Partial Least Squares, Three-Pass Regression Filters and Reduced Rank Regularized Regression

The Econometrics of Predictability

June 16, 2014

- DFMs are an important innovation - both supported by economic theory and statistical evidence
- From a forecasting point of view, they have some limitations
- Alternatives
- Partial Least Squares Regression
- Focuses attention on forecasting problem
- Three-pass Regression Filter
- Allows focus on factors through proxies
- Regularized Reduced Rank Regression
- Improve DFM factor selection for forecasting problem
- Theoretically more sound than using variable selection using BIC
- Partial Least Squares uses the predicted variable when selecting factors
- PCA/DFM only look at \mathbf{x}_{t} when selecting factors
- The difference means that PLS may have advantages
- If the factors predicting y_{t} are not excessively pervasive
- If the rotation implied by PCA requires many factors to extract the ideal factor

$$
y_{t+1}=\beta f_{1 t}+\epsilon_{t}
$$

- Suppose two estimated factors with the form

$$
\left[\begin{array}{l}
\tilde{f}_{1 t} \\
\tilde{f}_{2 t}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{1 / 2} & \sqrt{1 / 2} \\
\sqrt{1 / 2} & -\sqrt{1 / 2}
\end{array}\right]\left[\begin{array}{l}
f_{1 t} \\
f_{2 t}
\end{array}\right]
$$

- Correct forecasting model for y_{t+1} requires both $\tilde{f}_{t 1}$ and $\tilde{f}_{2 t}$

$$
\begin{aligned}
y_{t+1} & =\gamma_{1} \tilde{f}_{1 t}+\gamma_{2} \tilde{f}_{2 t}+\epsilon_{t} \\
& =\sqrt{1 / 2} \gamma_{1} f_{1 t}+\sqrt{1 / 2} \gamma_{2} f_{1 t}+\sqrt{1 / 2} \gamma_{1} f_{2 t}-\sqrt{2} \gamma_{2} f_{2 t}+\epsilon_{t} \\
& =\left(\gamma_{1}+\gamma_{2}\right) \sqrt{1 / 2} f_{1 t}+\left(\gamma_{1}-\gamma_{2}\right) \sqrt{1 / 2} f_{2 t}+\epsilon_{t}
\end{aligned}
$$

- Implies $\sqrt{1 / 2}\left(\gamma_{1}+\gamma_{2}\right)=\beta$ and $\sqrt{1 / 2}\left(\gamma_{1}-\gamma_{2}\right)=0\left(\gamma_{1}=\gamma_{2}, \gamma_{1}=\beta /(2 \sqrt{1 / 2})\right)$
- Without this knowledge, 2 parameters to estimate, not 1
- Partial least squares (PLS) uses only bivariate building blocks
- Never requires inverting k by k covariance matrix
- Computationally very simple
- Technically no more difficult than PCA
- Uses a basic property of linear regression

$$
y_{t}=\beta_{1} x_{1 t}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+\epsilon_{t}
$$

- Define $\hat{\eta}_{t}=y_{t}-\hat{\gamma}_{1} x_{1 t}$ where $\hat{\gamma}_{1}$ is from OLS of y on x_{1}
- Immediate implication is $\sum \hat{\eta}_{t} x_{1 t}=0$
- Define $\hat{\xi}_{t}=\hat{\eta}_{t}-\hat{\gamma}_{2} x_{2 t}$ where $\hat{\gamma}_{2}$ is from OLS of $\hat{\eta}$ on x_{2}
- Will have $\sum \hat{\xi}_{t} x_{2 t}=0$ but also $\sum \hat{\xi}_{t} x_{1 t}=0$
- Ingredients to PLS are different from PCA
- Assumed model

