# Forecasting With Many predictors 

The Econometrics of Predictability

June 15, 2014

- Dynamic factors model specify dynamics in the factors
- Basic DFM is

$$
\begin{aligned}
& \mathbf{x}_{t}=\sum_{i=0}^{s} \boldsymbol{\Phi}_{i} \mathbf{f}_{t}+\boldsymbol{\epsilon}_{t} \\
& \mathbf{f}_{t}=\sum_{j=1}^{q} \boldsymbol{\Psi} \mathbf{f}_{t-j}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- Observed data depend on contemporaneous and lagged factors
- Factors have VAR-like dynamics
- Assumed that $\mathbf{f}_{t}$ and $\boldsymbol{\epsilon}_{t}$ are stationary, so $\mathbf{x}_{t}$ is also stationary
- Important: must transform series appropriately when applying to data
- $\boldsymbol{\epsilon}_{t}$ can have weak dependence in both the cross-section and time-series
- $\mathrm{E}\left[\boldsymbol{\epsilon}_{t}, \boldsymbol{\eta}_{s}\right]=\mathbf{0}$ for all $t, s$

$$
\mathbf{x}_{t}=\sum_{i=0}^{s} \boldsymbol{\Phi}_{i} \mathbf{f}_{t-i}+\boldsymbol{\epsilon}_{t}, \quad \mathbf{f}_{t}=\sum_{j=1}^{q} \boldsymbol{\Psi} \mathbf{f}_{t-j}+\boldsymbol{\eta}_{t}
$$

- Optimal forecast can be derived

$$
\begin{aligned}
\mathrm{E}\left[x_{i t+1} \mid \mathbf{x}_{t}, \mathbf{f}_{t}, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots\right] & =\mathrm{E}\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i} \mathbf{f}_{t+1-i}+\epsilon_{i t+1} \mid \mathbf{x}_{t}, \mathbf{f}_{t}, \mathbf{x}_{t-1}, \mathbf{f}_{t-1}, \ldots\right] \\
& =\mathrm{E}_{t}\left[\sum_{i=0}^{s} \boldsymbol{\phi}_{i} \mathbf{f}_{t+1-i}\right]+\mathrm{E}_{t}\left[\epsilon_{i t+1}\right] \\
& =\sum_{i=1}^{s^{\prime}} \mathbf{A}_{i} f_{t-i+1}+\sum_{j=1}^{n} \mathbf{B}_{j} x_{i t-j+1}
\end{aligned}
$$

- Predictability in both components
- Lagged factors predict factors
- Lagged $x_{i t}$ predict $\epsilon_{i t}$
- DFM is really factors plus moving average
- Moving average processes can be replaced with AR processes when invertible

$$
\begin{aligned}
y_{t} & =\epsilon_{t}+\theta \epsilon_{t-1} \\
y_{t}-\theta y_{t-1} & =\epsilon_{t}+\theta \epsilon_{t-1}-\theta\left(\theta \epsilon_{t-2}+\epsilon_{t-1}\right) \\
& =\epsilon_{t}-\theta^{2} \epsilon_{t-2} \\
y_{t}-\theta y_{t-1}+\theta^{2} y_{t-2} & =\epsilon_{t}-\theta^{2} \epsilon_{t-2}+\theta^{2}\left(\theta \epsilon_{t-3}+\epsilon_{t-2}\right) \\
& =\epsilon_{t}+\theta^{2}\left(\theta \epsilon_{t-3}+\epsilon_{t-2}\right) \\
\sum_{i=0}^{\infty}(-\theta)^{i} y_{t-i} & =\epsilon_{t} \\
y_{t} & =\sum_{i=1}^{\infty}-(-\theta)^{i} y_{t-i}+\epsilon_{t}
\end{aligned}
$$

- Can approximate finite MA with finite $A R$
- Quality will depend on the persistence of the MA component
- Superficially dynamic factor models appear to be more complicated than static factor models
- Dynamic Factor models can be directly estimated using Kalman Filter or spectral estimators that account for serial correlation in factors
- Latter are not useful for forecasting since 2-sided
- (Big) However, DFM can be converted to Static model by relabeling
- In DFM, factors are

$$
\left[\mathbf{f}_{t}, \mathbf{f}_{t-1}, \ldots, \mathbf{f}_{t-s}\right]
$$

- Total of $r(s+1)$ factors in model
- Equivalent to static model with at most $r(s+1)$ factors
- Redundant factors will not appear in static version
- Consider basic DFM

$$
\begin{aligned}
x_{i t} & =\phi_{i 1} f_{t}+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
f_{t} & =\psi f_{t-1}+\eta_{t}
\end{aligned}
$$

