
Chapter 8

Value-at-Risk, Expected Shortfall and
Density Forecasting

Note: The primary reference for these notes is Gourieroux and Jasiak (2009), although it is fairly
technical. An alternative and less technical textbook treatment can be found in Christoffersen
(2003) while a comprehensive and technical treatment can be found in McNeil, Frey, and Embrechts
(2005).

The American Heritage dictionary, Fourth Edition, defines risk as “the possibility of suffering
harm or loss; danger”. In finance, harm or loss has a specific meaning: decreases in the value of
a portfolio. This chapter provides an overview of three methods used to assess the riskiness of a
portfolio: Value-at-Risk (VaR), Expected Shortfall, and modeling the entire density of a return.

8.1 Defining Risk

Portfolios are exposed to many classes of risk. These six categories represent an overview of the
risk factors which may affect a portfolio.

8.1.1 The Types of risk

Market Risk contains all uncertainty about the future price of an asset. For example, changes
in the share price of IBM due to earnings news represent market risk.

Liquidity Risk complements market risk by measuring the extra loss involved if a position
must be rapidly changed. For example, if a fund wished to sell 20,000,000 shares of IBM
on a single day (typical daily volume 10,000,000), this sale would be expected to have a
substantial effect on the price. Liquidity risk is distinct from market risk since it represents
a transitory distortion due to transaction pressure.
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Credit Risk, also known as default risk, covers cases where a 2ndparty is unable to pay per
previously agreed to terms. Holders of corporate bonds are exposed to credit risk since the
bond issuer may not be able to make some or all of the scheduled coupon payments.

Counterparty Risk generalizes credit risk to instruments other than bonds and represents the
chance they the counterparty to a transaction, for example the underwriter of an option
contract, will be unable to complete the transaction at expiration. Counterparty risk was a
major factor in the financial crisis of 2008 where the protection offered in Credit Default
Swaps (CDS) was not available when the underlying assets defaulted.

Model Risk represents an econometric form of risk which captures uncertainty over the correct
form of the model used to assess the price of an asset and/or the asset’s riskiness. Model
risk is particularly important when prices of assets are primarily determined by a model
rather than in a liquid market, as was the case in the Mortgage Backed Securities (MBS)
market in 2007.

Estimation Risk captures an aspect of risk that is present whenever econometric models are
used to manage risk since all model contain estimated parameters. Moreover, estimation
risk is distinct from model risk since it is present even if a model is correctly specified.
In many practical applications, parameter estimation error can result in a substantial
misstatement of risk. Model and estimation risk are always present and are generally
substitutes – parsimonious models are increasingly likely to be misspecified but have less
parameter estimation uncertainty.

This chapter deals exclusively with market risk. Liquidity, credit risk and counterparty risk all
require special treatment beyond the scope of this course.

8.2 Value-at-Risk (VaR)

The most common reported measure of risk is Value-at-Risk (VaR). The VaR of a portfolio is the
amount risked over some period of time with a fixed probability. VaR provides a more sensible
measure of the risk of the portfolio than variance since it focuses on losses, although VaR is not
without its own issues. These will be discussed in more detail in the context of coherent risk
measures (section 8.5).

8.2.1 Defined

The VaR of a portfolio measures the value (in £, $,€,¥, etc.) which an investor would lose with
some small probability, usually between 1 and 10%, over a selected period of time. Because the
VaR represents a hypothetical loss, it is usually a positive number.



A graphical representation of Value-at-Risk
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Figure 8.1: A graphical representation of Value-at-Risk. The VaR is represented by the magnitude
of the horizontal bar and measures the distance between the value of the portfolio in the current
period and its α-quantile. In this example, α = 5% and returns are N (.001, .0152).

Definition 8.1 (Value-at-Risk). The α Value-at-Risk (V a R ) of a portfolio is defined as the largest
number such that the probability that the loss in portfolio value over some period of time is
greater than the V a R is α,

P r (Rt < −V a R ) = α (8.1)

where Rt = Wt −Wt−1 is the change in the value of the portfolio, Wt and the time span depends
on the application (e.g. one day or two weeks).

For example, if an investor had a portfolio value of £10,000,000 and had a daily portfolio return
which was N (.001, .0152) (annualized mean of 25%, volatility of 23.8%), the daily α Value-at-Risk
of this portfolio would

£10, 000, 000(−.001− .015Φ−1(α)) = £236, 728.04

whereΦ(·) is the CDF of a standard normal (and soΦ−1(·) is the inverse CDF). This expression may
appear backward; it is not. The negative sign on the mean indicates that increases in the mean
decrease the VaR and the negative sign on the standard deviation term indicates that increases
in the volatility raise the VaR since for α < .5, Φ−1(α) < 0. It is often more useful to express



Value-at-Risk as a percentage of the portfolio value – e.g. 1.5% – rather than in units of currency
since it removes the size of the portfolio from the reported number.

Definition 8.2 (Percentage Value-at-Risk). Theαpercentage Value-at-Risk (%V a R ) of a portfolio
is defined as the largest return such that the probability that the return on the portfolio over
some period of time is less than -%V a R is α,

P r (rt < −%V a R ) = α (8.2)

where rt is the percentage return on the portfolio. %V a R can be equivalently defined as %V a R
= V a R/Wt−1.

Since percentage VaR and VaR only differ by the current value of the portfolio, the remainder
of the chapter will focus on percentage VaR in place of VaR.

8.2.1.1 The relationship between VaR and quantiles

Understanding that VaR and quantiles are fundamentally related provides a key insight into
computing VaR. If r represents the return on a portfolio , the α-VaR is−1× qα(r )where qα(r ) is
the α-quantile of the portfolio’s return. In most cases α is chosen to be some small quantile – 1,
5 or 10% – and so qα(r ) is a negative number, and VaR should generally be positive.1

8.2.2 Conditional Value-at-Risk

Most applications of VaR are used to control for risk over short horizons and require a conditional
Value-at-Risk estimate that employs information up to time t to produce a VaR for some time
period t + h .

Definition 8.3 (Conditional Value-at-Risk). The conditional α Value-at-Risk is defined as

P r (rt+1 < −V a Rt+1|t |Ft ) = α (8.3)

where rt+1 = Wt+1−Wt
Wt

is the time t + 1 return on a portfolio. Since t is an arbitrary measure of
time, t + 1 also refers to an arbitrary unit of time (day, two-weeks, 5 years, etc.)

Most conditional models for VaR forecast the density directly, although some only attempt to
estimate the required quantile of the time t + 1 return distribution. Five standard methods will
be presented in the order of the restrictiveness of the assumptions needed to justify the method,
from strongest to weakest.

1If the VaR is negative, either the portfolio has no risk, the portfolio manager has unbelievable skill or most likely the
model used to compute the VaR is badly misspecified.



8.2.2.1 RiskMetrics©

The RiskMetrics group has produced a surprisingly simple yet robust method for producing
conditional VaR. The basic structure of the RiskMetrics model is a restricted GARCH(1,1), where
α + β = 1 andω = 0, is used to model the conditional variance,

σ2
t+1 = (1− λ)r 2

t + λσ
2
t . (8.4)

where rt is the (percentage) return on the portfolio in period t . In the RiskMetrics specification
σ2

t+1 follows an exponentially weighted moving average which places weight λ j (1− λ) on r 2
t− j .2

This model includes no explicit mean model for returns and is only applicable to assets with
returns that are close to zero or when the time horizon is short (e.g. one day to one month). The
VaR is derived from the α-quantile of a normal distribution,

V a Rt+1 = −σt+1Φ
−1(α) (8.5)

where Φ−1(·) is the inverse normal CDF. The attractiveness of the RiskMetrics model is that there
are no parameters to estimate; λ is fixed at .94 for daily data (.97 for monthly).3 Additionally,
this model can be trivially extended to portfolios using a vector-matrix switch by replacing the
squared return with the outer product of a vector of returns, rt r′t , andσ2

t+1 with a matrix, Σt+1.
The disadvantages of the procedure are that the parameters aren’t estimated (which was also an
advantage), it cannot be modified to incorporate a leverage effect, and the VaR follows a random
walk since λ + (1− λ) = 1.

