sink models
- Consider issue of parameter estimation error when forecasting
- Suppose correct model is linear

$$\mathbf{y}_{t+1} = \boldsymbol{\beta} \mathbf{x}_t + \boldsymbol{\epsilon}_t$$

Forecast using OLS estimates is then

$$\hat{y}_{t+1|t} = \hat{\boldsymbol{\beta}} \mathbf{x}_{t} = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} + \boldsymbol{\beta}) \mathbf{x}_{t} = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \mathbf{x}_{t} + \boldsymbol{\beta} \mathbf{x}_{t} = \operatorname{estimation error}_{correct forecast}$$

OLS when there are many regressors

• Suppose ϵ_t , \mathbf{x}_t are independent and jointly normally distributed

$$\operatorname{Cov} \left[\begin{array}{c} \epsilon_t \\ \mathbf{x}_t \end{array} \right] = \left[\begin{array}{cc} \sigma_{\epsilon}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_k \end{array} \right]$$

• Standard assumptions have k fixed, so as $T \to \infty$, $\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \stackrel{p}{\to} 0$

$$\hat{y}_{t+1|t} \sim N(\boldsymbol{\beta}\mathbf{x}_t, 0)$$

- Degenerate normal no error since $\boldsymbol{\beta}$ is effectively *known*
- What about the case when k is large
- Use *diagonal* asymptotics, $k/T \rightarrow c$, $0 < \kappa < c < \bar{\kappa} < \infty$
- In this case

$$\hat{y}_{t+1|t} \sim N\left(\boldsymbol{\beta}\mathbf{x}_t, \mathbf{k}/\mathbf{T} \times \boldsymbol{\sigma}_{\epsilon}^2\right)$$

- Is still random, even when $T
 ightarrow \infty$
- True even if all $\beta = 0!$

(Really) Big models don't make sense

 When the number of parameters is large, then almost all coefficients must be 0

$$y_t = \sum_{i=1}^k \beta_i x_{t,i} + \epsilon_i$$

• Variance of the LHS is the same as the RHS

$$\mathbf{V}[\mathbf{y}_t] = \sum_{i=1}^k \beta_i^2 + \sigma_\epsilon^2$$

- If $k o \infty$, $\inf_i |eta_i| > \kappa > 0$, then $\operatorname{V}[y_t] \to \infty$
- Even when *T* is very large, it will not usually make sense to have *k* extremely large
- Factor models will effectively have small β_i coefficient, only using two steps
 - 1. Construct average-like estimators of factors from \mathbf{x}_t coefficients are O(1/k)
 - 2. Weight these using a small number of relatively large coefficients

- Consider the cross-section of asset returns
- Model uses factors as RHS variables

$$x_{it} = \sum_{j=1}^{r} \lambda_{ij} f_{jt} + \epsilon_{it}$$

- λ_{ij} are the factor loadings for series *i*, factor *j*
- e_{it} is the idiosyncratic error for series i
- In vector notation,

$$\mathbf{x}_{t} = \mathbf{\Lambda}_{k \times r_{r \times 1}} \mathbf{f}_{t} + \mathbf{\epsilon}_{t}$$

- Λ is k by r
- ▶ **f**_t is r by 1

Static Factor Models

In matrix notation,

$$\mathbf{X}_{T \times k} = \mathbf{F}_{T \times rr \times k} \mathbf{A}' + \mathbf{\epsilon}_{T \times k}$$

- **X** is T by k
- **F** is *T* by *r*
- When model is a strict (as opposed to approximate), $E[\epsilon_t] = 0$ and $E[\epsilon_t \epsilon'_t] = \Sigma_{\epsilon} = \text{diag}(\sigma_1^2, \dots, \sigma_m^2)$
- Covariance of **x**_t is then

 $\Lambda\Omega\Lambda' + \Sigma_\epsilon$

- $\Omega = \operatorname{Cov}[\mathbf{f}_t], r \text{ by } r$
- Covariance will play a crucial role in estimation of factors

Estimation using Principal Components

- Principal components can be used to estimate factors
- Formally, problem is

$$\min_{\boldsymbol{\beta},\mathbf{f}_t,\ldots\mathbf{f}_t}\sum_{t=1}^T \left(\mathbf{x}_t - \boldsymbol{\beta}\mathbf{f}_t\right)' \left(\mathbf{x}_t - \boldsymbol{\beta}\mathbf{f}_t\right) \text{ subject to } \boldsymbol{\beta}'\boldsymbol{\beta} = \mathbf{I}_r$$

- $\boldsymbol{\beta}$ is k by r
 - \triangleright $\boldsymbol{\beta}$ is related to but different from $\boldsymbol{\Lambda}$
 - \triangleright Λ is the DGP parameter
 - \triangleright **\beta** is a normalized and *rotated* version of **\Lambda**

Definition (Rotation)

A square matrix **B** is said to be a rotation of a square matrix **A** if $\mathbf{B} = \mathbf{Q}\mathbf{A}$ and $\mathbf{Q}\mathbf{Q}' = \mathbf{Q}'\mathbf{Q} = \mathbf{I}$.

- \mathbf{f}_t is r by 1
- $\beta'\beta = \mathbf{I}_r$ is a *normalization*, and is required
 - $\triangleright \boldsymbol{\beta} \mathbf{f}_t = ((\boldsymbol{\beta}/2)(2\mathbf{f}_t))$
 - ▷ Generally, for full rank \mathbf{Q} , $(\boldsymbol{\beta}\mathbf{Q}) \left(\mathbf{Q}^{-1}\mathbf{f}_t\right) = \tilde{\boldsymbol{\beta}}\tilde{\mathbf{f}}_t$

The Objective Function

• If $\boldsymbol{\beta}$ was observable, solution would be OLS

$$\hat{\mathbf{f}}_t = \left(\boldsymbol{\beta}'\boldsymbol{\beta}\right)^{-1}\boldsymbol{\beta}'\mathbf{x}_t$$

This can be substituted into the objective function

$$\sum_{t=1}^{T} \left(\mathbf{x}_{t} - \boldsymbol{\beta} \left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1} \boldsymbol{\beta}' \mathbf{y}_{t} \right)' \left(\mathbf{x}_{t} - \boldsymbol{\beta} \left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1} \boldsymbol{\beta}' \mathbf{x}_{t} \right) = \sum_{t=1}^{T} \mathbf{x}_{t}' \left(\mathbf{I} - \boldsymbol{\beta} \left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1} \boldsymbol{\beta}' \right) \mathbf{x}_{t}$$

- This works since $\mathbf{I} \boldsymbol{\beta} (\boldsymbol{\beta}' \boldsymbol{\beta})^{-1} \boldsymbol{\beta}'$ is *idempotent* • $\mathbf{A}\mathbf{A} = \mathbf{A}$
- Some additional manipulation using the trace operator on a scalar leads to two equivalent expressions

$$\min_{\boldsymbol{\beta}} \sum_{t=1}^{T} \mathbf{x}_{t}' \left(\mathbf{I} - \boldsymbol{\beta} \left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1} \boldsymbol{\beta}' \right) \mathbf{x}_{t} = \max_{\boldsymbol{\beta}} \operatorname{tr} \left(\left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1/2} \boldsymbol{\beta}' \boldsymbol{\Sigma}_{\mathbf{x}} \boldsymbol{\beta} \left(\boldsymbol{\beta}' \boldsymbol{\beta} \right)^{-1/2} \right)$$
$$= \max_{\boldsymbol{\beta}} \boldsymbol{\beta}' \boldsymbol{\Sigma}_{\mathbf{x}} \boldsymbol{\beta}$$

- All subject to $\beta'\beta = \mathbf{I}_r$
- Solution to last problem sets $oldsymbol{eta}$ to the *eigenvectors* of Σ_{x}

Definition (Eigenvalue)

The eigenvalues of a real, symmetric matrix k by k matrix A are the k solutions to

$$|\lambda \mathbf{I}_k - \mathbf{A}| = 0$$

where $|\cdot|$ is the determinant.

