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Forecasting with many predictors

� Dynamic Factor Models
� The 3-Pass Regression Filter
� Regularized Reduced Rank Regression
� Time permitting

É Bagging
É Filters and decompositions

How Many is Many?
� Many here means 25 or more
� Often many more, 100s of series
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New challenges

Why factor models
� Are parsimonious while effectively including many regressors
� Can remove measurement error or other useless information from predictors
� Factor may be of interest

É Leading indicators:
– €-coin
– Chicago Fed National Activity Index
– Aruoba-Diebold-Scotti Business Conditions Index

É Real and Nominal factors
É Global and Local factors
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Eurocoin

� European Coincident Indicator
� First factor in a Europe-wide model

€-coin: the Euro Area Economy in One Figure – May 2014
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Chicago Fed National Activity Index

� Factor extracted from 85 series
� Based on research in forecasting inflation

Chicago Fed National Activity Index

What is the National Activity Index?
The index is a weighted average of 85  
indicators of national economic activity 
drawn from four broad categories of data: 
1) production and income; 2) employment, 
unemployment, and hours; 3) personal 
consumption and housing; and 4) sales, 
orders, and inventories.
A zero value for the index indicates that the 
national economy is expanding at its his-
torical trend rate of growth; negative values 
indicate below-average growth; and posi-
tive values indicate above-average growth. 

Why are there three index values?
Each month, we provide a monthly index, 
its three-month moving average, and a  
diffusion index. Month-to-month move-
ments can be volatile, so the monthly  
index’s three-month moving average, the 
CFNAI-MA3, provides a more consistent 
picture of national economic growth. The 
CFNAI Diffusion Index captures the degree 
to which a change in the monthly index is 
spread out among its 85 indicators, aver-
aged over a three-month period.

What do the numbers mean?
When the CFNAI-MA3 value moves below 
–0.70 following a period of economic ex-
pansion, there is an increasing likelihood 
that a recession has begun. Conversely, 
when the CFNAI-MA3 value moves above 
–0.70 following a period of economic con-
traction, there is an increasing likelihood 
that a recession has ended.
When the CFNAI-MA3 value moves above 
+0.70 more than two years into an eco-
nomic expansion, there is an increasing 
likelihood that a period of sustained in-
creasing inflation has begun.

The next CFNAI will be released:
June 23, 2014
8:30 am Eastern Time
7:30 am Central Time

News Release 
Embargoed for release:
8:30 am Eastern Time
7:30 am Central Time
May 22, 2014

Contact: 
Laura LaBarbera
Media Relations
Federal Reserve Bank of Chicago
312-322-2387

Led by declines in production-related indicators, the Chicago Fed National 
Activity Index (CFNAI) decreased to –0.32 in April from +0.34 in March. Two of the 
four broad categories of indicators that make up the index made negative contri-
butions to the index in April, and two of the four categories decreased from March.

The index’s three-month moving average, CFNAI-MA3, increased to +0.19 in April from +0.04 
in March, marking its second consecutive reading above zero and its highest value since 
November 2013. April’s CFNAI-MA3 suggests that growth in national economic activity was 
slightly above its historical trend. The economic growth reflected in this level of the CFNAI-MA3 
suggests limited inflationary pressure from economic activity over the coming year.

The CFNAI Diffusion Index, which is also a three-month moving average, increased to +0.18 
in April from +0.08 in March. Thirty-four of the 85 individual indicators made positive contri-
butions to the CFNAI in April, while 51 made negative contributions. Thirty-seven indicators 
improved from March to April, while 47 indicators deteriorated and one was unchanged. Of 
the indicators that improved, 15 made negative contributions.

Current and Previous values reflect index values as of the May 22, 2014, release and April 21, 2014, release, respectively.
N/A indicates not applicable.