8.2.2.2 Parametric ARCH Models

Fully parametric ARCH-family models provide a natural method to compute VaR. For simplicity,
only a constant mean GARCH(1,1) will be described, although the mean could be described using
other time-series models and the variance evolution could be specified as any ARCH-family
member.4

rt+1 = µ + εt+1

σ2
t+1 = ω + γ1ε

2
t + β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ f (0, 1)

2An EWMA is similar to a traditional moving average although the EWMA places relatively more weight on recent
observations than on observation in the distant past.

3The suggested coefficient for λ are based on a large study of the RiskMetrics model across different asset classes.
4The use of α1 in ARCH models has been avoided to avoid confusion with the α in the VaR.



where f (0, 1) is used to indicate that the distribution of innovations need not be normal but
must have mean 0 and variance 1. For example, f could be a standardized Student’s t with ν
degrees of freedom or Hansen’s skewed t with degree of freedom parameter ν and asymmetry
parameter λ. The parameters of the model are estimated using maximum likelihood and the
time t conditional VaR is

V a Rt+1 = −µ̂− σ̂t+1F −1
α

where F −1
α is the α-quantile of the distribution of et+1. Fully parametric ARCH models provide

substantial flexibility for modeling the conditional mean and variance as well as specifying a
distribution for the standardized errors. The limitations of this procedure are that implementa-
tions require knowledge of a density family which includes f – if the distribution is misspecified
then the quantile used will be wrong – and that the residuals must come from a location-scale
family. The second limitation imposes that all of the dynamics of returns can be summarized by
a time-varying mean and variance, and so higher order moments must be time invariant.

8.2.2.3 Semiparametric ARCH Models/Filtered Historical Simulation

Semiparametric estimation mixes parametric ARCH models with nonparametric estimators of
the distribution.5 Again, consider a constant mean GARCH(1,1) model

rt+1 = µ + εt+1

σ2
t+1 = ω + γ1ε

2
t + β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ g (0, 1)

where g (0, 1) is an unknown distribution with mean zero and variance 1.

When g (·) is unknown standard maximum likelihood estimation is not available. Recall that
assuming a normal distribution for the standardized residuals, even if misspecified, produces
estimates which are strongly consistent, and soω, γ1 and β1 will converge to their true values for
most any g (·). The model can be estimated using QMLE by assuming that the errors are normally
distributed and then the Value-at-Risk for the α-quantile can be computed

V a Rt+1(α) = −µ̂− σ̂t+1Ĝ−1
α (8.6)

where Ĝ−1
α is the empirical α-quantile of et+1 =

{
εt+1
σt+1

}
. To estimate this quantile, define

êt+1 = ε̂t+1
σ̂t+1

. and order the errors such that

5This is only one example of a semiparametric estimator. Any semiparametric estimator has elements of both a
parametric estimator and a nonparametric estimator.



ê1 < ê2 < . . . < ên−1 < ên .

where n replaces T to indicate the residuals are no longer time ordered. Ĝ−1
α = êbαnc or Ĝ−1

α =
êdαne where bxc and dxe denote the floor (largest integer smaller than) and ceiling (smallest
integer larger than) of x .6 In other words, the estimate of G−1 is the α-quantile of the empirical
distribution of êt+1 which corresponds to the αn ordered ên .

Semiparametric ARCH models provide one clear advantage over their parametric ARCH
cousins; the quantile, and hence the VaR, will be consistent under weaker conditions since the
density of the standardized residuals does not have to be assumed. The primary disadvantage of
the semiparametric approach is that Ĝ−1

α may be poorly estimated – especially if α is very small
(e.g. 1%). Semiparametric ARCH models also share the limitation that their use is only justified
if returns are generated by some location-scale distribution.

8.2.2.4 Cornish-Fisher Approximation

The Cornish-Fisher approximation splits the difference between a fully parametric model and a
semi parametric model. The setup is identical to that of the semiparametric model

rt+1 = µ + εt+1

σ2
t+1 = ω + γε

2
t + βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ g (0, 1)

where g (·) is again an unknown distribution. The unknown parameters are estimated by quasi-
maximum likelihood assuming conditional normality to produce standardized residuals, êt+1 =
ε̂t+1
σ̂t+1

. The Cornish-Fisher approximation is a Taylor-series like expansion of the α-VaR around
the α-VaR of a normal and is given by

V a Rt+1 = −µ− σt+1F −1
C F (α) (8.7)

F −1
C F (α) ≡ Φ

−1(α) +
ς

6

([
Φ−1(α)

]2 − 1
)
+ (8.8)

κ− 3

24

([
Φ−1(α)

]3 − 3Φ−1(α)
)
− ς

2

36

(
2
[
Φ−1(α)

]3 − 5Φ−1(α)
)

where ς and κ are the skewness and kurtosis of êt+1, respectively. From the expression for
F −1

C F (α), negative skewness and excess kurtosis (κ > 3, the kurtosis of a normal) decrease the

6When estimating a quantile from discrete data and not smoothing, the is quantile “set valued” and defined as any
point between êbαnc and êdαne, inclusive.



estimated quantile and increases the VaR. The Cornish-Fisher approximation shares the strength
of the semiparametric distribution in that it can be accurate without a parametric assumption.
However, unlike the semi-parametric estimator, Cornish-Fisher estimators are not necessarily
consistent which may be a drawback. Additionally, estimates of higher order moments of
standardized residuals may be problematic or, in extreme cases, the moments may not even
exist.

8.2.2.5 Conditional Autoregressive Value-at-Risk (CaViaR)

R. F. Engle and Manganelli (2004) developed ARCH-like models to directly estimate the con-
ditional Value-at-Risk using quantile regression. Like the variance in a GARCH model, the
α-quantile of the return distribution, F −1

α,t+1, is modeled as a weighted average of the previous
quantile, a constant, and a ’shock’. The shock can take many forms although a “H I T ”, defined
as an exceedance of the previous Value-at-Risk, is the most natural.

H I Tt+1 = I[rt+1<F−1
t+1 ]
− α (8.9)

where rt+1 the (percentage) return and F −1
t+1 is the time t α-quantile of this distribution.

Defining qt+1 as the time t + 1 α-quantile of returns, the evolution in a standard CaViaR
model is defined by

qt+1 = ω + γH I Tt + βqt . (8.10)

Other forms which have been examined are the symmetric absolute value,

qt+1 = ω + γ|rt | + βqt . (8.11)

the asymmetric absolute value,

qt+1 = ω + γ1|rt | + γ2|rt |I[rt <0] + βqt (8.12)

the indirect GARCH,

qt+1 =
(
ω + γr 2

t + βq 2
t

) 1
2 (8.13)

or combinations of these. The parameters can be estimated by minimizing the “tick” loss function

arg min
θ

T −1
T∑

t=1

α(rt − qt )(1− I[rt <qt ]) + (1− α)(qt − rt )I[rt <qt ] = (8.14)

arg min
θ

T −1
T∑

t=1

α(rt − qt ) + (qt − rt )I[rt <qt ]



where I[rt <qt ] is an indicator variable which is 1 if rt < qt . Estimation of the parameters in this
problem is tricky since the objective function may have many flat spots and is non-differentiable.
Derivative free methods, such as simplex methods or genetic algorithms, can be used to overcome
these issues. The VaR in a CaViaR framework is then

V a Rt+1 = −qt+1 = −F̂ −1
t+1 (8.15)

Because a CaViaR model does not specify a distribution of returns or any moments, its use is
justified under much weaker assumptions than other VaR estimators. Additionally, its parametric
form provides reasonable convergence of the unknown parameters. The main drawbacks of the
CaViaR modeling strategy are that it may produce out-of order quantiles (i.e. 5% VaR is less then
10% VaR) and that estimation of the model parameters is challenging.

