
Chapter 2

Estimation, Inference, and Hypothesis
Testing

Note: The primary reference for these notes is Ch. 7 and 8 of Casella and Berger (2001). This text
may be challenging if new to this topic and Ch. 7 – 10 of Wackerly, Mendenhall, and Scheaffer (2001)
may be useful as an introduction.

This chapter provides an overview of estimation, distribution theory, inference, and
hypothesis testing. Testing the implications of an economic or financial model is a
multi-step process. First, an estimator for the unknown model parameters is con-
structed. Next, the distribution of the estimator is determined. Finally, formal hy-
pothesis tests are conducted to examine whether the data are consistent with the
implications of the theoretical model. This chapter is intentionally “generic” by
design and focuses on independent and identically distributed random variables.
Properties of specific models are studied in detail in the chapters on linear regres-
sion, time series, and univariate volatility modeling.

Using data to evaluate an economic theory is a three-step process:

• construct an estimator for the unknown parameters;

• determine the distributional of the estimator; and

• conduct hypothesis tests to examine whether the data are compatible with a theoretical model.

This chapter covers each of these steps with a focus independent and identically distributed data
(i.i.d.). The heterogeneous but independent data are covered in the chapter on linear regression (chap-
ter 3), and dependent data are covered in the chapters on time series (chapters 4, 5, 7, and 9).

2.1 Estimation

Once a model has been specified and hypotheses postulated, the first step is to estimate the model’s
parameters. Many methods are available to accomplish this task. These include parametric, semi-
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parametric, semi-nonparametric, and nonparametric estimators and a variety of estimation methods
often classified as M-, R- and L-estimators.1

Parametric models are tightly parameterized and have desirable statistical properties when their
specification is correct. Nonparametric estimators are more flexible and avoid making strong as-
sumptions about the relationship between variables. This structure allows nonparametric estimators
to capture a wide range of relationships but comes at the cost of precision. In many cases, nonpara-
metric estimators have a slower rate of convergence than similar parametric estimators. The practical
consequence of the rate is that nonparametric estimators are more useful in large data sets where the
relationships between variables may be difficult to postulate a priori. When less data is available, or
when an economic model proffers a relationship among variables, parametric estimators are generally
preferable.

Semi-parametric and semi-nonparametric estimators bridge the gap between fully parametric es-
timators and nonparametric estimators. Their difference lies in “how parametric” the model and
estimator are. Estimators that postulate parametric relationships between variables but estimate the
underlying distribution of errors flexibly are semi-parametric. Estimators that take a stand on the
distribution of the errors but allow flexible relationships between variables are semi-nonparametric.
This chapter focuses exclusively on parametric models and estimators. This choice is more reflective
of the common practice than a critique of alternative methods.

Another important characterization of estimators is whether they are members of the M-, L- or
R-estimator classes.2 M-estimators (also known as extremum estimators) always involve maximizing
or minimizing some objective function. M-estimators are the most commonly used class in financial
econometrics and include maximum likelihood, regression, classical minimum distance, and both the
classical and the generalized method of moments. L-estimators, also known as linear estimators, are
a class where the estimator can be expressed as a linear function of ordered data. Members of this
family can always be written as

θ̂ =
n∑

i=1

wiyi

for some set of weights {wi} where the data, yi, are ordered such that y j−1 ≤ y j for j = 2,3, . . . ,n.
This class of estimators obviously includes the sample mean by setting wi =

1
n for all i, and also

includes the median by setting wi = 0 for all i except w j = 1 where j = (n+ 1)/2 (n is odd) or
w j = w j+1 = 1/2 where j = n/2 (n is even). R-estimators exploit the order of the data. Common
examples of R-estimators include the minimum, maximum and Spearman’s rank correlation, which
is the usual correlation estimator applied to the ranks of the data. Rank statistics are often robust to
outliers and non-linearities.

2.1.1 M-Estimators

The use of M-estimators is pervasive in financial econometrics. The three most common variants of
M-estimators are the method of moments, both classical and generalized, maximum likelihood, and

1There is another important dimension in the categorization of estimators: Bayesian or frequentist. Bayesian esti-
mators use Bayes’ rule to perform inference about unknown quantities (parameters) conditioning on the observed data.
Frequentist estimators rely on randomness averaging out across observations. Frequentist methods are dominant in finan-
cial econometrics, although the use of Bayesian methods has been recently increasing.

2Many estimators are members of more than one class. For example, the median is a member of all three.
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classical minimum distance.

2.1.2 Maximum Likelihood

Maximum likelihood uses the distribution of the data to estimate unknown parameters by finding the
values which make the data as likely as possible to have been observed – in other words, by max-
imizing the likelihood. Maximum likelihood estimation begins by specifying the joint distribution,
f (y;θ), of the observable data, y = {y1,y2, . . . ,yn}, as a function of a k by 1 vector θ , which con-
tains all parameters. Note that this is the joint density, and so it includes both the information in
the marginal distributions of yi and information relating the marginals to one another.3 Maximum
likelihood estimation “reverses” the likelihood, so that it is a function of θ given the observed y,
L(θ ;y) = f (y;θ).

The maximum likelihood estimator, θ̂ , is defined as the solution to

θ̂ = argmax
θ

L(θ ;y) (2.1)

where argmax returns the value of the parameter that maximizes the equation.4 Since L(θ ;y) is
strictly positive, the log of the likelihood can be used to estimate θ .5 The log-likelihood is defined
as l(θ ;y) = lnL(θ ;y). In most situations the maximum likelihood estimator (MLE) can be found by
solving the k by 1 score vector,

∂ l(θ ;y)
∂θ

= 0

although a score-based solution does not work when θ is constrained, if θ̂ lies on the boundary of
the parameter space, or when the permissible range of values for Yi depends on θ . The first problem
is common enough that it is worth keeping in mind. The other two issues are rarely encountered in
financial econometrics.

2.1.2.1 Maximum Likelihood Estimation of a Poisson Model

Realizations from a Poisson process are non-negative and discrete. The Poisson is common in ultra-
high-frequency econometrics, where the usual assumption that prices lie in a continuous space is

3Formally the relationship between the marginal is known as the copula. Copulas and their use in financial economet-
rics are examined in chpater 9.

4Many likelihoods have more than one maximum (i.e., local maxima). The maximum likelihood estimator is always
defined as the global maximum.

5Note that the log transformation is strictly increasing and globally concave. If z? is the maximum of g(z), and thus

∂g(z)
∂ z

∣∣∣∣
z=z?

= 0

then z? must also be the maximum of ln(g(z)) since

∂ ln(g(z))
∂ z

∣∣∣∣
z=z?

=
g′(z)
g(z)

∣∣∣∣
z=z?

=
0

g(z?)
= 0

which follows since g(z)> 0 for any value of z.
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implausible. For example, US equities’ transaction prices evolve on a grid of prices typically sepa-
rated by $0.01. Suppose Yi

i.i.d.∼ Poisson(λ ). The pdf of a single observation is

f (Yi = yi;λ ) =
exp(−λ )λ yi

yi!
(2.2)

and since the data are independent and identically distributed (i.i.d.), the joint likelihood is simply the
product of the n individual likelihoods,

f (y;λ ) = L(λ ;y) =
n∏

i=1

exp(−λ )λ yi

yi!
.

The log-likelihood is

l(λ ;y) =
n∑

i=1

−λ + yi ln(λ )− ln(yi!) (2.3)

which can be further simplified to

l(λ ;y) =−nλ + ln(λ )
n∑

i=1

yi−
n∑

j=1

ln(y j!)

The first derivative is

∂ l(λ ;y)
∂λ

=−n+λ
−1

n∑
i=1

yi. (2.4)

The MLE is found by setting the derivative to 0 and solving,

−n+ λ̂
−1

n∑
i=1

yi = 0

λ̂
−1

n∑
i=1

yi = n

n∑
i=1

yi = nλ̂

λ̂ = n−1
n∑

i=1

yi

The maximum likelihood estimator of λ in a Poisson is the sample mean.

2.1.2.2 Maximum Likelihood Estimation of a Normal (Gaussian) Model

Suppose yi is assumed to be i.i.d.normally distributed with mean µ and variance σ2. The pdf of a
normal is
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f (Yi = yi;θ) =
1√

2πσ2
exp

(
−(yi−µ)2

2σ2

)
. (2.5)

where θ =
[
µ σ2]′. The joint likelihood is the product of the n individual likelihoods,

f (y;θ) = L(θ ;y) =
n∏

i=1

1√
2πσ2

exp

(
−(yi−µ)2

2σ2

)
.

Taking logs,

l(θ ;y) =
n∑

i=1

−1
2

ln(2π)− 1
2

ln(σ2)− (yi−µ)2

2σ2 (2.6)

which simplifies to

l(θ ;y) =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

n∑
i=1

(yi−µ)2

σ2 .

Taking the derivative with respect to the parameters θ =
(
µ,σ2)′,

∂ l(θ ;y)
∂ µ

=
n∑

i=1

(yi−µ)

σ2 (2.7)

∂ l(θ ;y)
∂σ2 =− n

2σ2 +
1
2

n∑
i=1

(yi−µ)2

σ4 . (2.8)

Setting these equal to zero, the first condition can be directly solved by multiplying both sides by σ̂2,
assumed positive, and the estimator for µ is the sample average.

n∑
i=1

(yi− µ̂)

σ̂2 = 0

σ̂
2

n∑
i=1

(yi− µ̂)

σ̂2 = σ̂
2×0

n∑
i=1

yi−nµ̂ = 0

nµ̂ =
n∑

i=1

yi

µ̂ = n−1
n∑

i=1

yi
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Plugging the estimator µ̂ into the second component of the score and setting equal to 0, the ML
estimator of σ2 is

− n
2σ̂2 +

1
2

n∑
i=1

(yi− µ̂)2

σ̂4 = 0

2σ̂
4

(
− n

2σ̂2 +
1
2

n∑
i=1

(yi− µ̂)2

σ̂4

)
= 2σ̂

4×0

−nσ̂
2 +

n∑
i=1

(yi− µ̂)2 = 0

σ̂
2 = n−1

n∑
i=1

(yi− µ̂)2

2.1.3 Conditional Maximum Likelihood

Interest often lies in the distribution of a random variable conditional on one or more observed values,
where the distribution of the variables conditioned on is not directly of interest. When this occurs, it is
natural to use conditional maximum likelihood. Suppose interest lies in modeling a random variable
Y conditional on one or more variables X. The likelihood for a single observation is fi (yi|xi), and
when Yi are conditionally i.i.d. , then

L(θ ;y|X) =
n∏

i=1

f (yi|xi) ,

and the log-likelihood is

l (θ ;y|X) =
n∑

i=1

ln f (yi|xi) .

The conditional likelihood is not usually sufficient to estimate parameters since the relationship
between Y and X has not been specified. Conditional maximum likelihood specifies the model pa-
rameters conditionally on xi. For example, when Yi is conditionally normally distributed, Yi|xi ∼
N
(
µi,σ

2) where µi = g(β ,xi) is some function which links parameters and conditioning variables.
In many applications a linear relationship is assumed so that

Yi = xiβ + εi

=
k∑

j=1

βiXi, j + εi

= µi + εi.

Other relationships are possible, including functions g(xiβ ) which limits to range of xiβ such as
exp(xiβ ) (positive numbers), the normal cdf (Φ(xiβ )) or the logistic function,

Λ(xiβ ) = exp(xiβ )/(1+ exp(xiβ )) ,

since both limit the range to (0,1).
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2.1.3.1 Example: Conditional Bernoulli

Suppose Yi and Xi are Bernoulli random variables where the conditional distribution of Yi given Xi = xi
is

Yi|Xi = xi ∼ Bernoulli(θ0 +θ1xi)

so that the conditional probability of observing a success (Yi = 1) is pi = θ0 +θ1xi. The conditional
likelihood is

L(θ ;y|x) =
n∏

i=1

(θ0 +θ1xi)
yi (1− (θ0 +θ1xi))

1−yi ,

the conditional log-likelihood is

l (θ ;y|x) =
n∑

i=1

yi ln(θ0 +θ1xi)+(1− yi) ln(1− (θ0 +θ1xi)) ,

and the maximum likelihood estimator can be found by differentiation.

∂ l (θ ;y|x)
∂ θ̂0

=
n∑

i=1

yi

θ̂0 + θ̂1xi
− 1− yi

1− θ̂0− θ̂1xi
= 0

∂ l (θ ;y|x)
∂θ1

=
n∑

i=1

xiyi

θ̂0 + θ̂1xi
− xi (1− yi)

1− θ̂0− θ̂1xi
= 0.

Using the fact that Xi is also Bernoulli, the second score can be solved

0 =
n∑

i=1

xi

(
yi

θ̂0 + θ̂1
+

(1− yi)(
1− θ̂0− θ̂1

)) =
n∑

i=1

nxy

θ̂0 + θ̂1
− nx−nxy

1− θ̂0− θ̂1xi

= nxy
(
1−
(
θ̂0 + θ̂1

))
− (nx−nxy)

(
θ̂0 + θ̂1

)
= nxy−nxy

(
θ̂0 + θ̂1

)
−nx

(
θ̂0 + θ̂1

)
+nxy

(
θ̂0 + θ̂1

)
θ̂0 + θ̂1 =

nxy

nx
,

Define nx =
∑n

i=1 xi, ny =
∑n

i=1 yi and nxy =
∑n

i=1 xiyi. The first score than also be rewritten as

0 =

n∑
i=1

yi

θ̂0 + θ̂1xi
− 1− yi

1− θ̂0− θ̂1xi
=

n∑
i=1

yi (1− xi)

θ̂0
+

yixi

θ̂0 + θ̂1
− 1− yi (1− xi)

1− θ̂0
− (1− yi)xi

1− θ̂0− θ̂1

=

n∑
i=1

yi (1− xi)

θ̂0
− 1− yi (1− xi)

1− θ̂0
+

{
xiyi

θ̂0 + θ̂1
− xi (1− yi)

1− θ̂0− θ̂1

}
=

ny−nxy

θ̂0
− n−ny−nx +nxy

1− θ̂0
+{0}

= ny−nxy− θ̂0ny + θ̂0n− θ̂0n+ θ̂0ny + θ̂0nx− θ̂0nxy

θ̂0 =
ny−nxy

n−nx
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so that θ̂1 =
nxy
nx
− ny−nxy

n−nx
. The “0” in the previous derivation follows from noting that the quantity in

braces ({}) is the first score and so is 0 at the MLE. If Xi was not a Bernoulli random variable, then
it is not usually possible to analytically solve this problem. In these cases, numerical methods are
needed.6

2.1.3.2 Example: Conditional Normal

Suppose µi = βxi where Yi given Xi = xi is conditionally normal. Assuming that Yi are conditionally
i.i.d. , the likelihood and log-likelihood are

L(θ ;y|x) =
n∏

i=1

1√
2πσ2

exp

(
−(yi−βxi)

2

2σ2

)

l (θ ;y|x) =
n∑

i=1

−1
2

(
ln(2π)+ ln

(
σ

2)+ (yi−βxi)
2

σ2

)
.

The scores of the likelihood are

∂ l (θ ;y|x)
∂β

=
n∑

i=1

xi

(
yi− β̂xi

)
σ̂2 = 0

∂ l (θ ;y|x)
∂σ2 = −1

2

n∑
i=1

1
σ̂2 −

(
yi− β̂xi

)2

(σ̂2)
2 = 0

After multiplying both sides the first score by σ̂2, and both sides of the second score by−2σ̂4, solving
the scores is straight forward, and so

β̂ =

∑n
i=1 xiyi∑n
j=1 x2

j

σ̂
2 = n−1

n∑
i=1

(yi−βxi)
2 .

2.1.3.3 Example: Conditional Poisson

Suppose Yi is conditional on Xi i.i.d.distributed Poisson(λi) where λi = exp(θxi). The likelihood and
log-likelihood are

L(θ ;y|x) =
n∏

i=1

exp(−λi)λ
yi
i

yi!

l (θ ;y|x) =
n∑

i=1

exp(θxi)+ yi (θxi)− ln(yi!) .

6When Xi is not Bernoulli, it is also usually necessary to use a function to ensure pi, the conditional probability, is in
[0,1]. The normal cdf and the logistic function are commonly used to enforce this constraint.
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The score of the likelihood is

∂ l (θ ;y|x)
∂θ

=

n∑
i=1

−xi exp
(
θ̂xi
)
+ xiYi = 0.

This score cannot be analytically solved and so a numerical optimizer must be used to find the solu-
tion. It is possible, however, to show the score has expectation 0 since E [Yi|xi = xi] = λi.

E
[

∂ l (θ ;y|x)
∂θ

]
= E

[
n∑

i=1

−Xi exp(θxi)+XiYi

]

= E

[
E

[
n∑

i=1

−Xi exp(θxi)+XiYi

∣∣∣∣∣X
]]

=
n∑

i=1

E [−xi exp(θxi) |X]+ xiE [Yi|X]

=
n∑

i=1

−xiλi + xiE [Yi|X]

=
n∑

i=1

−xiλi + xiλi = 0.

2.1.4 The Method of Moments

The Method of moments, often referred to as the classical method of moments to differentiate it from
the generalized method of moments (GMM, chapter 6), uses the data to match noncentral moments.

Definition 2.1 (Noncentral Moment). The rth noncentral moment is defined

µ
′
r ≡ E [X r] (2.9)

for r = 1,2, . . ..

Central moments are similarly defined, only centered around the mean.

Definition 2.2 (Central Moment). The rth central moment is defined

µr ≡ E
[(

X−µ
′
1
)r] (2.10)

for r = 2,3, . . . where the first central moment is defined to be equal to the first noncentral moment.

