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ABSTRACT

We review the different block bootstrap methods for time series, and present
them in a unified framework. We then revisit a recent result of Lahiri [Lahiri,
S. N. (1999b). Theoretical comparisons of block bootstrap methods, Ann. Statist.
27:386–404] comparing the different methods and give a corrected bound on
their asymptotic relative efficiency; we also introduce a new notion of finite-
sample “attainable” relative efficiency. Finally, based on the notion of spectral
estimation via the flat-top lag-windows of Politis and Romano [Politis, D. N.,
Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time
Series Anal. 16:67–103], we propose practically useful estimators of the optimal
block size for the aforementioned block bootstrap methods. Our estimators are
characterized by the fastest possible rate of convergence which is adaptive on
the strength of the correlation of the time series as measured by the correlogram.
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1. INTRODUCTION

Implementation of block bootstrap methods for dependent data typically
requires selection of b, a block length or an expected block length; cf. Künsch (1989),
Liu and Singh (1992), Politis and Romano (1992), Politis and Romano (1994)—see
also the related work of Carlstein (1986). Apart from specifying the rate at which b
must grow with the sample size, N , available results typically offer little guidance on
how to choose b. Exceptions are the results of Hall et al. (1995) and Bühlmann and
Künsch (1999) who provide data-dependent methods for selecting b for the moving
blocks bootstrap of Künsch (1989) and Liu and Singh (1992); see also the review by
Berkowitz and Kilian (2000).

In this note we review some different ways of implementing the block bootstrap
for time series, and present them in a unified framework. We give a comparison
between the moving blocks bootstrap and the stationary bootstrap, thus rectifying
an incorrect claim by Lahiri (1999b). In addition, we provide a novel methodology
of automatic selection/estimation of optimal block sizes; the methodology is based
on the notion of spectral estimation via the flat-top lag-windows of Politis and
Romano (1995) that possess many favorable properties. Finally, we present some
illustrative simulations and introduce a new notion of finite-sample “attainable”
relative efficiency for comparing different block bootstrap methods.

2. BASIC FRAMEWORK

Suppose X1� � � � � XN are observations from the (strictly) stationary real-valued
sequence �Xn� n ∈ Z� having mean � = EXt, and autocovariance sequence R�s� =
E�Xt − ���Xt+�s� − ��. Both � and R�·� are unknown, and the objective is to obtain
an approximation to the sampling distribution of XN = N−1 ∑N

t=1 Xt. Since typically
XN is asymptotically normal, estimating the variance �2

N = Var�
√
N XN� = R�0�+

2
∑N

s=1�1− s/N�R�s� is important.
Sufficient conditions for the validity of a central limit theorem for XN are

given by a moment condition and a mixing (weak dependence) condition that is
conveniently defined by means of the strong mixing coefficients; see e.g., Rosenblatt
(1985). In particular, we say that the series �Xt� t ∈ Z� is strong mixing if 	X�k� → 0,
as k → �, where 	X�k� = supA�B �P�A ∩ B�− P�A�P�B��, and A ∈ � 0

−�� B ∈ ��
k are

events in the �-algebras generated by �Xn� n ≤ 0� and �Xn� n ≥ k� respectively. If in
addition

E�X1�2+
 < � and
�∑
k=1

	

/�2+
�
X �k� < � (1)

for some 
 > 0, then the limit of �2
N exists (denoted by �2

� = ∑�
s=−� R�s�), and in

addition,
√
N�XN − ��

�
⇒ N�0� �2
�� as N → �; see Ibragimov and Linnik (1971).

Many estimators of �2
� have been proposed in the literature; see e.g., Politis

et al. (1999) for some discussion. In the next section, we focus on estimators
constructed via block resampling in two popular forms: the circular/moving blocks
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bootstrap and the stationary bootstrap,a and we address the important practical
problem of estimation of the optimal block size. An illustration of the proposed
block selection algorithm and some examples are given in Sec. 4. Technical proofs
are provided in the Appendix.

3. PRACTICAL BLOCK SIZE CHOICE

3.1. Brief Review of Block Bootstrap Methods

A general block bootstrap algorithm can be defined as follows:

(1) Start by “wrapping” the data �X1� � � � � XN� around a circle, i.e., define the
new series Yt �= Xtmod�N�

, for t ∈ N, where mod�N� denotes “modulo N”.
(2) Let i0� i1� � � � , be drawn i.i.d. with uniform distribution on the set

�1� 2� � � � � N�; these are the starting points of the new blocks.
(3) Let b0� b1� � � � , be drawn i.i.d. from some distribution Fb�·� that depends on

a parameter b (that may depend on N and will be specified later); these are
the block sizes.