CFNAI, CFNAI-MA3, and CFNAI Diffusion for the latest six months and year-ago month

Index shows economic growth moderated in April

Chicago Fed National Activity Index, Three-Month Moving Average (CFNAI-MA3)
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CFNAI
Current -0.32 +0.34 +0.57 -0.77 -0.19 +0.66 -0.34
Previous N/A +0.20 +0.53 -0.74 -0.21 +0.66 -0.34

CFNAI-MA3
Current +0.19 +0.04 -0.13 -0.10 +0.18 +0.34 -0.04
Previous N/A 0.00 -0.14 -0.09 +0.17 +0.33 -0.04

 
CFNAI Diffusion
Current +0.18 +0.08 -0.16 -0.07 +0.21 +0.42 +0.01
Previous N/A +0.04 -0.14 -0.07 +0.21 +0.42 +0.02
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ADS Business Conditions Index

� Based on factor model in Aruoba, Diebold & Scotti
� Extracts common factor in:

É weekly initial jobless claims
É monthly payroll employment
É industrial production
É personal income less transfer payments, manufacturing and trade sales
É quarterly real GDP

The Model

� Scalar latent factor

xt =
q∑
i=1

ρixt−i + ηi

� Indicators

yit = ci + βixt +
pi∑
j=1

γyit−∆i + εi

É ∆i allows series to have different observational frequencies
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ADS Business Conditions Index

Aruoba-Diebold-Scotti Business Conditions Index ( 12/31/2007- 05/24/2014)
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Note: We construct the ADS Index using the latest data available as of May 30, 2014. The bold vertical lines provide information as to which indicators are available for which dates.
 For dates to the left of the left line, the ADS index is based on observed data for all six underlying indicators.  For dates between the left and right lines, the ADS index is based on
 at least two monthly indicators (typically employment and industrial production) and initial jobless claims.  For dates to the right of the right line, the ADS index is based on initial
 jobless claims and possibly one monthly indicator. The limits used on the y axis reflect the minimum and maximum values of the index over its entire history.
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Notation

� T number of time series observations
� k number of series available to forecast
� yt series to be forecast, m by 1

É m will often be 1

� xt series used to forecast, k by 1
É Usually assume E [xt] = 0 and Cov [xt] = Ik
É Demeaned and standardized
É Suppose xt = Σ−

1/2
x
(
x̃t − µX

)
� ft factors, r by 1
� xt may be yt, but not necessarily

É yt could be subset of xt (common)
É yt could be excluded from factor estimation (uncommon)
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Why factor models?

� Factor models help avoid issues with large, kitchen-sink models
� Consider issue of parameter estimation error when forecasting
� Suppose correct model is linear

yt+1 = βxt + εt

� Forecast using OLS estimates is then

ŷt+1|t = β̂xt
=

(
β̂ − β + β

)
xt

=
(
β̂ − β

)
xt

estimation error
+ βxt
correct forecast
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OLS when there are many regressors

� Suppose εt,xt are independent and jointly normally distributed

Cov
[
εt
xt

]
=
[
σ2ε 0
0 Ik

]
� Standard assumptions have k fixed, so as T →∞, β̂ − β p→ 0

ŷt+1|t ∼ N (βxt, 0)

� Degenerate normal - no error since β is effectively known
� What about the case when k is large
� Use diagonal asymptotics, k/T → c, 0 < κ < c < κ̄ <∞
� In this case

ŷt+1|t ∼ N
(
βxt, k/T × σ2ε

)
É Is still random, even when T →∞

� True even if all β = 0!
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(Really) Big models don’t make sense

� When the number of parameters is large, then almost all coefficients must
be 0

yt =
k∑
i=1

βixt,i + εi

� Variance of the LHS is the same as the RHS

V [yt] =
k∑
i=1

β2i + σ
2
ε

� If k→∞ , infi |βi| > κ > 0, then V [yt]→∞
� Even when T is very large, it will not usually make sense to have k
extremely large

� Factor models will effectively have small βi coefficient, only using two steps
1. Construct average-like estimators of factors from xt – coefficients are O (1/k)
2. Weight these using a small number of relatively large coefficients
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Static Factor Models



