Forecasting With Many predictors

The Econometrics of Predictability

This version: June 15, 2014

June 15, 2014

Dynamic Factor Models

- Dynamic factors model specify dynamics in the factors
- Basic DFM is

$$\mathbf{x}_{t} = \sum_{i=0}^{s} \mathbf{\Phi}_{i} \mathbf{f}_{t} + \boldsymbol{\epsilon}_{t}$$

$$\mathbf{f}_{t} = \sum_{i=1}^{q} \mathbf{\Psi} \mathbf{f}_{t-j} + \boldsymbol{\eta}_{t}$$

- Observed data depend on contemporaneous and lagged factors
- Factors have VAR-like dynamics
- Assumed that \mathbf{f}_t and ϵ_t are stationary, so \mathbf{x}_t is also stationary
 - Important: must transform series appropriately when applying to data
- ullet ϵ_t can have weak dependence in both the cross-section and time-series
- $E\left[\epsilon_t, \eta_s\right] = \mathbf{0}$ for all t, s

Optimal Forecast from DFM

$$\mathbf{x}_{t} = \sum_{i=0}^{s} \mathbf{\Phi}_{i} \mathbf{f}_{t-i} + \boldsymbol{\epsilon}_{t}, \quad \mathbf{f}_{t} = \sum_{j=1}^{q} \mathbf{\Psi} \mathbf{f}_{t-j} + \boldsymbol{\eta}_{t}$$

Optimal forecast can be derived

$$E\left[x_{it+1}|\mathbf{x}_{t},\mathbf{f}_{t},\mathbf{x}_{t-1},\mathbf{f}_{t-1},\ldots\right] = E\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i}\mathbf{f}_{t+1-i} + \epsilon_{it+1}|\mathbf{x}_{t},\mathbf{f}_{t},\mathbf{x}_{t-1},\mathbf{f}_{t-1},\ldots\right]$$

$$= E_{t}\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i}\mathbf{f}_{t+1-i}\right] + E_{t}\left[\epsilon_{it+1}\right]$$

$$= \sum_{i=1}^{s'} \mathbf{A}_{i}f_{t-i+1} + \sum_{i=1}^{n} \mathbf{B}_{j}x_{it-j+1}$$

- Predictability in both components
 - Lagged factors predict factors
 - ► Lagged x_{it} predict ϵ_{it}

Invertibility and MA processes

- DFM is really factors plus moving average
- Moving average processes can be replaced with AR processes when invertible

$$y_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$y_{t} - \theta y_{t-1} = \epsilon_{t} + \theta \epsilon_{t-1} - \theta (\theta \epsilon_{t-2} + \epsilon_{t-1})$$

$$= \epsilon_{t} - \theta^{2} \epsilon_{t-2}$$

$$y_{t} - \theta y_{t-1} + \theta^{2} y_{t-2} = \epsilon_{t} - \theta^{2} \epsilon_{t-2} + \theta^{2} (\theta \epsilon_{t-3} + \epsilon_{t-2})$$

$$= \epsilon_{t} + \theta^{2} (\theta \epsilon_{t-3} + \epsilon_{t-2})$$

$$\sum_{i=0}^{\infty} (-\theta)^{i} y_{t-i} = \epsilon_{t}$$

$$y_{t} = \sum_{i=1}^{\infty} -(-\theta)^{i} y_{t-i} + \epsilon_{t}$$

- Can approximate finite MA with finite AR
- Quality will depend on the persistence of the MA component

- Superficially dynamic factor models appear to be more complicated than static factor models
- Dynamic Factor models can be directly estimated using Kalman Filter or spectral estimators that account for serial correlation in factors
 - Latter are not useful for forecasting since 2-sided
- (Big) However, DFM can be converted to Static model by relabeling
- In DFM, factors are

$$[\mathbf{f}_t, \mathbf{f}_{t-1}, \dots, \mathbf{f}_{t-s}]$$

- ► Total of r(s+1) factors in model
- Equivalent to static model with at most r(s + 1) factors
 - Redundant factors will not appear in static version