Since E [X r
i ] is not known any estimator based on it is infeasible. The natural solution is to use the

sample analogue to estimate its value, and the feasible method of moments estimator is

µ̂
′
r = n−1

n∑
i=1

X r
i , (2.11)
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the sample average of the data raised to the rth power. While the classical method of moments was
originally specified using noncentral moments, the central moments are usually the quantities of in-
terest. The central moments can be directly estimated,

µ̂r = n−1
n∑

i=1

(Xi− µ̂1)
r, (2.12)

by first estimating the mean (µ̂1) and then estimating any higher-order central moments required. An
alternative is to expand the noncentral moment in terms of central moments. For example, the second
noncentral moment can be expanded in terms of the first two central moments,

µ
′
2 = µ2 +µ

2
1

which is the usual identity that states that expectation of a random variable squared, E[X2
i ], is equal to

the variance, µ2 = σ2, plus the mean squared, µ2
1 . Likewise, it is easy to show that

µ
′
3 = µ3 +3µ2µ1 +µ

3
1

directly by expanding E
[
(X−µ1)

3
]

and solving for µ ′3. To understand that the method of moments
is in the class of M-estimators, note that the expression in eq. (2.12) is the first order condition of a
simple quadratic form,

argmin
µ,µ2,...,µk

n−1
n∑

i=1

(Xi−µ)2 +
k∑

j=2

n∑
i=1

(
n−1 (Xi−µ) j−µ j

)2
. (2.13)

The solution is exact since the number of unknown parameters is identical to the number of equa-
tions.7

2.1.4.1 Method of Moments Estimation of the Mean and Variance

The classical method of moments estimator for the mean and variance for a set of i.i.d.data {yi}n
i=1

where E [Yi] = µ and E
[
(Yi−µ)2

]
= σ2 is given by estimating the first two noncentral moments and

then solving for σ2.

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 + µ̂

2 = n−1
n∑

i=1

Y 2
i

so that the variance estimator is σ̂2 = n−1∑n
i=1Y 2

i − µ̂2. Following some algebra, it is simple to show
that the central moment estimator could be used instead, and so equivalently σ̂2 = n−1∑n

i=1 (Yi− µ̂)2.

7Note that µ1, the mean, is generally denoted with the subscript suppressed as µ .



2.2 Convergence and Limits for Random Variables 67

2.1.4.2 Method of Moments Estimation of the Range of a Uniform

Consider a set of realization of a random variable with a uniform density over [0,θ ], and so Yi
i.i.d.∼

U(0,θ). The expectation of Yi is E [Yi] = θ/2, and so the method of moments estimator for the upper
bound is

θ̂ = 2n−1
n∑

i=1

Yi.

2.1.5 Classical Minimum Distance

The third type of M-estimator is the classical minimum distance (CMD) estimator, which is also
known as minimum χ2 . CMD differs from MLE and the method of moments in that it is an estimator
that uses parameter estimates produced by another estimator rather than on the data directly. CMD
is most common when a simple MLE or moment-based estimator can estimate a modified version
of the model of interest. This model may be missing some economically or statistically motivated
constraints on the parameters. This initial estimator, ψ̂ is then used to estimate the parameters of the
model, θ , by minimizing a quadratic function of the form

θ̂ = argmin
θ

(ψ̂−g(θ))′W(ψ̂−g(θ)) (2.14)

where W is a positive definite weighting matrix and g(θ) is a function that related the model param-
eters to ψ . When W is chosen as the covariance of ψ̂ , the CMD estimator becomes the minimum-χ2

estimator since outer products of standardized normals are χ2 random variables.

2.2 Convergence and Limits for Random Variables

Before turning to estimators’ properties, it is useful to discuss some common measures of convergence
for sequences. First, recall the definition of a limit of a non-stochastic sequence.

Definition 2.3 (Limit). Let {xn} be a non-stochastic sequence. If there exists N such that for every
n>N, |xn− x|< ε ∀ε > 0, then x is called the limit of xn. When this occurs, xn→ x or limn→∞ xn = x.

A limit is a point that a sequence approaches, and eventually, always remains near. While the limit
does not need to be attained, xn is always be less than ε away from its limit for any choice of ε > 0
for n sufficiently large.

Limits of random variables come in many forms. The first the type of convergence is both the
weakest and most abstract.

Definition 2.4 (Convergence in Distribution). Let {Yn} be a sequence of random variables and let
{Fn} be the associated sequence of cdfs. If there exists a cdf F where Fn (y)→ F (y) for all y where
F is continuous, then F is the limiting cdf of {Yn}. Let Y be a random variable with cdf F , then Yn

converges in distribution to Y∼ F , Yn
d→ Y∼ F , or simply Yn

d→ F .

Convergence in distribution means that the limiting cdf of a sequence of random variables is the
same as the convergent random variable. This is a very weak form of convergence since all it requires
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Figure 2.1: This figure shows a sequence of cdfs {Fi} that converge to the cdf of a standard normal.

is that the distributions are the same. For example, suppose {Xn} is an i.i.d. sequence of standard
normal random variables, and Y is a standard normal random variable. Xn trivially converges to
distribution to Y (Xn

d→ Y ) even through Y is completely independent of {Xn} – the limiting cdf of
Xn is merely the same as the cdf of Y . Despite the weakness of convergence in distribution, it is an
essential notion of convergence that is used to perform inference on estimated parameters.

Figure 2.1 shows an example of a sequence of random variables that converge in distribution. The
sequence is

Xn =
√

n
1
n
∑n

i=1Yi−1√
2

d→ Z

where Yi are i.i.d. χ2
1 random variables and Z ∼ N (0,1). This is a studentized average since the

variance of the average is 2/n and the mean is 1. By the time n = 128 the distribution of Xn is nearly
indistinguishable from that of a standard normal.

Convergence in distribution is preserved through functions.

Theorem 2.1 (Continuous Mapping Theorem). Let Xn
d→ X and let the random variable g(X) be

defined by a function g(x) that is continuous everywhere except possibly on a set with zero probability.

Then g(Xn)
d→ g(X).

The continuous mapping theorem is useful since it facilitates the study of functions of sequences
of random variables. For example, in hypothesis testing, it is common to use quadratic forms of nor-
mals, and when appropriately standardized, quadratic forms of normally distributed random variables
follow a χ2 distribution.

The next form of convergence is stronger than convergence in distribution since the limit is to a
specific value, not just a cdf.

Definition 2.5 (Convergence in Probability). The sequence of random variables {Xn} converges in
probability to X if and only if

lim
n→∞

Pr(|Xi,n−Xi|< ε) = 1∀ε > 0, ∀i.

When this holds, Xn
p→X or equivalently plimXn = X (or plimXn−X = 0) where plim is probability

limit.
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Note that X can be either a random variable or a constant (degenerate random variable). For ex-
ample, if Xn = n−1+Z where Z is a normally distributed random variable, then Xn

p→ Z. Convergence
in probability requires virtually all of the probability mass of Xn to lie near X. This is a very weak
form of convergence since it is possible that a small amount of probability can be arbitrarily far away
from X. Suppose a scalar random sequence {Xn} takes the value 0 with probability 1− 1/n and n
with probability 1/n. Then {Xn}

p→ 0 although E [Xn] = 1 for all n.
Convergence in probability, however, is strong enough that it is suitable for studying the limiting

behavior of functions of random variables.

Theorem 2.2. Let Xn
p→ X and let the random variable g(X) be defined by a function g(x) that

is continuous everywhere except possibly on a set with zero probability. Then g(Xn)
p→ g(X) (or

equivalently plimg(Xn) = g(X)).

This theorem has several useful forms. Suppose the k-dimensional vector Xn
p→ X, the con-

formable vector Yn
p→ Y, and C is a conformable constant matrix, then

• plim CXn = CX

• plim
∑k

i=1 Xi,n =
∑k

i=1 plimXi,n =
∑k

i=1 Xi – the plim of the sum is the sum of the plims

• plim
∏k

i=1 Xi,n =
∏k

i=1 plimXi,n =
∏k

i=1 Xi – the plim of the product is the product of the plims

• plimYnXn = YX

• When Yn is a square matrix and Y is nonsingular, then Y−1
n

p→ Y−1 – the inverse function is
continuous and so plim of the inverse is the inverse of the plim

• When Yn is a square matrix and Y is nonsingular, then Y−1
n Xn

p→ Y−1X.

The plim operator has important differences from the expectations operator. In particular, the plim
operator passes through most functions. The feature allows for broad application. For example,

E
[

1
X

]
6= 1

E [X ]

whenever X is a non-degenerate random variable. However, if Xn
p→ X 6= 0, then

plim
1

Xn
=

1
plimXn

=
1
X
.

Alternative definitions of convergence strengthen convergence in probability. In particular, conver-
gence in mean square requires that the expected squared deviation must be zero. This requires that
limn→∞E [Xn] = X and limn→∞V [Xn] = 0.

Definition 2.6 (Convergence in Mean Square). The sequence of random variables {Xn} converges in
mean square to X if and only if

lim
n→∞

E
[
(Xi,n−Xi)

2
]
= 0, ∀i.

When this holds, Xn
m.s.→ X.
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Mean square convergence is strong enough to ensure that, when the limit is random X than
limn→∞E [Xn] = E [X] and limn→∞V [Xn] = V [X] – these relationships do not necessarily hold when
only Xn

p→ X.

Theorem 2.3 (Convergence in mean square implies consistency). If Xn
m.s.→ X then Xn

p→ X.

This result follows directly from Chebyshev’s inequality (Theorem 1.12). A final, and very strong,
measure of convergence for random variables is known as almost sure convergence.

Definition 2.7 (Almost sure convergence). The sequence of random variables {Xn} converges almost
surely to X if and only if

lim
n→∞

Pr(Xi,n−Xi = 0) = 1, ∀i.

When this holds, Xn
a.s.→ X.

Almost sure convergence requires all probability to be on the limit point. This is a stronger
condition than either convergence in probability or convergence in mean square, both of which allow
for some probability to be (relatively) far from the limit point.

Theorem 2.4 (Almost sure convergence implications). If Xn
a.s.→ X then Xn

m.s.→ X and Xn
p→ X .

Random variables that converge almost surely to a limit are asymptotically degenerate on that
limit.
The Slutsky theorem combines convergence in distribution with convergence in probability to show
how the joint limit of functions behaves.

Theorem 2.5 (Slutsky Theorem). Let Xn
d→ X and let Y p→ C, a constant, then for conformable X

and C,
Xn +Yn

d→ X+C
YnXn

d→ CX
Y−1

n Xn
d→ C−1X as long as C is non-singular.

This theorem is at the core of hypothesis testing. Estimated parameters are often asymptotically
normally distributed. The estimated parameters are then standardized by scaling by an estimated pa-
rameter covariance that converges in probability to the true covariance. Slutsky’s theorem establishes
that using the estimated parameter covariance matrix is asymptotically equivalent to using the true
parameter covariance matrix.

2.3 Properties of Estimators

The first step in assessing the performance of an economic model is the estimation of the parameters.
There are several desirable properties estimators may possess.
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2.3.1 Bias and Consistency

A natural question to ask about an estimator is whether, on average, it is equal to the population value
of the parameter estimated. Any discrepancy between the expected value of an estimator and the
population parameter is known as bias.

Definition 2.8 (Bias). The bias of an estimator, θ̂ , is defined

B
[
θ̂
]
= E

[
θ̂
]
−θ 0 (2.15)

where θ 0 is used to denote the population (or “true”) value of the parameter.

When an estimator has a bias of 0 it is said to be unbiased. Consistency is a closely related concept
that measures whether a parameter is far from the population value in large samples.

Definition 2.9 (Consistency). An estimator θ̂ n is said to be consistent if plimθ̂ n = θ 0. The explicit
dependence of the estimator on the sample size is used to clarify that these form a sequence,

{
θ̂ n
}∞

n=1.

Consistency requires an estimator to exhibit two features as the sample size becomes large. First,
any bias must be shrinking. Second, the distribution of θ̂ around θ 0 must be shrinking in such a way
that virtually all of the probability mass is arbitrarily close to θ 0.

Behind consistency is a set of theorems known as laws of large numbers that provide conditions
where an average converges to its expectation. The simplest is the Kolmogorov Strong Law of Large
numbers and is applicable to i.i.d.data.8

Theorem 2.6 (Kolmogorov Strong Law of Large Numbers). Let {Yi} by a sequence of i.i.d. random
variables with µ ≡ E [Yi] and define Ȳn = n−1∑n

i=1Yi. Then

Ȳn
a.s.→ µ (2.16)

if and only if E [|Yi|]<∞.

In the case of i.i.d.data the only requirement for consistency is that the expectation exists, and
so a law of large numbers applies to an average of i.i.d.data whenever its expectation exists. For
example, Monte Carlo integration uses i.i.d.draws and so the Kolmogorov LLN is sufficient to ensure
that Monte Carlo integrals converge to their expected values.
The variance of an estimator is the same as any other variance, V

[
θ̂
]
= E

[(
θ̂ −E[θ̂ ]

)2
]

although

it is worth noting that the variance is defined as the variation around its expectation, E[θ̂ ], not the
population value of the parameters, θ 0. Mean square error measures this alternative form of variation
around the population value of the parameter.

Definition 2.10 (Mean Square Error). The mean square error of an estimator θ̂ , denoted MSE
(
θ̂
)
, is

defined
MSE

(
θ̂
)
= E

[(
θ̂ −θ 0

)2
]
. (2.17)

It can be equivalently expressed as the bias squared plus the variance, MSE
(
θ̂
)
= B

[
θ̂
]2
+V

[
θ̂
]
.

When the bias and variance of an estimator both converge to zero, then θ̂ n
m.s.→ θ 0.

8A law of large numbers is strong if the convergence is almost sure. It is weak if convergence is in probability.
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2.3.1.1 Bias and Consistency of the Method of Moment Estimators

The method of moments estimators of the mean and variance are defined as

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 = n−1

n∑
i=1

(Yi− µ̂)2 .

When the data are i.i.d.with finite mean µ and variance σ2, the mean estimator is unbiased while
the variance is biased by an amount that becomes small as the sample size increases. The mean is
unbiased since

E [µ̂] = E

[
n−1

n∑
i=1

Yi

]

= n−1
n∑

i=1

E [Yi]

= n−1
n∑

i=1

µ

= n−1nµ

= µ

The variance estimator is biased since

E
[
σ̂

2]= E

[
n−1

n∑
i=1

(Yi− µ̂)2

]

= E

[
n−1

(
n∑

i=1

Y 2
i −nµ̂

2

)]

= n−1

(
n∑

i=1

E
[
Y 2

i
]
−nE

[
µ̂

2])

= n−1

(
n∑

i=1

µ
2 +σ

2−n
(

µ
2 +

σ2

n

))
= n−1 (nµ

2 +nσ
2−nµ

2−σ
2)

= n−1
(

nσ
2−n

σ2

n

)
=

n−1
n

σ
2.
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The key step in the derivation is to show that the sample mean is equal to the population mean plus
an error that is decreasing in n,

µ̂
2 =

(
µ +n−1

n∑
i=1

εi

)2

= µ
2 +2µn−1

n∑
i=1

εi +

(
n−1

n∑
i=1

εi

)2

and so its square has the expected value

E
[
µ̂

2]= E

µ
2 +2µn−1

n∑
i=1

εi +

(
n−1

n∑
i=1

εi

)2


= µ
2 +2µn−1E

[
n∑

i=1

εi

]
+n−2E

( n∑
i=1

εi

)2


= µ
2 +

σ2

n
.

2.3.2 Asymptotic Normality

While unbiasedness and consistency are highly desirable properties of any estimator, alone these do
not provide a method to perform inference. The primary tool in econometrics for inference is the
central limit theorem (CLT). CLTs exist for a wide range of possible data characteristics that include
i.i.d., heterogeneous and dependent cases. The Lindberg-Lévy CLT, which is applicable to i.i.d.data,
is the simplest.

Theorem 2.7 (Lindberg-Lévy). Let {Yi} be a sequence of i.i.d. random scalars with µ ≡ E [Yi] and
σ2 ≡ V [Yi]<∞. If σ2 > 0, then

Ȳn−µ

σ̄n
=
√

n
Ȳn−µ

σ

d→ N(0,1) (2.18)

where Ȳn = n−1∑n
i=1Yi and σ̄n =

√
σ2

n .

Lindberg-Lévy states that as long as i.i.d.data have 2 moments – a finite mean and variance –
the sample mean is asymptotically normally distributed. It can further be seen to show that other
moments of i.i.d. random variables, such as the variance, are asymptotically normally distributed as
long as two times the power of the moment exists. In other words, an estimator of the rth moment is
asymptotically normally distributed as long as the 2rth moment exists – at least in i.i.d.data.

Figure 2.2 contains density plots of the sample average of n independent χ2
1 random variables for

n= 5, 10, 50 and 100.9 The top panel contains the density of the unscaled estimates. The bottom panel

9The mean and variance of a χ2
ν are ν and 2ν , respectively.
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Consistency and Central Limits
Unscaled Estimator Distribution
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Figure 2.2: These two panels illustrate the difference between consistency and the correctly scaled
estimators. The sample mean was computed 1,000 times using 5, 10, 50 and 100 i.i.d. χ2 data points.
The top panel contains a kernel density plot of the estimates of the mean. The density when n = 100
is much tighter than when n = 5 or n = 10 since the estimates are not scaled. The bottom panel
plots

√
n(µ̂ − 1)/

√
2, the standardized version for which a CLT applies. All scaled densities have

similar dispersion although it is clear that the asymptotic approximation of the CLT is not particularly
accurate when n = 5 or n = 10 due to the right skew in the χ2

1 data.

contains the density plot of the correctly scaled terms as they appear in the CLT,
√

n(µ̂−1)/
√

2 where
µ̂ is the sample average. The densities are collapsing in the top panel. This is evidence of consistency
since µ̂ is collapsing to 1, its expected value. The bottom panel demonstrates the operation of a CLT
since the appropriately standardized means all have similar dispersion and are increasingly normally
distributed.

Central limit theorems exist for a wide variety of other data generating process including processes
which are independent but not identically distributed (i.n.i.d) or processes which are dependent, such
as time-series data. As the data become more heterogeneous, whether through dependence or by
having different variance or distributions, more restrictions are needed on certain characteristics of
the data to ensure that averages are asymptotically normally distributed. The Lindberg-Feller CLT
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allows for heteroskedasticity (different variances) and/or different marginal distributions.

Theorem 2.8 (Lindberg-Feller). Let {Yi} be a sequence of independent random scalars with µi ≡
E [Yi] and 0 < σ2

i ≡ V [Yi]<∞ where yi ∼ Fi, i = 1,2, . . .. Then

√
n

Ȳn− µ̄n

σ̄n

d→ N(0,1) (2.19)

and

lim
n→∞

max
1≤i≤n

n−1 σ2
i

σ̄2
n
= 0 (2.20)

if and only if, for every ε > 0,

lim
n→∞

σ̄
2
n n−1

n∑
i=1

∫
(z−µn)2>εNσ2

n

(z−µn)
2 dFi(z) = 0 (2.21)

where µ̄ = n−1∑n
i=1 µi and σ̄2 = n−1∑n

i=1 σ2
i .