(4) Construct a bootstrap pseudo-series Y ∗
1 � Y

∗
2 � � � � , as follows. For m =

0� 1� � � � , let

Y ∗
mbm+j �= Yim+j−1 for j = 1� 2� � � � � bm�

This procedure defines a probability measure (conditional on the data
X1� � � � � XN ) that will be denoted P∗; expectation and variance with respect
to P∗ are denoted E∗ and Var∗ respectively.

(5) Finally, we focus on the first N points of the bootstrap series and construct
the bootstrap sample mean Y

∗
N = N−1 ∑N

i=1 Y
∗
i . The corresponding estimate

of the asymptotic variance of the sample mean is then given by
Var∗�

√
N �Y ∗

N �.

We will explicitly address two interesting cases:

(A) The distribution Fb is a unit mass on the positive integer b; this is the
circular bootstrap (CB) of Politis and Romano (1992). Its corresponding
estimate of �2

� will be denoted �2
b�CB.

(B) The distribution Fb is a Geometric distribution with mean equal to the
real number b; this is the stationary bootstrap (SB) of Politis and Romano
(1994). Its corresponding estimate of �2

� will be denoted �2
b�SB.

aThere is yet another block bootstrap methodology that has been recently introduced,
namely the tapered block bootstrap. Tapering the blocks before allowing them to be included
in a bootstrap pseudo-sample has many favorable properties including a faster rate of
convergence; for more details see Paparoditis and Politis (2001, 2002).
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The circular bootstrap is an asymptotically equivalent variation of the moving
blocks (MB) bootstrap of Künsch (1989) and Liu and Singh (1992) whose estimate
of �2

� may be simply written as �̂2
b�MB = �b/Q�

∑Q
i=1�Xi�b − XN�

2� here Xi�b =
b−1 ∑i+b−1

t=i Xt, and Q = N − b + 1. Note that the estimator �̂2
b�MB is found in the

literature in many asymptotically equivalent variations and under many different
names, including the following: Bartlett spectral density estimator (at the origin)—
Bartlett (1946, 1950); moving block bootstrap—Künsch (1989), Liu and Singh
(1992); full-overlap subsampling—Politis and Romano (1993); and overlapping
batch means estimator—Schmeiser (1982, 1990).

Note that both the circular bootstrap and the stationary bootstrap share with
the moving blocks bootstrap of Künsch (1989) and Liu and Singh (1992) the
property of higher-orderb accurate estimation of the distribution of the sample mean
after standardization/studentization; see Lahiri (1991, 1999a), Politis and Romano
(1992), and Götze and Künsch (1996).

Under mixing and moment conditions, consistency of both �̂2
b�CB and �2

b�SB

was shown in Politis and Romano (1992, 1994). In a recent paper, Lahiri (1999b)
provides a detailed approximation to the first two moments of �̂2

b�CB and �2
b�SB that

is very useful and is given below. To state it, we define the spectral density function
as g�w� �= ∑�

s=−� R�s� cos�ws�.

Theorem 3.1 (Lahiri, 1999b). Assume E�Xt�6+
 < �, and
∑�

k=1 k
2�	X�k��



6+
 < � for

some 
 > 0. If b → � as N → � but with b = o�N 1/2�, then we have:

Bias��̂2
b�CB� = E�̂2

b�CB − �2
� = −1

b
G+ o�1/b�� (2)

Var��̂2
b�CB� =

b

N
DCB + o�b/N�� (3)

Bias��̂2
b�SB� = E�̂2

b�SB − �2
� = −1

b
G+ o�1/b�� (4)

Var��̂2
b�SB� =

b

N
DSB + o�b/N�� (5)

in the above, DCB = 4
3g

2�0��DSB = (
4g2�0�+ 2



∫ 

−
�1+ cosw�g2�w�dw

)
, and

G = ∑�
k=−� �k�R�k�.

From the above theorem it is apparent that the SB is less accurate than the CB
for estimating �2

�. Although the two methods have similar bias (to the first order),
the SB has higher variance due to the additional randomization involved in drawing
the random block sizes.

bHigher-order accuracy is typically defined by a comparison to the Central Limit Theorem
that is concurrently available under (1); thus, the aforementioned bootstrap schemes are all
more accurate as compared to the benchmark of the standard normal approximation to the
distribution of the standardized and/or studentized sample mean.
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To compare the two methods, we may define the asymptotic relative efficiency
(ARE) of the SB relative to the CB as

ARECB/SB �= lim
N→�

MSEopt�CB

MSEopt�SB

�

where MSEopt�CB �= infb MSE��̂2
b�CB�, and MSEopt�SB �= infb MSE��̂2

b�SB�.
From the previous remarks, it is intuitive that this ARECB/SB is less than one.