Consider basic DFM

$$x_{it} = \phi_{i1}f_t + \phi_{i2}f_{t-1} + \epsilon_{it}$$

$$f_t = \psi f_{t-1} + \eta_t$$

Model can be expressed as

$$x_{it} = \phi_{i1} (\psi f_{t-1} + \eta_t) + \phi_{i2} f_{t-1} + \epsilon_{it}$$

= $\phi_{i1} \eta_t + \phi_{i2} (1 + (\phi_{i1}/\phi_{i2}) \psi) f_{t-1} + \epsilon_{it}$

- ullet One version of static factors are η_t and f_{t-1}
 - ▶ In this particular version, η_t is not "dynamic" since it is WN
 - f_{t-1} follows an AR(1) process
- Other rotations will have different dynamics

Basic simulation

$$x_{it} = \phi_{i1}f_t + \phi_{i2}f_{t-1} + \epsilon_{it}$$

$$f_t = \psi f_{t-1} + \eta_t$$

- $\phi_{i1} \sim N(1,1), \phi_{i2} \sim N(.2,1)$
 - Smaller signal makes it harder to find second factor
- $\psi = 0.5$
 - ullet Higher persistence makes it harder since $\operatorname{Corr}\left[f_t,f_{t-1}
 ight]$ is larger
- Everything else standard normal
- k = 100, T = 100
 - ► Also k = 200 and T = 200 (separately)
- All estimation using PCA on correlation

Number of Factors for Forecasting

Better to have r above r^* than below

Measuring Closeness of Estimate

- Factors are not point identified
 - Can use an arbitrary rotation and model is equivalent
- \bullet Natural measure of similarity between original (GDP) factors and estimated factors is global R^2

$$\hat{\mathbf{f}}_{t} = \mathbf{A}\mathbf{f}_{t} + \boldsymbol{\eta}_{t}$$

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} \hat{\boldsymbol{\eta}}_{t}' \hat{\boldsymbol{\eta}}_{t}}{\sum_{t=1}^{T} \mathbf{f}_{t}' \mathbf{f}_{t}}$$

■ Note that **A** is a 2 by 2 matrix of regression coefficients

Stock & Watson (2012) Data

- Stock & Watson have been at the forefront of factor model development
- Data is from 2012 paper "Disentangling the Channels of the 2007-2009 Recession"
- Dataset consists of 137 monthly and 74 quarterly series
 - Not all used for factor estimation
 - Aggregates not used if disaggregated series available
- Monthly series are aggregated to quarterly, which is frequency of data
- Series with missing observations are dropped for simplicity
 - Before dropping those with missing values data set has 132 series
 - After 107 series remain

The series

National Income and Product Accounts (NIPA)	12
Industrial Production	9
Employment and Unemployment	30
Housing Starts	6
Inventories, Orders, and Sales	7
Prices	25
Earnings and Productivity	8
Interest Rates	10
Money and Credit	6
Stock Prices, Wealth, Household Balance Sheets	8
Housing Prices	3
Exchange Rates	6
Other	2

Data Transformation

- Monthly series were aggregated to quarterly using
 - Average
 - ► End-of-quarter
- All series were transformed to be stationary using one of:
 - No transform
 - Difference
 - ► Double-difference
 - ► Log
 - ► Log-difference
 - ► Double-log-difference
- Most series checked for outliers relative to IQR (rare)
- Final series were Studentized in estimation of PC

Individual \mathbb{R}^2 using r factors

Forecast Methods

- Forecast problem is not meaningfully different from standard problem
- Interest is now in \mathbf{y}_t , which may or may not be in \mathbf{x}_t
 - ► Note that stationary version of \mathbf{y}_t should be forecast, e.g. $\Delta \mathbf{y}_t$ or $\Delta^2 \mathbf{y}_t$
- Two methods to forecast

Unrestricted

$$y_{t+1} = \phi_0 + \sum_{i=1}^p \phi_i y_{t-i+1} + \boldsymbol{\theta}' \hat{\mathbf{f}}_t + \epsilon_{it}$$