8.2.2.6 Weighted Historical Simulation

Weighted historical simulation applies weights to returns where the weight given to recent data
is larger than the weight given to returns further in the past. The estimator is non-parametric in
that no assumptions about either distribution or the dynamics of returns is made.

Weights are assigned using an exponentially declining function. Assuming returns were
available from i = 1, . . . , t . The weight given to data point i is

wi = λt−i (1− λ) /
(

1− λt
)

, i = 1, 2, . . . , t

Typical values for λ range from .99 to .995. When λ = .99, 99% of the weight occurs in the most
recent 450 data points – .995 changes this to the most recent 900 data points. Smaller values
of lambda will make the value-at-risk estimator more “local” while larger weights result in a
weighting that approaches an equal weighting.

The weighted cumulative CDF is then

Ĝ (r ) =
t∑

i=1

wi I[r<ri ].

Clearly the CDF of a return as large as the largest is 1 since the weights sum to 1, and the
CDF of the a return smaller than the smallest has CDF value 0. The VaR is then computed as the
solution to

V a Rt+1|t = min
r

Ĝ (r ) ≥ α

which chooses the smallest value of r where the weighted cumulative distribution is just as large
as α.



Fit Percentage Value-at-Risk using α = 5%
% VaRusing RiskMetrics

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.02

0.04

0.06

0.08

% VaRusing TARCH(1,1,1) with Skew t errors

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.02

0.04

0.06

0.08

% VaRusing Asymmetric CaViaR

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.02

0.04

0.06

0.08

Figure 8.2: The figure contains the estimated % VaR for the S&P 500 using data from 1999 until
the end of 2009. While these three models are clearly distinct, the estimated VaRs are remarkably
similar.

8.2.2.7 Example: Conditional Value-at-Risk for the S&P 500

The concepts of VaR will be illustrated using S&P 500 returns form January 1, 1999 until December
31, 2009, the same data used in the univariate volatility chapter. A number of models have been



Model Parameters

TARCH(1,1,1)
σt+1 = ω + γ1|rt | + γ2|rt |I[rt <0] + βσt

ω γ1 γ2 β ν λ

Normal 0.016 0.000 0.120 0.939
Student’s t 0.015 0.000 0.121 0.939 12.885
Skew t 0.016 0.000 0.125 0.937 13.823 -0.114

CaViaR
qt+1 = ω + γ1|rt | + γ2|rt |I[rt <0] + βqt

ω γ1 γ2 β

Asym CaViaR -0.027 0.028 -0.191 0.954

Estimated Quantiles from Parametric and Semi-parametric TARCH models

Semiparam. Normal Stud. t Skew t CF

1% -3.222 -2.326 -2.439 -2.578 -4.654
5% -1.823 -1.645 -1.629 -1.695 -1.734
10% -1.284 -1.282 -1.242 -1.274 -0.834

Table 8.1: Estimated model parameters and quantiles. The choice of distribution for the stan-
dardized shocks makes little difference in the parameters of the TARCH process, and so the fit
conditional variances are virtually identical. The only difference in the VaRs from these three
specifications comes from the estimates of the quantiles of the standardized returns (bottom
panel).

estimated which produce similar VaR estimates. Specifically the GARCH models, whether using a
normal likelihood, a Students t , a semiparametric or Cornish-Fisher approximation all produce
very similar fits and generally only differ in the quantile estimated. Table 8.1 reports parameter
estimates from these models. Only one set of TARCH parameters are reported since they were
similar in all three models, ν̂ ≈ 12 in both the standardized Student’s t and the skewed t
indicating that the standardizes residuals are leptokurtotic, and λ̂ ≈ −.1, from the skewed t ,
indicating little skewness. The CaViaR estimates indicate little change in the conditional quantile
for a symmetric shock (other then mean reversion), a large decease when the return is negative
and that the conditional quantile is persistent.

The table also contains estimated quantiles using the parametric, semiparametric and
Cornish-Fisher estimators. Since the fit conditional variances were similar, the only meaningful
difference in the VaRs comes from the differences in the estimated quantiles.



8.2.3 Unconditional Value at Risk

While the conditional VaR is often the object of interest, there may be situations which call for the
unconditional VaR (also known as marginal VaR). Unconditional VaR expands the set of choices
from the conditional to include ones which do not make use of conditioning information to
estimate the VaR directly from the unmodified returns.

8.2.3.1 Parametric Estimation

The simplest form of VaR specifies a parametric model for the unconditional distribution of
returns and derives the VaR from theα-quantile of this distribution. For example, if rt ∼ N (µ,σ2),
the α-VaR is

V a R = −µ− σΦ−1(α) (8.16)

and the parameters can be directly estimated using Maximum likelihood with the usual estima-
tors,

µ̂ = T −1
T∑

t=1

rt σ̂2 = T −1
T∑

t=1

(rt − µ̂)2

In a general parametric VaR model, some distribution for returns which depends on a set of
unknown parameters θ is assumed, rt ∼ F (θ ) and parameters are estimated by maximum
likelihood. The VaR is then −F −1

α , where F −1
α is the α-quantile of the estimated distribution.

The advantages and disadvantages to parametric unconditional VaR are identical to parametric
conditional VaR. The models are parsimonious and the parameters estimates are precise yet
finding a specification which necessarily includes the true distribution is difficult (or impossible).

8.2.3.2 Nonparametric Estimation/Historical Simulation

At the other end of the spectrum is a pure nonparametric estimate of the unconditional VaR. As
was the case in the semiparametric conditional VaR, the first step is to sort the returns such that

r1 < r2 < . . . < rn−1 < rn

where n = T is used to denote an ordering not based on time. The VaR is estimated using rbαnc
or alternatively rdαne or an average of the two where bxc and dxe denote the floor (largest integer
smaller than) and ceiling (smallest integer larger than) of x , respectively. In other words, the
estimate of the VaR is the α-quantile of the empirical distribution of {rt },

V a R = −Ĝ−1
α (8.17)

where Ĝ−1
α is the estimated quantile. This follows since the empirical CDF is defined as



G (r ) = T −1
T∑

t=1

I[r<rt ]

where I[r<rt ] is an indicator function that takes the value 1 if r is less than rt , and so this function
counts the percentage of returns which are smaller than any value r .

Historical simulation estimates are rough and a single new data point may produce very
different VaR estimates. Smoothing the estimated quantile using a kernel density generally
improves the precision of the estimate when compared to one calculated directly on the sorted
returns. This is particularly true if the sample is small. See section 8.4.2 for more details.

The advantage of nonparametric estimates of VaR is that they are generally consistent under
very weak conditions and that they are trivial to compute. The disadvantage is that the VaR
estimates can be poorly estimated – or equivalently that very large samples are needed for
estimated quantiles to be accurate – particularly for 1% VaRs (or smaller).

8.2.3.3 Parametric Monte Carlo

Parametric Monte Carlo is meaningfully different from either straight parametric or nonparamet-
ric estimation of the density. Rather than fit a model to the returns directly, parametric Monte
Carlo fits a parsimonious conditional model which is then used to simulate the unconditional
distribution. For example, suppose that returns followed an AR(1) with GARCH(1,1) errors and
normal innovations,

rt+1 = φ0 + φ1rt + εt+1

σ2
t+1 = ω + γε

2
t + βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N (0, 1).

Parametric Monte Carlo is implemented by first estimating the parameters of the model,
θ̂ = [φ̂0, φ̂1, ω̂, γ̂, β̂ ]′, and then simulating the process for a long period of time (generally
much longer than the actual number of data points available). The VaR from this model is the
α-quantile of the simulated data r̃t .