Nevertheless, contrary to a claim in Lahiri (1999b), this ARECB/SB is always bounded
away from zero; the subject of the following lemma is a corrected bound on the
ARECB/SB.

Lemma 3.1. Under the assumptions of Theorem 3.1 we have:

0�331 ≤ ARECB/SB ≤ 0�481�

Lemma 3.1 gives a precise bound on the price we must pay in order to have
a block-bootstrap method that generates stationary bootstrap sample paths; the
stationarity of bootstrap sample paths is a convenient property—see e.g., Politis and
Romano (1994) or White (2000).

Nevertheless, the above definition of asymptotic relative efficiency involves a
comparison of the theoretically optimized (with respect to block size choice) SB and
CB methods; but the optimal block size is never known in practice, and—more often
than not—the block size used is suboptimal. Interestingly the SB method is less
sensitive to block size misspecification as compared to CB and/or the moving blocks
bootstrap—see Politis and Romano (1994). We achieve a more realistic comparison
of the two methods based on the new notion of finite-sample attainable relative
efficiency introduced in Sec. 4.

The problem of empirically optimizing the block size choice is as challenging
as it is practically important. In the next two subsections a new method of optimal
block size choice is put forth for both SB and CB methods.

3.2. Choosing the Expected Block Size for the Stationary Bootstrap

From Theorem 3.1 it follows that for the stationary bootstrap we have:

MSE��̂2
b�SB� =

G2

b2
+DSB

b

N
+ o�b−2�+ o�b/N��

It now follows that the large-sample MSE��2
b�SB� is minimized if we choose

bopt�SB =
(
2G2

DSB

)1/3

N 1/3� (6)

Using the optimal block size bopt�SB we achieve the optimal MSE, which is given by

MSEopt�SB ≈ 3
22/3

G2/3D
2/3
SB

N 2/3
� (7)
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The quantities G and DSB involve the unknown parameters
∑�

k=−� �k�R�k�,
�2
� = ∑�

k=−� R�k� = g�0�, and 1


∫ 

−
�1+ cosw�g2�w�dw; these must be (accurately)

estimated in order to obtain a practically useful procedure.
To achieve accurate estimation of the infinite sum

∑�
k=−� �k�R�k� above,

as well as the infinite sum
∑�

k=−� R�k� cos�wk� that equals the spectral density
g�w�, we propose using the “flat-top” lag-window of Politis and Romano
(1995). Thus, we estimate

∑�
k=−� �k�R�k� by

∑M
k=−M ��k/M��k�R̂�k�, where

R̂�k� = N−1 ∑N−�k�
i=1 �Xi − XN��Xi+�k� − XN�, and the function ��t� has a trapezoidal

shape symmetric around zero, i.e.,

��t� =


1 if �t� ∈ �0� 1/2�

2�1− �t�� if �t� ∈ �1/2� 1�

0 otherwise�

Similarly, we estimate g�w� = ∑�
k=−� R�k� cos�wk� by ĝ�w� = ∑M

k=−M ��k/M�

×R̂�k� cos�wk�. Plugging in our two estimators in the expressions for G and DSB, we
arrive at the estimators

Ĝ =
M∑

k=−M

��k/M��k�R̂�k� and D̂SB =
(
4ĝ2�0�+ 2



∫ 

−
�1+ cosw�ĝ2�w�dw

)
�

(8)

Thus, our estimator for the (expected) block size choice is given by:

b̂opt�SB =
(
2Ĝ2

D̂SB

)1/3

N 1/3� (9)

One reason for using the flat-top lag-window ��t� is that smoothing with the
flat-top lag-window is highly accurate, taking advantage of a possibly fast rate of
decay of the autocovariance R�k�, and thus achieving the best rate of convergence
possible. In order to investigate the asymptotic performance of our suggested b̂opt�SB
we give the following result.

Theorem 3.2. Assume the conditions of Theorem 3.1 hold.

