Forecasting With Many predictors

The Econometrics of Predictability

This version: June 4, 2014

June 3, 2014

Forecasting with many predictors

- Dynamic Factor Models
- The 3-Pass Regression Filter
- Regularized Reduced Rank Regression
- Time permitting
- Bagging
- Filters and decompositions

How Many is Many?

- Many here means 25 or more
- Often many more, 100s of series

New challenges

Why factor models

- Are parsimonious while effectively including many regressors
- Can remove measurement error or other useless information from predictors
- Factor may be of interest
- Leading indicators:
- €-coin
- Chicago Fed National Activity Index
- Aruoba-Diebold-Scotti Business Conditions Index
- Real and Nominal factors
- Global and Local factors

Eurocoin

- European Coincident Indicator
- First factor in a Europe-wide model
€-coin: the Euro Area Economy in One Figure - May 2014 €-coin and euro-area GDP

Chicago Fed National Activity Index

- Factor extracted from 85 series
- Based on research in forecasting inflation

ADS Business Conditions Index

- Based on factor model in Aruoba, Diebold \& Scotti
- Extracts common factor in:
- weekly initial jobless claims
- monthly payroll employment
- industrial production
- personal income less transfer payments, manufacturing and trade sales
- quarterly real GDP

The Model

- Scalar latent factor

$$
x_{t}=\sum_{i=1}^{q} \rho_{i} x_{t-i}+\eta_{i}
$$

- Indicators

$$
y_{i t}=c_{i}+\beta_{i} x_{t}+\sum_{j=1}^{p_{i}} \gamma y_{i t-\Delta_{i}}+\epsilon_{i}
$$

- Δ_{i} allows series to have different observational frequencies

ADS Business Conditions Index

Aruoba-Diebold-Scotti Business Conditions Index (12/31/2007-05/24/2014)

Notation

- T number of time series observations
- k number of series available to forecast
- y_{t} series to be forecast, m by 1
- m will often be 1
- \mathbf{x}_{t} series used to forecast, k by 1
- Usually assume E $\left[\mathbf{x}_{t}\right]=\mathbf{0}$ and $\operatorname{Cov}\left[\mathbf{x}_{t}\right]=\mathbf{I}_{k}$
- Demeaned and standardized
- Suppose $\mathbf{x}_{t}=\Sigma_{\mathbf{x}}^{-1 / 2}\left(\tilde{\mathbf{x}}_{t}-\boldsymbol{\mu}_{X}\right)$
- \mathbf{f}_{t} factors, r by 1
- x_{t} may be y_{t}, but not necessarily
- \mathbf{y}_{t} could be subset of \mathbf{x}_{t} (common)
- \mathbf{y}_{t} could be excluded from factor estimation (uncommon)

Why factor models?

- Factor models help avoid issues with large, kitchen-sink models
- Consider issue of parameter estimation error when forecasting
- Suppose correct model is linear

$$
y_{t+1}=\boldsymbol{\beta} \mathbf{x}_{t}+\epsilon_{t}
$$

- Forecast using OLS estimates is then

$$
\begin{aligned}
\hat{y}_{t+1 \mid t} & =\hat{\boldsymbol{\beta}} \mathbf{x}_{t} \\
& =(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}+\boldsymbol{\beta}) \mathbf{x}_{t} \\
& \left.=\underset{\text { estimation error }}{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \mathbf{x}_{t}+\underset{\text { correct forecast }}{\boldsymbol{\beta} \mathbf{x}_{t}}} \begin{array}{rl}
\\
\end{array}\right)
\end{aligned}
$$

OLS when there are many regressors

- Suppose $\epsilon_{t}, \mathbf{x}_{t}$ are independent and jointly normally distributed

$$
\operatorname{Cov}\left[\begin{array}{c}
\epsilon_{t} \\
\mathbf{x}_{t}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{\epsilon}^{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{k}
\end{array}\right]
$$

- Standard assumptions have k fixed, so as $T \rightarrow \infty, \hat{\boldsymbol{\beta}}-\boldsymbol{\beta} \xrightarrow{p} 0$

$$
\hat{y}_{t+1 \mid t} \sim N\left(\boldsymbol{\beta} \mathbf{x}_{t}, 0\right)
$$

- Degenerate normal - no error since $\boldsymbol{\beta}$ is effectively known
- What about the case when k is large
- Use diagonal asymptotics, $k / T \rightarrow c, 0<\underline{\kappa}<c<\bar{\kappa}<\infty$
- In this case

$$
\hat{y}_{t+1 \mid t} \sim N\left(\boldsymbol{\beta} \mathbf{x}_{t},{ }^{k} / T \times \sigma_{\epsilon}^{2}\right)
$$

- Is still random, even when $T \rightarrow \infty$
- True even if all $\beta=0$!