The Lindberg-Feller CLT relaxes the requirement that the marginal distributions are identical at
the cost of a technical condition. The final condition, known as a Lindberg condition, states that
none of the random variables are so heavy-tailed as to dominate the distribution when averaged. In
practice, this can be a concern when the variables have a wide range of variances (σ2

i ). For example,
many macroeconomic data series exhibit a large decrease in the variance of their shocks after 1984, a
phenomenon is referred to as the great moderation. The statistical consequence of this decrease is that
averages that use data both before and after 1984 not be well approximated by a CLT and so caution is
warranted when using asymptotic approximations. This phenomena is also present in equity returns
where some periods – for example the technology “bubble” from 1997-2002 – have substantially
higher volatility than periods before or after. These large persistent changes in the characteristics of
the data have negative consequences on the quality of CLT approximations and large data samples are
often needed.

2.3.2.1 What good is a CLT?

Central limit theorems are the basis of most inference in econometrics, although their formal jus-
tification is only asymptotic and hence only guaranteed to be valid for an arbitrarily large data set.
Reconciling these two statements is an essential step in the evolution of an econometrician.

Central limit theorems should be seen as approximations, and as an approximation, they can be
accurate or arbitrarily poor. For example, when a series of random variables are i.i.d. , thin-tailed,
and not skewed, the distribution of the sample mean computed using as few as ten observations may
be very well approximated using a central limit theorem. On the other hand, the approximation of a
central limit theorem for the estimate of the autoregressive parameter, ρ , in

Yi = ρYi−1 + εi (2.22)

may be poor even for hundreds of data points when ρ is close to one (but smaller). Figure 2.3
contains kernel density plots of the sample means computed from a set of 10 i.i.d.draws from a
Poisson distribution with λ = 5 in the top panel and the estimated autoregressive parameter from
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Central Limit Approximations
Accurate CLT Approximation
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Figure 2.3: These two plots illustrate how a CLT can provide a good approximation, even in small
samples (top panel), or a bad approximation even for moderately large samples (bottom panel). The
top panel contains a kernel density plot of the standardized sample mean of n = 10 Poisson random
variables (λ = 5) over 10,000 Monte Carlo simulations. Here the finite sample distribution and the
asymptotic distribution overlay one another. The bottom panel contains the conditional ML estimates
of ρ from the AR(1) Yi = ρYi−1+εi where εi is i.i.d. standard normal using 100 data points and 10,000
replications. While ρ̂ is asymptotically normal, the quality of the approximation when n= 100 is poor.

the autoregression in eq. (2.22) with ρ = .95 in the bottom. Each figure also contains the pdf of
an appropriately scaled normal random variable. The CLT for the sample means of ten the Poisson
random variables is virtually indistinguishable from the actual distribution. The CLT approximation
for ρ̂ is very poor despite being based on 100 data points – 10× more than in the i.i.d.uniform
example. The difference arises because the data in the AR(1) example are not independent. With
ρ = 0.95, data are highly dependent, and more data is required for averages to be well behaved so
that the CLT approximation is accurate.

There are no hard and fast rules as to when a CLT provides a good approximation to the finite-
sample distribution. In general, the more dependent and the more heterogeneous a series, the worse
the approximation for a fixed number of observations. Simulations (Monte Carlo experiments) are a
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useful tool to investigate the validity of a CLT since they allow the finite sample distribution to be
tabulated and compared to the asymptotic distribution.

2.3.3 Efficiency

A final concept, efficiency, is useful for ranking consistent asymptotically normal (CAN) estimators
that have the same rate of convergence.10

Definition 2.11 (Relative Efficiency). Let θ̂ n and θ̃ n be two
√

n-consistent asymptotically normal
estimators for θ 0. If the asymptotic variance of θ̂ n, written avar

(
θ̂ n
)

is less than the asymptotic
variance of θ̃ n, and so

avar
(
θ̂ n
)
< avar

(
θ̃ n
)

(2.23)

then θ̂ n is said to be relatively efficient to θ̃ n.11

Note that when θ is a vector, avar
(
θ̂ n
)

is a covariance matrix. Inequality for matrices A and B is
interpreted to mean that if A < B then B−A is positive semi-definite, and so all of the variances of
the inefficient estimator must be (weakly) larger than those of the efficient estimator.

Definition 2.12 (Asymptotically Efficient Estimator). Let θ̂ n and θ̃ n be two
√

n-consistent asymptot-
ically normal estimators for θ 0. If

avar
(
θ̂ n
)
< avar

(
θ̃ n
)

(2.24)

for any choice of θ̃ n then θ̂ n is said to be the efficient estimator of θ .

One of the important features of efficiency comparisons is that they are only meaningful if both
estimators are asymptotically normal, and hence consistent, at the same rate –

√
n in the usual case.

It is trivial to produce an estimator that has a smaller variance but is inconsistent. For example, if an
estimator for a scalar unknown is θ̂ = 7 then it has no variance: it is always 7. However, unless θ0 = 7,
the estimator is also biased. Mean square error is a more appropriate method to compare estimators
where one or more may be biased since it accounts for the total variation, not just the variance.12

2.4 Distribution Theory

Most distributional theory follows from a central limit theorem applied to the moment conditions or
the score of the log-likelihood. While the moment conditions or scores are not usually the objects
of interest – θ is – a simple expansion can be used to establish the asymptotic distribution of the
estimated parameters.

10In any consistent estimator the asymptotic distribution of θ̂ −θ 0 is degenerate. In order to perform inference on an
unknown quantity, the difference between the estimate and the population parameters must be scaled by a function of the
number of data points. For most estimators this rate is

√
n, and so

√
n
(
θ̂ −θ 0

)
is asymptotically normally distributed. In

the general case, the scaled difference can be written as nδ
(
θ̂ −θ 0

)
where nδ is known as the rate.

11The asymptotic variance of a
√

n-consistent estimator, written avar
(
θ̂ n
)

is defined as limn→∞V
[√

n
(
θ̂ n−θ 0

)]
.

12Some consistent asymptotically normal estimators have an asymptotic bias and so
√

n
(
θ̃ n−θ

) d→ N (B,Σ). Asymp-

totic MSE defined as E
[
n
(
θ̂ n−θ 0

)(
θ̂ n−θ 0

)′]
= BB′+Σ provides a method to compare estimators using their asymp-

totic properties.
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2.4.1 Method of Moments

Distribution theory for the classical method of moments estimators is the most straightforward. Fur-
ther, Maximum Likelihood can be considered as a special case and so the method of moments is a
natural starting point.13 The method of moments estimator is defined as

µ̂ = n−1
n∑

i=1

Xi

µ̂2 = n−1
n∑

i=1

(Xi− µ̂)2

...

µ̂k = n−1
n∑

i=1

(Xi− µ̂)k

To understand the distribution theory for the method of moments estimator, begin by reformulating
the estimator as the solution of a set of k equations evaluated using the population values of µ , µ2, . . .

n−1
n∑

i=1

Xi−µ = 0

n−1
n∑

i=1

(Xi−µ)2−µ2 = 0

...

n−1
n∑

i=1

(Xi−µ)k−µk = 0

Define g1i = Xi−µ and g ji = (Xi−µ) j−µ j, j = 2, . . . ,k, and the vector gi as

gi =


g1i
g2i
...

gki

 . (2.25)

Using this definition, the method of moments estimator can be seen as the solution to

gn
(
θ̂
)
= n−1

n∑
i=1

gi
(
θ̂
)
= 0.

13While the class of method of moments estimators and maximum likelihood estimators contains a substantial overlap,
method of moments estimators exist that cannot be replicated as a score condition of any likelihood since the likelihood
is required to integrate to 1.
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Consistency of the method of moments estimator relies on a law of large numbers holding for
n−1∑n

i=1 Xi and n−1∑n
i=1 (Xi−µ) j for j = 2, . . . ,k. If Xi is an i.i.d. sequence and as long as E

[
|Xn−µ| j

]
exists, then n−1∑n

i=1 (Xn−µ) j p→ µ j.14 An alternative, and more restrictive approach is to assume

that E
[
(Xn−µ)2 j

]
= µ2 j exists, and so

E

[
n−1

n∑
i=1

(Xi−µ) j

]
= µ j (2.26)

V

[
n−1

n∑
i=1

(Xi−µ) j

]
= n−1

(
E
[
(Xi−µ)2 j

]
−E

[
(Xi−µ) j

]2
)

(2.27)

= n−1 (
µ2 j−µ

2
j
)
,

and so n−1∑n
i=1 (Xi−µ) j m.s.→ µ j which implies consistency.

The asymptotic normality of parameters estimated using the method of moments follows from the
asymptotic normality of

√
n

(
n−1

n∑
i=1

gi (θ 0)

)
= n−1/2

n∑
i=1

gi (θ 0) , (2.28)

an assumption. This requires the elements of gn to be sufficiently well behaved so that averages are
asymptotically normally distributed. For example, when xi is i.i.d., the Lindberg-Lévy CLT would
require xi to have 2k moments when estimating k parameters. When estimating the mean, 2 moments
are required (i.e., the variance is finite). To estimate the mean and the variance using i.i.d.data, 4
moments are required for the estimators to follow a CLT. As long as the moment conditions are
differentiable in the actual parameters of interest θ – for example, the mean and the variance – a
mean value expansion can be used to establish the asymptotic normality of these parameters.15

n−1
n∑

i=1

gi(θ̂) = n−1
n∑

i=1

gi(θ 0)+n−1
n∑

i=1

∂gi(θ)

∂θ
′

∣∣∣∣
θ=θ̄

(
θ̂ −θ 0

)
(2.30)

= n−1
n∑

i=1

gi(θ 0)+Gn
(
θ̄
)(

θ̂ −θ 0
)

14Technically, n−1∑n
i=1 (xi−µ)

j a.s.→ µ j by the Kolmogorov law of large numbers, but since a.s. convergence implies
convergence in probability, the original statement is also true.

15The mean value expansion is defined in the following theorem.

Theorem 2.9 (Mean Value Theorem). Let s : Rk → R be defined on a convex set Θ ⊂ Rk. Further, let s be continuously
differentiable on Θ with k by 1 gradient

∇s
(
θ̂
)
≡ ∂ s(θ)

∂θ

∣∣∣∣
θ=θ̂

. (2.29)

Then for any points θ and θ 0 there exists θ̄ lying on the segment between θ and θ 0 such that s(θ) = s(θ 0) +

∇s
(
θ̄
)′
(θ −θ 0).
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where θ̄ is a vector that lies between θ̂ and θ 0, element-by-element. Note that n−1∑n
i=1 gi(θ̂) = 0

by construction and so

n−1
n∑

i=1

gi(θ 0)+Gn
(
θ̄
)(

θ̂ −θ 0
)
= 0

Gn
(
θ̄
)(

θ̂ −θ 0
)
=−n−1

n∑
i=1

gi(θ 0)

(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1 n−1

n∑
i=1

gi(θ 0)

√
n
(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1√nn−1

n∑
i=1

gi(θ 0)

√
n
(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1√ngn(θ 0)

where gn(θ 0) = n−1∑n
i=1 gi(θ 0) is the average of the moment conditions. Thus the normalized

difference between the estimated and the population values of the parameters,
√

n
(
θ̂ −θ 0

)
is equal

to a scaled
(
−Gn

(
θ̄
)−1
)

random variable (
√

ngn(θ 0)) that has an asymptotic normal distribution.

By assumption
√

ngn(θ 0)
d→ N(0,Σ) and so

√
n
(
θ̂ −θ 0

) d→ N
(

0,G−1
Σ
(
G′
)−1
)

(2.31)

where Gn
(
θ̄
)

has been replaced with its limit as n→∞, G.

G = plimn→∞
∂gn (θ)

∂θ
′

∣∣∣∣
θ=θ 0

(2.32)

= plimn→∞n−1
n∑

i=1

∂gi (θ)

∂θ
′

∣∣∣∣
θ=θ 0

Since θ̂ is a consistent estimator, θ̂
p→ θ 0 and so θ̄

p→ θ 0 since it is between θ̂ and θ 0. This form of
asymptotic covariance is known as a “sandwich” covariance estimator.

2.4.1.1 Inference on the Mean and Variance

To estimate the mean and variance by the method of moments, two moment conditions are needed,

n−1
n∑

i=1

Xi = µ̂

n−1
n∑

i=1

(Xi− µ̂)2 = σ̂
2
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To derive the asymptotic distribution, begin by forming gi,

gi =

[
Xi−µ

(Xi−µ)2−σ2

]
Note that gi is mean 0 and a function of a single xi so that gi is also i.i.d.. The covariance of gi is given
by

Σ = E
[
gig′i
]
= E

[[
Xi−µ

(Xi−µ)2−σ2

][
Xi−µ (Xi−µ)2−σ2

]]
(2.33)

= E

 (Xi−µ)2 (Xi−µ)
(
(Xi−µ)2−σ2

)
(Xi−µ)

(
(Xi−µ)2−σ2

) (
(Xi−µ)2−σ2

)2


= E

[
(Xi−µ)2 (Xi−µ)3−σ2 (Xi−µ)

(Xi−µ)3−σ2 (Xi−µ) (Xi−µ)4−2σ2 (Xi−µ)2 +σ4

]

=

[
σ2 µ3
µ3 µ4−σ4

]
and the Jacobian is

G = plimn→∞ n−1
n∑

i=1

∂gi(θ)

∂θ
′

∣∣∣∣
θ=θ 0

= plimn→∞ n−1
n∑

i=1

[
−1 0

−2(Xi−µ) −1

]
.

Since plimn→∞n−1∑n
i=1 (Xi−µ) = plimn→∞x̄n−µ = 0,

G =

[
−1 0
0 −1

]
.

Thus, the asymptotic distribution of the method of moments estimator of θ =
(
µ,σ2)′ is

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 µ3
µ3 µ4−σ4

])
since G =−I2 and so G−1Σ

(
G−1)′ =−I2Σ(−I2) = Σ.

2.4.2 Maximum Likelihood

The steps to deriving the asymptotic distribution of an MLE are similar to those for a method of mo-
ments estimator. The key difference is that the score of the likelihood replaces the moment conditions.
The maximum likelihood estimator is defined as the maximum of the log-likelihood of the data with
respect to the parameters,
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θ̂ = argmax
θ

l(θ ;y). (2.34)

When the data are i.i.d., the log-likelihood can be factored into n log-likelihoods, one for each obser-
vation16,

l(θ ;y) =
n∑

i=1

li (θ ;yi) . (2.35)

It is useful to work with the average log-likelihood directly, and so define

l̄n(θ ;y) = n−1
n∑

i=1

li (θ ;yi) . (2.36)

The intuition behind the asymptotic distribution follows from the use of the average. Under some
regularity conditions, l̄n(θ ;y) converges uniformly in θ to E [l(θ ;yi)]. However, since the average
log-likelihood is becoming a good approximation for the expectation of the log-likelihood, the value
of θ that maximizes the log-likelihood of the data and its expectation are very close for n sufficiently
large. As a result,whenever the log-likelihood is differentiable and the range of yi does not depend on
any of the parameters in θ ,

E

[
∂ l̄n(θ ;yi)

∂θ

∣∣∣∣
θ=θ 0

]
= 0 (2.37)

where θ 0 are the parameters of the data generating process. This result follows since

∫
Sy

∂ l̄n(θ 0;y)
∂θ

∣∣∣∣
θ=θ 0

f (y;θ 0)dy =
∫
Sy

∂ f (y;θ 0)
∂θ

∣∣∣
θ=θ 0

f (y;θ 0)
f (y;θ 0)dy (2.38)

=

∫
Sy

∂ f (y;θ 0)

∂θ

∣∣∣∣
θ=θ 0

dy

=
∂

∂θ

∫
Sy

f (y;θ)

∣∣∣∣∣
θ=θ 0

dy

=
∂

∂θ
1

= 0

where Sy denotes the support of y. The scores of the average log-likelihood are

16Even when the data are not i.i.d., the log-likelihood can be factored into n log-likelihoods using conditional distribu-
tions for y2, . . . ,yi and the marginal distribution of y1,

l(θ ;y) =
N∑

n=2

li (θ ;yi |yi−1, . . . ,y1 )+ l1 (θ ;y1) .
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∂ l̄n(θ ;yi)

∂θ
= n−1

n∑
i=1

∂ li(θ ;yi)

∂θ
(2.39)

and when Yi is i.i.d. then the scores are i.i.d., and the average scores follow a law of large numbers for
θ close to θ 0.

n−1
n∑

i=1

∂ li(θ ;yi)

∂θ

a.s.→ E
[

∂ l(θ ;Yi)

∂θ

]
(2.40)

As a result, the population value of θ , θ 0, also solves the first-order condition (asymptotically). The
average scores are also the basis of the asymptotic normality of maximum likelihood estimators.
Under some further regularity conditions, the average scores follow a central limit theorem, and so

√
n∇θ l̄ (θ 0)≡

√
n

(
n−1

n∑
i=1

∂ l(θ ;yi)

∂θ

)∣∣∣∣∣
θ=θ 0

d→ N (0,J ) . (2.41)

Taking a mean value expansion around θ 0,

√
n∇θ l̄

(
θ̂
)
=
√

n∇θ l̄ (θ 0)+
√

n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)

0 =
√

n∇θ l̄ (θ 0)+
√

n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)

−√n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)
=
√

n∇θ l̄ (θ 0)
√

n
(
θ̂ −θ 0

)
=
[
−∇

θθ
′ l̄
(
θ̄
)]−1√n∇θ l (θ 0)

where

∇
θθ
′ l̄
(
θ̄
)
≡ n−1

n∑
i=1

∂ 2l(θ ;yi)

∂θ∂θ
′

∣∣∣∣∣
θ=θ̄

(2.42)

and where θ̄ is a vector whose elements lie between θ̂ and θ 0. Since θ̂ is a consistent estimator of
θ 0, θ̄

p→ θ 0 and so functions of θ̄ converge to their value at θ 0, and the asymptotic distribution of the
maximum likelihood estimator is

√
n
(
θ̂ −θ 0

) d→ N
(
0,I−1J I−1) (2.43)

where

I =−E

[
∂ 2l(θ ;yi)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
(2.44)

and

J = E

[
∂ l(θ ;yi)

∂θ

∂ l(θ ;yi)

∂θ
′

∣∣∣∣
θ=θ 0

]
(2.45)

The asymptotic covariance matrix can be further simplified using the information matrix equality,
which states that I −J p→ 0 and so
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√
n
(
θ̂ −θ 0

) d→ N
(
0,I−1) (2.46)

or equivalently

√
n
(
θ̂ −θ 0

) d→ N
(
0,J −1) . (2.47)

The information matrix equality follows from taking the derivative of the expected score,

∂ 2l(θ 0;y)
∂θ∂θ

′ =
1

f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′ −

1
f (y;θ)2

∂ f (y;θ 0)

∂θ

∂ f (y;θ 0)

∂θ
′ (2.48)

∂ 2l(θ 0;y)
∂θ∂θ

′ +
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′ =

1
f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′

and so, when the model is correctly specified,

E
[

∂ 2l(θ 0;y)
∂θ∂θ

′ +
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′

]
=

∫
Sy

1
f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′ f (y;θ)d y

=

∫
Sy

∂ 2 f (y;θ 0)

∂θ∂θ
′ d y

=
∂ 2

∂θ∂θ
′

∫
Sy

f (y;θ 0)d y

=
∂ 2

∂θ∂θ
′1

= 0.

and

E
[

∂ 2l(θ 0;y)
∂θ∂θ

′

]
=−E

[
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′

]
.