(i) Assume that
∑�

s=−� �s��r+1��R�s�� < � for some positive integer r; then taking
M proportional to N 1/�2r+1� yields

b̂opt�SB = bopt�SB�1+ OP�N
−r/�2r+1����

(ii) If R�k� has an exponential decay, then taking M ∼ A logN , for some given
non-negative constant A, yields

b̂opt�SB = bopt�SB

(
1+ OP

(√
logN√
N

))
� (10)
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(iii) If R�k� = 0 for �k� greater than some integer q, then taking M = 2q yields

b̂opt�SB = bopt�SB

(
1+ OP

(
1√
N

))
�

Besides the fast convergence and adaptivity to the underlying correlation
structure, another equally important reason for using the flat-top lag-window is
that choosing the bandwidth M for the flat-top lag-window in practice is intuitive
and feasible by a simple inspection of the correlogram, i.e., the plot of R̂�k� vs. k.
In particular, Politis and Romano (1995) suggest looking for the smallest integer,
say m̂, after which the correlogram appears negligible, i.e., R̂�k� � 0 for k > m̂.
Of course, R̂�k� � 0 is taken to mean that R̂�k� is not significantly different from
zero, i.e., an implied hypothesis test.c After identifying m̂ on the correlogram, the
recommendation is to just take M = 2m̂.

We now further discuss the M = 2m̂ recommendation in the specific context
of an exponential decay of R�k�; such a fast decay is often encountered, e.g., all
stationary ARMA models are characterized by such a fast decay—cf. Brockwell
and Davis (1991). First note that the “recipe” M = 2m̂, where m̂ is gotten by
a correlogram inspection, does not contradict the recommendation M ∼ A logN
offered in Theorem 3.2(ii). On the contrary, the M = 2m̂ recipe should be viewed as
an empirical way to obtain the optimal constant A in M ∼ A logN . To see this, recall
that the autocovariance R�k� of a stationary ARMA model satisfies R�k� � const
× �k, for large k, where � is essentially the modulus of the characteristic polynomial
root that is closest to the unit circle. Let the autocorrelations be defined as
�X�k� �= R�k�/R�0�; therefore, the estimated autocorrelations are given by �̂X�k� �=
R̂�k�/R̂�0� � C�k + OP�1/

√
N� for some constant C. To say that R̂�k� � 0 for k > m̂

means that �̂X�m̂+ 1� is not significantly different from zero; this in turn means
that −c/

√
N < �̂X�m̂+ 1� < c/

√
N for some constant c. Putting this all together, it

follows that with probability tending to one we have

A1 logN < m̂ < A2 logN

for some positive constants A1� A2.
Perhaps the most attractive feature of the M = 2m̂ recipe is its adaptivity to

different correlation structures. Arguments similar to those just given show that,
if the autocovariance R�k� has a polynomial (as opposed to exponential) decay,
then m̂ grows at a polynomial rate, as is advisable in that case—see Theorem 3.2(i).
In addition, if R�k� = 0 for �k� > q (but R�q� �= 0), then it is easy to see that

cA precise formulation of this implied hypothesis test is given in Politis (2001) and can
be described as follows: Let ��k� = R�k�/R�0�� �̂�k� = R̂�k�/R̂�0�, and let m̂ be the smallest
positive integer such that ��̂�m̂+ k�� < c

√
logN/N , for k = 1� � � � � KN , where c > 0 is a fixed

constant, and KN is a positive, nondecreasing integer-valued function of N such that KN =
o�logN�. Taking log to denote logarithm with base 10, recommended practical values for
the above are c = 2 and KN = max�5�

√
logN�.
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m̂
P−→ q; this corresponds to the interesting case of MA(q) models, i.e., the set-up

of Theorem 3.2(iii). Thus, the recipe M = 2m̂, is an omnibus rule-of-thumb that
automatically gives good bandwidth choices without having to prespecify the
correlation structure. Finally, note that the simple, correlogram-based, M = 2m̂
recipe can not be applied to traditional lag-windows; it is only applicable in
connection with the flat-top lag-windows of Politis and Romano (1995).

3.3. Choosing the Block Size for the Circular Bootstrap

Theorem 3.1 similarly implies that for the circular bootstrap we have:

MSE��̂2
b�CB� =

G2

b2
+DCB

b

N
+ o�b−2�+ o�b/N��

It now follows that the large-sample MSE��2
b�CB� is minimized if we choose

bopt�CB =
[(

2G2

DCB

)1/3

N 1/3

]
(11)

where �x� indicates the closest integer to the real number x. Using the optimal block
size bopt�CB we achieve the optimal MSE, which is now given by

MSEopt�CB ≈ 3
22/3

G2/3D
2/3
CB

N 2/3
� (12)

Plugging in our estimator ĝ for g in the expression for DCB we obtain

D̂CB = 4
3
ĝ2�0�� (13)

Estimating G by Ĝ as given in (8), we are led to the following optimal block size
estimator:

b̂opt�CB =
(2Ĝ2

D̂CB

)1/3

N 1/3

 � (14)

The behavior of b̂opt�CB is similar to that of b̂opt�SB as the following theorem shows.

Theorem 3.3. Assume the conditions of Theorem 3.1 hold.