V a R = − ˆ̃G−1
α (8.18)

where ˆ̃G−1
α is the empirical α-quantile of the simulated data, {r̃t }. Generally the amount of

simulated data should be sufficient that no smoothing is needed so that the empirical quantile
is an accurate estimate of the quantile of the unconditional distribution. The advantage of
this procedure is that it efficiently makes use of conditioning information which is ignored
in either parametric or nonparametric estimators of unconditional VaR and that rich families
of unconditional distributions can be generated from parsimonious conditional models. The



Unconditional Value-at-Risk

HS Normal Stud. t Skew t CF

1% VaR 2.832 3.211 3.897 4.156 5.701
5% VaR 1.550 2.271 2.005 2.111 2.104
10% VaR 1.088 1.770 1.387 1.448 1.044

Table 8.2: Unconditional VaR of S&P 500 returns estimated assuming returns are Normal, Stu-
dent’s t or skewed t , using a Cornish-Fisher transformation or using a nonparametric quantile
estimator. While the 5% and 10% VaR are similar, the estimators of the 1% VaR differ.

obvious drawback of this procedure is that an incorrect conditional specification leads to an
inconsistent estimate of the unconditional VaR.

8.2.3.4 Example: Unconditional Value-at-Risk for the S&P 500

Using the S&P 500 data, 3 parametric models, a normal, a Student’s t and a skewed t , a Cornish-
Fisher estimator based on the studentized residuals (êt = (rt − µ̂)/σ̂) and a nonparametric
estimator were used to estimate the unconditional VaR. The estimates are largely similar although
some differences can be seen at the 1% VaR.

8.2.4 Evaluating VaR models

Evaluating the performance of VaR models is not fundamentally different from the evaluation of
either ARMA or GARCH models. The key insight of VaR evaluation comes from the loss function
for VaR errors,

T∑
t=1

α(rt − F −1
t )(1− I[rt <F−1

t ]) + (1− α)(F
−1

t − rt )I[rt <F−1
t ] (8.19)

where rt is the return in period t and F −1
t is α-quantile of the return distribution in period t .

The generalized error can be directly computed from this loss function by differentiating with
respect to V a R , and is

get = I[rt <F−1
t ] − α (8.20)

which is the time-t “HIT” (H I Tt ).7 When there is a VaR exceedance, H I Tt = 1− α and when

7The generalized error extends the concept of an error in a linear regression or linear time-series model to nonlinear
estimators. Suppose a loss function is specified as L

(
yt+1, ŷt+1|t

)
, then the generalized error is the derivative of the loss

function with respect to the second argument, that is

get =
L
(

yt+1, ŷt+1|t
)

∂ ŷt+1|t
(8.21)



Unconditional Distribution of the S&P 500
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Figure 8.3: Plot of the S&P 500 returns as well as a parametric density using Hansen’s skewed t
and a nonparametric density estimator constructed using a kernel.

there is no exceedance, H I Tt = −α. If the model is correct, then α of the H I T s should be (1−α)
and (1− α) should be−α,

α(1− α)− α(1− α) = 0,

and the mean of H I Tt should be 0. Moreover, when the VaR is conditional on time t information
, Et [H I Tt+1] = 0 which follows from the properties of optimal forecasts (see chapter 4). A test
that the conditional expectation is zero can be performed using a generalized Mincer-Zarnowitz
(GMZ) regression of H I Tt+1|t on any time t available variable. For example, the estimated
quantile F −1

t+1|t for t + 1 could be included (which is in the time-t information set) as well as
lagged H I T s to form a regression,

H I Tt+1|t = γ0 + γ1F −1
t+1|t + γ2H I Tt + γ3H I Tt−1 + . . . + γK H I Tt−K +2 + ηt

If the model is correctly specified, all of the coefficients should be zero and the null H0 : γ = 0
can be tested against an alternative that H1 : γ j 6= 0 for some j .

where it is assumed that the loss function is differentiable at this point.



8.2.4.1 Likelihood Evaluation

While the generalized errors can be tested in the GMZ framework, VaRforecast evaluation can
be improved by noting that H I Tt is a Bernoulli random variable which takes the value 1 − α
with probability α and takes the value−αwith probability 1− α. Defining H̃ I T t = I[rt <Ft ], this
modified H I T is exactly a Bernoulli(α), and a more powerful test can be constructed using a
likelihood ratio test. Under the null that the model is correctly specified, the likelihood function
of a series of H̃ I T s is

f (H̃ I T ; p ) =
T∏

t=1

p H̃ I T t (1− p )1−H̃ I T t

and the log-likelihood is

l (p ; H̃ I T ) =
T∑

t=1

H̃ I T t ln(p ) + (1− H̃ I T t ) ln(1− p ).

If the model is correctly specified, p = α and a likelihood ratio test can be performed as

LR = 2(l (p̂ ; H̃ I T )− l (p = α; H̃ I T )) (8.22)

where p̂ = T −1
∑T

t=1 H̃ I T t is the maximum likelihood estimator of p under the alternative.
The test has a single restriction and so has an asymptotic χ2

1 distribution.

The likelihood-based test for unconditionally correct VaR can be extended to conditionally
correct VaR by examining the sequential dependence of H I T s. This testing strategy uses proper-
ties of a Markov chain of Bernoulli random variables. A Markov chain is a modeling device which
resembles ARMA models yet is more general since it can handle random variables which take
on a finite number of values – such as a H I T . A simple 1st order binary valued Markov chain
produces Bernoulli random variables which are not necessarily independent. It is characterized
by a transition matrix which contains the probability that the state stays the same. In a 1st order
binary valued Markov chain, the transition matrix is given by[

p00 p01

p10 p11

]
=
[

p00 1− p00

1− p11 p11

]
,

where pi j is the probability that the next observation takes value j given that this observation
has value i . For example, p10 indicates that the probability that the next observation is a not a
H I T given the current observation is a H I T . In a correctly specified model, the probability of a
H I T in the current period should not depend on whether the previous period was a H I T or
not. In other words, the sequence {H I Tt } is i.i.d. , and so that p00 = 1− α and p11 = αwhen the
model is conditionally correct.

Define the following quantities,



n00 =
T−1∑
t=1

(1− H̃ I T t )(1− H̃ I T t+1)

n10 =
T−1∑
t=1

H̃ I T t (1− H̃ I T t+1)

n01 =
T−1∑
t=1

(1− H̃ I T t )H̃ I T t+1

n11 =
T−1∑
t=1

H̃ I T t H̃ I T t+1

where ni j counts the number of times H̃ I T t+1 = i after H̃ I T t = j .

The log-likelihood for the sequence two VaR exceedances is

l (p ; H̃ I T ) = n00 ln(p00) + n01 ln(1− p00) + n11 ln(p11) + n10 ln(1− p11)

where p11 is the probability of two sequential H I T s and p00 is the probability of two sequential
periods without a H I T . The null is H0 : p11 = 1− p00 = α. The maximum likelihood estimates
of p00 and p11 are

p̂00 =
n00

n00 + n01

p̂11 =
n11

n11 + n10

and the hypothesis can be tested using the likelihood ratio

LR = 2(l (p̂00, p̂11; H̃ I T )− l (p00 = 1− α, p11 = α; H̃ I T )) (8.23)

and is asymptotically χ2
2 distributed.

This framework can be extended to include conditioning information by specifying a probit
or logit for H̃ I T t using any time-t available information. For example, a specification test could
be constructed using K lags of H I T , a constant and the forecast quantile as

H̃ I T t+1|t = γ0 + γ1Ft+1|t + γ2H̃ I T t + γ3H̃ I T t−1 + . . . + γK H̃ I T t−K +1.

To implement this in a Bernoulli log-likelihood, it is necessary to ensure that

0 ≤ γ0 + γ1Ft+1|t + γ2H̃ I T t + γ3H̃ I T t−1 + . . . + γK H̃ I T t−K +1 ≤ 1.