$$
\begin{aligned}
\mathbf{y}_{t} & =\boldsymbol{\mu}_{\mathbf{y}}+\boldsymbol{\Gamma} \mathbf{f}_{1 t}+\boldsymbol{\epsilon}_{t} \\
\mathbf{x}_{t} & =\boldsymbol{\Lambda}_{1} \mathbf{f}_{1 t}+\boldsymbol{\Lambda}_{2} \mathbf{f}_{2 t}+\boldsymbol{\xi}_{t} \\
\mathbf{f}_{t} & =\Psi \mathbf{f}_{t-1}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- Variable to predict is now a key component
- \mathbf{y}_{t}, m by 1
- Often $m=1$
- Not studentized (important if $m>1$)
- Same set of predictors
- \mathbf{x}_{t}, k by 1
- Assumed studentized
- \mathbf{y}_{t} can be in \mathbf{x}_{t} if \mathbf{y}_{t} is really in the future, so that the values in \mathbf{x}_{t} are lags
- Normally \mathbf{y}_{t} is excluded

Algorithm (r-Factor Partial Least Squares Regression)

1. Studentize \mathbf{x}_{j}, set $\tilde{\mathbf{x}}_{j}^{(0)}=\mathbf{x}_{j}$ and $\mathbf{f}_{0 t}=\boldsymbol{\iota}$
2. For $i=1, \ldots, r$
a. Set $\mathbf{f}_{i t}=\sum_{j} c_{i j} \tilde{\mathbf{x}}_{t}^{(i-1)}$ where $c_{i j}=\sum_{t} \tilde{\mathbf{x}}_{j t}^{(i-1)} \mathbf{y}_{t}$
b. Update $\tilde{\mathbf{x}}_{j}^{(i)}=\tilde{\mathbf{x}}_{j}^{(i-1)}-\kappa_{i j} \mathbf{f}_{t}$ where

$$
\kappa_{i j}=\frac{\mathbf{f}^{\prime} \tilde{x}_{i}^{(i-1)}}{\mathbf{f}_{i}^{\prime} \mathbf{f}_{i}}
$$

- Output is a set of uncorrelated factors $\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{r}$
- Forecasting model is then $\mathbf{y}_{t}=\beta_{0}+\boldsymbol{\beta}^{\prime} \mathbf{f}_{t}+\boldsymbol{\epsilon}_{t}$
- Useful to save $\mathbf{C}=\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{r}\right]$ and $\mathbf{K}=\left[\boldsymbol{\kappa}_{1}, \ldots, \boldsymbol{\kappa}_{r}\right]$ and $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{\beta}}^{\prime}\right)$
- Numerical issues may produce some non-zero covariance for factors far apart
- Normally only interested in a small number, so not important
- Factors are just linear combinations of original data
- Obvious for first factor, which is just $\mathbf{f}_{\mathbf{1}}=\mathbf{X} \mathbf{c}_{1}=\tilde{\mathbf{X}}^{(0)} \mathbf{c}_{1}$
- Second factors is $\mathbf{f}_{2}=\tilde{\mathbf{X}}^{(1)} \mathbf{c}_{2}$

$$
\begin{aligned}
\tilde{\mathbf{X}}^{(1)} & =\mathbf{X}\left(\mathbf{I}_{k}-\mathbf{c}_{1} \boldsymbol{\kappa}_{1}^{\prime}\right) \\
& =\mathbf{X}-\left(\mathbf{X} \mathbf{c}_{1}\right) \boldsymbol{\kappa}_{1}^{\prime} \\
& =\mathbf{X}-\mathbf{f}_{1} \boldsymbol{\kappa}_{1}^{\prime} \\
\tilde{\mathbf{X}}^{(1)} \mathbf{c}_{2} & =\tilde{\mathbf{X}}^{(0)}\left(\mathbf{I}_{k}-\mathbf{c}_{1} \boldsymbol{\kappa}_{1}\right) \mathbf{c}_{2} \\
& =\mathbf{X} \boldsymbol{\beta}_{2}
\end{aligned}
$$