(i) Assume that
∑�

s=−� �s��r+1��R�s�� < � for some positive integer r; then taking
M proportional to N 1/�2r+1� yields

b̂opt�CB = bopt�CB�1+ OP�N
−r/�2r+1����
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(ii) If R�k� has an exponential decay, then taking M ∼ A logN , for some given
non-negative constant A, yields

b̂opt�CB = bopt�CB

(
1+ OP

(√
logN√
N

))
� (15)

(iii) If R�k� = 0 for �k� greater than some integer q, then taking M = 2q yields

b̂opt�CB = bopt�CB

(
1+ OP

(
1√
N

))
�

Note that the moving blocks bootstrap variance estimator �̂2
b�MB and the circular

bootstrap variance estimator �̂2
b�CB have identicald (at least to first order) bias and

variance; consequently, the large-sample optimal block size is the same, i.e., bopt�MB ≡
bopt�CB. Therefore, the estimator b̂opt�CB can be considered to be an estimator of the
optimal block size for the moving blocks bootstrap as well, i.e., b̂opt�MB ≡ b̂opt�CB.
As Theorem 3.3 shows, our estimator b̂opt�MB has a faster rate of convergence than
that of the block size estimator proposed in Bühlmann and Künsch (1999), and the
difference is especially pronounced when the autocovariance R�k� has a fast decay.
To elaborate, recall that the Bühlmann and Künsch (1999) block size estimator,
denoted by b̄opt�MB, generally satisfies

b̄opt�MB = bopt�MB�1+ OP�N
−2/7���

By contrast, note that

b̂opt�MB = bopt�MB�1+ OP�N
−1/3��

under any of the autocovariance decay conditions considered in Theorem 3.3; this
is true, for example, under the slowest decay condition, i.e., condition (i) with r = 1.
If the autocovariance R�k� happens to have a faster decay, then b̂opt�MB becomes
more accurate whereas the accuracy of b̄opt�MB is not improved; in the interesting
example of exponential decay of R�k�, Theorem 3.3(ii) shows that

b̂opt�MB = bopt�CB

(
1+ OP

(√
logN√
N

))
�

Thus, b̄opt�MB is outperformed by b̂opt�MB under a wide range of conditions, namely
any of the conditions considered in Theorem 3.3; the constrast is more dramatic
under conditions (ii) and (iii).

Finally note that, although the subsampling/cross-validation method for block
size selection of Hall et al. (1995) is intuitively appealing, no information on its rate
of convergence (besides consistency) has yet been established.

dAs shown in Künsch (1989), �̂2
b�MB satisfies Eqs. (2) and (3) with the same constants as

given for the circular case. In other words, Bias��̂2
b�MB� = − 1

b
G+ o�1/b�, and Var��̂2

b�MB� =
b
N

4
3g

2�0�+ o�b/N��
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4. ILLUSTRATION OF BLOCK SELECTION ALGORITHM

Having presented the stationary and the circular bootstrap in a unified way,
we have compared their performances in Lemma 3.1 which is a corrected version
of earlier results by Lahiri (1999b). Noting that the performance of either method
crucially depends on the block size used, we have presented a novel methodology of
selection/estimation of optimal block sizes. The methodology is based on the notion
of spectral estimation via the flat-top lag-windows of Politis and Romano (1995),
and it is outlined below.

Block Selection Algorithm via Flat-Top Lag-Windows

(1) Identify the smallest integer, say m̂, after which the correlogram appears
negligible, i.e., R̂�k� � 0 for k > m̂, using the procedure introduced in
Politis (2001) and outlined in the footnote to Sec. 3.2 in this paper.

(2) Using the value M = 2m̂, estimate G, DSB and DCB by Ĝ� D̂SB and D̂CB as
given in (8) and (13).

(3) Estimate the optimal (expected) block size b̂opt�SB for the stationary
bootstrap as in (9), and the optimal block size b̂opt�CB for the circular
and/or moving blocks bootstrap as in (14).

Note that the above algorithm is fully automatic.e Indeed, Dr. Andrew Patton
of the London School of Economics has compiled a Matlab computer code for
implementing the above block selection algorithm via flat-top lag-windows; his code
is now made publicly available from his website: http://fmg.lse.ac.uk/∼patton/
code.html.

Based on Dr. Patton’s code a small simulation was conducted in which time
series were generated of length N (with N being either 200 or 800), from the AR(1)
model: Xt = � Xt−1 + Zt, with �Zt� ∼ i.i.d. N�0� 1�. The values for the parameter �
were chosen as 0.7, 0.1, and −0�4. For each � and N combination, 1000 series were
generated. Table 1 contains the theoretical values of the optimal block sizes bopt�SB
and bopt�CB that can be analytically calculated from (6) and (11) by our knowledge
regarding the underlying AR(1) model.