- Model can be expressed as

$$
\begin{aligned}
x_{i t} & =\phi_{i 1}\left(\psi f_{t-1}+\eta_{t}\right)+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
& =\phi_{i 1} \eta_{t}+\phi_{i 2}\left(1+\left(\phi_{i 1} / \phi_{i 2}\right) \psi\right) f_{t-1}+\epsilon_{i t}
\end{aligned}
$$

- One version of static factors are $\eta_{t}$ and $f_{t-1}$
- In this particular version, $\eta_{t}$ is not "dynamic" since it is WN
- $f_{t-1}$ follows an AR(1) process
- Other rotations will have different dynamics
- Basic simulation

$$
\begin{aligned}
x_{i t} & =\phi_{i 1} f_{t}+\phi_{i 2} f_{t-1}+\epsilon_{i t} \\
f_{t} & =\psi f_{t-1}+\eta_{t}
\end{aligned}
$$

- $\phi_{i 1} \sim N(1,1), \phi_{i 2} \sim N(.2,1)$
- Smaller signal makes it harder to find second factor
- $\psi=0.5$
- Higher persistence makes it harder since Corr $\left[f_{t}, f_{t-1}\right]$ is larger
- Everything else standard normal
- $k=100, T=100$
- Also $k=200$ and $T=200$ (separately)
- All estimation using PCA on correlation


## Number of Factors for Forecasting

Better to have $r$ above $r^{\star}$ than below

- Factors are not point identified
- Can use an arbitrary rotation and model is equivalent
- Natural measure of similarity between original (GDP) factors and estimated factors is global $R^{2}$

$$
\begin{aligned}
\hat{\mathbf{f}}_{t} & =\mathbf{A f}_{t}+\boldsymbol{\eta}_{t} \\
R^{2} & =1-\frac{\sum_{t=1}^{T} \hat{\boldsymbol{\eta}}_{t}^{\prime} \hat{\boldsymbol{\eta}}_{t}}{\sum_{t=1}^{T} \mathbf{f}_{t}^{\prime} \mathbf{f}_{t}}
\end{aligned}
$$

- Note that $\mathbf{A}$ is a 2 by 2 matrix of regression coefficients


## Dynamic as Static Factor Models

$I C_{p 2}$ Selected $r, \mathrm{~T}=100, \mathrm{k}=100$



## Dynamic as Static Factor Models

$I C_{p 2}$ Selected $r, \mathrm{~T}=100, \mathrm{k}=200$

$R^{2}$ as a function of $r$


## Dynamic as Static Factor Models

$I C_{p 2}$ Selected $r, \mathrm{~T}=200, \mathrm{k}=100$

$R^{2}$ as a function of $r$


## Dynamic as Static Factor Models

$R^{2}$ of factors on estimated factors


- Stock \& Watson have been at the forefront of factor model development
- Data is from 2012 paper "Disentangling the Channels of the 2007-2009 Recession"
- Dataset consists of 137 monthly and 74 quarterly series
- Not all used for factor estimation
- Aggregates not used if disaggregated series available
- Monthly series are aggregated to quarterly, which is frequency of data
- Series with missing observations are dropped for simplicity
- Before dropping those with missing values data set has 132 series
- After 107 series remain
National Income and Product Accounts (NIPA) ..... 12
Industrial Production ..... 9
Employment and Unemployment ..... 30
Housing Starts ..... 6
Inventories, Orders, and Sales ..... 7
Prices ..... 25
Earnings and Productivity ..... 8
Interest Rates ..... 10
Money and Credit ..... 6
Stock Prices, Wealth, Household Balance Sheets ..... 8
Housing Prices ..... 3
Exchange Rates ..... 6
Other ..... 2
- Monthly series were aggregated to quarterly using
- Average
- End-of-quarter
- All series were transformed to be stationary using one of:
- No transform
- Difference
- Double-difference
- Log
- Log-difference
- Double-log-difference
- Most series checked for outliers relative to IQR (rare)
- Final series were Studentized in estimation of PC

Untransformed SW Data (Studentized)


Transformed SW Data




First Component (Standardized)


Second Component (Standardized)


Third Component (Standardized)



Scree Plot, Stock \& Watson


Information Criteria


Individual $R^{2}$ using $r$ factors


- Forecast problem is not meaningfully different from standard problem
- Interest is now in $\mathbf{y}_{t}$, which may or may not be in $\mathbf{x}_{t}$
- Note that stationary version of $\mathbf{y}_{t}$ should be forecast, e.g. $\Delta \mathbf{y}_{t}$ or $\Delta^{2} \mathbf{y}_{t}$
- Two methods to forecast