- Same logic holds for any factor

$$
\begin{aligned}
\tilde{\mathbf{X}}^{(j-1)} \mathbf{c}_{j} & =\tilde{\mathbf{X}}^{(j-2)}\left(\mathbf{I}_{k}-\mathbf{c}_{j-1} \boldsymbol{\kappa}_{j-1}^{\prime}\right) \mathbf{c}_{j} \\
& =\tilde{\mathbf{X}}^{(j-3)}\left(\mathbf{I}_{k}-\mathbf{c}_{j-2} \boldsymbol{\kappa}_{j-2}^{\prime}\right)\left(\mathbf{I}_{k}-\mathbf{c}_{j-1} \boldsymbol{\kappa}_{j-1}^{\prime}\right) \mathbf{c}_{j} \\
& =\mathbf{X}\left(\mathbf{I}_{k}-\mathbf{c}_{1} \boldsymbol{\kappa}_{1}^{\prime}\right) \ldots\left(\mathbf{I}_{k}-\mathbf{c}_{j-1} \boldsymbol{\kappa}_{j-1}^{\prime}\right) \mathbf{c}_{j} \\
& =\mathbf{X} \boldsymbol{\beta}_{j}
\end{aligned}
$$

Forecasting with Partial Least Squares

- When forecasting y_{t+h}, use

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1+h} \\
\vdots \\
y_{t}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{t-h}
\end{array}\right]
$$

- When studentizing \mathbf{X} save $\hat{\boldsymbol{\mu}}$ and $\hat{\sigma}^{2}$, the vectors of means and variance
- Alternatively studentize all t observations of \mathbf{X}, but only use $1, \ldots, t-h$ in PLS
- Important inputs to preserve:
- \mathbf{c}_{i} and $\boldsymbol{\kappa}_{i}, i=1,2, \ldots, r$

Algorithm (Out-of-sample Factor Reconstruction)

1. Set $f_{0 t}=1$ and $\tilde{\mathbf{x}}_{t}^{(0)}=\left(\mathbf{x}_{t}-\hat{\boldsymbol{\mu}}\right) \oslash \hat{\boldsymbol{\sigma}}$
2. For $i=1, \ldots, r$
a. Compute $f_{i t}=\mathbf{c}_{i}^{\tilde{\mathbf{x}}_{t}^{(i-1)}}$
b. Set $\tilde{\mathbf{x}}_{t}^{(i)}=\tilde{\mathbf{x}}_{t}^{(i-1)}-f_{i t} \boldsymbol{\kappa}_{i}^{\prime}$

- Construct forecast from \mathbf{f}_{t} and $\left(\hat{\beta}_{0}, \hat{\boldsymbol{\beta}}\right)$
- There is a non-trivial relationship between PCA and PLS
- PCA iteratively solves the following problem to find $\mathbf{f}_{i}=\mathbf{X} \boldsymbol{\beta}_{i}$

$$
\max _{\boldsymbol{\beta}_{i}} \mathrm{~V}\left[\mathbf{X} \boldsymbol{\beta}_{i}\right] \text { subject to } \boldsymbol{\beta}_{i}^{\prime} \boldsymbol{\beta}_{i}=1 \text { and } \mathbf{f}_{i}^{\prime} \mathbf{f}_{j}=0, j<i
$$

- PLS solves a similar problem to find \mathbf{f}_{i}
- Different in one important way

$$
\max _{\boldsymbol{\beta}_{i}} \operatorname{Corr}^{2}\left[\mathbf{X} \boldsymbol{\beta}_{i}, \mathbf{y}\right] \vee\left[\mathbf{X} \boldsymbol{\beta}_{i}\right] \text { subject to } \mathbf{f}_{i}^{\prime} \mathbf{f}_{j}=0, j<i
$$

- Assumes single $y(m=1)$
- Implications:
- PLS can only find factors that are common to \mathbf{x}_{t} and y_{t} due to Corr term
- PLS also cares about the factor space in \mathbf{x}_{t}, so more repetition of one factor in \mathbf{x}_{t} will affect factor selected
- When $\mathbf{x}_{t}=\mathbf{y}_{t}$, PLS is equivalent to PCA
- Generalization of PLS to incorporate user forecast proxizes, \mathbf{z}_{t}
- When proxies are not specified, proxies can be automatically generated, very close to PLS
- Model structure

$$
\begin{aligned}
\mathbf{x}_{t} & =\boldsymbol{\lambda}+\boldsymbol{\Lambda} \mathbf{f}_{t}+\boldsymbol{\epsilon}_{t} \\
y_{t+1} & =\boldsymbol{\beta}_{0}+\boldsymbol{\beta}^{\prime} \mathbf{f}_{t}+\eta_{t} \\
\mathbf{z}_{t} & =\boldsymbol{\phi}_{0}+\boldsymbol{\Phi} \mathbf{f}_{t}+\xi_{t}
\end{aligned}
$$