Static Factor Models

� Consider the cross-section of asset returns
� Model uses factors as RHS variables

xjt =
q∑
i=1

λjifit + εjt

� λi are the factor loadings
� εjt is the idiosyncratic error for series j
� In vector notation,

xt = Λft + εt

É Λ is k by r
É ft is r by 1
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Static Factor Models

� In matrix notation,
X = ΛF + ε

É X is k by T
É F is T by r
É ε is k by 1

� When model is a strict (as opposed to approximate), E [εt] = 0 and
E
[
εtε
′
t
]
= Σε = diag

(
σ21, . . . ,σ2m

)
� Covariance of xt is then

ΛΩΛ′ + Σε

É Ω = Cov [ft], r by r
É Covariance will play a crucial role in estimation of factors
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Estimation using Principal Components

� Principal components can be used to estimate factors
� Formally, problem is

min
β ,ft ,...ft

T∑
t=1

(xt − βft)′ (xt − βft) subject to β ′β = Ir

É β is k by r
– β is related to but different from Λ
– Λ is the DGP parameter
– β is a normalized and rotated version of Λ

Definition (Rotation)
A square matrix B is said to be a rotation of a square matrix A if B = QA and
QQ′ = Q′Q = I.

É ft is r by 1
É β ′β = Ir is a normalization, and is required

– βft = ((β/2) (2ft))
– Generally, for full rank Q, (βQ)

(
Q−1ft

)
= β̃ f̃t
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The Objective Function
� If β was observable, solution would be OLS

f̂t =
(
β ′β

)−1
β ′yt

This can be substituted into the objective function
T∑
t=1

(
xt − β

(
β ′β

)−1
β ′yt

)′ (
xt − β

(
β ′β

)−1
β ′xt

)
=

T∑
t=1

x′t
(
I− β

(
β ′β

)−1
β ′
)
xt

� This works since I− β
(
β ′β

)−1
β ′ is idempotent

É AA = A
� Some additional manipulation using the trace operator on a scalar leads to
two equivalent expressions

min
β

T∑
t=1

x′t
(
I− β

(
β ′β

)−1
β ′
)
xt = max

β
tr
((
β ′β

)−1/2
β ′Σxβ

(
β ′β

)−1/2)
= max

β
β ′Σxβ

É All subject to β ′β = Ir
� Solution to last problem sets β to the eigenvectors of Σx
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Eigenvalues and Eigenvectors

Definition (Eigenvalue)

The eigenvalues of a real, symmetric matrix k by kmatrix A are the k solutions to

|λIk − A| = 0

where | · | is the determinant.

� Properties of eigenvalues
É detA =

∏r
i=1 λi

É trA =
∑r

i=1 λi
É For positive (semi) definite A, λi > 0, i = 1, . . . , r (λi ≥ 0)
É Full-rank A implies λi 6= 0, i = 1, . . . , r
É Rank q < r matrix A implies λi 6= 0, i = 1, . . . , q and λj = 0, j = q + 1, . . . , r
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Properties of Eigenvalues and Eigenvectors

Definition (Eigenvector)

An a k by 1 vector u is an eigenvector corresponding to an eigenvalue λ of a real,
symmetric matrix k by k matrix A if

Au = λu

� Properties of eigenvectors
É If A is positive definite, then

A = VΛV′

where Λ is diagonal and VV′ = V′V = I

Definition (Orthonormal Matrix)

A k-dimensional orthonormal matrix U satisfies U′U = Ik, and so U′ = U−1.

� Implication is
V′AV = V′VΛV′V = Λ
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Computing Factors using PCA
� X is T by k
� X′X is real and symmetric with eigenvalues Λ = diag (λi)i=1,...,k
� Factors are estimated

X′X = VΛV′

V′X′XV = V′VΛV′V

(XV)′ (XV) = Λ since V′ = V−1

F′F = Λ.