## Unrestricted

$$
y_{t+1}=\phi_{0}+\sum_{i=1}^{p} \phi_{i} y_{t-i+1}+\boldsymbol{\theta}^{\prime} \hat{\mathbf{f}}_{t}+\epsilon_{i t}
$$

- Treats factors as observed data, only makes sense if $k$ is large
- Uses an $\operatorname{AR}(P)$ to model residual dependence
- Choice of number of factors to use, may be different from $r$
- Can also use lags of $\mathbf{f}_{t}$ (uncommon)
- Model selection is applicable as usual, e.g. BIC


## Restricted

- When $\mathbf{y}_{t}$ is in $\mathbf{x}_{t}, \mathbf{y}_{t}=\boldsymbol{\beta} \hat{\mathbf{f}}_{t}+\epsilon_{t}$

$$
\begin{gathered}
\epsilon_{t}=\mathbf{y}_{t}-\boldsymbol{\beta} \hat{\mathbf{f}}_{t} \\
\hat{y}_{t+1 \mid t}=\boldsymbol{\beta} \hat{\mathbf{t}}_{t+1 \mid t}+\sum_{i=1}^{p} \phi_{i}\left(y_{t-i+1}-\boldsymbol{\beta} \hat{\mathbf{f}}_{t-i+1}\right) \\
=\boldsymbol{\beta} \hat{\mathbf{f}}_{t+1 \mid t}+\sum_{i=1}^{p} \phi_{i} \hat{\epsilon}_{t}
\end{gathered}
$$

- VAR to forecast $\hat{\mathbf{f}}_{t+1}$ using lags of $\hat{\mathbf{f}}_{t}$
- Univariate AR for $\hat{\epsilon}_{t}$
- Usually found to be less successful than unrestricted
- Care is needed when using studentized data since forecasting recentered, rescaled version of $y$
- When forecasting $\Delta \mathbf{y}_{t}$,

$$
\begin{aligned}
\mathrm{E}_{t}\left[\mathbf{y}_{t+1}\right] & =\mathrm{E}_{t}\left[\mathbf{y}_{t+1}-\mathbf{y}_{t}+\mathbf{y}_{t}\right] \\
& =\mathrm{E}_{t}\left[\Delta \mathbf{y}_{t+1}\right]+\mathbf{y}_{t}
\end{aligned}
$$

- At longer horizons,

$$
\mathrm{E}_{t}\left[\mathbf{y}_{t+h}\right]=\sum_{i=1}^{h} \mathrm{E}_{t}\left[\Delta \mathbf{y}_{t+i}\right]+\mathbf{y}_{t}
$$

- When forecasting $\Delta^{2} \mathbf{y}_{t}$

$$
\begin{aligned}
\mathrm{E}_{t}\left[\mathbf{y}_{t+1}\right] & =\mathrm{E}_{t}\left[\mathbf{y}_{t+1}-\mathbf{y}_{t}-\mathbf{y}_{t}+\mathbf{y}_{t-1}+2 \mathbf{y}_{t}-\mathbf{y}_{t-1}\right] \\
& =\mathrm{E}_{t}\left[\Delta^{2} \mathbf{y}_{t+1}\right]+2 \mathbf{y}_{t}-\mathbf{y}_{t-1}
\end{aligned}
$$

- In many cases interest is in $\Delta \mathbf{y}_{t}$ when forecasting $\Delta^{2} \mathbf{y}_{t}$
- For example CPI, inflation and change in inflation
- Same as reintegrating $\Delta y_{t}$ to $y_{t}$
- Multistep can be constructed using either method
- Unrestricted requires additional VAR for $\hat{\mathbf{f}}_{t}$
- Alternative use direct forecasting

$$
y_{t+h \mid t}=\hat{\phi}_{(h) 0}+\sum_{i=1}^{p^{h}} \hat{\boldsymbol{\phi}}_{(h) i} y_{t-i+1}+\hat{\boldsymbol{\theta}}_{(h)}^{\prime} \hat{\mathbf{f}}_{t}
$$