- $\mathbf{f}_{t}=\left[\mathbf{f}_{1 t}^{\prime}, \mathbf{f}_{2 t}^{\prime}\right]^{\prime}$
- $\boldsymbol{\Lambda}=\left[\boldsymbol{\Lambda}_{1}, \boldsymbol{\Lambda}_{2}\right], \boldsymbol{\beta}=\left[\boldsymbol{\beta}_{1}, \mathbf{0}\right], \boldsymbol{\Phi}=\left[\boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right]$
- $\boldsymbol{\beta}$ can have 0's so that some factors are not important for y_{t+1}
- Most discussion is on a single scalar y, so $m=1$
- \mathbf{z}_{t} is l by 1 , with $0<l \ll \min (k, T)$
- l is finite
- Number of factors used in forecasting model

Algorithm (Three-pass Regression Filter)

1. (Time series regression) Regress \mathbf{x}_{i} on \mathbf{Z} for $i=1, \ldots, k, x_{i t}=\phi_{i 0}+\mathbf{z}_{t}^{\prime} \boldsymbol{\phi}_{i}+v_{i t}$
2. (Cross section regression) Regress \mathbf{x}_{t} on $\hat{\boldsymbol{\phi}}_{i}$ for $t=1, \ldots, T$, $x_{i t}=\gamma_{i 0}+\hat{\boldsymbol{\phi}}_{i} \mathbf{f}_{t}+v_{i t}$. Estimate is $\hat{\mathbf{f}}_{t}$.
3. (Predictive regression) Regress y_{t+1} on $\hat{\mathbf{f}}_{t}, y_{t+1}=\beta_{0}+\boldsymbol{\beta}^{\prime} \hat{\mathbf{f}}_{t}+\eta_{t}$

- Final forecast uses out-of-sample data but is otherwise identical
- Trivial to use with an imbalanced panel
- Run step 1 when \mathbf{x}_{i} is observed
- Include $x_{i t}$ and $\hat{\boldsymbol{\phi}}_{i}$ whenever observed in step 2
- Imbalanced panel may nto produce accurate forecasts though
- Use data

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1+h} \\
y_{2+h} \\
\vdots \\
y_{t}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{t-h}
\end{array}\right]
$$

to estimate 3PRF

- Retain $\hat{\boldsymbol{\phi}}_{i}$ for $i=1, \ldots, k$
- Retain $\hat{\beta}_{0}$ and $\hat{\boldsymbol{\beta}}$
- To forecast $y_{t+h \mid t}$
- Compute $\hat{\mathbf{f}}_{t}$ by regressing \mathbf{x}_{t} on $\hat{\boldsymbol{\phi}}_{i}$ and a constant
- Construct $\hat{y}_{t+h \mid t}$ using $\hat{\boldsymbol{\beta}}_{0}+\hat{\boldsymbol{\beta}} \hat{\mathbf{f}}_{t}$
- z_{t} are potentially useful but not required

Algorithm (Automatic Proxy Selection)

1. Initialize $\mathbf{w}^{(i)}=\mathbf{y}$
2. For $i=1,2, \ldots, L$
a. $\operatorname{Set} \mathbf{z}_{i}=\mathbf{w}^{(i)}$
b. Compute 3PRF forecast $\hat{\mathbf{y}}^{(i)}$ using proxies $1, \ldots, i$
c. Update $\mathbf{w}^{(i+1)}=\mathbf{y}-\hat{\mathbf{y}}^{(i)}$