(Really) Big models don't make sense

- When the number of parameters is large, then almost all coefficients must be 0

$$
y_{t}=\sum_{i=1}^{k} \beta_{i} x_{t, i}+\epsilon_{i}
$$

- Variance of the LHS is the same as the RHS

$$
\mathrm{V}\left[y_{t}\right]=\sum_{i=1}^{k} \beta_{i}^{2}+\sigma_{\epsilon}^{2}
$$

- If $k \rightarrow \infty, \inf _{i}\left|\beta_{i}\right|>\underline{\kappa}>0$, then $\mathrm{V}\left[y_{t}\right] \rightarrow \infty$
- Even when T is very large, it will not usually make sense to have k extremely large
- Factor models will effectively have small β_{i} coefficient, only using two steps

1. Construct average-like estimators of factors from \mathbf{x}_{t} - coefficients are $O(1 / k)$
2. Weight these using a small number of relatively large coefficients

Static Factor Models

Static Factor Models

- Consider the cross-section of asset returns
- Model uses factors as RHS variables

$$
x_{i t}=\sum_{j=1}^{r} \lambda_{i j} f_{i t}+\epsilon_{i t}
$$

- $\lambda_{i j}$ are the factor loadings for series i, factor j
- $\epsilon_{i t}$ is the idiosyncratic error for series i
- In vector notation,

$$
\underset{k \times 1}{\mathbf{x}_{t}}=\underset{k \times r_{r} \times 1}{\boldsymbol{\Lambda}} \mathbf{f}_{t}+\underset{r \times 1}{\boldsymbol{\epsilon}_{t}}
$$

- $\boldsymbol{\Lambda}$ is k by r
- \mathbf{f}_{t} is r by 1

Static Factor Models

- In matrix notation,

$$
\underset{T \times k}{\mathbf{X}}=\underset{T \times r \times k}{\mathbf{F}} \boldsymbol{\Lambda}^{\prime}+\underset{T \times k}{\boldsymbol{\epsilon}}
$$

- \mathbf{X} is T by k
- \mathbf{F} is T by r
- ϵ is k by 1
- When model is a strict (as opposed to approximate), $\mathrm{E}\left[\boldsymbol{\epsilon}_{t}\right]=\mathbf{0}$ and $\mathrm{E}\left[\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right]=\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)$
- Covariance of \mathbf{x}_{t} is then

$$
\boldsymbol{\Lambda} \boldsymbol{\Omega} \boldsymbol{\Lambda}^{\prime}+\Sigma_{\epsilon}
$$

- $\boldsymbol{\Omega}=\operatorname{Cov}\left[\mathbf{f}_{\mathbf{t}}\right], r$ by r
- Covariance will play a crucial role in estimation of factors

Estimation using Principal Components

- Principal components can be used to estimate factors
- Formally, problem is

$$
\min _{\boldsymbol{\beta}, \mathbf{f}_{t}, . \mathbf{f}_{t}} \sum_{t=1}^{T}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right)^{\prime}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right) \text { subject to } \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}_{r}
$$

- $\boldsymbol{\beta}$ is k by r
- $\boldsymbol{\beta}$ is related to but different from $\boldsymbol{\Lambda}$
- $\boldsymbol{\Lambda}$ is the DGP parameter
- $\boldsymbol{\beta}$ is a normalized and rotated version of $\boldsymbol{\Lambda}$

Definition (Rotation)

A square matrix \mathbf{B} is said to be a rotation of a square matrix \mathbf{A} if $\mathbf{B}=\mathbf{Q A}$ and $\mathbf{Q Q}^{\prime}=\mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{I}$.

- \mathbf{f}_{t} is r by 1
- $\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}_{r}$ is a normalization, and is required
- $\boldsymbol{\beta} \mathbf{f}_{t}=\left((\boldsymbol{\beta} / 2)\left(2 \mathbf{f}_{t}\right)\right)$
- Generally, for full rank $\mathbf{Q},(\boldsymbol{\beta} \mathbf{Q})\left(\mathbf{Q}^{-1} \mathbf{f}_{t}\right)=\tilde{\boldsymbol{\beta}} \tilde{\mathbf{f}}_{t}$

The Objective Function

- If $\boldsymbol{\beta}$ was observable, solution would be OLS

$$
\hat{\mathbf{f}}_{t}=\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} \mathbf{x}_{t}
$$

This can be substituted into the objective function

$$
\sum_{t=1}^{T}\left(\mathbf{x}_{t}-\boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t}\right)^{\prime}\left(\mathbf{x}_{t}-\boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} \mathbf{x}_{t}\right)=\sum_{t=1}^{T} \mathbf{x}_{t}^{\prime}\left(\mathbf{I}-\boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime}\right) \mathbf{x}_{t}
$$

- This works since $\mathbf{I}-\boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime}$ is idempotent
- AA = A
- Some additional manipulation using the trace operator on a scalar leads to two equivalent expressions

$$
\begin{aligned}
\min _{\boldsymbol{\beta}} \sum_{t=1}^{T} \mathbf{x}_{t}^{\prime}\left(\mathbf{I}-\boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime}\right) \mathbf{x}_{t} & =\max _{\boldsymbol{\beta}} \operatorname{tr}\left(\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1 / 2} \boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x}} \boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)^{-1 / 2}\right) \\
& =\max _{\boldsymbol{\beta}} \boldsymbol{\beta}^{\prime} \mathbf{\Sigma}_{\mathbf{x}} \boldsymbol{\beta}
\end{aligned}
$$

- All subject to $\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}_{r}$
- Solution to last problem sets $\boldsymbol{\beta}$ to the eigenvectors of $\boldsymbol{\Sigma}_{\mathbf{x}}$

Eigenvalues and Eigenvectors

Definition (Eigenvalue)

The eigenvalues of a real, symmetric matrix k by k matrix \mathbf{A} are the k solutions to

$$
\left|\lambda \mathbf{I}_{k}-\mathbf{A}\right|=0
$$

where $|\cdot|$ is the determinant.