This is generally accomplished using one of two transformations, the normal CDF (Φ(z ))



which produces a probit or the logistic function (e z /(1+e z )) which produces a logit. Generally the
choice between these two makes little difference. If xt = [1 Ft+1|t H̃ I T t H̃ I T t−1 . . . H̃ I T t−K +1],
the model for H̃ I T is

H̃ I T t+1|t = Φ (xt γ)

where the normal CDF is used to map from (−∞,∞) to (0,1), and so the model is a conditional
probability model. The log-likelihood is then

l (γ; H̃ I T , x) =
T∑

t=1

H̃ I T t ln(Φ(xt γ))− (1− H̃ I T t ) ln(1− Φ(xt γ)). (8.24)

The likelihood ratio for testing the null H0 : γ0 = Φ−1(α), γ j = 0 for all j = 1, 2, . . . , K against an
alternative H1 = γ0 6= Φ−1(α) or γ j 6= 0 for some j = 1, 2, . . . , K can be computed

LR = 2
(

l (γ̂; H̃ I T )− l (γ0; H̃ I T )
)

(8.25)

where γ0 is the value under the null (γ = 0) and γ̂ is the estimator under the alternative (i.e. the
unrestricted estimator from the probit).

8.2.5 Relative Comparisons

Diebold-Mariano tests can be used to relatively rank VaR forecasts in an analogous manner as
how they are used to rank conditional mean or conditional variance forecasts (Diebold and
Mariano, 1995). If L (rt+1, V a Rt+1|t ) is a loss function defined over VaR, then a Diebold-Mariano
test statistic can be computed

D M =
d√

V̂
[
d
] (8.26)

where

dt = L (rt+1, V a R A
t+1|t )− L (rt+1, V a R B

t+1|t ),

V a R A and V a R B are the Value-at-Risks from models A and B respectively, d = R−1
∑M+R

t=M+1 dt ,
M (for modeling) is the number of observations used in the model building and estimation,

R (for reserve) is the number of observations held back for model evaluation, and
√

V̂
[
d
]

is
the long-run variance of dt which requires the use of a HAC covariance estimator (e.g. Newey-
West). Recall that D M has an asymptotical normal distribution and that the test has the null
H0 : E [dt ] = 0 and the composite alternative H A

1 : E [dt ] < 0 and H B
1 : E [dt ] > 0. Large negative

values (less than -2) indicate model A is superior while large positive values indicate the opposite;
values close to zero indicate neither forecast outperforms the other.



Ideally the loss function, L (·), should reflect the user’s loss over VaR forecast errors. In some
circumstances there is not an obvious choice. When this occurs, a reasonable choice for the loss
function is the VaR optimization objective,

L (rt+1, V a Rt+1|t ) = α(rt+1−V a Rt+1|t )(1− I[rt+1<V a Rt+1|t ]) + (1−α)(V a Rt+1|t − rt+1)I[rt+1<V a Rt+1|t ]

(8.27)

which has the same interpretation in a VaR model as the mean square error (MSE) loss function
has in conditional mean model evaluation or the Q-like loss function has for comparing volatility
models.

8.3 Expected Shortfall

Expected shortfall – also known as tail VaR – combines aspects of the VaR methodology with
more information about the distribution of returns in the tail.8

Definition 8.4 (Expected Shortfall). Expected Shortfall (ES) is defined as the expected value of
the portfolio loss given a Value-at-Risk exceedance has occurred. The unconditional Expected
Shortfall is defined

E S = E

[
W1 −W0

W0

∣∣∣∣ W1 −W0

W0
< −V a R

]
(8.28)

= E
[

rt+1|rt+1 < −V a R
]

where Wt , t = 0, 1, is the value of the assets in the portfolio and 1 and 0 measure an arbitrary
length of time (e.g. one day or two weeks).9

The conditional, and generally more useful, Expected Shortfall is similarly defined.

Definition 8.5 (Conditional Expected Shortfall). Conditional Expected Shortfall is defined

E St+1 = Et

[
rt+1|rt+1 < −V a Rt+1

]
. (8.29)

where rt+1 return on a portfolio at time t + 1. Since t is an arbitrary measure of time, t + 1 also
refers to an arbitrary unit of time (day, two-weeks, 5 years, etc.)

8Expected Shortfall is a special case of a broader class of statistics known as exceedance measures. Exceedance
measures all describe a common statistical relationship conditional on one or more variable being in its tail. Expected
shortfall it is an exceedance mean. Other exceedance measures which have been studies include exceedance variance,
V[x |x < qα], exceedance correlation, Corr(x , y |x < qα,x , y < qα,y ), and exceedance β , Cov(x , y |x < qα,x , y <

qα,y )/
(

V[x |x < qα,x ]V[y |y < qα,y ]
) 1

2 where qα,· is the α-quantile of the distribution of x or y .
9Just like VaR, Expected Shortfall can be equivalently defined in terms or returns or in terms of wealth. For consistency

with the VaR discussion, Expected Shortfall is presented in terms of the return.



Because computation of Expected Shortfall requires both a quantile and an expectation, they
are generally computed from density models, either parametric or semi-parametric, rather than
simpler and more direct specifications.

8.3.1 Evaluating Expected Shortfall models

Expected Shortfall models can be evaluated using standard techniques since Expected Shortfall
is a conditional mean,

Et [E St+1] = Et [rt+1|rt+1 < −V a Rt+1].

A generalized Mincer-Zarnowitz regression can be used to test whether this mean is zero. Let
I[rt <V a Rt ] indicate that the portfolio return was less than the VaR. The GMZ regression for testing
Expected Shortfall is

(E St+1|t − rt+1)I[rt+1<−V a Rt+1|t ] = xt γ (8.30)

where xt , as always, is any set of time t measurable instruments. The natural choices for xt in-
clude a constant and E St+1|t , the forecast expected shortfall. Any other time-t measurable regres-
sor that captures some important characteristic of the tail, such as recent volatility (

∑τ
t=0 r 2

t−i )
or VaR (V a Rt−i ), may also be useful in evaluating Expected Shortfall models. If the Expected
Shortfall model is correct, the null that none of the regressors are useful in predicting the differ-
ence, H0 : γ = 0, should not be rejected. If the left-hand side term – Expected Shortfall “surprise”
– in eq. (8.30) is predictable, then the model can be improved.

Despite the simplicity of the GMZ regression framework to evaluate Expected Shortfall, their
evaluation is difficult owning to a lack of data regarding the exceedance mean; Expected Shortfall
can only be measured when there is a VaR exceedance and so 4 years of data would only produce
50 observations where this was true. The lack of data about the tail makes evaluating Expected
Shortfall models difficult and can lead to a failure to reject in many cases even when using badly
misspecified Expected Shortfall models.

8.4 Density Forecasting

VaR (a quantile) provides a narrow view into the riskiness of an asset. More importantly, VaR
may not adequately describe the types of risk an arbitrary forecast consumer may care about.
The same cannot be said for a density forecast which summarizes everything there is to know
about the riskiness of the asset. Density forecasts also nest both VaR and Expected Shortfall as
special cases.

In light of this relationship, it may be tempting to bypass VaR or Expected Shortfall forecasting
and move directly to density forecasts. Unfortunately density forecasting also suffers from a
number of issues, including:



• The density contains all of the information about the random variable being studied, and
so a flexible form is generally needed. The cost of this flexibility is increased parameter
estimation error which can be magnified when computing the expectation of nonlinear
functions of a forecast asset price density (e.g. pricing an option).

• Multi-step density forecasts are difficult (often impossible) to compute since densities do
not time aggregate, except in special cases which are usually to simple to be of any interest.
This contrasts with standard results for ARMA and ARCH models.

• Unless the user has preferences over the entire distribution, density forecasting inefficiently
utilize information.

8.4.1 Density Forecasts from ARCH models

Producing density forecasting from ARCH models is virtually identical to producing VaR forecasts
from ARCH models. For simplicity, only a model with a constant mean and GARCH(1,1) variances
will be used, although the mean and variance can be modeled using richer, more sophisticated
processes.

rt+1 = µ + εt+1

σ2
t+1 = ω + γ1ε

2
t + β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ g (0, 1).

where g (0, 1) is used to indicate that the distribution of innovations need not be normal but
must have mean 0 and variance 1. Standard choices for g (·) include the standardized Student’s
t , the generalized error distribution, and Hansen’s skew t . The 1-step ahead density forecast is

f̂t+1|t
d
= g (µ̂, σ̂2

t+1|t ) (8.31)

where f (·) is the distribution of returns. This follow directly from the original model since
rt+1 = µ + σt+1et+1 and et+1

i.i.d.∼ g (0, 1).