- (h) used to denote explicit parameter dependence on horizon
- $y_{t+h \mid t}$ can be either the period- $h$ value, or the $h$-period cumulative forecast (more common)
- Direct has been documented to be better than iterative in DFMs
- Problem dependent
- Used BIC search across models
- 3 setups
- GDP lags only (4), Components Only (6), Both

$$
\sum_{j=1}^{h} \Delta g_{t+j}=\phi_{0}+\sum_{s=1}^{4} \gamma_{s} \Delta g_{t-s+1}+\sum_{n=1}^{6} \psi_{n} f_{j t}+\epsilon_{h t}
$$

|  | GDP Only | $R^{2}$ |  |  | Both |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Components Only | $R^{2}$ | GDP | Components | $R^{2}$ |
| $h=1$ | 1,2,4 | . 517 | 1, 2, 3, 4, 6 | . 662 | 1 | 1,2, 3, 4, 6 | . 686 |
| $h=2$ | 1,4 | . 597 | 1, 2, 3, 4, 6 | . 763 | 1 | 1, 2, 3, 4, 6 | . 771 |
| $h=3$ | 1,4 | . 628 | 1, 2, 3, 4, 6 | . 785 | 1 | 1, 2, 3, 4, 6 | . 792 |
| $h=4$ | 1,4 | . 661 | 1, 2, 3, 4, 6 | . 805 | - | 1,2,3,4,6 | . 805 |

- Basic PCA makes use of the covariance or more commonly correlation
- Correlation is technically a special case of generalized PCA

$$
\min _{\boldsymbol{\beta}, \mathbf{f}_{t}, \ldots \mathbf{f}_{t}} \sum_{t=1}^{T}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right)^{\prime} \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\beta} \mathbf{f}_{t}\right) \text { subject to } \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}=\mathbf{I}_{r}
$$

- Clever choices of $\boldsymbol{\Sigma}_{\epsilon}$ lead to difference estimators
- Using diag $\left(\hat{\sigma}_{1}^{2}, \ldots, \hat{\sigma}_{k}^{2}\right)$ where $\hat{\sigma}_{j}^{2}$ is variance of $x_{j}$ leads to correlation
- Tempting to use GLS version based on $r$ principal components


## Algorithm (Principal Component Analysis using GLS )

1. Estimate $\hat{\epsilon}_{i t}=x_{i t}-\hat{\boldsymbol{\beta}}_{i} \hat{\mathbf{f}}_{t}$ using $r$ factors
2. Estimate $\hat{\sigma}_{\epsilon i}^{2}=T^{-1} \sum \hat{\epsilon}_{i t}^{2}$ and $\mathbf{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{k}\right)$ where

$$
w_{i}=\frac{1 / \overparen{\sigma}_{\epsilon i}}{\sum_{j=1}^{k} 1 / \overparen{\sigma}_{\epsilon j}}
$$

3. Compute PCA-GLS using WX

- Absolute covariance weighting

1. Compute complete residual covariance $\hat{\mathbf{\Sigma}}_{\epsilon}$ from residuals
2. Replace $\hat{\sigma}_{\epsilon i}^{2}$ in step 2 with $\hat{\sigma}_{\epsilon i}^{2}=\sum_{j=1}^{k}\left|\hat{\mathbf{\Sigma}}_{\epsilon}(i, j)\right|$

- Down-weights series which have both large idiosyncratic variance and strong residual covariance
- Stock \& Watson (2005) use more sophisticated method

1. Estimate $\operatorname{AR}(\mathrm{P})$ on $\hat{\epsilon}_{i t}$ for all series

$$
\hat{\epsilon}_{i t}=\sum_{j=1}^{p_{i}} \phi_{j} \epsilon_{i t-j}+\xi_{i t}
$$

2. Construct quasi-differenced $x_{i t}$ using coefficients

$$
\tilde{x}_{i t}=x_{i t}-\sum_{j=1}^{p_{i}} \hat{\phi}_{j} x_{i t-j}
$$

3. Estimate $\hat{\sigma}_{\epsilon i}^{2}$ using $\hat{\xi}_{i t}$
4. Re-estimate factors using quasi-differenced data and weighting, iterate if needed

## Generalized Principal Components Inputs

Normalized Residual Variance


Normalized Residual Absolute Covariance


Generalized PCA Weights


- Redundant factors can have adverse effects on common components
- Exactly redundant factors are identical to increasing the variance of a studentized data series
- Including $x_{i t} m$-times is the same as using $m x_{i t}$
- Some evidence that excluding highly correlated factors is useful (Boivin \& Ng 2006)


## Algorithm (Removal of Redundant Factors)

1. For each series $i$ find series with maximally correlated error, call index $j_{i}$
2. Drop series in $\left\{j_{i}\right\}$ that are maximally correlated with more than 1 series
3. For series which are each other's $j_{i}$, drop series with lower $R^{2}$

- Can increase step 1 to two or even three series
- Bai \& Ng (2008) consider problem of selecting forecasting relevant factors
- Well known issue for PCA is that factors are selected only using $\mathbf{x}_{t}$
- Can this be improved using information about $y_{t}$ ?