A related concept, and one which applies to ML estimators when the information matrix equality
holds, at least asymptotically, is the Cramér-Rao lower bound.

Theorem 2.10 (Cramér-Rao Inequality). Let f (y;θ) be the joint density of y where θ is a k dimen-
sional parameter vector. Let θ̂ be a consistent estimator of θ with finite covariance. Under some
regularity condition on f (·)

avar
(
θ̂
)
≥ I−1(θ) (2.49)

where

I(θ) =−E

[
∂ 2 ln f (Yi;θ)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
. (2.50)
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The important implication of the Cramér-Rao theorem is that maximum likelihood estimators,
which are generally consistent, are asymptotically efficient.17 This guarantee makes a strong case for
using the maximum likelihood when available.

2.4.2.1 Inference in a Poisson MLE

Recall that the log-likelihood in a Poisson MLE is

l(λ ;y) =−nλ + ln(λ )
n∑

i=1

Yi−
yi∑

i=1

ln(i)

and that the first-order condition is

∂ l(λ ;y)
∂λ

=−n+λ
−1

n∑
i=1

Yi.

The MLE was previously shown to be λ̂ = n−1∑n
i=1 yi. To compute the variance, take the expectation

of the negative of the second derivative,

∂ 2l(λ ;Yi)

∂λ 2 =−λ
−2Yi

and so

I =−E
[

∂ 2l(λ ;Yi)

∂λ 2

]
=−E

[
−λ
−2Yi

]
=
[
λ
−2E [Yi]

]
=
[
λ
−2

λ
]

=

[
λ

λ 2

]
= λ

−1

and so
√

n
(

λ̂ −λ0

)
d→ N (0,λ ) since I−1 = λ .

Alternatively the covariance of the scores could be used to compute the parameter covariance,

J = V

[(
−1+

Yi

λ

)2
]

=
1

λ 2 V [Yi]

= λ
−1.

17The Cramér-Rao bound also applied in finite samples when θ̂ is unbiased. While most maximum likelihood esti-
mators are biased in finite samples, there are important cases where estimators are unbiased for any sample size and so
the Cramér-Rao theorem applies in finite samples. Linear regression is an important case where the Cramér-Rao theorem
applies in finite samples (under some strong assumptions).
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I ≡ J and so the IME holds when the data are Poisson distributed. If the data were not Poisson
distributed, then it would not normally be the case that E [Yi] = V [Yi] = λ , and so I and J would not
(generally) be equal.

2.4.2.2 Inference in the Normal (Gaussian) MLE

Recall that the MLE estimators of the mean and variance are

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 = n−1

n∑
i=1

(Yi− µ̂)2

and that the log-likelihood is

l(θ ;y) =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

n∑
i=1

(Yi−µ)2

σ2 .

Taking the derivative with respect to the parameter vector, θ =
(
µ,σ2)′,

∂ l(θ ;y)
∂ µ

=
n∑

i=1

(Yi−µ)

σ2

∂ l(θ ;y)
∂σ2 =− n

2σ2 +
1
2

n∑
i=1

(Yi−µ)2

σ4 .

The second derivatives are

∂ 2l(θ ;y)
∂ µ∂ µ

=−
n∑

i=1

1
σ2

∂ 2l(θ ;y)
∂ µ∂σ2 =−

n∑
i=1

(Yi−µ)

σ4

∂ 2l(θ ;y)
∂σ2∂σ2 =

n
2σ4 −

2
2

n∑
i=1

(Yi−µ)2

σ6 .

The first does not depend on data and so no expectation is needed. The other two have expectations,
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E
[

∂ 2l(θ ;yi)

∂ µ∂σ2

]
= E

[
−(Yi−µ)

σ4

]
=−(E [Yi]−µ)

σ4

=−µ−µ

σ4

= 0

and

E
[

∂ 2l(θ ;yi)

∂σ2∂σ2

]
= E

[
1

2σ4 −
2
2
(Yi−µ)2

σ6

]

=
1

2σ4 −
E
[
(Yi−µ)2

]
σ6

=
1

2σ4 −
σ2

σ6

=
1

2σ4 −
1

σ4

=− 1
2σ4

Putting these together, the expected Hessian can be formed,

E
[

∂ 2l(θ ;yi)

∂θ∂θ
′

]
=

[ − 1
σ2 0
0 − 1

2σ4

]
and so the asymptotic covariance is

I−1 =−E
[

∂ 2l(θ ;yi)

∂θ∂θ
′

]−1

=

[ 1
σ2 0
0 1

2σ4

]−1

=

[
σ2 0
0 2σ4

]
The asymptotic distribution is then

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 0
0 2σ4

])
Note that this is different from the asymptotic variance for the method of moments estimator of the
mean and the variance. This is because the data have been assumed to come from a normal distribution
and so the MLE is correctly specified. As a result µ3 = 0 (the normal is symmetric) and the IME holds.
In general the IME does not hold and so the asymptotic covariance may take a different form which
depends on the moments of the data as in eq. (2.33).
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2.4.3 Quasi Maximum Likelihood

While maximum likelihood is an appealing estimation approach, it has one important drawback:
knowledge of f (y;θ). In practice the density assumed in maximum likelihood estimation, f (y;θ), is
misspecified for the actual density of y, g(y). This case has been widely studied, and estimators where
the distribution is misspecified are known as quasi-maximum likelihood (QML) estimators. QML
estimators generally lose all of the features that make maximum likelihood estimators so appealing:
they are generally inconsistent for the parameters of interest; the information matrix equality does not
hold; and they do not achieve the Cramér-Rao lower bound.

First, consider the expected score from a QML estimator,

Eg

[
∂ l (θ 0;y)

∂θ

]
=

∫
Sy

∂ l (θ 0;y)
∂θ

g(y)dy (2.51)

=

∫
Sy

∂ l (θ 0;y)
∂θ

f (y;θ 0)

f (y;θ 0)
g(y)dy

=

∫
Sy

∂ l (θ 0;y)
∂θ

g(y)
f (y;θ 0)

f (y;θ 0)dy

=

∫
Sy

h(y)
∂ l (θ 0;y)

∂θ
f (y;θ 0)dy

which shows that the QML estimator can be seen as a weighted average with respect to the density
assumed. These weights depend on the data, and so it is no longer be the case that the expectation of
the score at θ 0 is necessarily be 0. Instead QML estimators generally converge to another value of θ ,
θ
∗, that depends on both f (·) and g(·) and is known as the pseudo-true value of θ .

The other important consideration when using QML to estimate parameters is that the Information
Matrix Equality (IME) no longer holds, and so “sandwich” covariance estimators must be used, and
likelihood ratio statistics do not have standard χ2 distributions. An alternative interpretation of a QML
estimator is that of a method of moments estimator where the scores of l (θ ;y) are used to choose the
moments. With this interpretation, the distribution theory of the method of moments estimator applies
as long as the scores, evaluated at the pseudo-true parameters, follow a CLT.

2.4.3.1 The Effect of the Data Distribution on Estimated Parameters

Figure 2.4 contains three distributions (left column) and the asymptotic covariance of the mean and
the variance estimators, illustrated through joint confidence ellipses containing 80, 95, and 99% prob-
ability that the true value is within their bounds (right column).18 The ellipses were all derived from
the asymptotic covariance of µ̂ and σ̂2 where the data are i.i.d.and distributed according to a mixture
of normals distribution where

Yi =

{
µ1 +σ1Zi with probability p
µ2 +σ2Zi with probability 1− p

18The ellipses are centered at (0,0) since the population value of the parameters has been subtracted. Also, note that
even though the confidence ellipse for σ̂2 extended into the negative space, these must be divided by

√
n and re-centered

at the estimated value when used.
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p µ1 σ2
1 µ2 σ2

2

Standard Normal 1 0 1 0 1
Contaminated Normal .95 0 .8 0 4.8
Right Skewed Mixture .05 2 .5 -.1 .8

Table 2.1: Parameter values used in the mixtures of normals illustrated in figure 2.4.

where z is a standard normal. A mixture of normals is constructed from mixing draws from a finite
set of normals with possibly different means and variances and can take a wide variety of shapes. All
of the variables were constructed so that E [Yi] = 0 and V [Yi] = 1. This restriction requires

pµ1 +(1− p)µ2 = 0

and

p
(
µ

2
1 +σ

2
1
)
+(1− p)

(
µ

2
2 +σ

2
2
)
= 1.

The values used to produce the figures are listed in table 2.1. The first set is simply a standard normal
since p= 1. The second is known as a contaminated normal and is composed of a frequently occurring
(95% of the time) mean-zero normal with variance slightly smaller than 1 (.8), contaminated by a rare
but high variance (4.8) mean-zero normal. This mixture produces heavy tails but does not result
in a skewed distribution. The final example uses different means and variance to produce a right
(positively) skewed distribution.

The confidence ellipses illustrated in figure 2.4 are all derived from estimators produced assuming
that the data are normally distributed, but using the “sandwich” version of the covariance, I−1J I−1.
The top panel illustrates the correctly specified maximum likelihood estimator. Here the confidence
ellipse is symmetric about its center. This shape occurs when the parameters are uncorrelated – and
hence independent since they are asymptotically normal – but have different variances. The middle
panel has a similar shape but is elongated on the variance axis (x). This example illustrates that
the asymptotic variance of σ̂2 is affected by the heavy tails of the data (large 4th moment) of the
contaminated normal. The final confidence ellipse is rotated, reflecting that the mean and variance
estimators are no longer asymptotically independent. These final two cases are examples of QML;
the estimator is derived assuming a normal distribution, but the data are not. In these examples, the
estimators are still consistent but have different covariances.19

2.4.4 The Delta Method

Some theories make predictions about functions of parameters rather than on the parameters directly.
One typical example in finance is the Sharpe ratio, S, defined

19While these examples are consistent for the parameter of interest, it is not generally the case that the parameters
estimated using a misspecified likelihood (QML) are consistent for the quantities of interest.
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Data Generating Process and Asymptotic Covariance of Estimators
Standard Normal Standard Normal CI
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Figure 2.4: The six subplots illustrate how the data generating process, not the assumed model, de-
termine the asymptotic covariance of parameter estimates. In each row of panels, the left shows the
distribution of the data from a mixture of normals, yi = µ1+σ1zi with probability p and yi = µ2+σ2zi
with probability 1− p. The right depicts the asymptotic covariance of µ̂ and σ̂2. The parameters were
chosen so that E [yi] = 0 and V [yi] = 1. Different parameter configurations produce a standard normal
(top), a heavy tailed distribution known as a contaminated normal (middle) and a skewed distribution
(bottom).
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S =
E
[
R−R f

]√
V
[
R−R f

] (2.52)

where r is the return on a risky asset and r f is the risk-free rate – and so r− r f is the excess return on
the risky asset. While the quantities in both the numerator and the denominator are standard statistics,
the mean and the standard deviation, the ratio is not.

The delta method can be used to compute the covariance of functions of asymptotically normal
parameter estimates.

Definition 2.13 (Delta method). Let
√

n(θ̂−θ 0)
d→N

(
0,G−1Σ(G′)−1

)
where Σ is a positive definite

covariance matrix. Further, suppose that d(θ) is a m by 1 continuously differentiable vector function
of θ from Rk→ Rm. Then,

√
n(d(θ̂)−d(θ 0))

d→ N
(

0,D(θ 0)
[
G−1

Σ
(
G′
)−1
]

D(θ 0)
′
)

where

D(θ 0) =
∂d(θ)

∂θ
′

∣∣∣∣
θ=θ 0

. (2.53)

2.4.4.1 Variance of the Sharpe Ratio

The Sharpe ratio is estimated by “plugging in” the usual estimators of the mean and the variance,

Ŝ =
µ̂√
σ̂2

.

In this case d(θ 0) is a scalar function of two parameters, and so

d(θ 0) =
µ
√

σ
2

and

D(θ 0) =

[
1
σ

−µ

2σ3

]
Recall that the asymptotic distribution of the estimated mean and variance is

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 µ3
µ3 µ4−σ4

])
.

The asymptotic distribution of the Sharpe ratio can be constructed by combining the asymptotic dis-
tribution of θ̂ =

(
µ̂, σ̂2)′ with the D(θ 0), and so

√
n
(
Ŝ−S

) d→ N

(
0,
[

1
σ

−µ

2σ3

][
σ2 µ3
µ3 µ4−σ4

][
1
σ

−µ

2σ3

]′)
which can be simplified to
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√
n
(
Ŝ−S

) d→ N

(
0,1− µµ3

σ4 +
µ2 (µ4−σ4)

4σ6

)
.

The asymptotic variance can be rearranged to provide some insight into the sources of uncertainty,

√
n
(
Ŝ−S

) d→ N
(

0,1−S× sk+
1
4

S2 (κ−1)
)
,

where sk is the skewness and κ is the kurtosis. This derivation shows that the variance of the Sharpe
ratio is higher when the data are negatively skewed or have a large kurtosis (heavy tails). These two
characteristics are both empirical regularities of asset pricing data. If asset returns were normally
distributed, and so sk = 0 and κ = 3, the expression of the asymptotic variance simplifies to

V
[√

n
(
Ŝ−S

)]
= 1+

S2

2
, (2.54)

which is an expression commonly used as the variance of the Sharpe ratio. As this example illustrates,
the expression in Eq. (2.54) is only correct if the skewness is 0 and returns have a kurtosis of 3 –
something that would only be expected if returns are normally distributed.

2.4.5 Estimating Covariances

The presentation of the asymptotic theory in this chapter does not provide a method to implement
hypothesis tests. The limiting distribution depends on the covariance of the scores and the expected
second derivative (or Jacobian) in the method of moments. Feasible testing requires estimates of
these. The usual method to estimate the covariance uses “plug-in” estimators. Recall that in the
notation of the method of moments,

Σ≡ avar

(
n−

1
2

n∑
i=1

gi (θ 0)

)
(2.55)

or in the notation of maximum likelihood,

J ≡ E

[
∂ l (θ ;Yi)

∂θ

∂ l (θ ;Yi)

∂θ
′

∣∣∣∣
θ=θ 0

]
. (2.56)

When the data are i.i.d., the scores or moment conditions should be i.i.d., so the variance of the
average is the average of the variances. The “plug-in” estimator for Σ uses the moment conditions
evaluated at θ̂ , and so the covariance estimator in method of moments applications with i.i.d.data is

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

gi
(
θ̂
)′

(2.57)

which is simply the average outer-product of the moment condition. The estimator of Σ in the maxi-
mum likelihood is identical replacing gi

(
θ̂
)

with ∂ l (θ ;yi)/∂θ evaluated at θ̂ ,

Ĵ = n−1
n∑

i=1

∂ l (θ ;Yi)

∂θ

∂ l (θ ;Yi)

∂θ
′

∣∣∣∣∣
θ=θ̂

. (2.58)
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The “plug-in” estimator for the second derivative of the log-likelihood or the Jacobian of the
moment conditions is similarly defined,

Ĝ = n−1
n∑

i=1

∂g(θ)
∂θ
′

∣∣∣∣∣
θ=θ̂

(2.59)

or for maximum likelihood estimators

Î = n−1
n∑

i=1

−∂ 2l (θ ;Yi)

∂θ∂θ
′

∣∣∣∣∣
θ=θ̂

. (2.60)

2.4.6 Estimating Covariances with Dependent Data

The estimators in eq. (2.57) and eq. (2.58) are only appropriate when the moment conditions or scores
are not correlated across i.20 If the moment conditions or scores are correlated across observations, the
covariance estimator (but not the Jacobian estimator) must be changed to account for the dependence.
Since Σ is defined as the variance of a sum, the estimator must account for both the sum of the
variances plus all of the covariances.

Σ≡ avar

(
n−

1
2

n∑
i=1

gi (θ 0)

)
(2.61)

= lim
n→∞

n−1

 n∑
i=1

E
[
gi (θ 0)gi (θ 0)

′]+ n−1∑
i=1

n∑
j=i+1

E
[
g j (θ 0)g j−i (θ 0)

′+g j−i (θ 0)g j (θ 0)
]

This expression depends on both the usual covariance of the moment conditions and the covariance
between the scores. When using i.i.d.data, the second term vanishes since the moment conditions
must be uncorrelated, and so cross-products must have expectation 0.

If the moment conditions are correlated across i, then the covariance estimator must be adjusted to
account for this. The obvious solution is to estimate the expectations of the cross terms in eq. (2.57)
with their sample analogs, which would result in the covariance estimator

Σ̂DEP = n−1

 n∑
i=1

gi
(
θ̂
)

gi
(
θ̂
)′
+

n−1∑
i=1

n∑
j=i+1

(
g j
(
θ̂
)

g j−i
(
θ̂
)′
+g j−i

(
θ̂
)

g j
(
θ̂
)′) . (2.62)

This estimator is always zero since Σ̂DEP = n−1 (∑n
i=1 gi

)(∑n
i=1 gi

)′and
∑n

i=1 gi = 0, and so Σ̂DEP

cannot be used in practice.21 One solution is to truncate the maximum lag to be something less than
20Since i.i.d. implies no correlation, the i.i.d.case is trivially covered.
21The scalar version of Σ̂DEP may be easier to understand. If gi is a scalar, then

σ̂
2
DEP = n−1

 n∑
i=1

g2
i
(
θ̂
)
+2

n−1∑
i=1

 n∑
j=i+1

g j
(
θ̂
)

g j−i
(
θ̂
) .