8.4.2 Semiparametric Density forecasting

Semiparametric density forecasting is also similar to its VaR counterpart. The model begins by
assuming that innovations are generated according to some unknown distribution g (·),



rt+1 = µ + εt+1

σ2
t+1 = ω + γ1ε

2
t + β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ g (0, 1).

and estimates of σ̂2
t are computed assuming that the innovations are conditionally normal. The

justification for this choice follows from the strong consistency of the variance parameter esti-
mates even when the innovations are not normal. Using the estimated variances, standardized
innovations are computed as êt = ε̂t

σ̂t
. The final step is to compute the density. The simplest

method to accomplish this is to compute the empirical CDF as

G (e ) =
T∑

t=1

I[êt <e ] (8.32)

which simply sums up the number of standardized residuals than e . This method is trivial but
has some limitations. First, the PDF does not exist since G (·) is not differentiable. This makes
some applications difficult, although a histogram provides a simple, if imprecise, method to
work around the non-differentiability of the empirical CDF. Second, the CDF is jagged and is
generally an inefficient estimator, particularly in the tails.

An alternative, and more efficient estimator, can be constructed using a kernel to smooth
the density. A kernel density is a local average of the number of êt in a small neighborhood of e .
The more in this neighborhood, the higher the probability in the region, and the larger the value
of the kernel density. The kernel density estimator is defined

g (e ) =
1

T h

T∑
t=1

K

(
êt − e

h

)
(8.33)

where K (·) can be one of many kernels - the choice of which usually makes little difference – and
the normal

K (x ) =
1√
2π

exp(−x 2/2) (8.34)

or the Epanechnikov

K (x ) =
{ 3

4 (1− x 2) −1 ≤ x ≤ 1
0 otherwise

(8.35)

are the most common. The choice of the bandwidth (h) is more important and is usually set to
Silverman’s bandwidth , h = 1.06σT −

1
5 whereσ is the standard deviation of êt . However, larger

or smaller bandwidths can be used to produce smoother or rougher densities, respectively, and
the size of the bandwidth represents a bias-variance tradeoff – a small bandwidth has little bias
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Figure 8.4: The rough empirical and smoothed empirical CDF for standardized returns of the
S&P 500 in 2009 (standardized by a TARCH(1,1,1)).

but is very jagged (high variance), while a large bandwidth produces an estimate with substantial
bias but very smooth (low variance). If the CDF is needed, g (e ) can be integrated using numerical
techniques such as a trapezoidal approximation to the Riemann integral.

Finally the density forecast can be constructed by scaling the distribution G by σt+1|t
and adding the mean. Figure 8.4 contains a plot of the smooth and non-smoothed CDF of
TARCH(1,1,1)-standardized S&P 500 returns in 2009. The empirical CDF is jagged and there are
some large gaps in the observed returns.

8.4.3 Multi-step density forecasting and the fan plot

Multi-step ahead density forecasting is not trivial. For example, consider a simple GARCH(1,1)
model with normal innovations,

rt+1 = µ + εt+1

σ2
t+1 = ω + γ1ε

2
t + β1σ

2
t

εt+1 = σt+1et+1



et+1
i.i.d.∼ N (0, 1).

The 1-step ahead density forecast of returns is

rt+1|Ft ∼ N (µ,σ2
t+1|t ). (8.36)

Since innovations are conditionally normal and Et

[
σ2

t+2|t

]
is simple to compute, it is tempting

construct a 2-step ahead forecast using a normal,

rt+2|Ft ∼ N (µ,σ2
t+2|t ). (8.37)

This forecast is not correct since the 2-step ahead distribution is a variance-mixture of normals
and so is itself non-normal. This reason for the difference is thatσ2

t+2|t , unlikeσ2
t+1|t , is a random

variable and the uncertainty must be integrated out to determine the distribution of rt+2. The
correct form of the 2-step ahead density forecast is

rt+2|Ft ∼
∫ ∞
−∞

φ(µ,σ2(et+1)t+2|t+1)φ(et+1)det+1.

where φ(·) is a normal probability density function and σ2(et+1)t+2|t+1 reflects the explicit de-
pendence ofσ2

t+2|t+1 on et+1. While this expression is fairly complicated, a simpler way to view
it is as a mixture of normal random variables where the probability of getting a specific normal
depends on w (e ),

rt+2|Ft ∼
∫ ∞
−∞

w (e ) f (µ,σ(et+1)t+2|t+1)de .

Unless w (e ) is constant, the resulting distribution will not be a normal. The top panel in figure
8.5 contains the naïve 10-step ahead forecast and the correct 10-step ahead forecast for a simple
GARCH(1,1) process,

rt+1 = εt+1

σ2
t+1 = .02 + .2ε2

t + .78σ2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N (0, 1)

where ε2
t = σt = σ̄ = 1 and hence Et [σt+h ] = 1 for all h . The bottom panel contains the plot

of the density of a cumulative 10-day return (the sum of the 10 1-day returns). In this case the
naïve model assumes that

rt+h |Ft ∼ N (µ,σt+h|t )
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Figure 8.5: Naïve and correct 10-step ahead density forecasts from a simulated GARCH(1,1)
model. The correct density forecasts have substantially fatter tails then the naïve forecast as
evidenced by the central peak and cross-over of the density in the tails.

for h = 1, 2, . . . , 10. The correct forecast has heavier tails than the naïve forecast which can be
verified by checking that the solid line is above the dashed line for large deviations.

8.4.3.1 Fan Plots

Fan plots are a graphical method to convey information about future changes in uncertainty.
Their use has been popularized by the Bank of England and they are a good way to “wow” an
audience unfamiliar with this type of plot. Figure 8.6 contains a simple example of a fan plot
which contains the density of an irregular ARMA(6,2) which begins at 0 and has i.i.d. standard
normal increments. Darker regions indicate higher probability while progressively lighter regions
indicate less likely events.



A fan plot of a standard random walk
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Figure 8.6: Future density of an ARMA(6,2) beginning at 0 with i.i.d. standard normal increments.
Darker regions indicate higher probability while progressively lighter regions indicate less likely
events.

8.4.4 Quantile-Quantile (QQ) plots

Quantile-Quantile, or QQ, plots provide an informal but simple method to assess the fit of a
density or a density forecast. Suppose a set of standardized residuals êt are assumed to have a
distribution F . The QQ plot is generated by first ordering the standardized residuals,

ê1 < ê2 < . . . < ên−1 < ên

and then plotting the ordered residual ê j against its hypothetical value if the correct distribution

were F , which is the inverse CDF evaluated at j
T+1 ,

(
F −1

(
j

T+1

))
. This informal assessment of

a distribution will be extended into a formal statistic in the Kolmogorov-Smirnov test. Figure
8.7 contains 4 QQ plots for the raw S&P 500 returns against a normal, a t8, a t3 and a GED with
ν = 1.5. The normal, t8 and GED appear to be badly misspecified in the tails – as evidenced
through deviations from the 45o line – while the t3 appears to be a good approximation (the MLE
estimate of the Student’s t degree of freedom, ν, was approximately 3.1).



QQ plots of S&P 500 returns
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Figure 8.7: QQ plots of the raw S&P 500 returns against a normal, a t8, a t3 and a GED with ν = 1.5.
Points along the 45o indicate a good distributional fit.