� F = XV is the T by k matrix of factors
� β = V′ is the k by k matrix of factor loadings.
� All factors exactly reconstruct Y

Fβ = FV′ = YVV′ = Y
É Assumes k is large

� Note that both factors and loadings are orthogonal since

F′F = Λ and β ′β = I
� Only loadings are normalized
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Large k and factor analysis

� Consider simple example where

xit = ft + εit

� ft and εit are all independent, standard normal
� First eigenvector of Σx = 1 + Ik is(

k−1/2, k−1/2, . . . , k−1/2
)

É Form is due to normalization

k∑
i=1

v2ij = 1,
k∑
i=1

vijvin = 0

É
∑k

i=1

(
k−1/2

)2
=
∑k

i=1 k
−1 = kk−1 = 1

19 / 64



Estimated Factors

� Estimated factor is then

f̂t =
k∑
i=1

k−1/2xit = k
1/2
(
1/k
∑

xit
)
= k1/2x̄

� What about ȳ

x̄ = k−1
(

k∑
i=1

ft + εit

)
= ft + ε̄t
≈ ft

� Normalization means factor is Op
(
k1/2
)

É Can always re-normalize factor to be Op (1) using f̂t/k1/2

� Key assumption is that ε̄t follows some form of LLN in k
� In strict factor model, no correlation so simple
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Approximate Factor Models
� Strict factor models require strong assumptions

Cov
(
εit, εjs

)
= 0 i 6= j, s 6= t

� These are easily rejectable in practice
� Approximate Factor Models relax these assumptions and allow:

É (Weak) Serial correlation in εt
∞∑
s=0

|γs| <∞

É (Weak) Cross-sectional correlation between εit and εjt

lim
k→∞

k∑
i 6=j

E |εitεjt| <∞

É Heteroskedasticity in ε
� Requires pervasive factors

xt = Λft + εt
lim
k→∞

rank
(
k−1Λ′Λ

)
= r
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Practical Considerations when Estimating Factors

� Key input for factor estimation is Σx
� In most theoretical discussions of PCA, this is the covariance

Σx = T−1
T∑
t=1

(xt − µ̂) (xt − µ̂)

� Two other simple versions are used
É Outer-product

T−1X′X = T−1
T∑
t=1

xtx′t

– Similar to fitting OLS without a constant
É Correlation matrix

Ry = T−1
T∑
t=1

ztz′t

– zt = (xt − µ̂)� σ̂ are the original data series, only studentized
– Makes sense for most economic data since scale is often not well defined (e.g. an
index)
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Fama-French Data

� Initial exploration based on Fama-French data
É 100 portfolios

– Sorted on size and boot-to-market

É 49 portfolios
– Sorted on industry

� Equities are known to follow a strong factor model
É Series missing more than 24 missing observations were dropped

– 73 for 10 by 10 sort remaining
– 41 of 49 industry portfolios

É First 24 data points dropped for all series
É July 1928 – December 2013

� T = 1, 026
� k = 114
� Two versions, studentized and raw
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First Factor from FF Data
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First Factor from FF Data (Raw)
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Selecting the Number of Factors (r)



Choosing the number of factors

� So far have assumed r is known
� In practice r has to be estimated
� Two methods

É Graphical using Scree plots
– Plot of ordered eigenvalues, usually standardized by sum of all
– Interpret this as the R2 of including r factors
– Recall

∑l
i=1 λi = k for correlation matrix (Why?)