The first term is the usual variance estimator and the second term is the sum of the (n− 1) covariance estimators. The
more complicated expression in eq. (2.62) arises since order matters when multiplying vectors.
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n−1 (usually much less than n−1), although the truncated estimator is not guaranteed to be positive
definite. A better solution is to combine truncation with a weighting function (known as a kernel )
to construct an estimator that consistently estimates the covariance and is guaranteed to be positive
definite. The most common covariance estimator of this type is the Newey and West (1987) covariance
estimator. Covariance estimators for dependent data are examined in more detail in chapters 4 and 5.

2.5 Hypothesis Testing

Econometrics models are estimated to test hypotheses, for example, whether a financial theory is sup-
ported by data or to determine if a model with estimated parameters can outperform a naïveforecast.
Formal hypothesis testing begins by specifying the null hypothesis.

Definition 2.14 (Null Hypothesis). The null hypothesis, denoted H0, is a statement about the popu-
lation values of some parameters to be tested. The null hypothesis is also known as the maintained
hypothesis.

The null defines the conditions on the population parameters that are tested. A null can be either
simple, for example, H0 : µ = 0, or complicated, which allows for simultaneously testing multiple hy-
potheses. For example, it is common to test whether data exhibit any predictability using a regression
model

yi = θ1 +θ2x2,i +θ3x3,i + εi, (2.63)

and a composite null, H0 : θ2 = 0∩θ3 = 0, often abbreviated H0 : θ2 = θ3 = 0.22

Null hypotheses cannot be accepted; the data can either lead to rejection of the null or a failure to
reject the null. Neither option is “accepting the null”. The inability to accept the null arises since there
are important cases where the data are not consistent with either the null or its testing complement,
the alternative hypothesis.

Definition 2.15 (Alternative Hypothesis). The alternative hypothesis, denoted H1, is a complementary
hypothesis to the null and determines the range of values of the population parameter that should lead
to rejection of the null.

The alternative hypothesis specifies the population values of parameters for which the null should be
rejected. In most situations, the alternative is the natural complement to the null, and so the null and
alternative are exclusive of each other but inclusive of the range of the population parameter. For
example, when testing whether a random variable has mean 0, the null is H0 : µ = 0, and the usual
alternative is H1 : µ 6= 0.

In certain circumstances, usually motivated by theoretical considerations, one-sided alternatives
are desirable. One-sided alternatives only reject population parameter values on one side of zero,
and so tests using one-sided alternatives may not reject even if both the null and alternative are false.
Noting that a risk premium must be positive (if it exists), the null hypothesis of H0 : µ = 0 should be
tested against the alternative H1 : µ > 0. This alternative indicates the null should only be rejected
if there is compelling evidence that the mean is positive. These hypotheses further specify that data

22∩, the intersection operator, is used since the null requires both statements to be true.
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consistent with large negative values of µ should not lead to rejection. Directionally focusing the al-
ternative often leads to an increased probability of rejecting a false null since less evidence is required
to be convinced that the null is not valid.

Like null hypotheses, alternatives can be composite. The usual alternative to the null H0 : θ2 =
0∩θ3 = 0 is H1 : θ2 6= 0∪θ3 6= 0 and so the null should be rejected whenever any of the statements in
the null are false in other words if either or both θ2 6= 0 or θ3 6= 0. Alternatives can also be formulated
as lists of exclusive outcomes.23 When examining the relative precision of forecasting models, it
is common to test the null that the forecast performance is equal against a composite alternative.
The alternative contains separate cases superior forecasting from model A or from model B. If δ is
defined as the average forecast performance difference, then the null is H0 : δ = 0 and the composite
alternatives are HA

1 : δ > 0 and HB
1 : δ < 0. These alternatives indicate superior performance of models

A and B, respectively.
Once the null and the alternative have been formulated, a hypothesis test is used to determine

whether the data support the alternative.

Definition 2.16 (Hypothesis Test). A hypothesis test is a rule that specifies which values to reject H0
in favor of H1.

Hypothesis testing requires a test statistic, for example, an appropriately standardized mean, and
a critical value. The null is rejected when the test statistic is larger than the critical value.

Definition 2.17 (Critical Value). The critical value for a α-sized test, denoted Cα , is the value where
a test statistic, T , indicates rejection of the null hypothesis when the null is true.

The region where the test statistic is outside of the critical value is known as the rejection region.

Definition 2.18 (Rejection Region). The rejection region is the region where T >Cα .

An important event occurs when the null is correct but the hypothesis is rejected. This is known
as a Type I error.

Definition 2.19 (Type I Error). A Type I error is the event that the null is rejected when the null is
true.

A closely related concept is the size of the test. The size controls how often Type I errors should
occur.

Definition 2.20 (Size). The size or level of a test, denoted α , is the probability of rejecting the null
when the null is true. The size is also the probability of a Type I error.

Typical sizes include 1%, 5%, and 10%, although ideally, the selected size should reflect the decision
makers preferences over incorrectly rejecting the null. When the opposite occurs, the null is not
rejected when the alternative is true, a Type II error is made.

Definition 2.21 (Type II Error). A Type II error is the event that the null is not rejected when the
alternative is true.

Type II errors are closely related to the power of a test.

Definition 2.22 (Power). The power of the test is the probability of rejecting the null when the alter-
native is true. The power is equivalently defined as 1 minus the probability of a Type II error.
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Decision
Do not reject H0 Reject H0

Tr
ut

h

H0 Correct Type I Error
(Size)

H1 Type II Error Correct
(Power)

Table 2.2: Outcome matrix for a hypothesis test. The diagonal elements are both correct decisions.
The off diagonal elements represent Type I error, when the null is rejected but is valid, and Type II
error, when the null is not rejected and the alternative is true.

The two error types, size, and power, are summarized in table 2.2.
A perfect test would have unit power against any alternative. In other words, whenever the alterna-

tive is valid, it would reject immediately. A test’s power depends on the sample size and the distance
between the population value of a parameter and its value under the null. A test is said to be consistent
if the test’s power goes to 1 as n→∞ whenever the population value lies in the area defined by the
alternative hypothesis. Consistency is an essential characteristic of a test, but it is usually considered
more important to have the correct size than to have high power. Power can always be increased by
distorting the size, and so it is more useful to consider a related measure known as the size-adjusted
power. The size-adjusted power examines the power of a test above the size of the test. Since a test
should reject at size even when the null is true, it is useful to examine the probability the test rejects
in excess of the probability it should reject when the null is true.

One useful summary of a test statistic is its p-value.

Definition 2.23 (p-value). The p-value is the probability of observing a value as large as the observed
test statistic given the null is true. The p-value is also:

• the largest size (α) where the null hypothesis cannot be rejected; and

• the smallest size where the null hypothesis can be rejected.

The primary advantage of a p-value is that it immediately demonstrates which test sizes would lead
to rejection: anything above the p-value. Reporting a p-value also improves the common practice of
reporting the test statistic alone; p-values can be interpreted without knowledge of the test statistic’s
distribution or critical value. However, since it incorporates information about a specific test statistic
and its associated distribution, the formula used to compute the p-value is problem specific.
A related representation is the confidence interval for a parameter.

Definition 2.24 (Confidence Interval). A confidence interval for a scalar parameter is the range of
values, θ0 ∈ (Cα ,Cα) where the null H0 : θ = θ0 cannot be rejected for a size of α .

The formal definition of a confidence interval is not usually sufficient to uniquely identify the con-
fidence interval. Suppose that a

√
n(θ̂ − θ0)

d→ N(0,σ2). The common 95% confidence interval is

23The ∪ symbol indicates the union of the two alternatives.
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(θ̂ − 1.96σ , θ̂ +1.96σ). This set is known as the symmetric confidence interval and is formally de-
fined as points (Cα ,Cα) where Pr(θ0)∈ (Cα ,Cα) = 1−α and Cα−θ = θ−Cα) . An alternative, but
still valid, confidence interval can be defined as (−∞, θ̂ +1.645σ2). This would also contain the true
value with probability 95%. In general, symmetric confidence intervals should be used, especially
for asymptotically normal parameter estimates. In rare cases where symmetric confidence intervals
are not appropriate, other options for defining a confidence interval include shortest interval, so that
the confidence interval is defined as values (Cα ,Cα) where Pr(θ0) ∈ (Cα ,Cα) = 1−α subject to
Cα−Cα chosen to be as small as possible, or symmetric in probability, so that the confidence interval
satisfies Pr(θ0) ∈ (Cα , θ̂) = Pr(θ0) ∈ (θ̂ ,Cα) = 1/2−α/2. When constructing confidence internals
for parameters that are asymptotically normal, these three definitions coincide.

2.5.1 Size and Power of a Test of the Mean with Normal Data

Suppose n i.i.d.normal random variables have unknown mean µ but known variance σ2 and so the
sample mean, ȳ = n−1∑n

i=1 yi, is then distributed N(µ,σ2/N). When testing a null that H0 : µ = µ0
against an alternative H1 : µ 6= µ0, the size of the test is the probability that the null is rejected
when it is true. Since the distribution under the null is N(µ0,σ

2/N) and the size can be set to α

by selecting points where Pr
(
µ̂ ∈

(
Cα ,Cα

)
|µ = µ0

)
= 1−α . Since the distribution is normal, one

natural choice is to select the points symmetrically so that Cα = µ0 +
σ√
N

Φ−1 (α/2) and Cα = µ0 +
σ√
N

Φ−1 (1−α/2) where Φ(·) is the cdf of a standard normal.
The power of the test is defined as the probability the null is rejected when the alternative is

true. This probability depends on the population mean, µ1, the sample size, the test size and mean
specified by the null hypothesis. When testing using an α-sized test, rejection occurs when µ̂ <
µ0+

σ√
N

Φ−1 (α/2) or µ̂ > µ0+
σ√
N

Φ−1 (1−α/2). Since under the alternative µ̂ is N
(
µ1,σ

2), these
probabilities are

Φ

(
µ0 +

σ√
N

Φ−1 (α/2)−µ1
σ√
N

)
= Φ

(
Cα −µ1

σ√
N

)
and

1−Φ

(
µ0 +

σ√
N

Φ−1 (1−α/2)−µ1
σ√
N

)
= 1−Φ

(
Cα −µ1

σ√
N

)
.

The total probability that the null is rejected is known as the power function,

Power(µ0,µ1,σ ,α,N) = Φ

(
Cα −µ1

σ√
N

)
+1−Φ

(
Cα −µ1

σ√
N

)
.

A graphical illustration of the power is presented in figure 2.5. The null hypothesis is H0 : µ = 0
and the alternative distribution was drawn at µ1 = .25. The variance σ2 = 1, n = 5, and the size was
set to 5%. The highlighted regions indicate the power: the area under the alternative distribution, and
hence the probability, which is outside of the critical values. The bottom panel illustrates the power
curve for the same parameters allowing n to range from 5 to 1,000. When n is small, the power is low
even for alternatives far from the null. As n grows, the power increases. When n = 1,000, the power
of the test is close to unity for alternatives greater than 0.1.
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Figure 2.5: The top panel illustrates the power. The distribution of the mean under the null and
alternative hypotheses were derived under that assumption that the data are i.i.d.normal with means
µ0 = 0 and µ1 = .25, variance σ2 = 1, n = 5 and α = .05. The bottom panel illustrates the power
function, in terms of the alternative mean, for the same parameters when n = 5, 10, 100 and 1,000.

2.5.2 Statistical and Economic Significance

While testing can reject hypotheses and provide meaningful p-values, statistical significance is differ-
ent from economic significance. Economic significance requires a more detailed look at the data than
a simple hypothesis test. Establishing the statistical significance of a parameter is the first and easy
step. The more difficult step is to determine whether the effect is economically important. Consider a
simple regression model

yi = θ1 +θ2x2,i +θ3x3,i + εi (2.64)

and suppose that the estimates of both θ2 and θ3 are statistically different from zero. This can happen
for various reasons, including having an economically small impact accompanied by a substantial
sample. Other statistics, such as the percentage of the variation that can be explained by either variable
alone or the variability of the X values, should be considered when assessing relative contributions.

Another critical aspect of assessing economic significance is that rejection of a hypothesis, while
formally as a “yes” or “no” question, should be treated more continuously. The p-value of a test
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statistic is a useful tool that can provide a more in-depth insight into the strength of the rejection. A
p-value of .00001 is not the same as a p-value of .09999 even though a 10% test would reject for
either.

2.5.3 Specifying Hypotheses

Formalized in terms of θ , a null hypothesis is

H0 : R(θ) = 0 (2.65)

where R(·) is a function from Rk to Rm, m ≤ k, where m represents the number of hypotheses in a
composite null. While this specification of hypotheses is very flexible, testing non-linear hypothe-
ses raises some subtle but important technicalities, and further discussion is reserved for chapter 6.
Initially, the exposition focuses on a subset of all hypotheses in the linear equality restriction (LER)
class. Hypotheses in the LER class

H0 : Rθ − r = 0 (2.66)

where R is a m by k matrix and r is a m by 1 vector. All hypotheses in the LER class can be written
as weighted sums of model parameters,


R11θ1 +R12θ2 . . .+R1kθk = r1
R21θ1 +R22θ2 . . .+R2kθk = r2

...
Rm1θ1 +Rm2θ2 . . .+Rmkθk = ri.

 (2.67)

Each linear hypothesis is represented as a row in the above set of equations. Linear equality con-
straints can be used to test parameter restrictions on θ = (θ1,θ2,θ3,θ4)

′ such as

θ1 = 0 (2.68)
3θ2 +θ3 = 1

4∑
j=1

θ j = 0

θ1 = θ2 = θ3 = 0.

For example, the hypotheses in eq. (2.68) can be described in terms of R and r as
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[1pt]H0 R r

θ1 = 0
[

1 0 0 0
]

0

3θ2 +θ3 = 1
[

0 3 1 0
]

1∑k
j=1 θ j = 0

[
1 1 1 1

]
0

θ1 = θ2 = θ3 = 0

 1 0 0 0
0 1 0 0
0 0 1 0

 [
0 0 0

]′
[1pt]

When using linear equality constraints, alternatives are generally formulated as H1 : Rθ − r 6=
0. Once both the null the alternative hypotheses have been postulated, it is necessary to determine
whether the data are consistent with the null hypothesis using one of the many tests.

2.5.4 The Classical Tests

Three classes of test statistics are commonly used to test hypotheses: Wald, Lagrange Multiplier,
and Likelihood Ratio. Wald tests are perhaps the most intuitive: they directly test whether Rθ̂ − r,
the value under the null, is close to zero by exploiting the asymptotic normality of the estimated
parameters. Lagrange Multiplier tests incorporate the constraint into the estimation problem using
a Lagrangian. If the constraint has a small effect on the objective function’s value, the Lagrange
multipliers, often described as the shadow price of a constraint in an economic application, should
be close to zero. The magnitude of the scores forms the basis of the LM test statistic. Finally,
likelihood ratios test whether the data are less likely under the null than under the alternative. If these
restrictions are not statistically meaningful, this ratio should be close to one since the difference in
the log-likelihoods should be small.

2.5.5 Wald Tests

Wald test statistics are possibly the most natural method to test a hypothesis and are often the sim-
plest to compute since only the unrestricted model must be estimated. Wald tests directly exploit the
asymptotic normality of the estimated parameters to form test statistics with asymptotic χ2

m distribu-
tions. Recall that a χ2

ν random variable is defined to be the sum of ν independent standard normals
squared,

∑ν

i=1 z2
i where zi

i.i.d.∼ N(0,1). Recall that if z is a m-dimension normal vector with mean µ

and covariance Σ,

z∼ N(µ,Σ) (2.69)

then the standardized version of z can be constructed as

Σ
− 1

2 (z−µ)∼ N(0,I). (2.70)
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Defining w = Σ
− 1

2 (z− µ) ∼ N (0,I), it is easy to see that w′w =
∑M

m=1 w2
m ∼ χ2

m. In the usual
case, the method of moments estimator, which nests ML and QML estimators as special cases, is
asymptotically normal

√
n
(
θ̂ −θ 0

) d→ N
(

0,G−1
Σ
(
G−1)′) . (2.71)

If null hypothesis, H0 : Rθ = r is true, it follows directly that

√
n
(
Rθ̂ − r

) d→ N
(

0,RG−1
Σ
(
G−1)′R′) . (2.72)

This allows a test statistic to be formed

W = n
(
Rθ̂ − r

)′(RG−1
Σ
(
G−1)′R′)−1 (

Rθ̂ − r
)

(2.73)

which is the sum of the squares of m random variables, each asymptotically uncorrelated standard
normal and so W is asymptotically χ2

m distributed. A hypothesis test with size α can be conducted
by comparing W against Cα = F−1 (1−α) where F (·) is the cdf of a χ2

m. If W ≥Cα then the null is
rejected.

There is one problem with the definition of W in eq. (2.73): it is infeasible since it depends on G
and Σ which are unknown. The usual practice is to replace the unknown elements of the covariance
matrix with consistent estimates to compute a feasible Wald statistic,

W = n
(
Rθ̂ − r

)′(RĜ−1
Σ̂
(
Ĝ−1)′R′)−1 (

Rθ̂ − r
)
. (2.74)

which has the same asymptotic distribution as the infeasible Wald test statistic.

2.5.5.1 t-tests

A t-test is a special case of a Wald that can only be applied in tests involving a single hypothesis.
Suppose the null is

H0 : Rθ − r = 0

where R is 1 by k, and so

√
n
(
Rθ̂ − r

) d→ N(0,RG−1
Σ
(
G−1)′R′).

The studentized version can be formed by subtracting the mean and dividing by the standard devia-
tion,

t =
√

n
(
Rθ̂ − r

)√
RG−1Σ(G−1)

′R′
d→ N(0,1). (2.75)

and the test statistic can be compared to the critical values from a standard normal to conduct a
hypothesis test. t-tests have an important advantage over the broader class of Wald tests – they can
be used to test one-sided null hypotheses. A one-sided hypothesis takes the form H0 : Rθ ≥ r or H0 :
Rθ ≤ r which are contrasted with one-sided alternatives of H1 : Rθ < r or H1 : Rθ > r, respectively.
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When using a one-sided test, rejection occurs when R− r is statistically different from zero and when
Rθ < r or Rθ > r as specified by the alternative.

t-tests are also used in commonly encountered test statistic, the t-stat, a test of the null that a
parameter is 0 against an alternative that it is not. The t-stat is popular because most models are
written in such a way that if a parameter θ = 0 then it has no impact.