Table 2 contains the mean, standard deviation, and Root Mean Squared Error
(RMSE) computed over the 1000 replications of the quantity b̂opt�SB/bopt�SB in each of
the different cases. Since the AR(1) model satisfies the assumptions of Theorem 3.2
(ii) we expect that b̂opt�SB/bopt�SB = 1+ OP�

√
logN/

√
N�. This theoretical result from

Theorem 3.2 is supported by the simulation; in particular, note the approximate
halving of the RMSE going from the case N = 200 to N = 800. Interestingly,
in the case � = 0�7, the bias of b̂opt�SB/bopt�SB is significant, yielding an important
contributing to the RMSE; by contrast, in the cases where � is 0.1 or −0�4, the
bias seems negligible. For illustration purposes, Figure 1 shows a histogram of the

eNevertheless, it should be stressed that valuable information will invariably be gained
by looking at the correlogram, i.e., a plot of �̂�k� vs. k; the automatic procedure should
complement—rather than replace—this correlogram examination.
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Table 1. Theoretical optimal block sizes bopt�SB and
bopt�CB; the brackets �·� indicate “closest integer” to
the entry.

bopt�SB bopt�CB

� = 0�7, N = 200 12.0043 [18.52]
N = 800 19.0557 [29.40]

� = 0�1, N = 200 1.3106 [2.31]
N = 800 2.0805 [3.66]

� = −0�4, N = 200 2.7991 [5.70]
N = 800 4.4432 [9.04]

Table 2. Empirical mean, standard deviation, and root mean
squared error (RMSE) of the quantity b̂opt�SB/bopt�SB.

b̂opt�SB/bopt�SB Mean St. dev. RMSE

� = 0�7, N = 200 0.646 0.383 0.521
N = 800 0.619 0.222 0.441

� = 0�1, N = 200 1.030 0.858 0.858
N = 800 0.827 0.421 0.455

� = −0�4, N = 200 1.107 0.704 0.712
N = 800 1.013 0.334 0.334

distribution of our estimator b̂opt�SB for � = 0�7 in the two cases: Figure 1(a) for
N = 200 and Figure 1(b) for N = 800.

Table 3 is similar to Table 2 but focuses instead on the quantity b̂opt�CB/bopt�CB.
Comparing line-by-line the entries of Table 3 to those of Table 2, we notice an
important pattern: the RMSEs of Table 2 are much smaller than those of Table 3.
Coupled with the fact that bopt�SB is invariably smaller than bopt�CB—see Table 1—
it follows that b̂opt�SB is a more accurate estimator than b̂opt�CB. In other words,
estimating the optimal (expected) block size in the stationary bootstrap seems to
be an easier problem than estimating the optimal block size in the circular and/or
moving blocks bootstrap. In addition, recall that the stationary bootstrap is less
sensitive to block size misspecification; see e.g., Politis and Romano (1994).

The above considerations motivate the introduction of a new way of comparing
the performance of the two methods. Thus, we now define the finite-sample
“attainable” relative efficiency (FARE) of the SB relative to CB as

FARECB/SB �= MSEb̂opt�CB

MSEb̂opt�SB

�

where MSEb̂opt�CB
�= MSE��̂2

b̂opt�CB
�, and MSEb̂opt�SB

�= MSE��̂2
b̂opt�SB

�. Note that the
FARECB/SB depends on the sample size N although it is not explicitly denoted. More
importantly, the FARECB/SB compares the performance of SB to that of CB when
both are used in connection with estimated optimal block sizes which is the case of
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Figure 1. Histogram of b̂opt�SB for � = 0�7; the two cases: (a) N = 200 and (b) N = 800.
(View this art in color in www.dekker.com.)

practical interest; recall that the ARECB/SB compared the MSEs of SB and CB when
those were used in connection with the true optimal block sizes (assumed known).

It would be illuminating to be able to give some bounds on the FARECB/SB

in the spirit of Lemma 3.1 but this seems too difficult for the present moment.
Nevertheless, from our previous remarks, it is expected that the FARECB/SB will
be greater than the ARECB/SB. Although theoretical analysis seems to be intractable,
we can investigate the behavior of FARECB/SB via simulation.

Table 3. Empirical mean, standard deviation, and root mean
squared error (RMSE) of the quantity b̂opt�CB/bopt�CB.

b̂opt�CB / bopt�CB Mean St. dev. RMSE

� = 0�7, N = 200 0.523 0.656 0.811
N = 800 0.471 0.186 0.561

� = 0�1, N = 200 1.155 1.543 1.551
N = 800 1.012 0.554 0.554

� = −0�4, N = 200 1.868 2.311 2.469
N = 800 1.371 0.565 0.676
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Table 4. The true �2
�, and the mean and MSE of its two estimators based on estimated

block size; the last column indicates the finite-sample attainable relative efficiency (FARE)
of the SB relative to the CB.