- Treats factors as observed data, only makes sense if k is large
 - ► Uses an AR(P) to model residual dependence
 - ► Choice of number of factors to use, may be different from *r*
 - Can also use lags of \mathbf{f}_t (uncommon)
 - ► Model selection is applicable as usual, e.g. BIC

Forecast Methods

Restricted

• When \mathbf{y}_t is in \mathbf{x}_t , $\mathbf{y}_t = \boldsymbol{\beta} \hat{\mathbf{f}}_t + \epsilon_t$

$$\epsilon_t = \mathbf{y}_t - \boldsymbol{\beta}\,\hat{\mathbf{f}}_t$$

$$\hat{\mathbf{y}}_{t+1|t} = \boldsymbol{\beta} \hat{\mathbf{f}}_{t+1|t} + \sum_{i=1}^{p} \phi_i \left(\mathbf{y}_{t-i+1} - \boldsymbol{\beta} \hat{\mathbf{f}}_{t-i+1} \right)$$
$$= \boldsymbol{\beta} \hat{\mathbf{f}}_{t+1|t} + \sum_{i=1}^{p} \phi_i \hat{\epsilon}_t$$

- VAR to forecast $\hat{\mathbf{f}}_{t+1}$ using lags of $\hat{\mathbf{f}}_t$
- Univariate AR for \hat{e}_t
- Usually found to be less successful than unrestricted
- Care is needed when using studentized data since forecasting recentered, rescaled version of y

Re-integrating forecasts

• When forecasting $\Delta \mathbf{y}_t$,

$$E_{t}[\mathbf{y}_{t+1}] = E_{t}[\mathbf{y}_{t+1} - \mathbf{y}_{t} + \mathbf{y}_{t}]$$
$$= E_{t}[\Delta \mathbf{y}_{t+1}] + \mathbf{y}_{t}$$

• At longer horizons,

$$\mathbf{E}_{t}\left[\mathbf{y}_{t+h}\right] = \sum_{i=1}^{h} \mathbf{E}_{t}\left[\Delta \mathbf{y}_{t+i}\right] + \mathbf{y}_{t}$$

• When forecasting $\Delta^2 \mathbf{y}_t$

$$E_{t}[\mathbf{y}_{t+1}] = E_{t}[\mathbf{y}_{t+1} - \mathbf{y}_{t} - \mathbf{y}_{t} + \mathbf{y}_{t-1} + 2\mathbf{y}_{t} - \mathbf{y}_{t-1}]$$

$$= E_{t}[\Delta^{2}\mathbf{y}_{t+1}] + 2\mathbf{y}_{t} - \mathbf{y}_{t-1}$$

- ► In many cases interest is in $\Delta \mathbf{y}_t$ when forecasting $\Delta^2 \mathbf{y}_t$
 - ▶ For example CPI, inflation and change in inflation
 - \triangleright Same as reintegrating Δy_t to y_t

Multistep Forecasting

- Multistep can be constructed using either method
- Unrestricted requires additional VAR for $\hat{\mathbf{f}}_t$
- Alternative use direct forecasting

$$y_{t+h|t} = \hat{\phi}_{(h)0} + \sum_{i=1}^{p^h} \hat{\phi}_{(h)i} y_{t-i+1} + \hat{\boldsymbol{\theta}}'_{(h)} \hat{\mathbf{f}}_t$$

- ullet (h) used to denote explicit parameter dependence on horizon
- $y_{t+h|t}$ can be either the period-h value, or the h-period cumulative forecast (more common)
- Direct has been documented to be better than iterative in DFMs
 - Problem dependent

"Forecasting"

- Used BIC search across models
- 3 setups
 - ► GDP lags only (4), Components Only (6), Both

$$\sum_{j=1}^{h} \Delta g_{t+j} = \phi_0 + \sum_{s=1}^{4} \gamma_s \Delta g_{t-s+1} + \sum_{n=1}^{6} \psi_n f_{jt} + \epsilon_{ht}$$