- Properties of eigenvalues
- $\operatorname{det} \mathbf{A}=\prod_{i=1}^{r} \lambda_{i}$
$-\operatorname{trA}=\sum_{i=1}^{r} \lambda_{i}$
- For positive (semi) definite $\mathrm{A}, \lambda_{i}>0, i=1, \ldots, r\left(\lambda_{i} \geq 0\right)$
- Rank
- Full-rank A implies $\lambda_{i} \neq 0, i=1, \ldots, r$
- Rank $q<r$ matrix \mathbf{A} implies $\lambda_{i} \neq 0, i=1, \ldots, q$ and $\lambda_{j}=0, j=q+1, \ldots, r$

Properties of Eigenvalues and Eigenvectors

Definition (Eigenvector)

An a k by 1 vector \mathbf{u} is an eigenvector corresponding to an eigenvalue λ of a real, symmetric matrix k by k matrix \mathbf{A} if

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}
$$

- Properties of eigenvectors
- If \mathbf{A} is positive definite, then

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\prime}
$$

where $\boldsymbol{\Lambda}$ is diagonal and $\mathbf{V} \mathbf{V}^{\prime}=\mathbf{V}^{\prime} \mathbf{V}=\mathbf{I}$

Definition (Orthonormal Matrix)

A k-dimensional orthonormal matrix \mathbf{U} satisfies $\mathbf{U}^{\prime} \mathbf{U}=\mathbf{I}_{k}$, and so $\mathbf{U}^{\prime}=\mathbf{U}^{-1}$.

- Implication is

$$
\mathbf{V}^{\prime} \mathbf{A V}=\mathbf{V}^{\prime} \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\prime} \mathbf{V}=\boldsymbol{\Lambda}
$$

Computing Factors using PCA

- \mathbf{X} is T by k (assume demeaned)
- $\mathbf{X}^{\prime} \mathbf{X}$ is real and symmetric with eigenvalues $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{i}\right)_{i=1, \ldots, k}$
- Factors are estimated

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{X} & =\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\prime} \\
\mathbf{V}^{\prime} \mathbf{X}^{\prime} \mathbf{X V} & =\mathbf{V}^{\prime} \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\prime} \mathbf{V} \\
(\mathbf{X V})^{\prime}(\mathbf{X V}) & =\boldsymbol{\Lambda} \text { since } \mathbf{V}^{\prime}=\mathbf{V}^{-1} \\
\mathbf{F}^{\prime} \mathbf{F} & =\mathbf{\Lambda} .
\end{aligned}
$$

- $\mathbf{F}=\mathbf{X V}$ is the T by k matrix of factors
- $\boldsymbol{\beta}=\mathbf{V}^{\prime}$ is the k by k matrix of factor loadings.
- All factors exactly reconstruct \mathbf{Y}

$$
\mathbf{F} \boldsymbol{\beta}=\mathbf{F} \mathbf{V}^{\prime}=\mathbf{Y} \mathbf{V} \mathbf{V}^{\prime}=\mathbf{Y}
$$

- Assumes k is large
- Note that both factors and loadings are orthogonal since

$$
\mathbf{F}^{\prime} \mathbf{F}=\boldsymbol{\Lambda} \text { and } \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}
$$

- Only loadings are normalized

Large k and factor analysis

- Consider simple example where

$$
x_{i t}=1 \times f_{t}+\epsilon_{i t}
$$

- f_{t} and $\epsilon_{i t}$ are all independent, standard normal
- Covariance of \mathbf{x} is $\boldsymbol{\Sigma}_{\mathbf{x}}=1+I_{k}$

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

- First eigenvector is

$$
\left(k^{-1 / 2}, k^{-1 / 2}, \ldots, k^{-1 / 2}\right)
$$

- Form is due to normalization

$$
\sum_{i=1}^{k} v_{i j}^{2}=1, \sum_{i=1}^{k} v_{i j} v_{i n}=0
$$

- $\sum_{i=1}^{k}\left(k^{-1 / 2}\right)^{2}=\sum_{i=1}^{k} k^{-1}=k k^{-1}=1$

Estimated Factors

- Estimated factor is then

$$
\hat{f}_{t}=\sum_{i=1}^{k} k^{-1 / 2} x_{i t}=k^{1 / 2}\left(1 / k \sum x_{i t}\right)=k^{1 / 2} \bar{x}=\sum_{i=1}^{k} w_{i} x_{i}
$$

- What about \bar{X}

$$
\begin{aligned}
\bar{x} & =k^{-1}\left(\sum_{i=1}^{k} f_{t}+\epsilon_{i t}\right) \\
& =f_{t}+\bar{\epsilon}_{t} \\
& \approx f_{t}
\end{aligned}
$$

- Normalization means factor is $O_{p}\left(k^{1 / 2}\right)$
- Can always re-normalize factor to be $O_{p}(1)$ using $\hat{f}_{t} / k^{1 / 2}$
- Key assumption is that $\bar{\epsilon}_{t}$ follows some form of LLN in k
- In strict factor model, no correlation so simple

Approximate Factor Models

- Strict factor models require strong assumptions

$$
\operatorname{Cov}\left(\epsilon_{i t}, \epsilon_{j s}\right)=0 \quad i \neq j, s \neq t
$$