É Information criteria-based
– Similar to AIC/BIC, only need to account for both k and T

Stylized Fact(ors)

If in doubt, all known economic panels have between 1 and 6 factors
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Scree Plot: Fama-French
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Scree Plot: Fama-French
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Scree Plot: Fama-French (Non-Factors)
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Information Criteria

� Bai & Ng (2002) studied the problem of selecting the correct number of
factors in an approximate factor model

� Proposed a number of information criteria with the form
ln V̂ (r) + r × g

(
k,T
)

V̂ (r) =
T∑
t=1

(
xt − β̂ (r) ft (r)

)′ (xt − β̂ (r) ft (r))
É V̂ (r) is the value of the objective function with r factors

� Three versions

ICp1 = ln V̂ (r) + r
(
k + T
kT

)
ln
(

kT
k + T

)
ICp2 = ln V̂ (r) + r

(
k + T
kT

)
ln
(
min

(
k,T
))

ICp3 = ln V̂ (r) + r

(
ln
(
min

(
k,T
))

min
(
k,T
) )

� Suppose k ≈ T , ICp2 is BIC-like

ICp2 = ln V̂ (r) + 2r
(
lnT
T

)
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Information Criteria: Fama-French
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Information Criteria: Fama-French (Raw)

0 2 4 6 8 10 12 14 16 18 20
14.45

14.5

14.55

14.6

14.65

14.7

14.75

14.8

5

5

5

Information Criteria (raw)

r

 

 

IPp1

IPp2

IPp3

32 / 64



Assessing Fit

� Fit can be assessed both globally and for individual series
� Least squares objective leads to natural R2 measurement of fit
� Global fit

R2global
(
k
)
= 1−

tr
(
X− β̂

(
k
)
F
(
k
))′ (

X− β̂
(
k
)
F
(
k
))

tr (X′X)

= 1−

∑k
i=1
∑T

t=1

(
xit −

∑k
j=1 β̂ijfjt

)2
Tk

É Assumes X is standardized
� Individual fit

R2i
(
k
)
= 1−

∑T
t=1

(
xit −

∑k
j=1 β̂ijfjt

)2
∑T

t=1 x
2
it

É Useful for assessing series not well described by factor model
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Individual Fit
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Dynamic Factor Models



Dynamic Factor Models

� Dynamic factors model specify dynamics in the factors
� Basic DFM is

xt =
s∑
i=0

Φift + εt

ft =
q∑
j=1

Ψft−j + ηt

� Observed data depend on contemporaneous and lagged factors
� Factors have VAR-like dynamics
� Assumed that ft and εt are stationary, so xt is also stationary

É Important: must transform series appropriately

� εt can have weak dependence in both the cross-section and time-series
� E
[
εt,ηs

]
= 0 for all t, s
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Optimal Forecast from DFM

xt =
s∑
i=0

Φift−i + εt, ft =
q∑
j=1

Ψft−j + ηt

� Optimal forecast can be derived

E
[
xit+1|xt, ft, xt−1, ft−1, . . .

]
= E

[ s∑
i=0

Φift+1−i + εt+1|xt, ft, xt−1, ft−1, . . .

]

= Et

[ s∑
i=0

Φift+1−i

]
+ Et [εt+1]

=
s′∑
i=1

Aift−i+1 +
n∑
j=1

Bjxit−j+1

� Predictability in both components
É Lagged factors predict factors
É Lagged xit predict εit
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Invertibility and MA processes

� DFM is really factors plus moving average
� Moving average processes can be replaced with AR processes when
invertible

yt = θεt−1 + εt
= θ (yt−1 − θεt−2) + εt
= θyt−1 − θ 2εt−2 + εt
= θyt−1 − θ 2 (yt−2 − θεt−3) + εt
= θyt−1 − θ 2yt−2 + θ 2εt−3 + εt

=
∞∑
i=1

(−1)i−1 θ iyt−i + εt

� Can approximate finite MA with finite AR
� Quality will depend on the persistence of the MA component
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Dynamic as Static Factor Models

� Superficially dynamic factor models appear to be more complicated than
static factor models

� Dynamic Factor models can be directly estimated using Kalman Filter or
spectral estimates
É Latter are not useful for forecasting since 2-sided

� (Big) However, DFM can be converted to Static model by relabeling
� In DFM, factors are

[ft, ft−1, . . . , ft−s]