- Properties of eigenvalues
 - det $\mathbf{A} = \prod_{i=1}^{r} \lambda_i$ tr $\mathbf{A} = \sum_{i=1}^{r} \lambda_i$

 - For positive (semi) definite **A**, $\lambda_i > 0$, i = 1, ..., r ($\lambda_i \ge 0$)
 - Rank
 - ▷ Full-rank **A** implies $\lambda_i \neq 0, i = 1, ..., r$
 - ▷ Rank q < r matrix **A** implies $\lambda_i \neq 0$, i = 1, ..., q and $\lambda_j = 0, j = q + 1, ..., r$

Properties of Eigenvalues and Eigenvectors

Definition (Eigenvector)

An a k by 1 vector **u** is an eigenvector corresponding to an eigenvalue λ of a real, symmetric matrix k by k matrix **A** if

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

- Properties of eigenvectors
 - If A is positive definite, then

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}'$$

where Λ is diagonal and VV'=V'V=I

Definition (Orthonormal Matrix)

A k-dimensional orthonormal matrix U satisfies $U'U = I_k$, and so $U' = U^{-1}$.

Implication is

 $V'AV = V'V\Lambda V'V = \Lambda$

Computing Factors using PCA

- **X** is *T* by *k* (assume demeaned)
- $\mathbf{X}'\mathbf{X}$ is real and symmetric with eigenvalues $\mathbf{\Lambda} = \operatorname{diag}(\lambda_i)_{i=1,\dots,k}$
- Factors are estimated

$$\begin{aligned} \mathbf{X}'\mathbf{X} &= \mathbf{V}\Lambda\mathbf{V}'\\ \mathbf{V}'\mathbf{X}'\mathbf{X}\mathbf{V} &= \mathbf{V}'\mathbf{V}\Lambda\mathbf{V}'\mathbf{V}\\ (\mathbf{X}\mathbf{V})'\,(\mathbf{X}\mathbf{V}) &= \Lambda \text{ since } \mathbf{V}' = \mathbf{V}^{-1}\\ \mathbf{F}'\mathbf{F} &= \Lambda. \end{aligned}$$

- **F** = **XV** is the *T* by *k* matrix of factors
- $\beta = \mathbf{V}'$ is the *k* by *k* matrix of factor loadings.
- All factors exactly reconstruct Y

$$\mathbf{F}\boldsymbol{\beta} = \mathbf{F}\mathbf{V}' = \mathbf{Y}\mathbf{V}\mathbf{V}' = \mathbf{Y}$$

► Assumes *k* is large

• Note that both factors and loadings are orthogonal since

$$\mathbf{F}'\mathbf{F} = \mathbf{\Lambda}$$
 and $\mathbf{\beta}'\mathbf{\beta} = \mathbf{I}$

Only loadings are normalized

Large k and factor analysis

• Consider simple example where

$$x_{it} = 1 \times f_t + \epsilon_{it}$$

- f_t and ϵ_{it} are all independent, standard normal
- Covariance of \mathbf{x} is $\mathbf{\Sigma}_{\mathbf{x}} = 1 + I_k$

$$\left[\begin{array}{rrr} 2 & 1 \\ 1 & 2 \end{array}\right]$$

First eigenvector is

$$(k^{-1/2}, k^{-1/2}, \dots, k^{-1/2})$$

Form is due to normalization

$$\sum_{i=1}^{k} v_{ij}^{2} = 1, \ \sum_{i=1}^{k} v_{ij} v_{in} = 0$$

• $\sum_{i=1}^{k} (k^{-1/2})^2 = \sum_{i=1}^{k} k^{-1} = kk^{-1} = 1$

Estimated factor is then

$$\hat{f}_t = \sum_{i=1}^k k^{-1/2} x_{it} = k^{1/2} \left(\frac{1}{k} \sum x_{it} \right) = k^{1/2} \bar{x} = \sum_{i=1}^k w_i x_i$$

• What about \bar{x}

$$\bar{x} = k^{-1} \left(\sum_{i=1}^{k} f_t + \epsilon_{it} \right)$$

$$= f_t + \bar{\epsilon}_t$$

$$\approx f_t$$

- Normalization means factor is $O_p\left(k^{1/2}
 ight)$
 - Can always re-normalize factor to be $O_p(1)$ using $\hat{f}_t/k^{1/2}$
- Key assumption is that $\bar{\epsilon}_t$ follows some form of LLN in k
- In strict factor model, no correlation so simple

• Strict factor models require strong assumptions

$$\operatorname{Cov}(\epsilon_{it},\epsilon_{js})=0 \quad i\neq j,\ s\neq t$$

- These are easily rejectable in practice
- Approximate Factor Models relax these assumptions and allow:
 - (Weak) Serial correlation in $\boldsymbol{\epsilon}_t$

$$\sum_{s=0}^{\infty} |\gamma_s| < \infty$$

• (Weak) Cross-sectional correlation between e_{it} and e_{jt}

$$\lim_{k\to\infty}\sum_{i\neq j}^k \mathbf{E} |\epsilon_{it}\epsilon_{jt}| < \infty$$

- Heteroskedasticity in ϵ
- Requires pervasive factors

$$\mathbf{x}_t = \mathbf{\Lambda} \mathbf{f}_t + \boldsymbol{\epsilon}_t$$
$$\lim_{k \to \infty} \operatorname{rank} \left(k^{-1} \mathbf{\Lambda}' \mathbf{\Lambda} \right) = r$$

21/71

Approximate Factor Models

Practical Considerations when Estimating Factors OXFORD

- Key input for factor estimation is $\boldsymbol{\Sigma}_{x}$
 - In most theoretical discussions of PCA, this is the covariance

$$\Sigma_{\mathbf{x}} = T^{-1} \sum_{t=1}^{T} (\mathbf{x}_t - \hat{\boldsymbol{\mu}}) (\mathbf{x}_t - \hat{\boldsymbol{\mu}})$$

- Two other simple versions are used
 - Outer-product

$$T^{-1}\mathbf{X}'\mathbf{X} = T^{-1}\sum_{t=1}^{T}\mathbf{x}_t\mathbf{x}_t'$$

- Similar to fitting OLS without a constant
- Correlation matrix

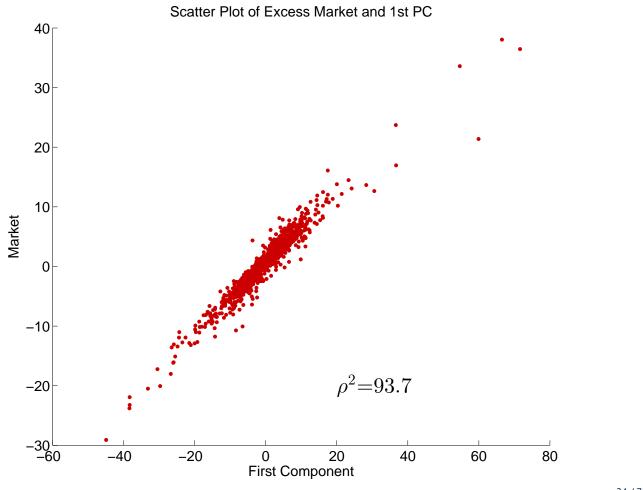
$$\mathbf{R}_{\mathbf{x}} = T^{-1} \sum_{t=1}^{T} \mathbf{z}_t \mathbf{z}_t'$$