- These are easily rejectable in practice
- Approximate Factor Models relax these assumptions and allow:
- (Weak) Serial correlation in $\boldsymbol{\epsilon}_{t}$

$$
\sum_{s=0}^{\infty}\left|\gamma_{s}\right|<\infty
$$

- (Weak) Cross-sectional correlation between $\epsilon_{i t}$ and $\epsilon_{j t}$

$$
\lim _{k \rightarrow \infty} \sum_{i \neq j}^{k} \mathrm{E}\left|\epsilon_{i t} \epsilon_{j t}\right|<\infty
$$

- Heteroskedasticity in ϵ
- Requires pervasive factors

$$
\begin{aligned}
\mathbf{x}_{t} & =\boldsymbol{\Lambda} \mathbf{f}_{t}+\boldsymbol{\epsilon}_{t} \\
\lim _{k \rightarrow \infty} \operatorname{rank}\left(k^{-1} \boldsymbol{\Lambda}^{\prime} \boldsymbol{\Lambda}\right) & =r
\end{aligned}
$$

Practical Considerations when Estimating Factors oxxiok

- Key input for factor estimation is $\Sigma_{\mathbf{x}}$
- In most theoretical discussions of PCA, this is the covariance

$$
\boldsymbol{\Sigma}_{\mathbf{x}}=T^{-1} \sum_{t=1}^{T}\left(\mathbf{x}_{t}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{t}-\hat{\boldsymbol{\mu}}\right)
$$

- Two other simple versions are used
- Outer-product

$$
T^{-1} \mathbf{X}^{\prime} \mathbf{X}=T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime}
$$

- Similar to fitting OLS without a constant
- Correlation matrix

$$
\mathbf{R}_{\mathbf{x}}=T^{-1} \sum_{t=1}^{T} \mathbf{z}_{t} \mathbf{z}_{t}^{\prime}
$$

- $\mathbf{z}_{t}=\left(\mathbf{x}_{t}-\hat{\boldsymbol{\mu}}\right) \oslash \hat{\sigma}$ are the original data series, only studentized
- Important since scale is not well defined for many economic data (e.g. indices)

Fama-French Data

- Initial exploration based on Fama-French data
- 100 portfolios
- Sorted on size and boot-to-market
- 49 portfolios
- Sorted on industry
- Equities are known to follow a strong factor model
- Series missing more than 24 missing observations were dropped
- 73 for 10 by 10 sort remaining
- 41 of 49 industry portfolios
- First 24 data points dropped for all series
- July 1928 - December 2013
- $T=1,026$
- $k=114$
- Two versions, studentized and raw

First Factor from FF Data

Scatter Plot of Excess Market and 1st PC

First Factor from FF Data (Raw)

Scatter Plot of Excess Market and 1st PC (raw)

Selecting the Number of Factors (r)

Choosing the number of factors

- So far have assumed r is known
- In practice r has to be estimated
- Two methods
- Graphical using Scree plots
- Plot of ordered eigenvalues, usually standardized by sum of all
- Interpret this as the R^{2} of including r factors
- Recall $\sum_{i=1}^{l} \lambda_{i}=k$ for correlation matrix (Why?)
- Closely related to system R^{2},

$$
R^{2}(r)=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{j=1}^{k} \lambda_{j}}
$$

- Information criteria-based
- Similar to AIC/BIC, only need to account for both k and T

Stylized Fact(ors)

If in doubt, all known economic panels have between 1 and 6 factors

Scree Plot: Fama-French

Scree Plot, Fama-French Size, B-to-M, Industry

Scree Plot: Fama-French

Scree Plot, Fama-French Size, B-to-M, Industry (Log)

Scree Plot: Fama-French (Non-Factors)

Information Criteria

- Bai \& Ng (2002) studied the problem of selecting the correct number of factors in an approximate factor model
- Proposed a number of information criteria with the form

$$
\begin{gathered}
\ln \widehat{V(r)}+r \times g(k, T) \\
\widehat{V(r)}=\sum_{t=1}^{T}\left(\mathbf{x}_{t}-\hat{\boldsymbol{\beta}}(r) \mathbf{f}_{t}(r)\right)^{\prime}\left(\mathbf{x}_{t}-\hat{\boldsymbol{\beta}}(r) \mathbf{f}_{t}(r)\right)
\end{gathered}
$$

- $\widehat{V(r)}$ is the value of the objective function with r factors
- Three versions

$$
\begin{aligned}
I C_{p_{1}} & =\ln \widehat{V(r)}+r\left(\frac{k+T}{k T}\right) \ln \left(\frac{k T}{k+T}\right) \\
I C_{p_{2}} & =\ln \widehat{V(r)}+r\left(\frac{k+T}{k T}\right) \ln (\min (k, T)) \\
I C_{p_{3}} & =\ln \widehat{V(r)}+r\left(\frac{\ln (\min (k, T))}{\min (k, T)}\right)
\end{aligned}
$$

- Suppose $k \approx T$, $I C_{p_{2}}$ is BIC-like

$$
I C_{p 2}=\ln \widehat{V(r)}+2 r\left(\frac{\ln T}{T}\right)
$$

Information Criteria: Fama-French

Information Criteria: Fama-French (Raw)

Assessing Fit

- Fit can be assessed both globally and for individual series
- Least squares objective leads to natural R^{2} measurement of fit
- Global fit

$$
\begin{aligned}
R_{\text {global }}^{2}(r) & =1-\frac{\operatorname{tr}(\mathbf{X}-\hat{\boldsymbol{\beta}}(r) \mathbf{F}(r))^{\prime}(\mathbf{X}-\hat{\boldsymbol{\beta}}(r) \mathbf{F}(r))}{\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)} \\
& =\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{j=1}^{k} \lambda_{j}}
\end{aligned}
$$