						Both	
	GDP Only	R^2	Components Only	R^2	GDP	Components	R^2
h = 1	1, 2, 4	.517	1, 2, 3, 4, 6	.662	 1	1, 2, 3, 4, 6	.686
h = 2	1,4	.597	1, 2, 3, 4, 6	.763	1	1, 2, 3, 4, 6	.771
h = 3	1,4	.628	1, 2, 3, 4, 6	.785	1	1, 2, 3, 4, 6	.792
h = 4	1,4	.661	1, 2, 3, 4, 6	.805	-	1, 2, 3, 4, 6	.805

Generalized Principal Components

- Basic PCA makes use of the covariance or more commonly correlation
- Correlation is technically a special case of generalized PCA

$$\min_{\boldsymbol{\beta},\mathbf{f}_{t},\dots\mathbf{f}_{t}} \sum_{t=1}^{T} (\mathbf{x}_{t} - \boldsymbol{\beta} \mathbf{f}_{t})' \, \boldsymbol{\Sigma}_{\epsilon}^{-1} (\mathbf{x}_{t} - \boldsymbol{\beta} \mathbf{f}_{t}) \text{ subject to } \boldsymbol{\beta}' \boldsymbol{\beta} = \mathbf{I}_{r}$$

- ullet Clever choices of $oldsymbol{\Sigma}_{\epsilon}$ lead to difference estimators
 - Using diag $(\hat{\sigma}_1^2, \dots, \hat{\sigma}_k^2)$ where $\hat{\sigma}_j^2$ is variance of x_j leads to correlation
 - ► Tempting to use GLS version based on r principal components

Algorithm (Principal Component Analysis using GLS)

- 1. Estimate $\hat{e}_{it} = x_{it} \hat{\boldsymbol{\beta}}_i \hat{\mathbf{f}}_t$ using r factors 2. Estimate $\hat{\sigma}_{\epsilon i}^2 = T^{-1} \sum_{i} \hat{e}_{it}^2$ and $\mathbf{W} = \mathrm{diag}(w_1, \ldots, w_k)$ where

$$w_i = \frac{1/\hat{\sigma}_{\epsilon i}}{\sum_{j=1}^k 1/\hat{\sigma}_{\epsilon j}}$$

3. Compute PCA-GLS using WX

Other Generalized PCA Estimators

- Absolute covariance weighting

 - 1. Compute complete residual covariance $\hat{\Sigma}_{\epsilon}$ from residuals 2. Replace $\hat{\sigma}_{\epsilon i}^2$ in step 2 with $\hat{\sigma}_{\epsilon i}^2 = \sum_{j=1}^k \left|\hat{\Sigma}_{\epsilon}\left(i,j\right)\right|$
- Down-weights series which have both large idiosyncratic variance and strong residual covariance
- Stock & Watson (2005) use more sophisticated method
 - 1. Estimate AR(P) on $\hat{\epsilon}_{it}$ for all series

$$\hat{\epsilon}_{it} = \sum_{j=1}^{p_i} \phi_j \epsilon_{it-j} + \xi_{it}$$

2. Construct quasi-differenced x_{it} using coefficients

$$\tilde{x}_{it} = x_{it} - \sum_{j=1}^{p_i} \hat{\phi}_j x_{it-j}$$

- 3. Estimate $\hat{\sigma}_{\epsilon i}^2$ using $\hat{\xi}_{it}$
- 4. Re-estimate factors using quasi-differenced data and weighting, iterate if needed

Generalized Principal Components Inputs

Normalized Residual Variance

Normalized Residual Absolute Covariance

Generalized Principal Components Weights

Redundant and repeated factors

- Redundant factors can have adverse effects on common components
- Exactly redundant factors are identical to increasing the variance of a studentized data series
 - ► Including x_{it} m-times is the same as using mx_{it}
- Some evidence that excluding highly correlated factors is useful (Boivin & Ng 2006)

Algorithm (Removal of Redundant Factors)

- 1. For each series i find series with maximally correlated error, call index j_i
- 2. Drop series in $\{j_i\}$ that are maximally correlated with more than 1 series
- 3. For series which are each other's j_i , drop series with lower R^2
 - Can increase step 1 to two or even three series

Thresholding to Select Forecasting Relevant Factors ORD

- Bai & Ng (2008) consider problem of selecting forecasting relevant factors
- ullet Well known issue for PCA is that factors are selected only using ${f x}_t$
- Can this be improved using information about y_t ?