Definition 2.25 (t-stat). The t-stat of a parameter θ j is the t-test value of the null H0 : θ j = 0 against
a two-sided alternative H1 : θ j 6= 0.

t-stat≡ θ̂ j

σ
θ̂

(2.76)

where

σ
θ̂
=

√
e jG−1Σ(G−1)

′ e′j
n

(2.77)

and where e j is a vector of 0s with 1 in the jth position.
Note that the t-stat is identical to the expression in eq. (2.75) when R = e j and r = 0. R = e j
corresponds to a hypothesis test involving only element j of θ and r = 0 indicates that the null is
θ j = 0.

A closely related measure is the standard error of a parameter. Standard errors are essentially
standard deviations – square-roots of variance – except that the expression “standard error” is ap-
plied when describing the estimation error of a parameter while “standard deviation” is used when
describing the variation in the data or population.

Definition 2.26 (Standard Error). The standard error of a parameter θ is the square root of the param-
eter’s variance,

s.e.
(
θ̂
)
=
√

σ2
θ̂

(2.78)

where

σ
2
θ̂
=

e jG−1Σ
(
G−1)′ e′j

n
(2.79)

and where e j is a vector of 0s with 1 in the jth position.

2.5.6 Likelihood Ratio Tests

Likelihood ratio tests examine how “likely” the data are under the null and the alternative. If the
hypothesis is valid, then the data should be (approximately) equally likely under each. The LR test
statistic is defined as

LR =−2
(
l
(
θ̃ ;y
)
− l
(
θ̂ ;y
))

(2.80)

where θ̃ is defined

θ̃ =argmax
θ

l(θ ;y) (2.81)

subject to Rθ − r = 0
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and θ̂ is the unconstrained estimator,

θ̂ =argmax
θ

l(θ ;y). (2.82)

Under the null H0 : Rθ − r = 0, the LR d→ χ2
m. The intuition behind the asymptotic distribution of the

LR can be seen in a second order Taylor expansion around parameters estimated under the null, θ̃ .

l(y; θ̃) = l(y; θ̂)+
(
θ̃ − θ̂

)′ ∂ l(y; θ̂)

∂θ
+

1
2
√

n
(
θ̃ − θ̂

)′ 1
n

∂ 2l(y; θ̂)

∂θ∂θ
′
√

n
(
θ̃ − θ̂

)
+R3 (2.83)

where R3 is a remainder term that is vanishing as n→∞. Since θ̂ is an unconstrained estimator of
θ 0,

∂ l(y; θ̂)

∂θ
= 0

and

−2
(
l(y; θ̃)− l(y; θ̂)

)
≈√n

(
θ̃ − θ̂

)′(−1
n

∂ 2l(y; θ̂)

∂θ∂θ
′

)
√

n
(
θ̃ − θ̂

)
(2.84)

Under some mild regularity conditions, when the MLE is correctly specified

−1
n

∂ 2l(y; θ̂)

∂θ∂θ
′

p→−E
[

∂ 2l(y;θ 0)

∂θ∂θ
′

]
= I,

and

√
n
(
θ̃ − θ̂

) d→ N(0,I−1).

Thus,

√
n
(
θ̃ − θ̂

)′ 1
n

∂ 2l(y; θ̂)

∂θ∂θ
′
√

n
(
θ̂ − θ̂

) d→ χ
2
m (2.85)

and so 2
(
l(y; θ̂)− l(y; θ̂)

) d→ χ2
m. The only difficultly remaining is that the distribution of this

quadratic form is a χ2
m an not a χ2

k since k is the dimension of the parameter vector. While for-
mally establishing this is tedious, the intuition follows from the number of restrictions. If θ̃ were
unrestricted then it must be the case that θ̃ = θ̂ since θ̂ is defined as the unrestricted estimators. Ap-
plying a single restriction leave k−1 free parameters in θ̃ and thus it should be close to θ̂ except for
this one restriction.

When models are correctly specified LR tests are very powerful against point alternatives (e.g.,
H0 : θ = θ 0 against H1 : θ = θ 1). Another important advantage of the LR is that the parameters’
covariance does not need to be estimated. In many problems, accurate parameter covariances may
be difficult to estimate, and imprecise covariance estimators produce adverse consequences for test
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statistics, such as size distortions so that a test with a desired size of 5% reject substantially more
often than 5% when the null is true.

It is also important to note that the likelihood ratio does not have an asymptotic χ2
m when the

assumed likelihood f (y;θ) is misspecified. When this occurs, the information matrix equality fails
to hold, and the LR’s asymptotic distribution is a mixture of χ2 distribution. In practice, the assumed
error distribution is often misspecified, and so the distributional assumptions used to estimate θ must
be verified before using a likelihood ratio test.

Likelihood ratio tests are not available for method of moments estimators since no distribution
function is assumed.24

2.5.7 Lagrange Multiplier, Score and Rao Tests

Lagrange Multiplier (LM), Score, and Rao test are all the same statistic. While the Lagrange Multi-
plier test may be the most appropriate description, its alternative moniker score test directly illustrates
the test’s construction. Score tests exploit the first-order condition to test whether a null hypothesis is
compatible with the data. Using the unconstrained estimator of θ , θ̂ , the scores must be zero,

∂ l (θ ;y)
∂θ

∣∣∣∣
θ=θ̂

= 0. (2.86)

The score test examines whether the scores are “close” to zero – in a statistically meaningful way
– when evaluated using the parameters estimated subject to the null restriction, θ̃ . Define

si
(
θ̃
)
=

∂ li (θ ;yi)

∂θ

∣∣∣∣
θ=θ̃

(2.87)

as the ith score, evaluated at the restricted estimator. If the null hypothesis is correct, then

√
n

(
n−1

n∑
i=1

si
(
θ̃
)) d→ N (0,Σ) . (2.88)

24It is possible to construct a likelihood ratio-type statistic for method of moments estimators. Define

gn (θ) = n−1
n∑

i=1

gi (θ)

to be the average moment conditions evaluated at a parameter θ . The likelihood ratio-type statistic for method of moments
estimators is defined as

LM = ng′n
(
θ̃
)

Σ̂
−1gn

(
θ̃
)
−ng′n

(
θ̂
)

Σ̂
−1gn

(
θ̂
)

= ng′n
(
θ̃
)

Σ̂
−1gn

(
θ̃
)

where the simplification is possible since gn
(
θ̂
)
= 0 and where

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

gi
(
θ̂
)′

is the sample covariance of the moment conditions evaluated at the unrestricted parameter estimates. This test statistic
only differs from the LM test statistic in eq. (2.90) via the choice of the covariance estimator, and it should be similar in
performance to the adjusted LM test statistic in eq. (2.92).
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This limiting distribution forms the basis of the score test, which is computed as

LM = ns̄
(
θ̃
)′

Σ
−1s̄
(
θ̃
)

(2.89)

where s̄
(
θ̃
)
= n−1∑n

i=1 si
(
θ̃
)
. While this version is not feasible since it depends on Σ, the standard

practice is to replace Σ with a consistent estimator and to compute the feasible score test,

LM = ns̄
(
θ̃
)′

Σ̂
−1s̄
(
θ̃
)

(2.90)

where the estimator of Σ depends on the assumptions made about the scores. In the case where the
scores are i.i.d. (usually because the data are i.i.d.),

Σ̂ = n−1
n∑

i=1

si
(
θ̃
)

si
(
θ̃
)′

(2.91)

is a consistent estimator since E
[
si
(
θ̃
)]

= 0 if the null is true. In practice, a more powerful version
of the LM test can be formed by subtracting the mean from the covariance estimator and using

Σ̃ = n−1
n∑

i=1

(
si
(
θ̃
)
− s̄
(
θ̃
))(

si
(
θ̃
)
− s̄
(
θ̃
))′

(2.92)

which must be smaller (in the matrix sense) than Σ̂, although asymptotically, if the null is true, these
two estimators converges to the same limit. Like the Wald and the LR, the LM follows an asymptotic
χ2

m distribution, and an LM test statistic is rejected if LM > Cα where Cα is the 1−α quantile of a
χ2

m distribution.
Scores test can be used with method of moments estimators by simply replacing the score of the

likelihood with the moment conditions evaluated at the restricted parameter,

si
(
θ̃
)
= gi

(
θ̃
)
,

and then evaluating eq. (2.90) or (2.92).

2.5.8 Comparing and Choosing the Tests

All three of the classic tests, the Wald, likelihood ratio, and Lagrange multiplier, have the same
limiting asymptotic distribution. In addition to all being asymptotically distributed as a χ2

m, they are
all asymptotically equivalent, and so they all have an identical asymptotic distribution, and if one test
rejects, the others also reject, at least in large samples. As a result, there is no asymptotic argument
that one should be favored over the other.

The simplest justifications for choosing one over the others are practical considerations. Wald
requires estimation under the alternative – the unrestricted model – and require an estimate of the
asymptotic covariance of the parameters. LM tests require estimation under the null – the restricted
model – and require an estimate of the asymptotic covariance of the scores evaluated at the restricted
parameters. LR tests require both forms to be estimated but do not require any covariance estimates.
On the other hand, Wald and LM tests can easily be made robust to many forms of misspecifica-
tion by using the “sandwich” covariance estimator, G−1Σ

(
G−1)′ for moment-based estimators or
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I−1J I−1 for QML estimators. LR tests cannot be easily corrected and instead follow a non-standard
distribution known as a mixture of χ2.

Models that are substantially easier to estimate under the null or alternative lead to a natural choice
of test statistic. An LM test is a good choice when a model is easy to estimate in its restricted form
but not in its unrestricted form. If estimation under the alternative is simpler than under the null, then
Wald tests are reasonable. If they are equally simple to estimate, and the distributional assumptions
used in ML estimation are plausible, LR tests are likely the best choice. Empirically a relationship
exists where W ≈ LR ≥ LM. LM is often smaller and hence less likely to reject the null since it
estimates the covariance of the scores under the null. When the null may be restrictive, the scores
have larger variances when evaluated using the restricted parameters. The larger variances lower the
value of LM since the score covariance is inverted in the statistic. A simple method to correct this is
to use the adjusted LM computed using the modified covariance estimator in eq. (2.92).

2.6 The Bootstrap and Monte Carlo

The bootstrap is an alternative technique for estimating parameter covariances and conducting infer-
ence. The name bootstrap is derived from the expression “to pick oneself up by one’s bootstraps”
– a seemingly impossible task. When initially proposed, the bootstrap was treated as an equally
impossible feat, although it is now widely used. In some estimators, the bootstrap also is the pre-
ferred method for covariance estimation. At its core, the bootstrap is a simulation technique and so
is similar to Monte Carlo. However, unlike Monte Carlo, which requires a complete data-generating
process, the bootstrap uses the observed data to simulate the data – hence the similarity to the original
turn-of-phrase.

Monte Carlo is an integration technique that uses simulation to approximate the underlying dis-
tribution of a known function of random variables. Suppose Yi

i.i.d.∼ F (θ) where F is some distribution,
and that interest is in the E [g(Y )]. Further suppose it is possible to simulate from F (θ) so that a
sample {yi} can be constructed. Then

n−1
n∑

i=1

g(Yi)
p→ E [g(Y )]

as long as this expectation exists since the simulated data are i.i.d.by construction. The convergence
of the Monte Carlo expectation to the population value follows from Kolmogorov’s Strong Law of
Large numbers.

The observed data can be used to compute the empirical cdf.

Definition 2.27 (Empirical cdf). The empirical cdf is defined

F̂ (c) = n−1
n∑

i=1

I[yi<c].

The empirical cdf can be used to simulate random variables, and if F̂ is close to F then the
simulated data from the empirical cdf should have similar statistical properties (e.g., moments and
quantiles) to data simulated from the population cdf. The empirical cdf is a coarse step function, and
so only values which have been observed can be simulated. Simulating from the empirical cdf of
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Standard Normal cdf and Empirical cdfs for n = 20 and 1,000
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Figure 2.6: These three lines represent the population cdf of a standard normal, and two empirical
cdfs constructed form simulated data. The very coarse empirical cdf is based on 20 observations and
clearly highlights the step-nature of empirical cdfs. The other empirical cdf, which is based on 1,000
observations, appear smoother but is still a step function.

the data is identical to resampling the original data, and so the observed data can be directly used to
simulate the from the underlying (unknown) cdf. The relationship between the emprical cdf and the
population cdf is the basis of the bootstrap.

Figure 2.6 shows the population cdf for a standard normal and two empirical cdfs, one estimated
using n = 20 observations and the other using n = 1,000. The coarse empirical cdf highlights the
step-like features of an empirical cdf. This structure restricts the random numbers generated from the
empirical cdf to coincide with the values used to compute the empirical cdf.

The bootstrap can be used for a variety of purposes. The most common application of the bootstrap
is to estimate parameter covariance matrices. This procedure is an alternative to the usual plug-in type
estimator and is simple to implement when the parameter estimator has a closed form.

Algorithm 2.1 (i.i.d.Nonparametric Bootstrap Covariance).

1. Repeat a total of B times.

(a) Generate a set of n i.i.d.uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

y ji
}

.

(c) Estimate the parameters of interest using
{

y ji
}

, and denote the estimate θ̃ b.

2. Estimate the variance of θ̂ using

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ j− θ̂

)(
θ̃ j− θ̂

)′
.

or alternatively

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ j− θ̃

)(
θ̃ j− θ̃

)′
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where θ̃ = B−1∑B
b=1 θ̃ b.

The variance estimator that comes from the bootstrap is directly compared comparable to the
asymptotic covariance estimator. The bootstrap covariance is converging to 0 as the sample size
increases since the resampled data is more like the original data when n is large. If

√
n
(
θ̂ −θ 0

) d→ N (0,Σ) ,

then the bootstrap covariance estimator is comparable to Σ̂/n. Or equivalently, rescaling the bootstrap
covariance estimate by

√
n should produce an estimate similar to Σ̂. Note that when using a condi-

tional model, the data [yi x′i]′ should be jointly bootstrapped. Aside from this small modification to
step 2, the remainder of the procedure remains valid.

The nonparametric bootstrap is closely related to the residual bootstrap, at least when it is possible
to appropriately define a residual. For example, when Yi|Xi∼N

(
β
′xi,σ

2), the residual can be defined

ε̂i = yi− β̂
′
xi. Alternatively if Yi|Xi ∼ Scaled− χ2

ν

(
exp
(
β
′xi
))

, then ε̂i = yi/

√
β̂
′
x . The residual

bootstrap can be used whenever it is possible to express yi = g(θ ,εi,xi) for some known function g.

Algorithm 2.2 (i.i.d.Residual Bootstrap Covariance).

1. Repeat a total of B times.

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

ε̂ ji,x ji
}

and define ỹi = g
(
θ̂ , ε̃i, x̃i

)
where ε̃i = ε̂ ji and

x̃i = x ji .
25

(c) Estimate the parameters of interest using {ỹi, x̃i}, and denote the estimate θ̃ b.

2. Estimate the variance of θ̂ using

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

or alternatively

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̃

)(
θ̃ b− θ̃

)′
.

It is important to emphasize that the bootstrap is not, generally, a better estimator of parameter
covariance than standard plug-in estimators.26 Asymptotically both are consistent and can be used
equivalently to perform hypothesis tests or construct confidence intervals. Additionally, i.i.d.bootstraps
can only be applied to (conditionally) i.i.d.data. When data have dependence it is necessary to use
an alternative bootstrap scheme. Using an inappropriate bootstrap that doesn’t capture important
dependence in the data produces an inconsistent covariance estimator.

25In some models, it is possible to use independent indices on ε̂ and x, such as in a linear regression when the data are
conditionally homoskedastic (See chapter 3). In general it is not possible to explicitly break the link between εi and xi,
and so these should usually be resampled using the same indices.

26There are some problem-dependent bootstraps that are more accurate than plug-in estimators in an asymptotic sense.
These are rarely encountered in financial economic applications.
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When the interest lies in confidence intervals, an alternative procedure that directly uses the em-
pirical quantiles of the bootstrap parameter estimates can be constructed (known as the percentile
method).

Algorithm 2.3 (i.i.d.Nonparametric Bootstrap Confidence Interval).

1. Repeat a total of B times:

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

y ji
}

.

(c) Estimate the parameters of interest using
{

y ji
}

, and denote the estimate θ̃ b.

2. Estimate the 1−α confidence interval of θ̂k using[
qα/2

({
θ̃k
})

,q1−α/2
({

θ̃k
})]

where qα

({
θ̃k
})

is the empirical α quantile of the bootstrap estimates. 1-sided lower confi-
dence intervals can be constructed as[

R(θk),q1−α

({
θ̃k
})]

and 1-sided upper confidence intervals can be constructed as

[
qα

({
θ̃k
})

,R(θk)
]

where R(θk) and R(θk) are the lower and upper extremes of the range of θk (possibly ±∞).

The percentile method can also be used directly to compute p-values of test statistics. This requires
enforcing the null hypothesis on the data and so is somewhat more involved. For example, suppose
the null hypothesis is E [Yi] = 0. This can be enforced by replacing the original data with Ỹi = Yi− Ȳ
in step 2 of the algorithm.

Algorithm 2.4 (i.i.d.Nonparametric Bootstrap p-value).

1. Repeat a total of B times.

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample using data where the null hypothesis is true,
{

ỹ ji
}

.

(c) Compute the test statistic of interest using
{

ỹ ji
}

, and denote the statistic T
(
θ̃ b
)
.

2. Compute the bootstrap p-value using

P̂− val = B−1
B∑

b=1

I[T(θ̂)≤T(θ̃ b)]

for 1-sided tests where the rejection region is for large values (e.g., a Wald test). When using
2-sided tests, compute the bootstrap p-value using

P̂− val = B−1
B∑

b=1

I[|T(θ̂)|≤|T(θ̃ b)|]
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The test statistic may depend on a covariance matrix. When this is the case, the covariance matrix
is usually estimated from the bootstrapped data using a plug-in method. Alternatively, it is possible
to use any other consistent estimator (when the null is true) of the asymptotic covariance, such as one
based on an initial (separate) bootstrap.