- Numerator is just $\widehat{V(r)}=\sum_{i=1}^{k} \sum_{t=1}^{T}\left(x_{i t}-\sum_{j=1}^{r} \hat{\beta}_{i j} f_{j t}\right)^{2}$
- When \mathbf{x} has been studentized, $\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=\sum_{j=1}^{k} \lambda_{j}=T k$
- Individual fit

$$
R_{i}^{2}(r)=1-\frac{\sum_{t=1}^{T}\left(x_{i t}-\sum_{j=1}^{r} \hat{\beta}_{i j} f_{j t}\right)^{2}}{\sum_{t=1}^{T} x_{i t}^{2}}
$$

- Useful for assessing series not well described by factor model

Individual Fit

Individual R^{2} using r factors

Dynamic Factor Models

Dynamic Factor Models

- Dynamic factors model specify dynamics in the factors
- Basic DFM is

$$
\begin{aligned}
\mathbf{x}_{t} & =\sum_{i=0}^{s} \boldsymbol{\Phi}_{i} \mathbf{f}_{t}+\boldsymbol{\epsilon}_{t} \\
\mathbf{f}_{t} & =\sum_{j=1}^{q} \boldsymbol{\Psi}_{t-j}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- Observed data depend on contemporaneous and lagged factors
- Factors have VAR-like dynamics
- Assumed that \mathbf{f}_{t} and $\boldsymbol{\epsilon}_{t}$ are stationary, so \mathbf{x}_{t} is also stationary
- Important: must transform series appropriately when applying to data
- ϵ_{t} can have weak dependence in both the cross-section and time-series
- $\mathrm{E}\left[\boldsymbol{\epsilon}_{t}, \boldsymbol{\eta}_{s}\right]=\mathbf{0}$ for all t, s

Optimal Forecast from DFM

$$
\mathbf{x}_{t}=\sum_{i=0}^{s} \boldsymbol{\Phi}_{i} \mathbf{f}_{t-i}+\boldsymbol{\epsilon}_{t}, \quad \mathbf{f}_{t}=\sum_{j=1}^{q} \boldsymbol{\Psi} \mathbf{f}_{t-j}+\boldsymbol{\eta}_{t}
$$

- Optimal forecast can be derived

$$
\begin{aligned}
\mathrm{E}\left[x_{i t+1} \mid \mathbf{x}_{t}, \mathbf{f}_{t}, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots\right] & =\mathrm{E}\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i} \mathbf{f}_{t+1-i}+\epsilon_{i t+1} \mid \mathbf{x}_{t}, \mathbf{f}_{t}, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots\right] \\
& =\mathrm{E}_{t}\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i} \mathbf{f}_{t+1-i}\right]+\mathrm{E}_{t}\left[\epsilon_{i t+1}\right] \\
& =\sum_{i=1}^{s^{\prime}} \mathbf{A}_{i} f_{t-i+1}+\sum_{j=1}^{n} \mathbf{B}_{j} x_{i t-j+1}
\end{aligned}
$$

- Predictability in both components
- Lagged factors predict factors
- Lagged $x_{i t}$ predict $\epsilon_{i t}$

Invertibility and MA processes

- DFM is really factors plus moving average
- Moving average processes can be replaced with AR processes when invertible

$$
\begin{aligned}
y_{t} & =\epsilon_{t}+\theta \epsilon_{t-1} \\
y_{t}-\theta y_{t-1} & =\epsilon_{t}+\theta \epsilon_{t-1}-\theta\left(\theta \epsilon_{t-2}+\epsilon_{t-1}\right) \\
& =\epsilon_{t}-\theta^{2} \epsilon_{t-2} \\
y_{t}-\theta y_{t-1}+\theta^{2} y_{t-2} & =\epsilon_{t}-\theta^{2} \epsilon_{t-2}+\theta^{2}\left(\theta \epsilon_{t-3}+\epsilon_{t-2}\right) \\
& =\epsilon_{t}+\theta^{2}\left(\theta \epsilon_{t-3}+\epsilon_{t-2}\right) \\
\sum_{i=0}^{\infty}(-\theta)^{i} y_{t-i} & =\epsilon_{t} \\
y_{t} & =\sum_{i=1}^{\infty}-(-\theta)^{i} y_{t-i}+\epsilon_{t}
\end{aligned}
$$

- Can approximate finite MA with finite AR
- Quality will depend on the persistence of the MA component

Dynamic as Static Factor Models

- Superficially dynamic factor models appear to be more complicated than static factor models
- Dynamic Factor models can be directly estimated using Kalman Filter or spectral estimators that account for serial correlation in factors
- Latter are not useful for forecasting since 2-sided
- (Big) However, DFM can be converted to Static model by relabeling
- In DFM, factors are

$$
\left[\mathbf{f}_{t}, \mathbf{f}_{t-1}, \ldots, \mathbf{f}_{t-s}\right]
$$

- Total of $r(s+1)$ factors in model
- Equivalent to static model with at most $r(s+1)$ factors
- Redundant factors will not appear in static version

Dynamic as Static Factor Models

- Consider basic DFM

$$
\begin{aligned}
x_{i t} & =\phi_{i 1} f_{t}+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
f_{t} & =\psi f_{t-1}+\eta_{t}
\end{aligned}
$$