 $\,\triangleright\,\, \mathbf{z}_t = (\mathbf{x}_t - \hat{\boldsymbol{\mu}}) \oslash \hat{\sigma}$ are the original data series, only studentized

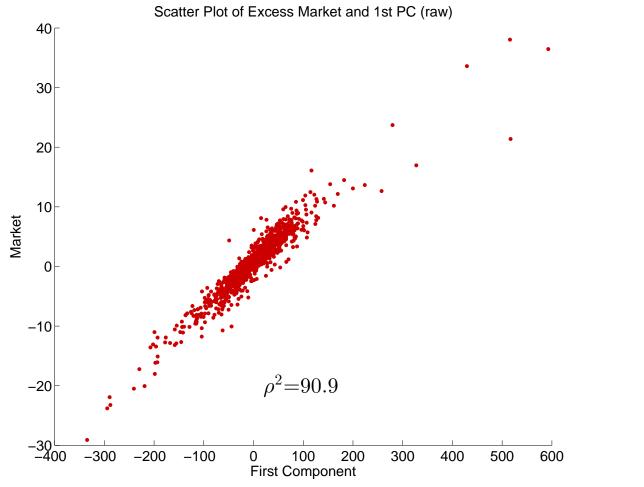
Important since scale is not well defined for many economic data (e.g. indices)

- Initial exploration based on Fama-French data
 - 100 portfolios
 - Sorted on size and boot-to-market
 - 49 portfolios
 - Sorted on industry
- Equities are known to follow a strong factor model
 - Series missing more than 24 missing observations were dropped
 - ▷ 73 for 10 by 10 sort remaining
 - 41 of 49 industry portfolios
 - First 24 data points dropped for all series
 - July 1928 December 2013
- *T* = 1,026
- *k* = 114
- Two versions, studentized and *raw*

First Factor from FF Data



First Factor from FF Data (Raw)



Choosing the number of factors

- So far have assumed *r* is known
- In practice *r* has to be estimated
- Two methods
 - Graphical using Scree plots
 - Plot of ordered eigenvalues, usually standardized by sum of all
 - ▷ Interpret this as the R^2 of including r factors
 - ▷ Recall $\sum_{i=1}^{l} \lambda_i = k$ for correlation matrix (Why?)
 - \triangleright Closely related to system R^2 ,

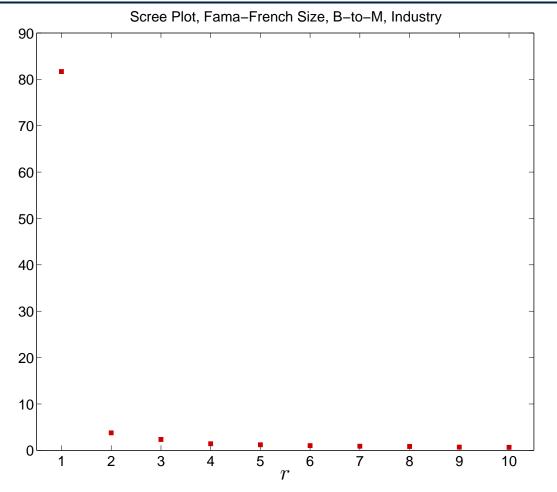
$$R^{2}\left(r\right) = \frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{j=1}^{k} \lambda_{j}}$$

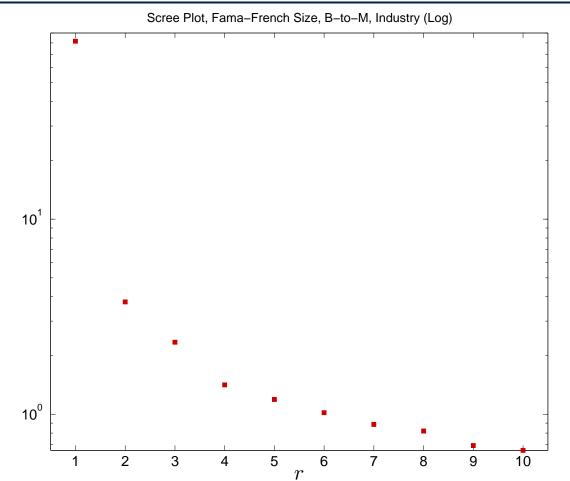
- Information criteria-based
 - \triangleright Similar to AIC/BIC, only need to account for both k and T

Stylized Fact(ors)

If in doubt, all known economic panels have between 1 and 6 factors

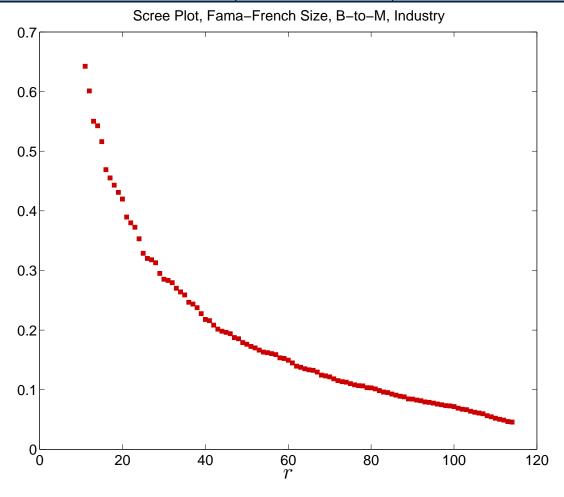
Scree Plot: Fama-French





UNIVERSITY OF

Scree Plot: Fama-French (Non-Factors)



Information Criteria

- Bai & Ng (2002) studied the problem of selecting the correct number of factors in an approximate factor model
- Proposed a number of information criteria with the form

$$\widehat{V(r)} + r \times g(k, T)$$

$$\widehat{V(r)} = \sum_{t=1}^{T} \left(\mathbf{x}_{t} - \hat{\boldsymbol{\beta}}(r) \mathbf{f}_{t}(r) \right)' \left(\mathbf{x}_{t} - \hat{\boldsymbol{\beta}}(r) \mathbf{f}_{t}(r) \right)$$

• $\widehat{V(r)}$ is the value of the objective function with r factors

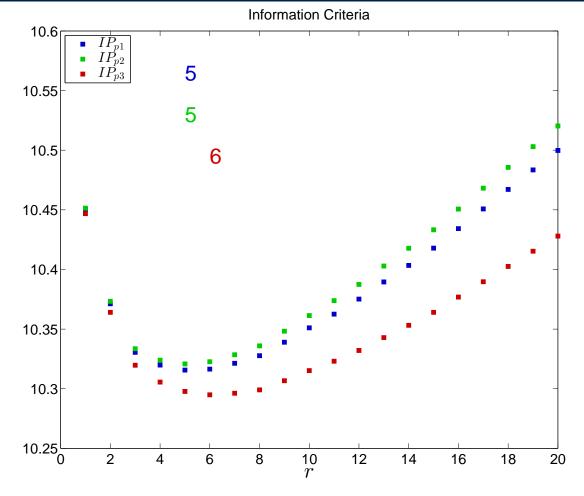
Three versions

$$IC_{p_1} = \ln \widehat{V(r)} + r\left(\frac{k+T}{kT}\right) \ln\left(\frac{kT}{k+T}\right)$$
$$IC_{p_2} = \ln \widehat{V(r)} + r\left(\frac{k+T}{kT}\right) \ln\left(\min\left(k,T\right)\right)$$
$$IC_{p_3} = \ln \widehat{V(r)} + r\left(\frac{\ln\left(\min\left(k,T\right)\right)}{\min\left(k,T\right)}\right)$$