When models are maximum likelihood based, so that a complete model for the data is specified, it
is possible to use a parametric form of the bootstrap to estimate covariance matrices. This procedure
is virtually identical to standard Monte Carlo except that the initial estimate θ̂ based on the observed
data is used in the simulation.

Algorithm 2.5 (i.i.d.Parametric Bootstrap Covariance (Monte Carlo)).

1. Repeat a total of B times:

(a) Simulate a set of n i.i.d.draws {ỹi} from F
(
θ̂
)
.

(b) Estimate the parameters of interest using {ỹi}, and denote the estimates θ̃ b.

2. Estimate the variance of θ̂ using

V
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

or alternatively

V
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̃

)(
θ̃ b− θ̃

)′
.

When models use conditional maximum likelihood, it is possible to use parametric bootstrap as
part of a two-step procedure. First, apply a nonparametric bootstrap to the conditioning data{xi}, and
then, using the bootstrapped conditioning data, simulate Yi ∼ F

(
θ̂ |X̃i

)
. This is closely related to the

residual bootstrap, only the assumed parametric distribution F is used in place of the data-derived
residuals.

2.7 Inference on Financial Data

Inference is covered in greater detail in conjunction with specific estimators and models, such as
linear regression or ARCH models. These examples examine simple hypotheses to illustrate the steps
needed to test a hypothesis.

2.7.1 Testing the Market Premium

Testing the market premium is a cottage industry. While current research is more interested in pre-
dicting the market premium, testing whether the market premium is significantly different from zero
is a natural application of the tools introduced in this chapter. Let λ denote the market premium and
let σ2 be the variance of the return. Since the market is a traded asset, it must be the case that the
premium for holding market risk is the same as the mean of the market return. Monthly data for the
Value Weighted Market (V W M) and the risk-free rate (R f ) was available between January 1927 and
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October 2020. Data for the V W M was drawn from CRSP, and data for the risk-free rate was available
from Ken French’s data library. Excess returns on the market are defined as the return to holding the
market minus the risk-free rate, V W Me

i =V W Mi−R fi. The excess returns and a kernel density plot
are presented in figure 2.7. Excess returns are both negatively skewed and heavy-tailed – October
1987 is 5 standard deviations from the mean.

The mean and variance can be computed using the method of moments as detailed in section 2.1.4,
and the covariance of the mean and the variance can be computed using the estimators described in
section 2.4.1. The estimates were calculated according to

[
λ̂

σ̂2

]
=

[
n−1∑n

i=1V W Me
i

n−1∑n
i=1

(
V W Me

i − λ̂

)2

]

and, defining ε̂i =VWMe
i − λ̂ , the covariance of the moment conditions was estimated by

Σ̂ = n−1

[ ∑n
i=1 ε̂2

i
∑n

i=1 ε̂i
(
ε̂2

i − σ̂2)∑n
i=1 ε̂i

(
ε̂2

i − σ̂2) ∑n
i=1
(
ε̂2

i − σ̂2)2

]
.

Since the plim of the Jacobian is −I2, the parameter covariance is also Σ̂. Combining these two
results with a Central Limit Theorem (assumed to hold), the asymptotic distribution is

√
n
[
θ − θ̂

] d→ N (0,Σ)

where θ =
(
λ ,σ2)′. These produce the results in the first two rows of table 2.3.

These estimates can also be used to make inference on the standard deviation, σ =
√

σ2 and
the Sharpe ratio, S = λ/σ . The derivation of the asymptotic distribution of the Sharpe ratio was
presented in 2.4.4.1 and the asymptotic distribution of the standard deviation can be determined in a
similar manner where d(θ) =

√
σ2 and so

D(θ) =
∂d(θ)

∂θ
′ =

[
0

1

2
√

σ2

]
.

Combining this expression with the asymptotic distribution for the estimated mean and variance, the
asymptotic distribution of the standard deviation estimate is

√
n(σ̂ −σ)

d→ N
(

0,
µ4−σ4

4σ2

)
.

which was computed by dividing the [2,2] element of the parameter covariance by 4σ̂2.

2.7.1.1 Bootstrap Implementation

The bootstrap can be used to estimate parameter covariance, construct confidence intervals – either
used the estimated covariance or the percentile method, and to tabulate the p-value of a test statistic.
Estimating the parameter covariance is simple – the data is resampled to create a simulated sample
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with n observations and the mean and variance are estimated. This is repeated 10,000 times and the
parameter covariance is estimated using

Σ̂ = B−1
B∑

b=1

([
µ̃b
σ̃2

b

]
−
[

µ̂

σ̂2

])([
µ̃b
σ̃2

b

]
−
[

µ̂

σ̂2

])′

= B−1
B∑

b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

The percentile method can be used to construct confidence intervals for the parameters as esti-
mated and for functions of parameters such as the Sharpe ratio. Constructing the confidence intervals
for a function of the parameters requires constructing the function of the estimated parameters using
each simulated sample and then computing the confidence interval using the empirical quantile of
these estimates. Finally, the test p-value for the statistic for the null H0 : λ = 0 can be computed
directly by transforming the returns so that they have mean 0 using r̃i = ri− r̄i. The p-value can be
tabulated using

P̂−val = B−1
B∑

b=1

I[r̄≤r̃b]

where r̃b is the average from bootstrap replication b. I[r̄≤r̃b] is one whenever the sample average return
is less than the average return from the bootstrap sample average created from demeaned returns. If
this rarely happens, then the mean is unlikely to be zero, and the p-value is small. Table 2.4 contains
the bootstrap standard errors, confidence intervals based on the percentile method and the bootstrap
p-value for testing whether the mean return is 0. The standard errors are virtually identical to those
estimated using the plug-in method, and the confidence intervals are similar to θ̂k±1.96s.e.(θk). The
null that the average return is 0 is also strongly rejected.

The bootstrap can also be used to directly estimate the covariance of parameters and their transfor-
mations. Table 2.4 also contains bootstrap standard errors and confidence intervals for the variance,
the standard deviation and the Sharpe ratio. The covariance of these three statistics (and the mean)
can be computed using the bootstrap

Σ̂ = B−1
B∑

b=1




µ̃b
σ̃2

b
σ̃b

µ̃b/σ̃b

−


µ̂

σ̂2

σ̂

µ̂/σ̂






µ̃b
σ̃2

b
σ̃b

µ̃b/σ̃b

−


µ̂

σ̂2

σ̂

µ̂/σ̂



′

where σ̂b =
√

σ̂2 and σ̃b =
√

σ̃2
b . This direct calculation is an alternative to computing the covariance

of just the mean and variance and then using the delta method to estimate the standard error of the
transformations.27

27These estimates all use the i.i.d.bootstrap. This bootstrap is not appropriate for bootstrapping the variance of finan-
cial returns since the variance is correlated across time. There are alternative bootstrap methods that can account for
dependence in data. A more reasonable approach uses a bootstrap known as the Circular Block Bootstrap. This bootstrap
resamples contiguous blocks of observations when building the bootstrap sample. The block size is a parameter of the
bootstrap. The table below uses the CBB with a window size of bn1/2c. The standard error of the mean (risk premium) is
virtually unchanged, while the standard errors of the variance, the standard deviation, and to a lesser degree, the Sharpe
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Parameter Estimate Std. Error t-stat

λ 8.086 1.909 4.236
σ2 343.0 31.67 10.83
σ 18.52 0.855 10.83
λ

σ
0.437 0.104 4.200

Table 2.3: Parameter estimates and standard errors for the market premium (λ ), the variance of the
excess return (σ2), the standard deviation of the excess return (σ ) and the Sharpe ratio ( λ

σ
). Estimates

and variances were computed using the method of moments. The standard errors for σ and λ

σ
were

computed using the delta method.

Bootstrap Confidence Interval
Parameter Estimate Std. Error Lower Upper

λ 8.086 1.905 4.339 11.85
σ2 343.0 31.87 284.3 407.8
σ 18.52 0.858 16.86 20.19
λ

σ
0.437 0.104 0.234 0.642

H0 : λ = 0
p-value 2.198×10−5

Table 2.4: Parameter estimates, bootstrap standard errors and confidence intervals (based on the per-
centile method) for the market premium (λ ), the variance of the excess return (σ2), the standard
deviation of the excess return (σ ) and the Sharpe ratio ( λ

σ
). Estimates were computed using the

method of moments. The standard errors for σ and λ

σ
were computed using the delta method using

the bootstrap covariance estimator.

2.7.2 Is the NASDAQ Riskier than the S&P 100?

A second application examines the riskiness of the NASDAQ and the S&P 100. Both of these indices
are value-weighted and contain 100 companies. The NASDAQ 100 contains only companies that
trade on the NASDAQ, while the S&P 100 contains large companies that trade on either the NYSE or
the NASDAQ.

The null hypothesis is that the variances are the same, H0 : σ2
SP = σ2

ND, and the alternative is that

ratio, are larger.

Standard Error
Parameter Estimate Circular Block IID Bootstrap

λ 8.086 1.925 1.905
σ2 343.0 77.82 31.87
σ 18.52 2.065 0.858
λ

σ
0.437 0.127 0.104
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CRSP Value Weighted Market (VWM) Excess Returns
CRSP VWM Excess Returns
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Figure 2.7: These two plots contain the returns on the VWM (top panel) in excess of the risk free rate
and a kernel estimate of the density (bottom panel). While the mode of the density (highest peak)
appears to be clearly positive, excess returns exhibit strong negative skew and are heavy tailed.

the variance of the NASDAQ is larger, H1 : σ2
ND > σ2

SP.28 The null and alternative can be reformulated
as a test that δ = σ2

ND−σ2
SP is equal to zero against an alternative that it is greater than zero. The

estimation of the parameters can be formulated as a method of moments problem,


µ̂SP
σ̂2

SP
µ̂ND
σ̂2

ND

= n−1
n∑

i=1


rSP,i(

rSP,i− µ̂SP
)2

rND,i

(rND,i− µ̂ND)
2


Inference can be performed by forming the moment vector using the estimated parameters, gi,

28It may also be interesting to test against a two-sided alternative that the variances are unequal, H1 : σ2
ND 6= σ2

SP.
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Daily Data
Estimate Std. Error/Correlation

µSP 10.11 3.162 -0.162 0.825 -0.037
σSP 18.76 -0.162 0.476 -0.088 0.666
µND 16.90 0.825 -0.088 4.440 0.025
σND 26.34 -0.037 0.666 0.025 0.447

Test Statistic

δ 1.36 σ̂δ 0.07 t-stat 19.33

Monthly Data
Estimate Std. Error/Correlation

µSP 9.52 2.583 -0.337 0.843 -0.246
σSP 15.32 -0.337 0.729 -0.278 0.681
µND 16.33 0.843 -0.278 4.034 -0.192
σND 23.92 -0.246 0.681 -0.192 1.127

Test Statistic

δ 28.14 σ̂δ 3.50 t-stat 8.04

Table 2.5: Estimates, standard errors and correlation matrices for the S&P 100 and NASDAQ 100.
The top panel uses daily return data between January 3, 1983, and December 31, 2007 (6,307 days)
to estimate the parameter values in the left-most column. The rightmost 4 columns contain the pa-
rameter standard errors (diagonal elements) and the parameter correlations (off-diagonal elements).
The bottom panel contains estimates, standard errors, and correlations from monthly data between
January 1983 and December 2007 (300 months). Parameter and covariance estimates have been
annualized. The test statistics (and related quantities) were performed and reported on the original
(non-annualized) values.

gi =


rSP,i−µSP(

rSP,i−µSP
)2−σ2

SP
rND,i−µND

(rND,i−µND)
2−σ2

ND


and recalling that the asymptotic distribution is given by

√
n
(
θ̂ −θ

) d→ N
(

0,G−1
Σ
(
G′
)−1
)
.

Using the set of moment conditions,
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G = plimn→∞ n−1
n∑

i=1


−1 0 0 0

−2
(
rSP,i−µSP

)
−1 0 0

0 0 −1 0
0 0 −2(rND,i−µND) −1


=−I4.

Σ can be estimated using the moment conditions evaluated at the estimated parameters, gi
(
θ̂
)
,

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

g′i
(
θ̂
)
.

Noting that the (2,2) element of Σ is the variance of σ̂2
SP, the (4,4) element of Σ is the variance of σ̂2

ND
and the (2,4) element is the covariance of the two, the variance of δ̂ = σ̂2

ND− σ̂2
SP can be computed as

the sum of the variances minus two times the covariance, Σ[2,2]+Σ[4,4]−2Σ[2,4]. Finally a one-sided
t-test can be performed to test the null.

Data was taken from Yahoo! finance between January 2010 and December 2019 at both the daily
and monthly frequencies. Parameter estimates are presented in table 2.5. The table also contains the
parameter standard errors – the square-root of the asymptotic covariance divided by the number of
observations (

√
Σ[i,i]/n) – along the diagonal and the parameter correlations – Σ[i, j]/

√
Σ[i,i]Σ[ j, j] – in

the off-diagonal positions. The top panel contains results for daily data, while the bottom contains
results for monthly data. Returns scaled by 100 were used in both panels.

All parameter estimates are reported in annualized form, which requires multiplying daily (monthly)
mean estimates by 252 (12), and daily (monthly) volatility estimated by

√
252

(√
12
)

. Additionally,
the delta method was used to adjust the standard errors on the volatility estimates since the actual
parameter estimates were the means and variances. Thus, the reported parameter variance covariance
matrix has the form

D
(
θ̂
)

Σ̂D
(
θ̂
)
=


252 0 0 0
0

√
252

2σSP
0 0

0 0 252 0
0 0 0

√
252

2σND

 Σ̂


252 0 0 0
0

√
252

2σSP
0 0

0 0 252 0
0 0 0

√
252

2σND

 .
In both cases δ is positive with a t-stat greater than 6, indicating a strong rejection of the null in favor
of the alternative. Since this was a one-sided test, the 95% critical value would be 1.645 (Φ(.95)).

This test could also have been implemented using an LM test, which requires estimating the two
mean parameters but restricting the variances to be equal. One θ̃ is estimated, the LM test statistic is
computed as

LM = ngn
(
θ̃
)

Σ̂
−1g′n

(
θ̃
)

where

gn
(
θ̃
)
= n−1

n∑
i=1

gi
(
θ̃
)

and where µ̃SP = µ̂SP, µ̃ND = µ̂ND (unchanged) and σ̃2
SP = σ̃2

ND =
(
σ̂2

SP + σ̂2
ND
)
/2.
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Daily Data
Estimate Bootstrap Std. Error/Correlation

µSP 10.11 3.161 -0.163 0.828 -0.027
σSP 18.76 -0.163 0.476 -0.080 0.664
µND 16.90 0.828 -0.080 4.498 0.039
σND 26.34 -0.027 0.664 0.039 0.445

Monthly Data
Estimate Bootstrap Std. Error/Correlation

µSP 9.52 2.579 -0.335 0.845 -0.237
σSP 15.32 -0.335 0.729 -0.285 0.677
µND 16.33 0.845 -0.285 3.992 -0.186
σND 23.92 -0.237 0.677 -0.186 1.137

Table 2.6: Estimates and bootstrap standard errors and correlation matrices for the S&P 100 and
NASDAQ 100. The top panel uses daily return data between January 3, 1983, and December 31,
2007 (6,307 days) to estimate the parameter values in the left-most column. The rightmost 4 columns
contain the bootstrap standard errors (diagonal elements) and the correlations (off-diagonal elements).
The bottom panel contains estimates, bootstrap standard errors and correlations from monthly data
between January 1983 and December 2007 (300 months). All parameter and covariance estimates
have been annualized.

2.7.2.1 Bootstrap Covariance Estimation

The bootstrap is an alternative to the plug-in covariance estimators. The bootstrap was implemented
using 10,000 resamples where the data were assumed to be i.i.d.. In each bootstrap resample, the full 4
by 1 vector of parameters was computed. These were combined to estimate the parameter covariance
using

Σ̂ = B−1
B∑

i=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

Table 2.6 contains the bootstrap standard errors and correlations. The parameter estimates and co-
variance are annualized, and volatility rather than variance is reported. The bootstrap covariance
estimates are virtually indistinguishable from those computed using the plug-in estimator. This simi-
larity highlights that the bootstrap is not (generally) a better estimator but is merely an alternative.29

2.7.3 Testing Factor Exposure

Suppose excess returns were conditionally normal with mean µi = β
′xi and constant variance σ2.

This type of model is commonly used to explain cross-sectional variation in returns, and when the
conditioning variables include only the market variable, the model is known as the Capital Asset

29In this particular application, as the bootstrap and the plug-in estimators are identical as B→∞ for fixed n. This
identity is not generally the case.
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Pricing Model (CAP-M, Sharpe (1964) and Lintner (1965)). Multi-factor models allow for additional
conditioning variables such as the size and value factors (Ross, 1976; Fama and French, 1992; Fama
and French, 1993). The size factor is the return on a portfolio, which is long small-cap stocks and
short large-cap stocks. The value factor is the return on a portfolio that is long high book-to-market
stocks (value) and short low book-to-market stocks (growth).

This example estimates a 3 factor model where the conditional mean of excess returns on individ-
ual assets is modeled as a linear function of the excess return to the market, the size factor and the
value factor. This leads to a model of the form

ri− r f
i = β0 +β1

(
rm,i− r f

i

)
+β2rs,i +β3rv,i + εi

re
i = β

′xi + εi

where r f
i is the risk-free rate (short term government rate), rm,i is the return to the market portfolio,

rs,i is the return to the size portfolio and rv,i is the return to the value portfolio. εi is a residual which
is assumed to have a N

(
0,σ2) distribution.