8.4.5 Evaluating Density Forecasts

All density evaluation strategies are derived from a basic property of random variables: if x ∼ F ,
then u ≡ F (x ) ∼ U (0, 1). That is, for any random variable x , the cumulant of x has a Uniform
distribution over [0, 1]. The opposite of this results is also true, if u ∼ U (0, 1), F −1(u ) = x ∼ F .10

Theorem 8.1 (Probability Integral Transform). Let a random variable X have a continuous,
increasing CDF FX (x ) and define Y = FX (X ). Then Y is uniformly distributed and Pr(Y ≤ y ) = y ,
0 < y < 1.

10The latter result can be used as the basis of a random number generator. To generate a random number with a
CDF of F , a first generate a uniform, u , and then compute the inverse CDF at u to produce a random number from
F , y = F−1(u ). If the inverse CDF is not available in closed form, monotonicity of the CDF allows for quick, precise
numerical inversion.



Theorem 8.1. For any y ∈ (0, 1), Y = FX (X ), and so

FY (y ) = Pr(Y ≤ y ) = Pr(FX (X ) ≤ y )

= Pr(F −1
X (FX (X )) ≤ F −1

X (y )) Since F −1
X is increasing

= Pr(X ≤ F −1
X (y )) Invertible since strictly increasing

= FX (F −1
X (y )) Definition of FX

= y

The proof shows that Pr(FX (X ) ≤ y ) = y and so this must be a uniform distribution (by defini-
tion).

The Kolmogorov-Smirnov (KS) test exploits this property of residuals from the correct dis-
tribution to test whether a set of observed data are compatible with a specified distribution F .
The test statistic is calculated by first computing the probability integral transformed residuals
ût = F (êt ) from the standardized residuals and then sorting them

u1 < u2 < . . . < un−1 < un .

The KS test is computed as

K S = max
τ

∣∣∣∣∣
τ∑

i=1

I[u j<
τ
T ] −

1

T

∣∣∣∣∣ (8.38)

= max
τ

∣∣∣∣∣
(

τ∑
i=1

I[u j<
τ
T ]

)
− τ

T

∣∣∣∣∣
The test finds the point where the distance between the observed cumulant distribution The
objects being maximized over is simply the number of u j less than τ

T minus the expected number
of observations which should be less than τ

T . Since the probability integral transformed residuals
should be U(0,1) when the model is correct, the number of probability integral transformed
residuals expected to be less than τ

T is τT . The distribution of the KS test is nonstandard but many
software packages contain the critical values. Alternatively, simulating the distribution is trivial
and precise estimates of the critical values can be computed in seconds using only uniform
pseudo-random numbers.

The KS test has a graphical interpretation as a QQ plot of the probability integral transformed
residuals against a uniform. Figure 8.8 contains a representation of the KS test using data
from two series, the first is standard normal and the second is a standardized students t4. 95%
confidence bands are denoted with dotted lines. The data from both series were assumed to be
standard normal and the t4 just rejects the null (as evidenced by the cumulants touching the
confidence band).



A KS test of normal and standardized t4 when the data are normal
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Figure 8.8: A simulated KS test with a normal and a t4. The t4 crosses the confidence boundary
indicating a rejection of this specification. A good density forecast should have a cumulative
distribution close to the 45o line.

8.4.5.1 Parameter Estimation Error and the KS Test

The critical values supplied by most packages do not account for parameter estimation error
and KS tests with estimated parameters are generally less likely to reject than if the parameters
are known. For example, if a sample of 1000 random variables are i.i.d. standard normal and the
mean and variance are known to be 0 and 1, the 90, 95 and 99% CVs for the KS test are 0.0387,
0.0428, and 0.0512. If the parameters are not known and must be estimated, the 90, 95 and 99%
CVs are reduced to 0.0263, 0.0285, 0.0331. Thus, a desired size of 10% (corresponding to a critical
value of 90%) has an actual size closer 0.1% and the test will not reject the null in many instances
where it should.

The solution to this problem is simple. Since the KS-test requires knowledge of the entire
distribution, it is simple to simulate a sample with length T , and to estimate the parameters
and to compute the KS test on the simulated standardized residuals (where the residuals are
using estimated parameters). Repeat this procedure B times (B>1000, possibly larger) and then
compute the empirical 90, 95 or 99% quantiles from K Sb , b = 1, 2, . . . , B . These quantiles are
the correct values to use under the null while accounting for parameter estimation uncertainty.



8.4.5.2 Evaluating conditional density forecasts

In a direct analogue to the unconditional case, if xt |Ft−1 ∼ F , then ût ≡ F (x̂t )|Ft−1
i.i.d.∼

U (0, 1). That is, probability integral transformed residuals are conditionally i.i.d. uniform on
[0, 1]. While this condition is simple and easy to interpret, direct implementation of a test is
not. The Berkowitz (2001) test works around this by re-transforming the probability integral
transformed residuals into normals using the inverse Normal CDF . Specifically if ût = Ft |t−1(êt )
are the residuals standardized by their forecast distributions, the Berkowitz test computes ŷt =
Φ−1(ût ) = Φ−1(Ft |t−1(êt ))which have the property, under the null of a correct specification that

ŷt
i.i.d.∼ N (0, 1), an i.i.d. sequence of standard normal random variables.
Berkowitz proposes using a regression model to test the yt for i.i.d. N (0, 1). The test is imple-

menting by estimating the parameters of

yt = φ0 + φ1 yt−1 + ηt

via maximum likelihood. The Berkowitz test is computing using a the likelihood ratio test

LR = 2(l (θ̂ ; y)− l (θ 0; y)) ∼ χ2
3 (8.39)

where θ 0 are the parameters if the null is true, corresponding to parameter values ofφ0 = φ1 = 0
andσ2 = 1 (3 restrictions). In other words, that the yt are independent normal random variables
with a variance of 1. As is always the case in tests of conditional models, the regression model can
be augmented to include any time t − 1 available instrument and a more general specification is

yt = xt γ + ηt

where xt may contains a constant, lagged yt or anything else relevant for evaluating a density
forecast. In the general specification, the null is H0 : γ = 0,σ2 = 1 and the alternative is the
unrestricted estimate from the alternative specification. The likelihood ratio test statistic in the
case would have a χ2

K +1 distribution where K is the number of elements in xt (the +1 comes
from the restriction thatσ2 = 1).

8.5 Coherent Risk Measures

With multiple measures of risk available, which should be chosen: variance, VaR, or Expected
Shortfall? Recent research into risk measures have identified a number of desirable properties
for measures of risk. Let ρ be a generic measure of risk that maps the riskiness of a portfolio
to an amount of required reserves to cover losses that regularly occur and let P , P1 and P2 be
portfolios of assets.

Drift Invariance The requires reserved for portfolio P satisfies

ρ (P + c ) = ρ (P )− c



That is, adding a constant return c to P decreases the required reserved by that amount

Homogeneity The required reserved are linear homogeneous,

ρ(λP ) = λρ(P ) for any λ > 0 (8.40)

The homogeneity property states that the required reserves of two portfolios with the same
relative holdings of assets depends linearly on the scale – doubling the size of a portfolio
while not altering its relative composition generates twice the risk, and requires twice the
reserves to cover regular losses.

Monotonicity If P1 first order stochastically dominates P2, the required reserves for P1 must be
less than those of P2

ρ(P1) ≤ ρ(P2) (8.41)

If P1 FOSD P2 then the value of portfolio P1 will be larger than the value of portfolio P2 in
every state of the world, and so the portfolio must be less risky.

Subadditivity The required reserves for the combination of two portfolios is less then the re-
quired reserves for each treated separately

ρ(P1 + P2) ≤ ρ(P1) + ρ(P2) (8.42)

Definition 8.6 (Coherent Risk Measure). Any risk measure which satisfies these four properties
is known as coherent.

Coherency seems like a good thing for a risk measure. The first three conditions are indisputable.
For example, in the third, if P1 FOSD P2, then P1 will always have a higher return and must be
less risky. The last is somewhat controversial.

Theorem 8.2 (Value-at-Risk is not Coherent). Value-at-Risk is not coherent since it fails the
subadditivity criteria. It is possible to have a VaR which is superadditive where the Value-at-Risk
of the combined portfolio is greater than the sum of the Values-at-Risk of either portfolio.