- Model can be expressed as

$$
\begin{aligned}
x_{i t} & =\phi_{i 1}\left(\psi f_{t-1}+\eta_{t}\right)+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
& =\phi_{i 1} \eta_{t}+\phi_{i 2}\left(1+\left(\phi_{i 1} / \phi_{i 2}\right) \psi\right) f_{t-1}+\epsilon_{i t}
\end{aligned}
$$

- One version of static factors are η_{t} and f_{t-1}
- In this particular version, η_{t} is not "dynamic" since it is WN
- f_{t-1} follows an AR(1) process
- Other rotations will have different dynamics

Dynamic as Static Factor Models

- Basic simulation

$$
\begin{aligned}
x_{i t} & =\phi_{i 1} f_{t}+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
f_{t} & =\psi f_{t-1}+\eta_{t}
\end{aligned}
$$

- $\phi_{i 1} \sim N(1,1), \phi_{i 2} \sim N(.2,1)$
- Smaller signal makes it harder to find second factor
- $\psi=0.5$
- Higher persistence makes it harder since $\operatorname{Corr}\left[f_{t}, f_{t-1}\right]$ is larger
- Everything else standard normal
- $k=100, T=100$
- Also $k=200$ and $T=200$ (separately)
- All estimation using PCA on correlation

Number of Factors for Forecasting

Better to have r above r^{\star} than below

Measuring Closeness of Estimate

- Factors are not point identified
- Can use an arbitrary rotation and model is equivalent
- Natural measure of similarity between original (GDP) factors and estimated factors is global R^{2}

$$
\begin{aligned}
\hat{\mathbf{f}}_{t} & =\mathbf{A f _ { t } + \boldsymbol { \eta } _ { t }} \\
R^{2} & =1-\frac{\sum_{t=1}^{T} \hat{\boldsymbol{\eta}}_{t}^{\prime} \hat{\boldsymbol{\eta}}_{t}}{\sum_{t=1}^{T} \mathbf{f}_{t}^{\prime} \mathbf{f}_{t}}
\end{aligned}
$$

- Note that \mathbf{A} is a 2 by 2 matrix of regression coefficients

Dynamic as Static Factor Models

Dynamic as Static Factor Models

$I C_{p 2}$ Selected $r, \mathrm{~T}=100, \mathrm{k}=200$

Dynamic as Static Factor Models

$I C_{p 2}$ Selected $r, \mathrm{~T}=200, \mathrm{k}=100$

Dynamic as Static Factor Models

Stock and Watson's DFM Data

Stock \& Watson (2012) Data

- Stock \& Watson have been at the forefront of factor model development
- Data is from 2012 paper "Disentangling the Channels of the 2007-2009 Recession"
- Dataset consists of 137 monthly and 74 quarterly series
- Not all used for factor estimation
- Aggregates not used if disaggregated series available
- Monthly series are aggregated to quarterly, which is frequency of data
- Series with missing observations are dropped for simplicity
- Before dropping those with missing values data set has 132 series
- After 107 series remain

The series

National Income and Product Accounts (NIPA) 12
Industrial Production 9
Employment and Unemployment 30
Housing Starts 6
Inventories, Orders, and Sales 7
Prices 25
Earnings and Productivity 8
Interest Rates 10
Money and Credit 6
Stock Prices, Wealth, Household Balance Sheets 8
Housing Prices 3
Exchange Rates 6
Other 2

Data Transformation

- Monthly series were aggregated to quarterly using
- Average
- End-of-quarter
- All series were transformed to be stationary using one of:
- No transform
- Difference
- Double-difference
- Log
- Log-difference
- Double-log-difference
- Most series checked for outliers relative to IQR (rare)
- Final series were Studentized in estimation of PC

Raw Data Before Transform

Untransformed SW Data (Studentized)

Raw Data after Transform

Transformed SW Data

Studentized Data

Studentized SW Data

First Component

First Three Components

First Component (Standardized)

Second Component (Standardized)

Third Component (Standardized)

Scree Plot (Log)

Scree Plot, Stock \& Watson (Log)

Scree Plot

Scree Plot, Stock \& Watson

Information Criteria

Individual Fit against r

Individual R^{2} using r factors

Forecasting

Forecast Methods

- Forecast problem is not meaningfully different from standard problem
- Interest is now in \mathbf{y}_{t}, which may or may not be in \mathbf{x}_{t}
- Note that stationary version of \mathbf{y}_{t} should be forecast, e.g. $\Delta \mathbf{y}_{t}$ or $\Delta^{2} \mathbf{y}_{t}$
- Two methods to forecast

Unrestricted

$$
y_{t+1}=\phi_{0}+\sum_{i=1}^{p} \phi_{i} y_{t-i+1}+\boldsymbol{\theta}^{\prime} \hat{\mathbf{f}}_{t}+\epsilon_{i t}
$$

- Treats factors as observed data, only makes sense if k is large
- Uses an $\operatorname{AR}(P)$ to model residual dependence
- Choice of number of factors to use, may be different from r
- Can also use lags of \mathbf{f}_{t} (uncommon)
- Model selection is applicable as usual, e.g. BIC