Factor models can be formulated as a conditional maximum likelihood problem,

l (r|X;θ) =−1
2

n∑
i=1

{
ln(2π)+ ln

(
σ

2)+ (ri−β
′xi
)2

σ2

}

where θ =
[
β
′
σ2]′. The MLE can be found using the first order conditions, which are

∂ l (r;θ)

∂β
=

1
σ̂2

n∑
i=1

xi

(
ri− β̂

′
xi

)
= 0

⇒ β̂ =

(
n∑

i=1

xix′i

)−1 n∑
j=1

xiri

∂ l (r;θ)

∂σ2 = −1
2

n∑
i=1

1
σ̂2 −

(
ri− β̂

′
xi

)2

σ̂4 = 0

⇒ σ̂
2 = n−1

n∑
i=1

(
ri− β̂

′
xi

)2

The vector of scores is

∂ l (ri|xi;θ)

∂θ
=

[
1

σ2 xiεi

− 1
2σ2 +

ε
2
i

2σ4

]
=

[ 1
σ2 0
0 1

2σ4

][
xiεi

σ2− ε2
i

]
= S

[
xiεi

σ2− ε2
i

]

where εi = ri−β
′xi. The second form is used to simplify estimating the parameters covariance. The

Hessian is
∂ 2l (ri|xi;θ)

∂θ∂θ
′ =

[
− 1

σ2 xix′i − 1
σ4 xiεi

− 1
σ4 xiεi

1
2σ4 − ε

2
i

σ6

]
,
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and the information matrix is

I = −E

[
− 1

σ2 xix′i − 1
σ4 xiεi

− 1
σ4 xiεi

1
2σ4 − ε

2
i

σ6

]

=

[ 1
σ2 E [xix′i] − 1

σ4 E [xiE [εi|X]]

− 1
σ4 E [xiE [εi|X]] E

[
1

2σ4

] ]

=

[ 1
σ2 E [xix′i] 0

0 1
2σ4

]
.

The covariance of the scores is

J = E

[
S

[
ε2

i xix′i σ2xiεi−xiε
3
i

σ2x′iεi−x′iε3
i

(
σ2− ε2

i
)2

]
S

]

= S

[
E
[
ε2

i xix′i
]

E
[
σ2xiεi−xiε

3
i
]

E
[
σ2x′iεi−x′iε3

i
]

E
[(

σ2− ε2
i
)2
] ]

S

= S

[
E
[
E
[
ε2

i |X
]

xix′i
]

E
[
σ2x′iE [εi|X]−x′iE

[
ε3

i |X
]]

E
[
E
[
σ2x′iεi−x′iε3

i |X
]]

E
[(

σ2− ε2
i
)2
] ]

S

= S
[

σ2E [xix′i] 0
0 2σ4

]
S =

[ 1
σ2 E [xix′i] 0

0 1
2σ4

]
The estimators of the covariance matrices are

Ĵ = n−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
xiε̂i

σ̂2− ε̂2
i

][
x′iε̂i σ̂2− ε̂2

i
][ 1

σ̂2 0
0 1

2σ̂4

]

= n−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

][ 1
σ̂2 0
0 1

2σ̂4

]
and

Î = −1×n−1
n∑

i=1

[
− 1

σ̂2 xix′i − 1
σ̂4 xiεi

− 1
σ̂4 xiεi

1
2σ̂4 − ε

2
i

σ̂6

]

= −1×n−1
n∑

i=1

[
− 1

σ̂2 xix′i 0

0 1
2σ̂4 − σ̂

2

σ̂6

]

= −1×n−1
n∑

i=1

[ − 1
σ̂2 xix′i 0

0 − 1
2σ̂4

]
= n−1

n∑
i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
xix′i 0

0 1

]
Note that the off-diagonal term in J , σ̂2x′iε̂i−x′iε̂3

i , is not necessarily 0 when the data may be condi-
tionally skewed. Combined, the QMLE parameter covariance estimator is then

Î−1Ĵ Î−1 =

(
n−1

n∑
i=1

[
xix′i 0

0 1

])−1[
n−1

n∑
i=1

[
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

]]

×
(

n−1
n∑

i=1

[
xix′i 0

0 1

])−1
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where the identical scaling terms have been canceled. Additionally, when returns are conditionally
normal,

plim Ĵ = plimn−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

][ 1
σ̂2 0
0 1

2σ̂4

]
=

[ 1
σ2 0
0 1

2σ4

][
σ2xix′i 0

0 2σ4

][ 1
σ2 0
0 1

2σ4

]
=

[ 1
σ2 xix′i 0

0 1
2σ4

]
and

plim Î = plimn−1
n∑

i=1

[ 1
σ̂2 xix′i 0

0 1
2σ̂4

]
=

[ 1
σ2 xix′i 0

0 1
2σ4

]
,

and so the IME, plim Ĵ − Î = 0, holds when returns are conditionally normal. Moreover, when
returns are not normal, all of the terms in J typically differ from the limits above, and the IME does
not hold.

2.7.3.1 Data and Implementation

Three assets are used to illustrate hypothesis testing: Exxon Mobil (XOM), Alphabet Inc. (GOOG),
and the SPDR Gold Trust ETF (GLD). The data used to construct the individual equity returns were
downloaded from Yahoo! Finance and span from January 2010 to December 2019. The market
portfolio is the CRSP value-weighted market, a composite based on all listed US equities. The size
and value factors were constructed using portfolio sorts and are made available by Ken French. All
returns were scaled by 100.

2.7.3.2 Wald tests

Wald tests make use of the parameters and estimated covariance to assess the evidence against the null.
When testing whether the size and value factor are relevant for an asset, the null is H0 : β2 = β3 = 0.
This problem can be set up as a Wald test using

R =

[
0 0 1 0
0 0 0 1

]
, r =

[
0
0

]
and

W = n
(
Rθ̂ − r

)′ [RÎ−1J Î−1R′
]−1 (

Rθ̂ − r
)
.

The Wald test has an asymptotic χ2
2 distribution since the null imposes 2 restrictions.

t-stats can similarly be computed for individual parameters

t j =
√

n
β̂ j√
̂
V
[
β̂ j

]
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where
̂
V
[
β̂ j

]
is the jth diagonal element of the estimated parameter covariance matrix. Table 2.7

contains the parameter estimates from the models, t-stats for the coefficients and the Wald test statis-
tics for the null H0 : β2 = β3 = 0. The t-stats and the Wald tests were implemented using both the
sandwich covariance estimator (QMLE) and the maximum likelihood covariance estimator. The two
sets of test statistics differ in magnitude since the assumption of normality is violated in the data, and
so only the QMLE-based test statistics should be considered reliable.

2.7.3.3 Likelihood Ratio tests

Likelihood ratio tests are simple to implement when parameters are estimated using MLE. The likeli-
hood ratio test statistic is

LR =−2
(
l
(
r|X; θ̃

)
− l
(
r|X; θ̂

))
where θ̃ is the null-restricted estimator of the parameters. The likelihood ratio has an asymptotic χ2

2
distribution since there are two restrictions. Table 2.7 contains the likelihood ratio test statistics for
the null H0 : β2 = β3 = 0. Caution is needed when interpreting likelihood ratio test statistics since the
asymptotic distribution is only valid when the model is correctly specified – in this case, when returns
are conditionally normal, which is not plausible.

2.7.3.4 Lagrange Multiplier tests

Lagrange Multiplier tests are somewhat more involved in this problem. The key to computing the LM
test statistic is to estimate the score using the restricted parameters,

s̃i =

[
1

σ2 xiε̃i

− 1
2σ̃2 +

ε̃
2
i

2σ̃4

]
,

where ε̃i = ri− β̃
′
xi and θ̃ =

[
β̃
′
σ̃2
]′

is the vector of parameters estimated when the null is imposed.
The LM test statistic is then

LM = ns̃S̃−1s̃

where

s̃ = n−1
n∑

i=1

s̃i, and S̃ = n−1
n∑

i=1

s̃is̃′i.

The improved version of the LM can be computed by replacing S̃ with a covariance estimator based
on the scores from the unrestricted estimates,

Ŝ = n−1
n∑

i=1

ŝiŝ′i.

Table 2.7 contains the LM test statistics for the null H0 : β2 = β3 = 0 using the two covariance estima-
tors. LM test statistics are naturally robust to violations of the assumed normality since Ŝ and S̃ are
directly estimated from the scores and not based on properties of the assumed normal distribution.
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2.7.3.5 Discussion of Test Statistics

Table 2.7 contains all test statistics for the three series. The test statistics based on the MLE and
QMLE parameter covariances differ substantially in all three series, although the conclusions do not
differ. The difference between the two sets of results from an implicit rejection of the assumption that
returns are conditionally normally distributed with constant variance. The MLE-based Wald and the
LR tests have similar magnitudes for all three series. The QMLE-based Wald test statistics are larger
than the LM-based test statistics. This difference reflects the covariance’s estimation under the null
(LM) or the alternative (Wald).

Exercises

Exercise 2.1. What influences the power of a hypothesis test?

Exercise 2.2. Let Yi be i.i.d.Exponential(λ ) with pdf f (yi) = λ exp(−λyi), λ > 0. Derive the MLE
of λ where there are n observations.

Exercise 2.3. If n observations of Yi
i.i.d.∼ Bernoulli(p) are observed, what is the MLE of p? The pdf of

a single Bernoulli is
py (1− p)1−y .

Exercise 2.4. When performing a hypothesis test, what are Type I and Type II Errors?

Exercise 2.5. The distribution of a discrete random variable X depends on a discretely valued param-
eter θ ∈ {1,2,3} according to

x f (x|θ = 1) f (x|θ = 2) f (x|θ = 3)

1 1
2

1
3 0

2 1
3

1
4 0

3 1
6

1
3

1
6

4 0 1
12

1
12

5 0 0 3
4

Find the MLE of θ if one value from X has been observed. Note: The MLE is a function that returns
an estimate of θ given the data that has been observed. In the case where both the observed data and
the parameter are discrete, a “function” takes the form of a table.

Exercise 2.6. Let X1, . . . ,Xn be an i.i.d. sample from a gamma(α ,β ) distribution. The density of a
gamma(α ,β ) is

f (x;α,β ) =
1

Γ(α)β α
xα−1 exp(−x/β )

where Γ(z) is the gamma-function evaluated at z. Find the MLE of β assuming α is known.

Exercise 2.7. Let X1, . . . ,Xn be an i.i.d. sample from the pdf

f (x|θ) = θ

xθ+1 , 1≤ x <∞,θ > 1

1. What is the MLE of θ?
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Exxon Mobil Corporation
Parameter Estimate t (MLE) t (QMLE)

β0 -0.023 −1.499
(0.134)

−1.50
(0.133)

Wald (MLE) 277.75
(<0.001)

β1 0.892 51.617
(<0.001)

42.47
(<0.001)

Wald (QMLE) 206.15
(<0.001)

β2 -0.290 −9.105
(<0.001)

−8.09
(<0.001)

LR 263.86
(<0.001)

β3 0.405 13.021
(<0.001)

11.33
(<0.001)

LM (S̃) 161.35
(<0.001)

LM (Ŝ) 207.25
(<0.001)

SPDR Gold Shares
Parameter Estimate t (MLE) t (QMLE)

β0 0.017 0.892
(0.372)

0.88
(0.379)

Wald (MLE) 10.15
(0.006)

β1 -0.031 −1.443
(0.149)

−1.01
(0.314)

Wald (QMLE) 7.73
(0.021)

β2 0.104 2.616
(0.009)

2.29
(0.022)

LR 10.14
(0.006)

β3 -0.061 −1.558
(0.119)

−1.42
(0.156)

LM (S̃) 7.61
(0.022)

LM (Ŝ) 7.73
(0.021)

Alphabet Inc.
Parameter Estimate t (MLE) t (QMLE)

β0 0.006 0.248
(0.804)

0.25
(0.802)

Wald (MLE) 193.43
(<0.001)

β1 1.098 43.189
(<0.001)

41.63
(<0.001)

Wald (QMLE) 124.95
(<0.001)

β2 -0.241 −5.140
(<0.001)

−4.87
(<0.001)

LR 186.64
(<0.001)

β3 -0.611 −13.357
(<0.001)

−10.72
(<0.001)

LM (S̃) 101.48
(<0.001)

LM (Ŝ) 128.25
(<0.001)

Table 2.7: Parameter estimates, t-statistics (both MLE and QMLE-based), and tests of the exclusion
restriction that the size and value factors have no effect (H0 : β2 = β3 = 0) on the returns of the Exxon
Mobil, Alphabet Inc. (Google) and SPDR Gold Trust ETF.
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2. What is E[X j]?

3. How can the previous answer be used to compute a method of moments estimator of θ?

Exercise 2.8. Let X1, . . . ,Xn be an i.i.d. sample from the pdf

f (x|θ) = 1
θ
, 0≤ x≤ θ ,θ > 0

1. What is the MLE of θ? [This is tricky]

2. What is the method of moments Estimator of θ?

3. Compute the bias and variance of each estimator.

Exercise 2.9. Let X1, . . . ,Xn be an i.i.d. random sample from the pdf

f (x|θ) = θxθ−1, 0≤ x≤ 1,0 < θ <∞

1. What is the MLE of θ?

2. What is the variance of the MLE?

3. Show that the MLE is consistent.

Exercise 2.10. Let X1, . . . ,Xi be an i.i.d. sample from a Bernoulli(p).

1. Show that X̄ achieves the Cramér-Rao lower bound.

2. What do you conclude about using X̄ to estimate p?

Exercise 2.11. Suppose you witness a coin being flipped 100 times with 56 heads and 44 tails. Is
there evidence that this coin is unfair?

Exercise 2.12. Let X1, . . . ,Xi be an i.i.d. sample with mean µ and variance σ2.

1. Show X̃ =
∑N

i=1 wiXi is unbiased if and only if
∑N

i=1 wi = 1.

2. Show that the variance of X̃ is minimized if wi =
1
n for i = 1,2, . . . ,n.

Exercise 2.13. Suppose {Xi} in i.i.d. sequence of normal variables with unknown mean µ and known
variance σ2.

1. Derive the power function of a 2-sided t-test of the null H0 : µ = 0 against an alternative H1 :
µ 6= 0? The power function should have two arguments, the mean under the alternative, µ1 and
the number of observations n.

2. Sketch the power function for n = 1,4,16,64,100.

3. What does this tell you about the power as n→∞ for µ 6= 0?
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Exercise 2.14. Let X1 and X2 are independent and drawn from a Uniform(θ ,θ +1) distribution with
θ unknown. Consider two test statistics for the null H0 : θ = 0,

T1 : Reject if X1 > .95

and
T2 : Reject if X1 +X2 >C

1. What is the size of T1?

2. What value must C take so that the size of T2 is equal to T1

3. Sketch the power curves of the two tests as a function of θ . Which is more powerful?

Exercise 2.15. Suppose {yi} are a set of transaction counts (trade counts) over 5-minute intervals
which are believed to be i.i.d.distributed from a Poisson with parameter λ . Recall the probability
density function of a Poisson is

f (yi;λ ) =
λ yie−λ

yi!

1. What is the log-likelihood for this problem?

2. What is the MLE of λ?

3. What is the variance of the MLE?

4. Suppose that λ̂ = 202.4 and that the sample size was 200. Construct a 95% confidence interval
for λ .

5. Use a t-test to test the null H0 : λ = 200 against H1 : λ 6= 200 with a size of 5%

6. Use a likelihood ratio to test the same null with a size of 5%.

7. What happens if the assumption of i.i.d.data is correct but that the data does not follow a Poisson
distribution?

Upper tail probabilities
for a standard normal z

Cut-off c Pr(z > c)
1.282 10%
1.645 5%
1.96 2.5%
2.32 1%

5% Upper tail cut-off for χ2
q

Degree of Freedom q Cut-Off
1 3.84
2 5.99

199 232.9
200 234.0
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Exercise 2.16. Suppose Yi|Xi = xi
i.i.d.∼ N

(
β0 +β1xi,σ

2)
1. Write down the log-likelihood for this problem.

2. Find the MLE of the unknown parameters.

3. What is the asymptotic distribution of the parameters?

4. Describe two classes tests to test the null H0 : β1 = 0 against the alternative H0 : β1 6= 0.

5. How would you test whether the errors in the model were conditionally heteroskedastic?

6. Suppose Xi
i.i.d.∼ N

(
µX ,σ

2
X
)

and the X variables are independent of the shocks in the model. What
are the values of:

(a) E [Yi]

(b) E
[
Y 2

i
]

(c) V [Yi]

(d) Cov [Xi,Yi]

Note: If Y ∼ N
(
µ,σ2) , then the pdf of Y is

f
(
y; µ,σ2)= 1√

2πσ2
exp

(
−(y−µ)2

2σ2

)

Exercise 2.17. Suppose Yi
i.i.d.∼ Exponential(λ ), so that E [Yi] = λ .

1. Write down the log-likelihood for this problem.

2. Find the MLE of the unknown parameter.

3. What is the asymptotic distribution of the parameter estimate?

4. Suppose n = 10,
∑

yi = 19. Test the null H0 : λ = 1 against a 2-sided alternative with a size of
5% test using a t-test.

5. Suppose n = 10,
∑

yi = 19. Test the null H0 : λ = 1 against a 2-sided alternative with a size of
5% test using a likelihood-ratio.

6. When are sandwich covariance estimators needed in MLE problems?

7. Discuss the important considerations for building models using cross-sectional data?

Notes:

• If Y ∼ Exponential(λ ) , then the pdf of Y is

f (y;λ ) =
1
λ

exp
(
− y

λ

)
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• The 5% critical value for a χ2
1 is 3.8415, for a χ2

2 is 5.9915 and for a χ2
3 is 7.8147.

Exercise 2.18. Suppose yi|xi ∼ Exponential(xiβ ) where xi > 0 and β > 0. This can be equivalently
written yi ∼ Exponential(λi) where λi = xiβ . The PDF of an exponential random variance with
parameter λ is

fY (y) = λ exp(−λy) .

Assume n pairs of observations on (yi,xi) are observed

1. What is the log-likelihood of the data?

2. Compute the maximum likelihood estimator β̂ .

3. What is the asymptotic distribution of
√

n
(

β̂ −β

)
?

4. Suppose the following quantities are observed

n = 20
n∑

i=1

xi = 16.58

n∑
i=1

yi = 128.47

n∑
i=1

xiyi = 11.23

Perform a test for the null H0 : β = 1.5 against the alternative H1 : β 6= 1.5 using a t-test.

5. Explain how you would perform a likelihood-ratio test for the same null and alternative.

Exercise 2.19. Suppose
√

n
(
σ̂2−σ2) d→ N

(
0,µ4−σ4). What is the asymptotic distribution of:

1. ln
(
σ̂2)

2. σ−2

Exercise 2.20. Suppose two parameter estimators are jointly normally distributed with asymptotic
distribution [

θ̂1
θ̂2
− θ1

θ2

]
d→ N

([
0
0

]
,

[
σ11 σ12
σ12 σ22

])
.

What is the asymptotic distribution of

1. θ̂1− θ̂2

2. θ̂1/θ̂2

3. ln θ̂1/θ̂2 = ln θ̂1− ln θ̂2
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