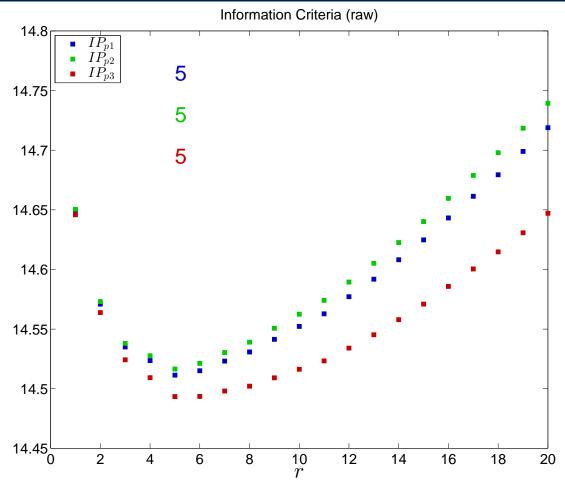
• Suppose k pprox T, IC_{p_2} is BIC-like

$$IC_{p2} = \ln \widehat{V(r)} + 2r \left(\frac{\ln T}{T}\right)$$

Information Criteria: Fama-French



Information Criteria: Fama-French (Raw)



Assessing Fit

- Fit can be assessed both globally and for individual series
- Least squares objective leads to natural R^2 measurement of fit
- Global fit

$$R_{global}^{2}(r) = 1 - \frac{\operatorname{tr}\left(\mathbf{X} - \hat{\boldsymbol{\beta}}(r) \mathbf{F}(r)\right)' \left(\mathbf{X} - \hat{\boldsymbol{\beta}}(r) \mathbf{F}(r)\right)}{\operatorname{tr}\left(\mathbf{X}'\mathbf{X}\right)}$$
$$= \frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{j=1}^{k} \lambda_{j}}$$

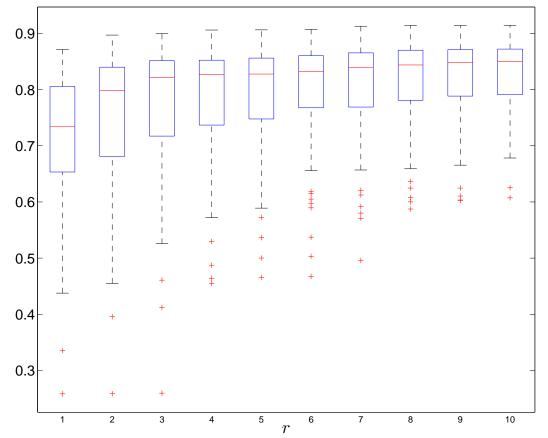
- Numerator is just $\widehat{V(r)} = \sum_{i=1}^{k} \sum_{t=1}^{T} \left(x_{it} \sum_{j=1}^{r} \hat{\beta}_{ij} f_{jt} \right)^2$
- When **x** has been studentized, tr $(\mathbf{X}'\mathbf{X}) = \sum_{j=1}^{k} \lambda_j = Tk$
- Individual fit

$$R_{i}^{2}(r) = 1 - \frac{\sum_{t=1}^{T} \left(x_{it} - \sum_{j=1}^{r} \hat{\beta}_{ij} f_{jt} \right)^{2}}{\sum_{t=1}^{T} x_{it}^{2}}$$

Useful for assessing series not well described by factor model

Individual Fit

Individual \mathbb{R}^2 using r factors



Basic DFM is

$$\mathbf{x}_{t} = \sum_{i=0}^{s} \mathbf{\Phi}_{i} \mathbf{f}_{t} + \boldsymbol{\epsilon}_{t}$$
$$\mathbf{f}_{t} = \sum_{j=1}^{q} \mathbf{\Psi} \mathbf{f}_{t-j} + \boldsymbol{\eta}_{t}$$

- Observed data depend on contemporaneous and lagged factors
- Factors have VAR-like dynamics
- Assumed that \mathbf{f}_t and $\boldsymbol{\epsilon}_t$ are stationary, so \mathbf{x}_t is also stationary
 - Important: must transform series appropriately when applying to data
- ϵ_t can have weak dependence in both the cross-section and time-series
- $\mathbf{E}[\boldsymbol{\epsilon}_t, \boldsymbol{\eta}_s] = \mathbf{0}$ for all t, s

Optimal Forecast from DFM

$$\mathbf{x}_t = \sum_{i=0}^s \mathbf{\Phi}_i \mathbf{f}_{t-i} + \boldsymbol{\epsilon}_t, \quad \mathbf{f}_t = \sum_{j=1}^q \mathbf{\Psi} \mathbf{f}_{t-j} + \boldsymbol{\eta}_t$$

Optimal forecast can be derived

$$E [x_{it+1} | \mathbf{x}_t, \mathbf{f}_t, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots] = E \left[\sum_{i=0}^{s} \boldsymbol{\phi}_i \mathbf{f}_{t+1-i} + \epsilon_{it+1} | \mathbf{x}_t, \mathbf{f}_t, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots \right]$$
$$= E_t \left[\sum_{i=0}^{s} \boldsymbol{\phi}_i \mathbf{f}_{t+1-i} \right] + E_t [\epsilon_{it+1}]$$
$$= \sum_{i=1}^{s'} \mathbf{A}_i f_{t-i+1} + \sum_{j=1}^{n} \mathbf{B}_j x_{it-j+1}$$

- Predictability in both components
 - Lagged factors predict factors
 - Lagged x_{it} predict e_{it}

Invertibility and MA processes

- DFM is really factors plus moving average
- Moving average processes can be replaced with AR processes when invertible

$$y_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$y_{t} - \theta y_{t-1} = \epsilon_{t} + \theta \epsilon_{t-1} - \theta (\theta \epsilon_{t-2} + \epsilon_{t-1})$$

$$= \epsilon_{t} - \theta^{2} \epsilon_{t-2}$$

$$y_{t} - \theta y_{t-1} + \theta^{2} y_{t-2} = \epsilon_{t} - \theta^{2} \epsilon_{t-2} + \theta^{2} (\theta \epsilon_{t-3} + \epsilon_{t-2})$$

$$= \epsilon_{t} + \theta^{2} (\theta \epsilon_{t-3} + \epsilon_{t-2})$$

$$\sum_{i=0}^{\infty} (-\theta)^{i} y_{t-i} = \epsilon_{t}$$

$$y_{t} = \sum_{i=1}^{\infty} - (-\theta)^{i} y_{t-i} + \epsilon_{t}$$

- Can approximate finite MA with finite AR
- Quality will depend on the persistence of the MA component