- Proxies are natural since forecast errors
- Automatic algorithm finds factor most related to \mathbf{y}, then the 1 -factor residual, then the 2 -factor residual and so on
- Nearly identical to the steps in PLS
- Possibly easier to use 3PRF with missing data
- One of the strengths of 3PRF is the ability to include theory motivated proxies
- Kelly \& Pruit show that money growth and output growth can be used to improve inflation proxies over automatic proxies
- The use of theory motivated proxies effectively favors some factors over others
- Potentially useful for removing factors that might be unstable, resulting in poor OOS performance
- When will theory motivated proxies help?
- Proxies contain common, persistent components
- Some components in y that are not in \mathbf{z} have unstable relationship
- 3PRF and PLS are identical under the following conditions
- \mathbf{X} has been studentized
- The 2-first stages do not include constants
- Factors that come from 3PRF and PLS differ by a rotation
- PLS factors are uncorrelated by design
- Equivalent factors can be constructed using

$$
\boldsymbol{\Sigma}_{\mathbf{f}}^{-1 / 2} \mathbf{F}^{3 P R F}
$$

- $\boldsymbol{\Sigma}_{\mathbf{f}}$ is the covariance matrix of $\mathbf{F}^{3 P R F}$
- Will stiff differ by scale and possibly factor of ± 1
- Order may also differ
- Forecast
- GDP growth
- Industrial Production
- Equity Returns
- Spread between Baa and 10 year rate
- All data from Stock \& Watson 2012 dataset
- Dataset split in half
- 1959:2 - 1984:1 for initial estimation
- 1985:1 - 2011:2 for evaluation
- Consider horizons from 1 to 4 quarters
- Entire procedure is conducted out-of-sample
- Forecasts computed using different methods:
- 3 components
- 3 components and 4 lags with Global BIC search
- $I P_{p 2}$ selected components only
- \mathbf{X} recursively studentized
- Only use series that have no missing data
- Cheating: some macro data-series are not available in real-time, but all forecasts benefit
- Consider 1, 2 and 3 factor forecasts
- Automatic proxy selection only
- Always studentize \mathbf{X}
- Benchmark is AR(4)

	IP			
PCA(3)	0.6038	0.4255	0.3125	0.2667
AR(4)	0.5521	0.3695	0.2699	0.2031
BIC	0.5671	0.3676	0.3047	0.2936
PCA-IC	0.5380	0.4089	0.3235	0.2773
3PRF-1	0.4653	0.3728	0.2999	0.2601
3PRF-2	0.5351	0.4081	0.3095	0.2494
3PRF-3	0.5230	0.3619	0.2294	0.1600
PCA(3)	0.6031	0.4204	0.2483	0.1485
AR(4)	0.5239	0.3578	0.2601	0.1860
BIC	0.6210	0.4573	0.2790	0.1669
PCA-IC	0.6010	0.435	0.3046	0.2246
3PRF-1	0.5385	0.4371	0.3444	0.2848
3PRF-2	0.5205	0.3759	0.2665	0.1922
3PRF-3	0.4637	0.2918	0.1796	0.1189

BAA-GS10 (Diff)

PCA(3)	-0.0754	-0.2065	-0.178	-0.0484
AR(4)	-0.0464	-0.0914	-0.0865	-0.0097
BIC	0.0232	-0.1253	-0.0036	-0.0380
PCA-IC	0.0390	-0.0698	-0.0711	0.0242
3PRF-1	-0.0072	-0.1735	-0.1367	-0.0240
3PRF-2	0.0303	-0.1887	-0.1283	-0.0564
3PRF-3	-0.1909	-0.4024	-0.3301	-0.1710

S\&P 500 Return

PCA(3)	0.0442	-0.1133	-0.1870	-0.2149
AR(4)	0.0677	-0.0095	-0.0546	-0.0725
BIC	0.0232	-0.1281	-0.1895	-0.1950
PCA-IC	0.0070	-0.0929	-0.0949	-0.0982
3PRF-1	-0.0245	-0.1575	-0.1764	-0.1863
3PRF-2	0.0903	-0.1488	-0.2122	-0.2165
3PRF-3	0.0055	-0.2029	-0.3885	-0.3833