## Algorithm (Hard Thresholding for Variable Selection)

1. Regress $y_{t}=\phi_{0}+\sum_{i=1}^{p} \phi_{i} y_{t-i}+\gamma x_{t-1}+\epsilon_{t}$
2. Compute White heteroskedasticity robust standard errors and $t$-stat
3. Retain any $x_{t}$ where $|t|>C_{\alpha}$ for some choice of $\alpha$. Common choices are $10 \%$, $5 \%$ or $1 \%$.

- Bai $\& \mathrm{Ng}$ also discuss methods for soft thresholding, but these require technology beyond this course (LASSO and Elastic Net)

Hard Thresholding, $\mathrm{h}=1$


Hard Thresholding, $\mathrm{h}=4$


- Two obvious solutions to missing data in PCA
- Drop all series that have missing observations
- Impute values for the missing values
- Missing data structure in SW 2012

- Two obvious solutions to missing data in PCA
- Drop all series that have missing observations
- Impute values for the missing values
- Missing data structure in SW 2012

- Some problem with unobserved states can be solved using the EM algorithm
- Consider problem of estimating means from an i.i.d. mixture

$$
X_{i}=Y_{i} \mu_{1}+\left(1-Y_{i}\right) \mu_{2}+Z_{i}
$$

- $Y_{i}$ is i.i.d. Bernoulli( $p$ ), $Z_{i}$ is standard normal
- $Y_{i}$ was observable, trivial problem (OLS)
- When $Y_{i}$ is not observable, much harder
- EM algorithm will iterate across two steps:

1. Construct "as-if" $Y_{i}$ using expectations of $Y_{i}$ given $\mu_{1}$ and $\mu_{2}$
2. Compute

$$
\hat{\mu}_{1}=\frac{\sum \operatorname{Pr}\left(Y_{i}=1\right) X_{i}}{\sum \operatorname{Pr}\left(Y_{i}=1\right)} \quad \hat{\mu}_{2}=\frac{\sum \operatorname{Pr}\left(Y_{i}=0\right) X_{i}}{n-\sum \operatorname{Pr}\left(Y_{i}=1\right)}
$$

3. Return to 1 , stopping if the means are not changing much

- Algorithm is initialized with "guesses" about $\mu_{1}$ and $\mu_{2}$
- Example: Mean of data above median, mean of data below median
- Consider case where $\mu_{1}=10, \mu_{2}=-10$
- Ideally would like to solve PCA problem only for observed data
- Difficult in practice, no know closed form estimator
- Expectation-Maximization (EM) algorithm can be used to simply impute missing data
- Replace missing with $r$-factor expectation (E)
- Maximize the likelihood (M), or minimize sum of squares


## Algorithm (EM Algorithm for Imputing Missing Values in PCA)

1. Define $w_{i j}=I\left[y_{i j}\right.$ observed $]$ and set $i=0$
2. Construct $\mathbf{X}^{(0)}=\mathbf{W} \odot \mathbf{X}+(1-\mathbf{W}) \odot \mathbf{\iota} \overline{\mathbf{X}}$ where $\boldsymbol{\iota}$ is a $T$ by 1 vector of 1 s
3. Until $\left\|\mathbf{X}^{(i+1)}-\mathbf{X}^{(i)}\right\|<c$ :
a. Estimate $r$ factors and factor loadings, $\hat{\mathbf{F}}^{(i)}$ and $\hat{\boldsymbol{\beta}}^{(i)}$ from $\mathbf{X}^{(i)}$ using PCA
b. Construct $\mathbf{X}^{(i+1)}=\mathbf{W} \odot \mathbf{X}+(1-\mathbf{W}) \odot\left(\hat{\mathbf{F}}^{(i)} \hat{\boldsymbol{\beta}}^{(i)}\right)$
c. Set $i=i+1$

- Can use partitioning to construct hierarchical factors
- Global and Local

1. Extract 1 or more factors from all series
2. For each regions or country $j$, regress series from country $j$ on Global Factors, and extract 1 or more factors from residuals

- Country factors uncorrelated with Global, but not local from other regions/countries
- Nominal and Real

1. Extract 1 or more general factors
2. For each group real/nominal series, regress on general factors and then extract factors from residuals