Forecast Methods

Restricted

- When \mathbf{y}_{t} is in $\mathbf{x}_{t}, \mathbf{y}_{t}=\boldsymbol{\beta} \hat{\mathbf{f}}_{t}+\epsilon_{t}$

$$
\begin{gathered}
\epsilon_{t}=\mathbf{y}_{t}-\boldsymbol{\beta} \hat{\mathbf{f}}_{t} \\
\hat{y}_{t+1 \mid t}=\boldsymbol{\beta} \hat{\mathbf{f}}_{t+1 \mid t}+\sum_{i=1}^{p} \phi_{i}\left(y_{t-i+1}-\boldsymbol{\beta} \hat{\mathbf{f}}_{t-i+1}\right) \\
=\boldsymbol{\beta} \hat{\mathbf{t}}_{t+1 \mid t}+\sum_{i=1}^{p} \phi_{i} \hat{\epsilon}_{t}
\end{gathered}
$$

- VAR to forecast $\hat{\mathbf{f}}_{t+1}$ using lags of $\hat{\mathbf{f}}_{t}$
- Univariate AR for $\hat{\epsilon}_{t}$
- Usually found to be less successful than unrestricted
- Care is needed when using studentized data since forecasting recentered, rescaled version of y

Re-integrating forecasts

- When forecasting $\Delta \mathbf{y}_{t}$,

$$
\begin{aligned}
\mathrm{E}_{t}\left[\mathbf{y}_{t+1}\right] & =\mathrm{E}_{t}\left[\mathbf{y}_{t+1}-\mathbf{y}_{t}+\mathbf{y}_{t}\right] \\
& =\mathrm{E}_{t}\left[\Delta \mathbf{y}_{t+1}\right]+\mathbf{y}_{t}
\end{aligned}
$$

- At longer horizons,

$$
\mathrm{E}_{t}\left[\mathbf{y}_{t+h}\right]=\sum_{i=1}^{h} \mathrm{E}_{t}\left[\Delta \mathbf{y}_{t+i}\right]+\mathbf{y}_{t}
$$

- When forecasting $\Delta^{2} \mathbf{y}_{t}$

$$
\begin{aligned}
\mathrm{E}_{t}\left[\mathbf{y}_{t+1}\right] & =\mathrm{E}_{t}\left[\mathbf{y}_{t+1}-\mathbf{y}_{t}-\mathbf{y}_{t}+\mathbf{y}_{t-1}+2 \mathbf{y}_{t}-\mathbf{y}_{t-1}\right] \\
& =\mathrm{E}_{t}\left[\Delta^{2} \mathbf{y}_{t+1}\right]+2 \mathbf{y}_{t}-\mathbf{y}_{t-1}
\end{aligned}
$$

- In many cases interest is in $\Delta \mathbf{y}_{t}$ when forecasting $\Delta^{2} \mathbf{y}_{t}$
- For example CPI, inflation and change in inflation
- Same as reintegrating Δy_{t} to y_{t}

Multistep Forecasting

- Multistep can be constructed using either method
- Unrestricted requires additional VAR for $\hat{\mathbf{f}}_{t}$
- Alternative use direct forecasting

$$
y_{t+h \mid t}=\hat{\phi}_{(h) 0}+\sum_{i=1}^{p^{h}} \hat{\phi}_{(h) i} y_{t-i+1}+\hat{\boldsymbol{\theta}}_{(h)}^{\prime} \hat{\mathbf{f}}_{t}
$$

- (h) used to denote explicit parameter dependence on horizon
- $y_{t+h \mid t}$ can be either the period- h value, or the h-period cumulative forecast (more common)
- Direct has been documented to be better than iterative in DFMs
- Problem dependent

"Forecasting"

- Used BIC search across models
- 3 setups
- GDP lags only (4), Components Only (6), Both

$$
\sum_{j=1}^{h} \Delta g_{t+j}=\phi_{0}+\sum_{s=1}^{4} \gamma_{s} \Delta g_{t-s+1}+\sum_{n=1}^{6} \psi_{n} f_{j t}+\epsilon_{h t}
$$

Both

	GDP Only	R^{2}	Components Only	R^{2}	GDP	Components	R^{2}
$h=1$	1,2,4	. 517	1,2, 3, 4, 6	. 662	1	1, 2, 3, 4, 6	. 686
$h=2$	1,4	. 597	1, 2, 3, 4, 6	. 763	1	1, 2, 3, 4, 6	. 771
$h=3$	1,4	. 628	1,2, 3, 4, 6	. 785	1	1,2, 3, 4, 6	. 792
$h=4$	1,4	. 661	1,2, 3, 4, 6	. 805	-	1, 2, 3, 4, 6	. 805

Improving Estimated Components

Generalized Principal Components

- Basic PCA makes use of the covariance or more commonly correlation
- Correlation is technically a special case of generalized PCA

$$
\min _{\boldsymbol{\beta}, \mathbf{f}_{t}, \ldots \mathbf{f}_{t}} \sum_{t=1}^{T}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right)^{\prime} \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right) \text { subject to } \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}_{r}
$$

- Clever choices of $\boldsymbol{\Sigma}_{\epsilon}$ lead to difference estimators
- Using diag $\left(\hat{\sigma}_{1}^{2}, \ldots, \hat{\sigma}_{k}^{2}\right)$ where $\hat{\sigma}_{j}^{2}$ is variance of x_{j} leads to correlation
- Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS)