- When k is large, OLS will not produce useful forecasts
- Reduced rank regression places some restrictions on the coefficients on \mathbf{x}_{t}

$$
\begin{aligned}
y_{t+1} & =\gamma_{0}+\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{x}_{t}+\epsilon_{t} \\
& =\gamma_{0}+\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}\right)+\epsilon_{t} \\
& =\gamma_{0}+\boldsymbol{\alpha} \mathbf{f}_{t}+\epsilon_{t}
\end{aligned}
$$

- $\boldsymbol{\alpha}$ is 1 by r - factor loadings
- $\boldsymbol{\beta}$ is r by k - selects the factors
- When $k \approx T$, even this type of restriction does not produce well behaved forecasts
- Regularization is a common method to ensure that covariance matrices are invertible when $k \approx T$, or even when $k>T$
- Many regularization schemes
- Tikhonov

$$
\tilde{\boldsymbol{\Sigma}}_{\mathbf{x}}=\hat{\boldsymbol{\Sigma}}_{\mathbf{x}}+\rho \mathbf{Q Q}^{\prime}
$$

where $\mathbf{Q} \mathbf{Q}^{\prime}$ has eigenvalues bounded from 0 for any k

- Common choice of $\mathbf{Q Q}^{\prime}$ is $\mathbf{I}_{k}, \tilde{\mathbf{\Sigma}}_{\mathbf{x}}=\hat{\mathbf{\Sigma}}_{\mathbf{x}}+\rho \mathbf{I}_{k}$
- Makes most sense when \mathbf{x}_{t} has been studentized
- Eigenvalue cleaning

$$
\hat{\mathbf{\Sigma}}_{\mathbf{x}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\prime}
$$

- For $i \leq r, \tilde{\lambda}_{i}=\lambda_{i}$ is unchanged
- For $i>r, \tilde{\lambda}_{i}=(k-r)^{-1} \sum_{i>c} \lambda_{i}$

$$
\tilde{\mathbf{\Sigma}}_{\mathbf{x}}=\mathbf{V} \tilde{\boldsymbol{\Lambda}} \mathbf{V}^{\prime}
$$

- Effectively imposes a r-factor structure
- These two methods can be combined to produce RRRR
- In small k case,

$$
y_{t+1}=\gamma_{0}+\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{x}_{t}+\epsilon_{t}
$$

normalized $\boldsymbol{\beta}$ can be computed as as solution to generalized eigenvalue problem

- Normal eigenvalue problem

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

- Generalized Eigenvalue Problem

$$
|\mathbf{A}-\lambda \mathbf{B}|=0
$$

- Reduced Rank LS

$$
\left|\underset{k \times m}{\boldsymbol{\Sigma}_{\mathrm{xy}} \mathbf{W} \boldsymbol{\Sigma}_{\mathrm{xy}}^{\prime}-\lambda \times k} \underset{k \times k}{\prime}-\lambda \boldsymbol{\Sigma}_{\mathbf{x}}\right|=0
$$

$\boldsymbol{\beta}$ are the r generalized eigenvectors associated with the r largest generalized eigenvalues of this problem

- W is a weighting matrix, either \mathbf{I}_{m} or a diagonal GLS version using variance of $y_{i t}$ on $\mathrm{i}^{\text {th }}$ diagonal
- $\boldsymbol{\beta}$ are the r generalized eigenvectors associated with the r largest generalized eigenvalues of

$$
\left|\mathbf{\Sigma}_{\mathrm{xy}} \mathbf{W} \mathbf{\Sigma}_{\mathrm{xy}}^{\prime}-\lambda\left(\mathbf{\Sigma}_{\mathbf{x}}+\rho \mathbf{Q} \mathbf{Q}^{\prime}\right)\right|=0
$$