É Total of r (s + 1) factors in model
� Equivalent to static model with at most r (s + 1) factors

É Redundant factors will not appear in static version
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Dynamic as Static Factor Models

� Consider basic DFM

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� Model can be expressed as

xit = φi1
(
ψft−1 + ηt

)
+ φi2ft−1 + εit

= φi1ηt + φi2 (1 + (φi1/φi2)ψ) ft−1 + εit

� One version of static factors are ηt and ft−1
É In this particular version, ηt is not “dynamic” since it is WN
É ft−1 follows an AR(1) process

� Other rotations will have different dynamics
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Dynamic as Static Factor Models

� Basic simulation

xit = φi1ft + φi2ft−1 + εit
ft = ψft−1 + ηt

� φi1 ∼ N (1, 1),φi2 ∼ N (.2, 1)
É Smaller signal makes it harder to find second factor

� ψ = 0.5
É Higher persistence makes it harder since Corr

[
ft, ft−1

]
is larger

� Everything else standard normal
� k = 200, T = 200

É Also k = 400 and T = 400 (separately)
� All estimation using PCA on correlation

Number of Factors for Forecasting
Better to have r above r? than below
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models
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Dynamic as Static Factor Models

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
R

2
of factors on estimated factors

 

 

T=100, k=100
T=200, k=100
T=100, k=200

44 / 64



Stock and Watson’s DFM Data



Stock & Watson (2012) Data

� Stock & Watson have been at the forefront of factor model development
� Data is from 2012 paper “Disentangling the Channels of the 2007-2009
Recession”

� Dataset consists of 137 monthly and 74 quarterly series
É Not all used for factor estimation
É Aggregates not used if disaggregated series available

� Monthly series are aggregated to quarterly, which is frequency of data
� Series with missing observations are dropped for simplicity

É Before dropping those with missing values data set has 132 series
É After 107 series remain
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The series

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6
Stock Prices, Wealth, Household Balance Sheets 8
Housing Prices 3
Exchange Rates 6
Other 2
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Data Transformation

� All series were transformed to be stationary using one of:
É No transform
É Difference
É Double-difference
É Log
É Log-difference
É Double-log-difference

� After transformation, monthly series were aggregated to quarterly using
É Average
É End-of-quarter

� Finally studentized
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Raw Data after Transform
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Studentized Data
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First Component
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First Three Components
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Scree Plot (Log)
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Scree Plot
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Information Criteria
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Individual Fit against r
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Forecasting



Forecast Methods

� Forecast problem is not meaningfully different from standard problem
� Interest is now in yt, which may or may not be in xt

É Note that stationary version of yt should be forecast, e.g. ∆yt or ∆2yt
� Two methods to forecast

1. Unrestricted

yt+1 = φ0 +
p∑
i=1

φiyt−i+1 + θ ′f̂t + εit

É Treats factors as observed data, only makes sense if k is large
É Uses an AR(P) to model residual dependence
É Choice of number of factors to use, may be different from r
É Can use model selection as usual, e.g. BIC

2. Restricted - when yt is in xt, yt = β f̂t + εt
É Use VAR to forecast f̂t+1 using lags of f̂t
É Use univariate AR for ε̂t
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Re-integrating forecasts

� When forecasting ∆yt,

Et [yt+1] = Et [yt+1 − yt + yt]
= Et [∆yt+1] + yt

� At longer horizons,

Et [yt+h] =
h∑
i=1

Et [∆yt+i] + yt

� When forecasting ∆2yt

Et [yt+1] = Et [yt+1 − yt − yt + yt−1 + 2yt − yt−1]
= Et

[
∆2yt+1

]
+ 2yt − yt−1

É Note in many cases interest in in ∆yt when forecasting ∆2yt, e.g. CPI, inflation
and change in inflation, no same as original problem
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Multistep Forecasting