Algorithm (Hard Thresholding for Variable Selection)

- 1. Regress $y_t = \phi_0 + \sum_{i=1}^{p} \phi_i y_{t-i} + \gamma x_{t-1} + \epsilon_t$
- 2. Compute White heteroskedasticity robust standard errors and t-stat
- 3. Retain any x_t where $|t| > C_{\alpha}$ for some choice of α . Common choices are 10%, 5% or 1%.
- Bai & Ng also discuss methods for soft thresholding, but these require technology beyond this course (LASSO and Elastic Net)

Prinicpal Component Analysis with Missing Data

- Two obvious solutions to missing data in PCA
 - Drop all series that have missing observations
 - ► Impute values for the missing values
- Missing data structure in SW 2012

Prinicpal Component Analysis with Missing Data

- Two obvious solutions to missing data in PCA
 - Drop all series that have missing observations
 - ► Impute values for the missing values
- Missing data structure in SW 2012

Expectations-Maximization (EM) Algorithm

- Some problem with unobserved states can be solved using the EM algorithm
- Consider problem of estimating means from an i.i.d. mixture

$$X_i = Y_i \mu_1 + (1 - Y_i) \mu_2 + Z_i$$

- ► *Y_i* is i.i.d. Bernoulli(*p*), *Z_i* is standard normal
- ► Y_i was observable, trivial problem (OLS)
- ightharpoonup When Y_i is not observable, much harder
- ► EM algorithm will iterate across two steps:
 - 1. Construct "as-if" Y_i using expectations of Y_i given μ_1 and μ_2
 - 2. Compute

$$\hat{\mu}_1 = \frac{\sum \Pr(Y_i = 1) X_i}{\sum \Pr(Y_i = 1)}$$
 $\hat{\mu}_2 = \frac{\sum \Pr(Y_i = 0) X_i}{n - \sum \Pr(Y_i = 1)}$

- 3. Return to 1, stopping if the means are not changing much
- Algorithm is initialized with "guesses" about μ_1 and μ_2
 - ▶ Example: Mean of data above median, mean of data below median
- Consider case where $\mu_1 = 10$, $\mu_2 = -10$

Imputing Missing Values in PCA

- Ideally would like to solve PCA problem only for observed data
- Difficult in practice, no know closed form estimator
- Expectation-Maximization (EM) algorithm can be used to simply impute missing data
 - ► Replace missing with *r*-factor expectation (E)
 - ► Maximize the likelihood (M), or minimize sum of squares

Algorithm (EM Algorithm for Imputing Missing Values in PCA)

- 1. Define $w_{ij} = I [y_{ij} \ observed]$ and set i = 0
- 2. Construct $\mathbf{X}^{(0)} = \mathbf{W} \odot \mathbf{X} + (1 \mathbf{W}) \odot \iota \mathbf{\bar{X}}$ where ι is a T by 1 vector of 1s
- 3. *Until* $||\mathbf{X}^{(i+1)} \mathbf{X}^{(i)}|| < c$:
 - a. Estimate r factors and factor loadings, $\hat{\mathbf{F}}^{(i)}$ and $\hat{m{eta}}^{(i)}$ from $\mathbf{X}^{(i)}$ using PCA
 - b. Construct $\mathbf{X}^{(i+1)} = \mathbf{W} \odot \mathbf{X} + (1 \mathbf{W}) \odot (\hat{\mathbf{F}}^{(i)} \hat{\boldsymbol{\beta}}^{(i)})$
 - c. *Set* i = i + 1

Hierarchical Factors

- Can use partitioning to construct hierarchical factors
- Global and Local
 - 1. Extract 1 or more factors from all series
 - 2. For each regions or country j, regress series from country j on Global Factors, and extract 1 or more factors from residuals
 - Country factors uncorrelated with Global, but not local from other regions/countries
- Nominal and Real
 - 1. Extract 1 or more general factors
 - 2. For each group real/nominal series, regress on general factors and then extract factors from residuals