- \mathbf{X} is studentized
- $\mathbf{Q} \mathbf{Q}^{\prime}$ is typically set to \mathbf{I}_{k}
- ρ is a tuning parameter, usually set using 5 - or 10 -fold cross validation
- r also need to be selected
- Cross validation
- Model-based IC
- r will always be less than m, the number of y series: When there is only 1 series, the first eigenvector selects the optimal linear combination which will predict that series the best. Only tension if more than 1 series.
- $\boldsymbol{\beta}$ are the r generalized eigenvectors associated with the r largest generalized eigenvalues of

$$
\left|\Sigma_{\mathrm{fy}} \mathbf{W} \Sigma_{\mathrm{fy}}^{\prime}-\lambda \Sigma_{\mathrm{f}}\right|=0
$$

- $\Sigma_{\mathbf{f}}$ is the covariance of the first r_{f} principal components
- r_{f} to distinguish from r (the number of columns in $\boldsymbol{\beta}$)
- Σ_{fy} is the covariance between the PCs and the data to be predicted
- r_{f} must be chosen using another criteria - Scree plot or Information Criteria
- The spectral cutoff method essentially chooses a set of r factors from the set of r_{f} PCs
- This is not a trivial exercise since factors are always identified only up to a rotation
- For example, allows a 1-factor model to be used for forecasting even when the factor can only be reconstructed from all r_{f} PCs
- Partially bridges the gap between PCA and PLS/3PRF
- Once $\hat{\boldsymbol{\beta}}$ was been estimated using generalized eigenvalue problem, run regression

$$
y_{t+1}=\phi_{0}+\boldsymbol{\alpha}\left(\hat{\boldsymbol{\beta}}^{\prime} \mathbf{x}_{t}\right)+\epsilon_{t}
$$

to estimate $\hat{\boldsymbol{\alpha}}$

- Can also include lags of y

$$
y_{t+1}=\phi_{0}+\sum_{i=1}^{p} \phi_{i} y_{t-i+1}+\boldsymbol{\alpha}\left(\hat{\boldsymbol{\beta}}^{\prime} \mathbf{x}_{t}\right)+\epsilon_{t}
$$

- When using spectral cutoff, regressions use \mathbf{f}_{t} in place of \mathbf{x}_{t}
- Forecasts are simple since $\mathbf{x}_{t}, \hat{\boldsymbol{\beta}}$ and other parameters are known at time t
- When using spectral cutoff, \mathbf{f}_{t} is also known at time t
- r can be chosen using a normal IC such as BIC or using t-stats in the forecasting regression
- When forecasting with the models, it is useful to setup some matrices so that observations are aligned
- Assume interest in predicting $y_{t+1 \mid t}, \ldots, y_{t+h \mid t}$
- Can also easily use cumulative versions, $\mathrm{E}_{t}\left[\sum_{i=1}^{h} y_{t+i}\right]$
- All matrices will have t rows
- Leads (max h) and lags ($\max P$)

$$
\mathbf{Y}^{\text {leads }}=\left[\begin{array}{cccc}
y_{2} & y_{3} & \cdots & y_{h+1} \\
y_{3} & y_{4} & \cdots & y_{h+2} \\
\vdots & \vdots & \vdots & \vdots \\
y_{t-h+1} & y_{t-h+2} & \cdots & y_{t} \\
y_{t-1} & y_{t} & \cdots & - \\
y_{t} & - & \cdots & -
\end{array}\right], \mathbf{Y}^{\text {lags }}=\left[\begin{array}{cccc}
y_{1} & - & \cdots & - \\
y_{2} & y_{1} & \cdots & - \\
\vdots & \vdots & \vdots & \vdots \\
y_{P} & y_{P-1} & \vdots & y_{1} \\
\vdots & \vdots & \vdots & \vdots \\
& & & \vdots \\
y_{t-1} & y_{t-2} & y_{t-P}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\cdots \\
\mathbf{x}_{t}
\end{array}\right]
$$

- - denotes a missing observation (nan)
- When forecasting at horizon h, use column h of $\mathbf{Y}^{\text {leads }}$ and rows $1, \ldots t-h$ of $\mathbf{Y}^{\text {lags }}$ and \mathbf{X}
- Remove any rows that have missing values
- When using PCA methods, extract PC (C) from all of \mathbf{X} and use rows $1, \ldots t-h$ of \mathbf{C}