1. Estimate $\hat{\epsilon}_{i t}=x_{i t}-\hat{\boldsymbol{\beta}}_{i} \hat{\mathbf{f}}_{t}$ using r factors
2. Estimate $\hat{\sigma}_{\epsilon i}^{2}=T^{-1} \sum \hat{\epsilon}_{i t}^{2}$ and $\mathbf{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{k}\right)$ where

$$
w_{i}=\frac{1 / \hat{\sigma}_{\epsilon i}}{\sum_{j=1}^{k} 1 / \hat{\sigma}_{\epsilon j}}
$$

3. Compute PCA-GLS using WX

Other Generalized PCA Estimators

- Absolute covariance weighting

1. Compute complete residual covariance $\hat{\mathbf{\Sigma}}_{\epsilon}$ from residuals
2. Replace $\hat{\sigma}_{\epsilon i}^{2}$ in step 2 with $\hat{\sigma}_{\epsilon i}^{2}=\sum_{j=1}^{k}\left|\hat{\Sigma}_{\epsilon}(i, j)\right|$

- Down-weights series which have both large idiosyncratic variance and strong residual covariance
- Stock \& Watson (2005) use more sophisticated method

1. Estimate $\operatorname{AR}(\mathrm{P})$ on $\hat{\epsilon}_{i t}$ for all series

$$
\hat{\epsilon}_{i t}=\sum_{j=1}^{p_{i}} \phi_{j} \epsilon_{i t-j}+\xi_{i t}
$$

2. Construct quasi-differenced $x_{i t}$ using coefficients

$$
\tilde{x}_{i t}=x_{i t}-\sum_{j=1}^{p_{i}} \hat{\phi}_{j} x_{i t-j}
$$

3. Estimate $\hat{\sigma}_{\epsilon i}^{2}$ using $\hat{\xi}_{i t}$
4. Re-estimate factors using quasi-differenced data and weighting, iterate if needed

Generalized Principal Components Inputs

Normalized Residual Variance

Normalized Residual Absolute Covariance

Generalized Principal Components Weights

Redundant and repeated factors

- Redundant factors can have adverse effects on common components
- Exactly redundant factors are identical to increasing the variance of a studentized data series
- Including $x_{i t} m$-times is the same as using $m x_{i t}$
- Some evidence that excluding highly correlated factors is useful (Boivin \& Ng 2006)
- Method

1. For each series i find series with maximally correlated error, call index j_{i}
2. Drop series in $\left\{j_{i}\right\}$ that are maximally correlated with more than 1 series
3. For series which are each other's j_{i}, drop series with lower R^{2}

- Can increase step 1 to two or even three series

Prinicpal Component Analysis with Missing Data

- Two obvious solutions to missing data in PCA
- Drop all series that have missing observations
- Impute values for the missing values
- Missing data structure in SW 2012

Expectations-Maximization (EM) Algorithm

- Some problem with unobserved states can be solved using the EM algorithm
- Consider problem of estimating means from an i.i.d. mixture

$$
X_{i}=Y_{i} \mu_{1}+\left(1-Y_{i}\right) \mu_{2}+Z_{i}
$$

- Y_{i} is i.i.d. Bernoulli(p), Z_{i} is standard normal
- Y_{i} was observable, trivial problem (OLS)
- When Y_{i} is not observable, much harder
- EM algorithm will iterate across two steps:

1. Construct "as-if" Y_{i} using expectations of Y_{i} given μ_{1} and μ_{2}
2. Compute

$$
\hat{\mu}_{1}=\frac{\sum \operatorname{Pr}\left(Y_{i}=1\right) X_{i}}{\sum \operatorname{Pr}\left(Y_{i}=1\right)} \quad \hat{\mu}_{2}=\frac{\sum \operatorname{Pr}\left(Y_{i}=0\right) X_{i}}{n-\sum \operatorname{Pr}\left(Y_{i}=1\right)}
$$

3. Return to 1 , stopping if the means are not changing much

- Algorithm is initialized with "guesses" about μ_{1} and μ_{2}
- Example: Mean of data above median, mean of data below median
- Consider case where $\mu_{1}=10, \mu_{2}=-10$

Imputing Missing Values in PCA

- Ideally would like to solve PCA problem only for observed data
- Difficult in practice, no know closed form estimator
- Expectation-Maximization (EM) algorithm can be used to simply impute missing data
- Replace missing with r-factor expectation (E)
- Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define $w_{i j}=I\left[y_{i j}\right.$ observed $]$ and set $i=0$
2. Construct $\mathbf{X}^{(0)}=\mathbf{W} \odot \mathbf{X}+(1-\mathbf{W}) \odot \iota \overline{\mathbf{X}}$ where $\boldsymbol{\iota}$ is $a T$ by 1 vector of 1 s
3. Until $\left\|\mathbf{X}^{(i+1)}-\mathbf{X}^{(i)}\right\|<c$:
a. Estimate r factors and factor loadings, $\hat{\mathbf{F}}^{(i)}$ and $\hat{\boldsymbol{\beta}}^{(i)}$ from $\mathbf{X}^{(i)}$ using PCA
b. Construct $\mathbf{X}^{(i+1)}=\mathbf{W} \odot \mathbf{X}+(1-\mathbf{W}) \odot\left(\hat{\mathbf{F}}^{(i)} \hat{\boldsymbol{\beta}}^{(i)}\right)$
c. Set $i=i+1$

Hierarchical Factors

- Can use partitioning to construct hierarchical factors
- Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country j, regress series from country j on Global Factors, and extract 1 or more factors from residuals

- Country factors uncorrelated with Global, but not local from other regions/countries
- Nominal and Real

1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract factors from residuals