- Superficially dynamic factor models appear to be more complicated than static factor models
- Dynamic Factor models can be directly estimated using Kalman Filter or spectral estimators that account for serial correlation in factors
 - Latter are not useful for forecasting since 2-sided
- (Big) However, DFM can be converted to Static model by relabeling
- In DFM, factors are

$$[\mathbf{f}_t, \mathbf{f}_{t-1}, \ldots, \mathbf{f}_{t-s}]$$

- Total of r(s + 1) factors in model
- Equivalent to static model with at most r(s + 1) factors
 - Redundant factors will not appear in static version

Consider basic DFM

$$x_{it} = \phi_{i1}f_t + \phi_{i2}f_{t-1} + \epsilon_{it}$$

$$f_t = \psi f_{t-1} + \eta_t$$

Model can be expressed as

$$\begin{aligned} x_{it} &= \phi_{i1} \left(\psi f_{t-1} + \eta_t \right) + \phi_{i2} f_{t-1} + \epsilon_{it} \\ &= \phi_{i1} \eta_t + \phi_{i2} \left(1 + (\phi_{i1}/\phi_{i2}) \psi \right) f_{t-1} + \epsilon_{it} \end{aligned}$$

- One version of static factors are η_t and f_{t-1}
 - In this particular version, η_t is not "dynamic" since it is WN
 - f_{t-1} follows an AR(1) process
- Other rotations will have different dynamics

Basic simulation

$$\begin{aligned} x_{it} &= \phi_{i1}f_t + \phi_{i2}f_{t-1} + \epsilon_{it} \\ f_t &= \psi f_{t-1} + \eta_t \end{aligned}$$

- $\phi_{i1} \sim N(1, 1), \phi_{i2} \sim N(.2, 1)$
 - Smaller signal makes it harder to find second factor
- $\psi = 0.5$
 - Higher persistence makes it harder since $Corr[f_t, f_{t-1}]$ is larger
- Everything else standard normal
- *k* = 100, *T* = 100
 - Also k = 200 and T = 200 (separately)
- All estimation using PCA on correlation

Number of Factors for Forecasting

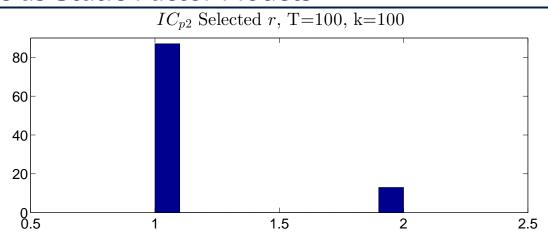
Better to have r above r^* than below

- Factors are not point identified
 - Can use an arbitrary rotation and model is equivalent
- Natural measure of similarity between original (GDP) factors and estimated factors is global \mathbb{R}^2

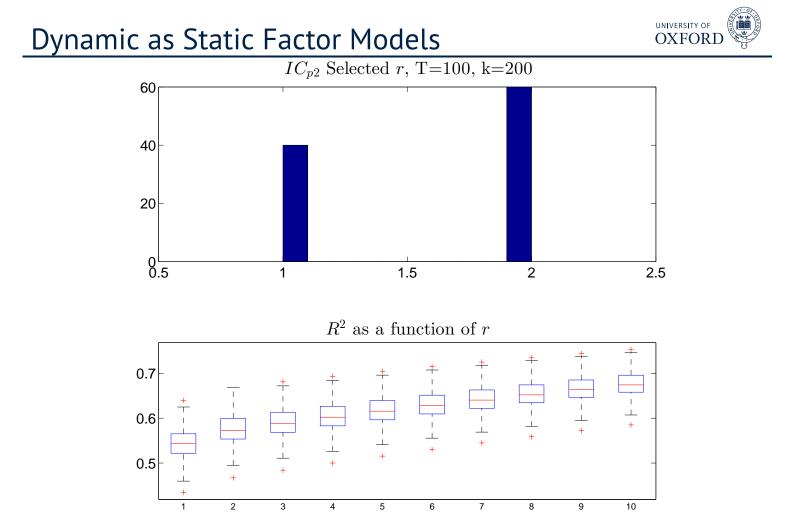
$$\hat{\mathbf{f}}_{t} = \mathbf{A}\mathbf{f}_{t} + \boldsymbol{\eta}_{t}$$

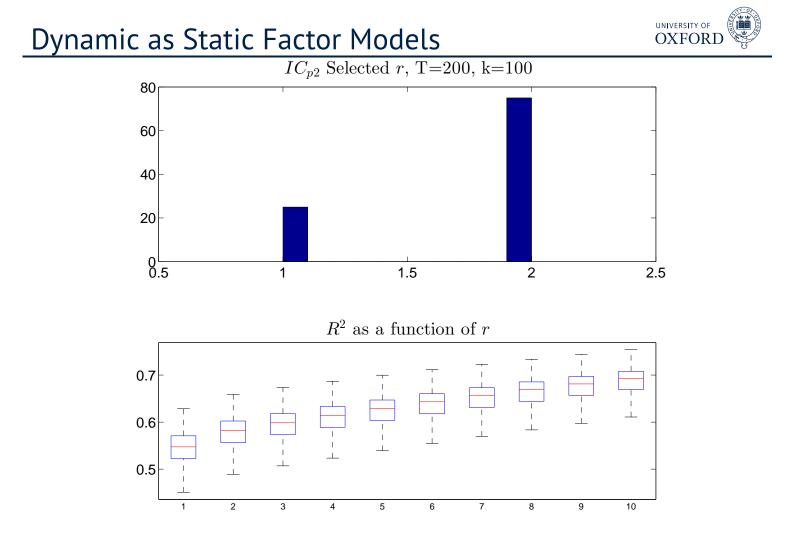
$$R^{2} = 1 - \frac{\sum_{t=1}^{T} \hat{\boldsymbol{\eta}}_{t}' \hat{\boldsymbol{\eta}}_{t}}{\sum_{t=1}^{T} \mathbf{f}_{t}' \mathbf{f}_{t}}$$

• Note that A is a 2 by 2 matrix of regression coefficients

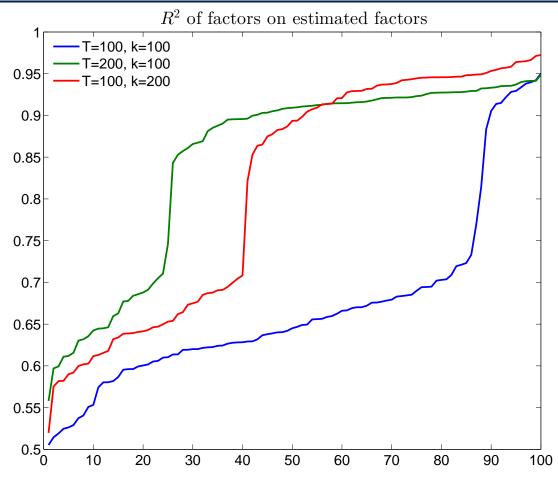


 $R^{2} \text{ as a function of } r$





^{44 / 71}



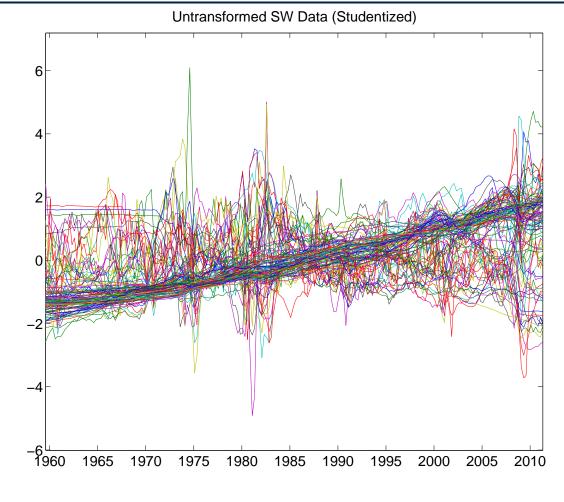
Stock & Watson (2012) Data

- Stock & Watson have been at the forefront of factor model development
- Data is from 2012 paper "Disentangling the Channels of the 2007-2009 Recession"
- Dataset consists of 137 monthly and 74 quarterly series
 - Not all used for factor estimation
 - Aggregates not used if disaggregated series available
- Monthly series are aggregated to quarterly, which is frequency of data
- Series with missing observations are dropped for simplicity
 - Before dropping those with missing values data set has 132 series
 - After 107 series remain