�2
� E�̂2

b̂opt �SB
E�̂2

b̂opt �CB
MSEb̂opt�SB

MSEb̂opt�CB
FARECB/SB

� = 0�7, N = 200 11�111 7.016 7.787 25�691 22�569 0.878
N = 800 11�111 8.808 9.433 10�555 8�421 0.798

� = 0�1, N = 200 1�235 1.063 1.132 0�059 0�055 0.940
N = 800 1�235 1.101 1.157 0�030 0�021 0.712

� = −0�4, N = 200 0�510 0.699 0.553 0�074 0�028 0.381
N = 800 0�510 0.619 0.543 0�023 0�008 0.363

Table 4 reports the performance (bias, MSE and FARE) of the two methods
based on estimated block sizes in the setting of our AR(1) example. To construct
the entries of Table 4, the following procedure was followed: for each generated
series, the estimated optimal block sizes (for SB and CB) were computed using
the algorithm of this section; then the SB and CB estimators of �2

� for that series
were computed using those estimated optimal block sizes that were specific to that
particular series.

Table 4 is quite informative. First note that—except for the case of negative
dependence—the FAREs are very large, definitely outside the maximum value
of 0�481 prescribed for the AREs by Lemma 3.1. Interestingly, the two positive
dependence cases (� = 0�7 and 0.1) yields FAREs close to unity in the small-sample
case (N = 200); this is strong indication of the block size effects previously alluded
to. The fact that the FARECB/SB is small (and potentially quite close to ARECB/SB)
when � = −0�4 could be attributed to a reduced sensitivity of the two estimators of
�2
� to block size in this case.

We also note that in all cases the FAREs seem to drop when the sample size
increases. To explain this phenomenon, we offer the following conjecture:

Conjecture. Under the assumptions of Theorem 3.2 (with the possible exception of the
r = 1 case in part (i)), we conjecture that FARECB/SB → ARECB/SB as n → �.

The rationale behind the above conjecture is the following; to fix ideas, consider
the clauses of part (ii) of Theorem 3.2 that corresponds to the exponential decay
associated with ARMA models—including our AR(1) example. We thus have

b̂opt�SB = bopt�SB

(
1+ OP

(√
logN√
N

))
= bopt�SB + OP

(√
logN
N 1/6

)
(16)

where we have used the fact that bopt�SB is of the order of N 1/3. Thus, we not only
have that b̂opt�SB / bopt�SB → 1 in probability; we also have b̂opt�SB − bopt�SB → 0 albeit
at a very slow rate. Therefore, for (really) large samples, the values of b̂opt�SB and
bopt�SB should approach each other. A similar behavior holds for b̂opt�CB, thus giving
support to our conjecture.
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However, note that the rate of the (alleged) convergence of FARECB/SB to
ARECB/SB would be excruciatingly slow. To see this, note that this convergence is
governed by the fact that

√
logN/N 1/6 tends to 0 but very slowly. Furthermore,

the N−1/6 factor given above is under the scenario of exponential decay of the
correlations; under the polynomial decay of part (i) of Theorem 3.2 the convergence
is even slower (and may well break down in the case r = 1). It is for this reason that
N = 800 does not seem to be a sample size large enough to ensure that FARECB/SB

is close to ARECB/SB.
Returning to Table 3, note that Theorem 3.3(ii) leads us to expect that

b̂opt�CB/bopt�CB = 1+ OP�
√
logN/

√
N�. This fact is again generally supported by our

simulation but special note must be made regarding the 3rd and 5th row of the table
where the standard deviation seems too large. To fix ideas, we focus on the 3rd row
as the phenomenon is similar for the 5th row.

Figure 2 shows a histogram of the distribution of our estimator b̂opt�CB for
� = 0�1 in the two cases: Figure 2(a) for N = 200 and Figure 2(b) for N = 800.
In particular, the center of location—whether measured by a mean or median—of
histogram 2(a) is approximately equal to 3 which is quite close to the true bopt�CB.
However, the histogram is somewhat heavy-tailed: about 5% of its values are bigger

Figure 2. Histogram of b̂opt�CB for � = 0�1; the two cases: (a) N = 200 and (b) N = 800.
(View this art in color in www.dekker.com.)

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 1
3:

38
 2

7 
A

pr
il 

20
14

 



ORDER                        REPRINTS

Block Bootstrap Methods 67

or equal to 10, and the maximum value is 64 which is extreme relative to a sample
size of 200.