Examples of the superadditivity of VaR usually require the portfolio to depend nonlinearly on
some assets (i.e. hold derivatives). Expected Shortfall, on the other hand, is a coherent measure
of risk.

Theorem 8.3 (Expected Shortfall is Coherent). Expected shortfall is a coherent risk measure.

The coherency of Expected Shortfall is fairly straight forward to show in many cases (for
example, if the returns are jointly normally distributed) although a general proof is difficult and
provides little intuition. However, that Expected Shortfall is coherent and VaR is not does not
make Expected Shortfall a better choice. VaR has a number of advantages for measuring risk
since it only requires the modeling of a quantile of the return distribution, VaR always exists and



is finite and there are many widely tested methodologies for estimating VaR. Expected Shortfall
requires an estimate of the mean in the tail which is substantially harder than simply estimating
the VaR and may not exist in some cases. Additionally, in most realistic cases, increases in the
Expected Shortfall will be accompanied with increases in the VaR and they will both broadly
agree about the risk of a the portfolio.

Shorter Problems

Problem 8.1. Discuss any properties the generalized error should have when evaluating Value-
at-Risk models.

Problem 8.2. Define and contrast Historical Simulation and Filtered Historic Simulation?

Problem 8.3. Define expected shortfall. How does this extend the idea of Value-at-Risk?

Problem 8.4. Why are HITs useful for testing a Value-at-Risk model?

Problem 8.5. Define conditional Value-at-Risk. Describe two methods for estimating this and
compare their strengths and weaknesses.

Longer Exercises

Exercise 8.1. Precisely answer the following questions

1. What is VaR?

2. What is expected shortfall?

3. Describe two methods to estimate the VaR of a portfolio? Compare the strengths and
weaknesses of these two approaches.

4. Suppose two bankers provide you with VaR forecasts (which are different) and you can get
data on the actual portfolio returns. How could you test for superiority? What is meant by
better forecast in this situation?

Exercise 8.2. The figure below plots the daily returns on IBM from 1 January 2007 to 31 December
2007 (251 trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first
model (denoted “HS”) uses ‘historical simulation’ with a 250-day window of data. The second
model uses a GARCH(1,1) model, assuming that daily returns have a constant conditional mean,
and are conditionally Normally distributed (denoted ‘Normal-GARCH’ in the figure).



Jan07 Feb07 Mar07 Apr07 May07 Jun07 Jul07 Aug07 Sep07 Oct07 Nov07 Dec07
−6

−4

−2

0

2

4

6
P

er
ce

nt
 r

et
ur

n
Daily returns on IBM in 2007, with 5% VaR forecasts

 

 
daily return
HS forecast
Normal−GARCH forecast

1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative
to the ‘historical simulation’ model and the Normal-GARCH model.

2. For each of the two VaR forecasts in the figure, a sequence of ‘hit’ variables was constructed:

H i t H S
t = 1

{
rt ≤ V̂ a R

H S

t

}
H i t G AR C H

t = 1
{

rt ≤ V̂ a R
G AR C H

t

}
where 1 {rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a

and the following regression was run (standard errors are in parentheses below the param-
eter estimates):

H i t H S
t = 0.0956

(0.0186)
+ ut

H i t G AR C H
t = 0.0438

(0.0129)
+ ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts
from these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the



parameter estimates):

H i t H S
t = 0.1018

(0.0196)
− 0.0601
(0.0634)

H i t H S
t−1 + ut

H i t G AR C H
t = 0.0418

(0.0133)
+ 0.0491
(0.0634)

H i t G AR C H
t−1 + ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 6.9679 for the first regression, and 0.8113 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

q 95% critical value

1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96

Exercise 8.3. Figure 8.9 plots the daily returns from 1 January 2008 to 31 December 2008 (252
trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first model
(denoted “HS”) uses ‘historical simulation’ with a 250-day window of data. The second model
uses a GARCH(1,1) model, assuming that daily returns have a constant conditional mean, and
are conditionally Normally distributed (denoted ‘Normal-GARCH’ in the figure).

1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative
to the ‘historical simulation’ model and the Normal-GARCH model.

2. For each of the two VaR forecasts in the figure, a sequence of ‘hit’ variables was constructed:

H i t H S
t = 1

{
rt ≤ V̂ a R

H S

t

}
H i t G AR C H

t = 1
{

rt ≤ V̂ a R
G AR C H

t

}
where 1 {rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a



and the following regression was run (standard errors are in parentheses below the param-
eter estimates):

H i t H S
t = 0.0555

(0.0144)
+ ut

H i t G AR C H
t = 0.0277

(0.0103)
+ ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts
from these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the
parameter estimates):

H i t H S
t = 0.0462

(0.0136)
+ 0.1845
(0.1176)

H i t H S
t−1 + ut

H i t G AR C H
t = 0.0285

(0.0106)
− 0.0285
(0.0106)

H i t G AR C H
t−1 + ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 8.330 for the first regression, and 4.668 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

4. Comment on the similarities and/or differences between what you found in (b) and (c).

q 95% critical value

1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96

Exercise 8.4. Answer the following question:

1. Assume that X is distributed according to some distribution F, and that F is continuous
and strictly increasing. Define U ≡ F (X ) . Show that U s Uniform (0, 1) .
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Figure 8.9: Returns, Historical Simulation VaR and Normal GARCH VaR.

2. Assume that V s U ni f o r m (0, 1) , and that G is some continuous and strictly increasing
distribution function. If we define Y ≡ G−1 (V ), show that Y s G .

For the next two parts, consider the problem of forecasting the time taken for the price of a
particular asset (Pt ) to reach some threshold (P ∗). Denote the time (in days) taken for the
asset to reach the threshold as Zt . Assume that the true distribution of Zt is Exponential
with parameter β ∈ (0,∞) :

Zt s Exponential (β )

so F (z ;β ) =
{

1− exp {−β z} , z ≥ 0
0, z < 0

Now consider a forecaster who gets the distribution correct, but the parameter wrong.
Denote her distribution forecast as F̂ (z ) = Exponential

(
β̂
)

.

3. If we define U ≡ F̂ (Z ) , show that Pr [U ≤ u ] = 1− (1− u )β/β̂ for u ∈ (0, 1) , and interpret.



4. Now think about the case where β̂ is an estimate of β , such that β̂
p→ β as n →∞. Show

that Pr [U ≤ u ]
p→ u as n →∞, and interpret.

Exercise 8.5. A Value-at-Risk model was fit to some return data and the series of 5% VaR violations
was computed. Denote these H̃ I T t . The total number of observations was T = 50, and the total
number of violations was 4.

1. Test the null that the model has unconditionally correct coverage using a t -test.

2. Test the null that the model has unconditionally correct coverage using a LR test. The
likelihood for a Bernoulli(p ) random Y is

f (y ; p ) = p y (1− p )1−y .

The following regression was estimated

H̃ I T t = 0.0205 + 0.7081H̃ I T t−1 + η̂t

The estimated asymptotic covariance of the parameters is

σ̂2Σ̂
−1
X X =

[
0.0350 −0.0350
−0.0350 0.5001

]
, and Σ̂

−1
X X ŜΣ̂

−1
X X =

[
0.0216 −0.0216
−0.0216 2.8466

]

where σ̂2 = 1
T

∑T
t=1 η̂

2
t , Σ̂X X = 1

T X′X and Ŝ = 1
T

∑T
t=1 η̂

2
t x′t xt .

3. Is there evidence that the model is dynamically mis-specified, ignoring the unconditional
rate of violations?

4. Compute a joint test that the model is completely correctly specified. Note that[
a b
b c

]−1

=
1

a c − b 2

[
c −b
−b a

]
.

Note: The 5% critical values of a χ2
v are

ν CV

1 3.84
2 5.99
3 7.81

47 64.0
48 65.1
49 66.3
50 67.5