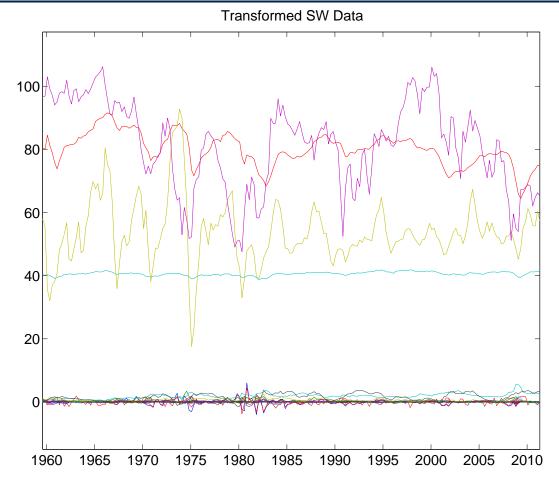
The series

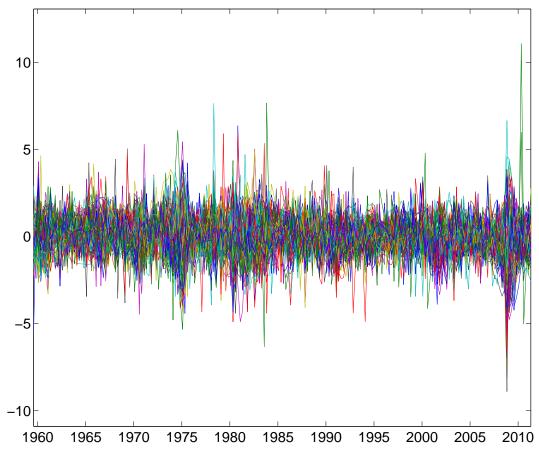
- Monthly series were aggregated to quarterly using
 - Average
 - End-of-quarter
- All series were transformed to be stationary using one of:
 - No transform
 - Difference
 - Double-difference
 - ► Log
 - Log-difference
 - Double-log-difference
- Most series checked for outliers relative to *IQR* (rare)
- Final series were Studentized in estimation of PC

Raw Data Before Transform

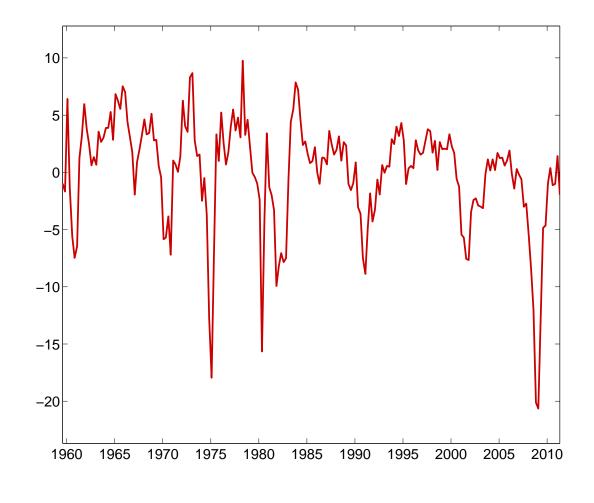


Raw Data after Transform

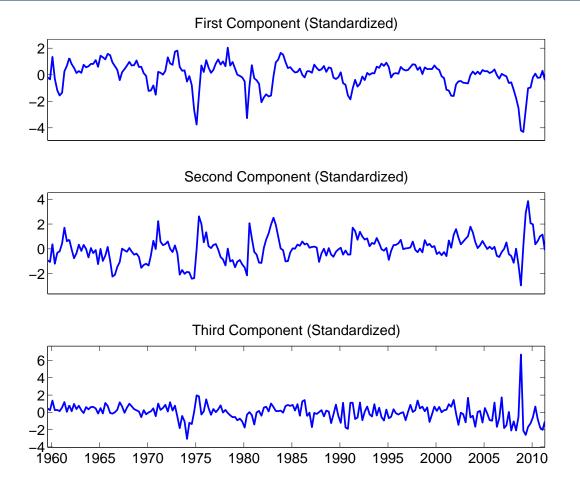




First Component

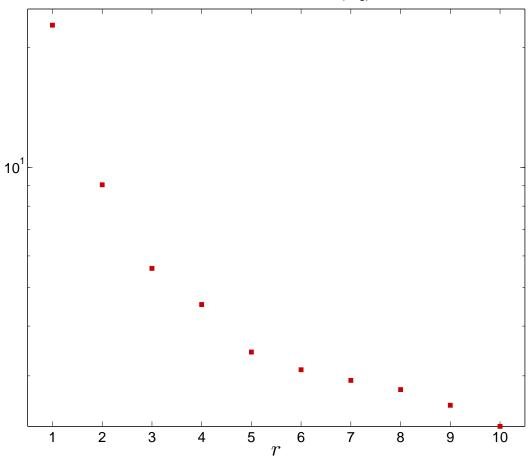


First Three Components



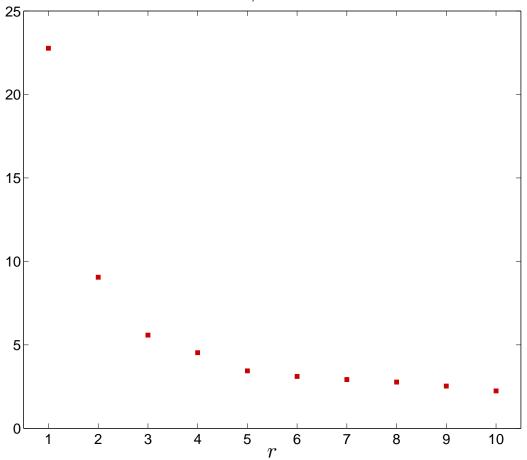
Scree Plot (Log)

Scree Plot, Stock & Watson (Log)