� Multistep can be constructed using either method
� Unrestricted requires additional VAR for f̂t
� Alternative use direct forecasting

yt+h = φ(h)0 +
ph∑
i=1

φ(h)iyt−i+1 + θ ′(h)f̂t + εit

É
(
h
)
used to denote explicit parameter dependence on horizon

� Direct has been documented to be better than iterative, but problem
dependent
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“Forecasting”

� Used BIC search across models
� 3 setups

É GDP lags only (4), Components Only (6), Both

h∑
j=1

∆gt+j = φ0 +
4∑
s=1

γs∆gt−s+1 +
6∑
n=1

ψnfjt + εht

Both
GDP Only R2 Components Only R2 GDP Components R2

h = 1 1, 2, 4 .517 1, 2, 3, 4, 6 .662 1 1, 2, 3, 4, 6 .686
h = 2 1, 4 .597 1, 2, 3, 4, 6 .763 1 1, 2, 3, 4, 6 .771
h = 3 1, 4 .628 1, 2, 3, 4, 6 .785 1 1, 2, 3, 4, 6 .792
h = 4 1, 4 .661 1, 2, 3, 4, 6 .805 – 1, 2, 3, 4, 6 .805
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Improving Estimated Components



Generalized Principal Components

� Basic PCA makes use of the covariance or more commonly correlation
� Correlation is technically a special case of generalized PCA

min
β ,ft ,...ft

T∑
t=1

(xt − βft)′ Σε (xt − βft) subject to β ′β = Ir

� Clever choices of Σε lead to difference estimators
É Using diag

(
σ̂21, . . . , σ̂2k

)
where σ̂2j is variance of xj leads to correlation

É Tempting to use GLS version based on r principal components

1. Estimate ε̂it = xit − β̂ i f̂t using r factors
2. Estimate σ̂2

εj = T
−1∑ ε̂2it

3. Use Σ̂ε = diag
(
σ̂2ε1, . . . , σ̂2

εk

)
, which means dividing original xjt by σ̂εj
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Other Generalized PCA Estimators

� Alternatives to using basic GLS

1. Estimate Σ̂ε using r factors
2. Compute σ̂2εj =

∑k
i=1

∣∣Σ̂ε (i, j)∣∣
� Down-weights series which have both large idiosyncratic variance and
strong residual covariance

� Stock & Watson (2005) use more sophisticated method

1. Estimate AR(P) on ε̂it for all series

ε̂it =
pi∑
j=1

φjεit−j + ξit

2. Construct quasi-differenced xit using coefficients

x̃it = xit −
pi∑
j=1

φ̂jxit−j

3. Estimate Σ̂ε using ξit
4. Re-estimate factors using quasi-differenced data, iterate if needed
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Redundant and repeated factors

� Redundant factors can have adverse effects on common components
� Exactly redundant factors are identical to increasing the variance of a
studentized data series
É Including xit m-times is the same as using mxit

� Some evidence that excluding highly correlated factors is useful (Boivin &
Ng 2006)

� Method
1. For each series i find series with maximally correlated error, call index ji
2. Drop series in {ji} that are maximally correlated with more than 1 series
3. For series which are each other’s ji, drop series with lower R2

� Can increase step 1 to two or even three series
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Other Applications of Factor Models



Factor Augmented VARs

� Large VARs are challenging since many parameters to estimate
� Small VARs might not have sufficient structure to pick up all shocks
� FAVAR is one solution to these problems[

ft
yt

]
=
[

Φ 0
βΦ− Ξβ Ξ

] [
ft−1
yt−1

]
+
[

G 0
βG I

] [
ηt
ξt

]
É Ξ is diagonal
É Can have additional lags
É Achieves dimension reduction since off-diagonal is determined by diagonal
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Hierarchical Factors

� Can use partitioning to construct hierarchical factors
� Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors,
and extract 1 or more factors from residuals

É Country factors uncorrelated with Global, but not local from other
regions/countries

� Nominal and Real
1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract
factors from residuals
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