By contrast, the histogram 2(b) is free from this undesirable existence of extreme
values. For this reason, we believe that this phenomenon is related to the automatic
nature of the simulation. As stressed in the footnote in Sec. 4, the rule for estimating
m̂ should always be complemented by an examination of the correlogram. Indeed,
such an examination is imperative in cases where m̂ and the resulting b̂opt�CB are
unusually large, as is the case where the latter turns out to be 64.

For example, consider a “problematic” correlogram pictured in Fig. 3 that
corresponds to an AR(1) model with � = 0�3 and N = 500. Superimposed are the
bands ±c

√
logN/N with c = 2 that was recommended in connection with KN =

max�5�
√
logN�; recall that log denotes logarithm with base 10.

Following the rule proposed in Politis (2001) and outlined in the footnote to
Sec. 3.2, we pick m̂ to be the smallest integer such that the correlogram remains
within the bands for at least KN = 5 lags after the lag m̂. By strict application of this
rule, we should pick m̂ = 6. But note that a little tweaking of the values of c and/or
KN yields radically different m̂’s, which is disconcerting. For instance, with c = 2
but KN = 6, we would be led to m̂ = 12. Alternatively, with KN = 5 but c slightly
bigger than 2, the bands would be slightly wider and we would be led to m̂ = 1� A
warning flag should be raised in such a case and the practitioner should be vigilant.

Note that the values c = 2 and KN = max�5�
√
logN� are just recommendations,

not absolute requirements. Thus, faced with a problematic correlogram such as in
Fig. 3, the practitioner must make a decision drawing upon his/her experience and
information concerning the dataset at hand. As a general guideline it should be
noted that flat-top lag-window spectral estimators perform best with small values
for M ; this guideline is in accord with the famous “Okham’s razor” that would favor
the simplest/smallest among two models with comparable power of explaining the

Figure 3. A “problematic” correlogram from an AR(1) model with � = 0�3 and N = 500.
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real world. Thus, faced with a dilemma such as the one posed by the correlogram
of Fig. 3, we would forego the recommendation c = 2 and KN = 5, and instead opt
for the simple choice m̂ = 1.

5. APPENDIX: TECHNICAL PROOFS

Proof of Lemma 3�1. First note that by Eqs. (7) and (12) we have:

ARECB/SB �= lim
N→�

MSEopt�CB

MSEopt�SB

= D
2/3
CB

D
2/3
SB

�

Thus, to bound the ARE it is sufficient to relate the quantity DCB to the
quantity DSB.

Claim. 4g2�0� ≤ DSB ≤ 7g2�0�.

Proof of Claim. The lower bound is obvious by the positivity of the integrand
�1+ cosw�g2�w� that features in DSB. For the upper bound, note that by the
Cauchy-Schwarz inequality it follows that the quantity∫ 

−
�1+ cosw�

g2�w�

g2�0�
dw

is maximized if and only if g2�w�

g2�0� = c�1+ cosw� for some constant c; letting w = 0
shows that c = 1/2. A simple calculation of the integral completes the proof of the
claim.

From the claim, it now follows that 3 ≤ DSB

DCB
≤ 5�25, and the Lemma is

proven. �

Proof of Theorem 3�2. We give the proof of part (ii); the other parts are proven
in the same manner. Observe that under the assumed conditions of part (ii) we
have that

M∑
k=−M

��k/M�R̂�k� cos�wk� =
�∑

k=−�
R�k� cos�wk�+ OP�

√
logN/

√
N��

i.e., ĝ�w� = g�w�+ OP�
√
logN/

√
N�; see Politis and Romano (1995). Since g�w� is

(uniformly) bounded, and the term OP�
√
logN/

√
N� is uniform in w, it follows thatf∫ 

−
�1+ cosw�ĝ2�w�dw =

∫ 

−
�1+ cosw�g2�w�dw + OP�

√
logN/

√
N��

i.e., D̂SB = DSB + OP�
√
logN/

√
N�.

fThe quantity
∫ 

−
�1+ cosw�g2�w�dw can also be accurately estimated using the

(unsmoothed) periodogram in place of the unknown spectral density g; we use the
(smoothed) estimator ĝ instead, mainly because ĝ has to be calculated anyway for
the purposes of estimating DSB.
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In the same vein, we can similarly show that

M∑
k=−M

��k/M��k�R̂�k� =
�∑

k=−�
�k�R�k�+ OP�

√
logN/

√
N��

An application of the delta method completes the proof. �

Proof of Theorem 3�3. Similar to the proof of Theorem 3.2. �
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