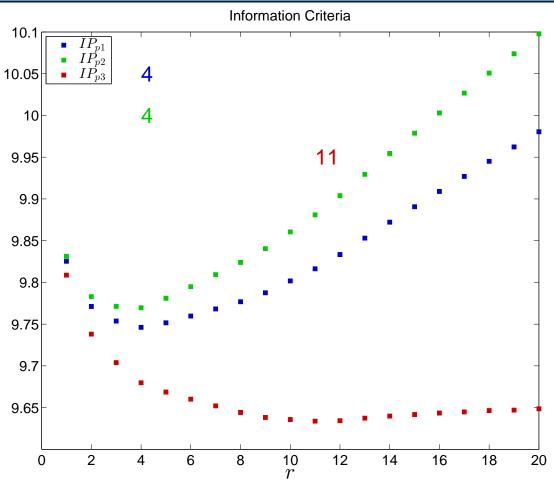


Scree Plot

Scree Plot, Stock & Watson

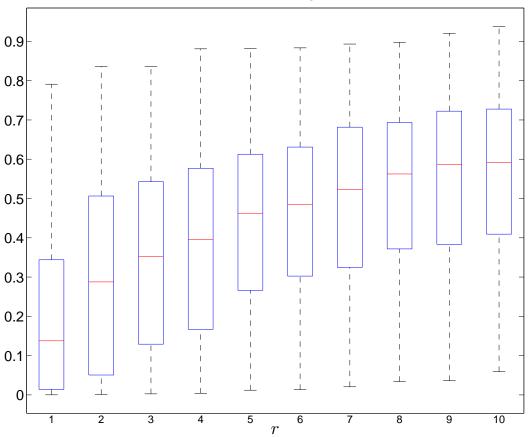


Information Criteria



Individual Fit against r

Individual \mathbb{R}^2 using r factors



UNIVERSITY OF

- Forecast problem is not meaningfully different from standard problem
- Interest is now in \mathbf{y}_t , which may or may not be in \mathbf{x}_t
 - Note that stationary version of \mathbf{y}_t should be forecast, e.g. $\Delta \mathbf{y}_t$ or $\Delta^2 \mathbf{y}_t$
- Two methods to forecast

Unrestricted

$$y_{t+1} = \phi_0 + \sum_{i=1}^p \phi_i y_{t-i+1} + \boldsymbol{\theta}' \hat{\mathbf{f}}_t + \epsilon_{it}$$

- Treats factors as observed data, only makes sense if k is large
 - Uses an AR(P) to model residual dependence
 - Choice of number of factors to use, may be different from r
 - Can also use lags of \mathbf{f}_t (uncommon)
 - Model selection is applicable as usual, e.g. BIC

Forecast Methods

Restricted

• When \mathbf{y}_t is in \mathbf{x}_t , $\mathbf{y}_t = \boldsymbol{\beta} \, \hat{\mathbf{f}}_t + \epsilon_t$

$$\epsilon_t = \mathbf{y}_t - \boldsymbol{\beta} \, \hat{\mathbf{f}}_t$$

$$\hat{\mathbf{y}}_{t+1|t} = \boldsymbol{\beta} \, \hat{\mathbf{f}}_{t+1|t} + \sum_{i=1}^{p} \phi_i \left(\mathbf{y}_{t-i+1} - \boldsymbol{\beta} \, \hat{\mathbf{f}}_{t-i+1} \right)$$
$$= \boldsymbol{\beta} \, \hat{\mathbf{f}}_{t+1|t} + \sum_{i=1}^{p} \phi_i \hat{\boldsymbol{\epsilon}}_t$$

- VAR to forecast $\hat{\mathbf{f}}_{t+1}$ using lags of $\hat{\mathbf{f}}_t$
- Univariate AR for $\hat{\epsilon}_t$
- Usually found to be less successful than unrestricted
- Care is needed when using studentized data since forecasting recentered, rescaled version of y

Re-integrating forecasts

• When forecasting $\Delta \mathbf{y}_t$,

$$E_t [\mathbf{y}_{t+1}] = E_t [\mathbf{y}_{t+1} - \mathbf{y}_t + \mathbf{y}_t]$$

= $E_t [\Delta \mathbf{y}_{t+1}] + \mathbf{y}_t$

• At longer horizons,

$$\mathbf{E}_{t} \left[\mathbf{y}_{t+h} \right] = \sum_{i=1}^{h} \mathbf{E}_{t} \left[\Delta \mathbf{y}_{t+i} \right] + \mathbf{y}_{t}$$

• When forecasting $\Delta^2 \mathbf{y}_t$

$$E_{t}[\mathbf{y}_{t+1}] = E_{t}[\mathbf{y}_{t+1} - \mathbf{y}_{t} - \mathbf{y}_{t} + \mathbf{y}_{t-1} + 2\mathbf{y}_{t} - \mathbf{y}_{t-1}] = E_{t}[\Delta^{2}\mathbf{y}_{t+1}] + 2\mathbf{y}_{t} - \mathbf{y}_{t-1}$$

- In many cases interest is in $\Delta \mathbf{y}_t$ when forecasting $\Delta^2 \mathbf{y}_t$
 - ▶ For example CPI, inflation and change in inflation
 - $\triangleright~$ Same as reintegrating Δy_t to y_t

- Multistep can be constructed using either method
- Unrestricted requires additional VAR for $\hat{\mathbf{f}}_t$
- Alternative use direct forecasting

$$y_{t+h|t} = \hat{\phi}_{(h)0} + \sum_{i=1}^{p^h} \hat{\phi}_{(h)i} y_{t-i+1} + \hat{\theta}'_{(h)} \hat{\mathbf{f}}_t$$

- (h) used to denote explicit parameter dependence on horizon
- y_{t+h|t} can be either the period-h value, or the h-period cumulative forecast (more common)
- Direct has been documented to be better than iterative in DFMs
 - Problem dependent

"Forecasting"

- Used BIC search across models
- 3 setups
 - GDP lags only (4), Components Only (6), Both

$$\sum_{j=1}^{h} \Delta g_{t+j} = \phi_0 + \sum_{s=1}^{4} \gamma_s \Delta g_{t-s+1} + \sum_{n=1}^{6} \psi_n f_{jt} + \epsilon_{ht}$$

						Both	
	GDP Only	R^2	Components Only	R^2	GDP	Components	R^2
h = 1	1, 2, 4	.517	1, 2, 3, 4, 6	.662	 1	1, 2, 3, 4, 6	.686
h = 2	1,4	.597	1, 2, 3, 4, 6	.763	1	1, 2, 3, 4, 6	.771
h = 3	1,4	.628	1, 2, 3, 4, 6	.785	1	1, 2, 3, 4, 6	.792
h = 4	1,4	.661	1, 2, 3, 4, 6	.805	-	1, 2, 3, 4, 6	.805

Generalized Principal Components

- Basic PCA makes use of the covariance or more commonly correlation
- Correlation is technically a special case of generalized PCA

$$\min_{\boldsymbol{\beta}, \mathbf{f}_t, \dots \mathbf{f}_t} \sum_{t=1}^T \left(\mathbf{x}_t - \boldsymbol{\beta} \, \mathbf{f}_t \right)' \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1} \left(\mathbf{x}_t - \boldsymbol{\beta} \, \mathbf{f}_t \right) \text{ subject to } \boldsymbol{\beta}' \boldsymbol{\beta} = \mathbf{I}_r$$

- Clever choices of Σ_{ϵ} lead to difference estimators
 - Using diag $(\hat{\sigma}_1^2, \dots, \hat{\sigma}_k^2)$ where $\hat{\sigma}_j^2$ is variance of x_j leads to correlation
 - Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS)

- 1. Estimate $\hat{\epsilon}_{it} = x_{it} \hat{\beta}_i \hat{\mathbf{f}}_t$ using *r* factors 2. Estimate $\hat{\sigma}_{\epsilon i}^2 = T^{-1} \sum \hat{\epsilon}_{it}^2$ and $\mathbf{W} = \text{diag}(w_1, \dots, w_k)$ where

$$w_i = \frac{1/\hat{\sigma}_{\epsilon i}}{\sum_{j=1}^{k} 1/\hat{\sigma}_{\epsilon j}}$$

3. Compute PCA-GLS using WX

Other Generalized PCA Estimators

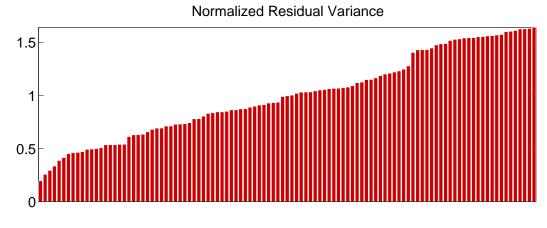
- Absolute covariance weighting
 - 1. Compute complete residual covariance $\hat{\Sigma}_{\epsilon}$ from residuals 2. Replace $\hat{\sigma}_{\epsilon i}^2$ in step 2 with $\hat{\sigma}_{\epsilon i}^2 = \sum_{j=1}^k |\hat{\Sigma}_{\epsilon}(i,j)|$
- Down-weights series which have both large idiosyncratic variance and strong residual covariance
- Stock & Watson (2005) use more sophisticated method
 - 1. Estimate AR(P) on \hat{e}_{it} for all series

$$\hat{\epsilon}_{it} = \sum_{j=1}^{p_i} \phi_j \epsilon_{it-j} + \xi_{it}$$

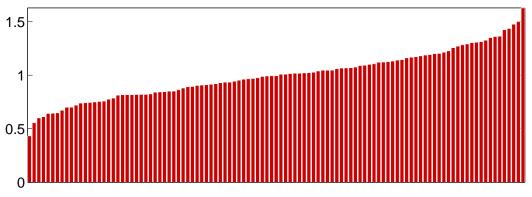
2. Construct quasi-differenced x_{it} using coefficients

$$\tilde{x}_{it} = x_{it} - \sum_{j=1}^{p_i} \hat{\phi}_j x_{it-j}$$

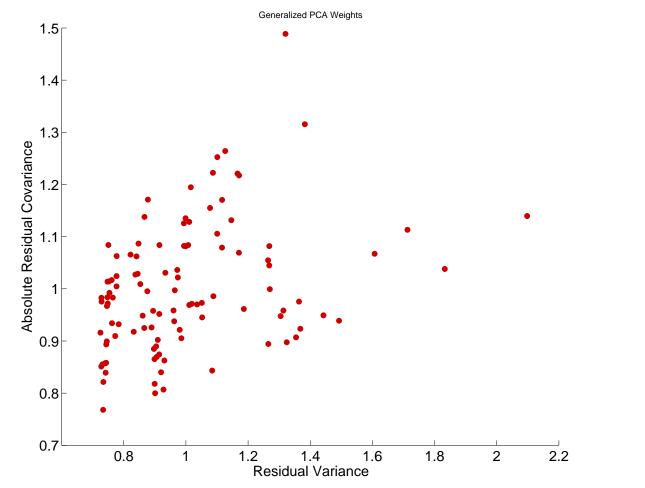
- 3. Estimate $\hat{\sigma}_{\epsilon i}^2$ using $\hat{\xi}_{it}$
- 4. Re-estimate factors using quasi-differenced data and weighting, iterate if needed



Normalized Residual Absolute Covariance

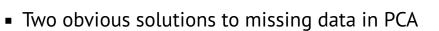


Generalized Principal Components Weights

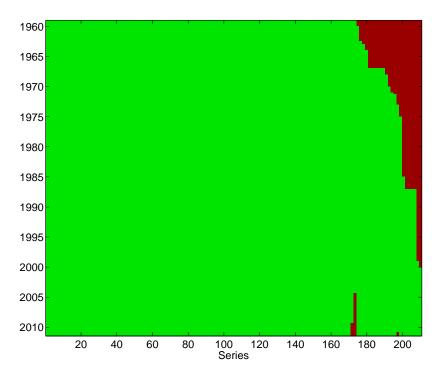


- Redundant factors can have adverse effects on common components
- Exactly redundant factors are identical to increasing the variance of a studentized data series
 - ► Including *x_{it} m*-times is the same as using *mx_{it}*
- Some evidence that excluding highly correlated factors is useful (Boivin & Ng 2006)
- Method
 - 1. For each series *i* find series with maximally correlated error, call index j_i
 - 2. Drop series in $\{j_i\}$ that are maximally correlated with more than 1 series
 - 3. For series which are each other's j_i , drop series with lower R^2
- Can increase step 1 to two or even three series

Prinicpal Component Analysis with Missing Data OXFORD



- Drop all series that have missing observations
- Impute values for the missing values
- Missing data structure in SW 2012



Expectations-Maximization (EM) Algorithm

- Some problem with unobserved states can be solved using the EM algorithm
- Consider problem of estimating means from an i.i.d. mixture

$$X_i = Y_i \mu_1 + (1 - Y_i) \mu_2 + Z_i$$

- ► Y_i is i.i.d. Bernoulli(p), Z_i is standard normal
- Y_i was observable, trivial problem (OLS)
- When Y_i is not observable, much harder
- EM algorithm will iterate across two steps:
 - 1. Construct "as-if" Y_i using expectations of Y_i given μ_1 and μ_2
 - 2. Compute

$$\hat{\mu}_1 = \frac{\sum \Pr(Y_i = 1)X_i}{\sum \Pr(Y_i = 1)}$$
 $\hat{\mu}_2 = \frac{\sum \Pr(Y_i = 0)X_i}{n - \sum \Pr(Y_i = 1)}$

- 3. Return to 1, stopping if the means are not changing much
- Algorithm is initialized with "guesses" about μ_1 and μ_2
 - Example: Mean of data above median, mean of data below median
- Consider case where $\mu_1 = 10$, $\mu_2 = -10$

Imputing Missing Values in PCA

- Ideally would like to solve PCA problem only for observed data
- Difficult in practice, no know closed form estimator
- Expectation-Maximization (EM) algorithm can be used to simply impute missing data
 - Replace missing with *r*-factor expectation (E)
 - Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

- 1. Define $w_{ij} = I [y_{ij} \text{ observed}]$ and set i = 0
- 2. Construct $\mathbf{X}^{(0)} = \mathbf{W} \odot \mathbf{X} + (1 \mathbf{W}) \odot \iota \mathbf{\bar{X}}$ where ι is a T by 1 vector of 1s
- 3. Until $||\mathbf{X}^{(i+1)} \mathbf{X}^{(i)}|| < c$:
 - a. Estimate r factors and factor loadings, $\hat{\mathbf{F}}^{(i)}$ and $\hat{\boldsymbol{\beta}}^{(i)}$ from $\mathbf{X}^{(i)}$ using PCA
 - b. Construct $\mathbf{X}^{(i+1)} = \mathbf{W} \odot \mathbf{X} + (1 \mathbf{W}) \odot \left(\hat{\mathbf{F}}^{(i)} \hat{\boldsymbol{\beta}}^{(i)} \right)$
 - c. *Set* i = i + 1

- Can use partitioning to construct hierarchical factors
- Global and Local
 - 1. Extract 1 or more factors from all series
 - 2. For each regions or country *j*, regress series from country *j* on Global Factors, and extract 1 or more factors from residuals
 - Country factors uncorrelated with Global, but not local from other regions/countries
- Nominal and Real
 - 1. Extract 1 or more general factors
 - 2. For each group real/nominal series, regress on general factors and then extract factors from residuals