
Chapter 5

Analysis of Multiple Time Series

The alternative reference for the material in this chapter is Enders (2004) (chapters 5 and 6). Chap-
ters 10-11 and 18-19 in Hamilton (1994) provide a more technical treatment of the material.

Multivariate time-series analysis extends many of the ideas of univariate time-series analysis
to systems of equations. The primary model used in multivariate time-series analysis is the
vector autoregression (VAR). Many properties of autoregressive processes extend naturally
to multivariate time-series using a slight change in notation and results from linear algebra.
This chapter examines the properties of vector time-series models, estimation and identi-
fication and introduces two new concepts: Granger Causality and the Impulse Response
Function. The chapter concludes by examining models of contemporaneous relationships
between two or more time-series in the framework of cointegration, spurious regression and
cross-sectional regression of stationary time-series.

In many applications, analyzing a time-series in isolation is a reasonable choice; in others, uni-
variate analysis is insufficient to capture the complex dynamics among interrelated time series. For
example, Campbell (1996) links financially interesting variables, including stock returns and the de-
fault premium, in a multivariate system where shocks to one variable propagate to the others. The
vector autoregression (VAR) is the standard model used to model multiple stationary time-series. If
the time series are not stationary, a different type of analysis, cointegration, is used.

5.1 Vector Autoregressions

Vector autoregressions are remarkably similar to univariate autoregressions, and most results carry
over by replacing scalars with matrices and scalar operations with their linear algebra equivalent.

5.1.1 Definition

The definition of a vector autoregression is nearly identical to that of a univariate autoregression.

Definition 5.1 (Vector Autoregression of Order P). A Pth order vector autoregression, written VAR(P),
is a process that evolves according to

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t (5.1)
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where Yt is a k by 1 vector stochastic process, Φ0 is a k by 1 vector of intercept parameters, Φ j,
j = 1, . . . ,P are k by k parameter matrices and ε t is a vector white noise process with the additional
assumption that Et−1[ε t ] = 0.

A VAR(P) reduces to an AR(P) when k = 1 so that Yt and the coefficient matrices, Φ j, are scalars. A
vector white noise process extends the three properties of a univariate white noise process to a vector;
it is mean zero, has finite covariance and is uncorrelated with its past. The components of a vector
white noise process are not assumed to be contemporaneously uncorrelated.

Definition 5.2 (Vector White Noise Process). A k by 1 vector-valued stochastic process, {ε t}is a
vector white noise if

E[ε t ] = 0k (5.2)
E[ε tε

′
t−s] = 0k×k

E[ε tε
′
t ] = Σ

for all t where Σ is a finite positive definite matrix.

The simplest VAR is a first-order bivariate specification which is equivalently expressed as

Yt = Φ0 +Φ1Yt−1 + ε t ,

[
Y1,t
Y2,t

]
=

[
φ1,0
Y2,0

]
+

[
φ11,1 φ12,1
φ21,1 φ22,1

][
Y1,t−1
Y2,t−1

]
+

[
ε1,t
ε2,t

]
,

or

Y1,t = φ1,0 +φ11,1Y1,t−1 +φ12,1Y2,t−1 + ε1,t

Y2,t = φ2,0 +φ21,1Y1,t−1 +φ22,1Y2,t−1 + ε2,t .

Each element of Yt is a function of each element of Yt−1.

5.1.2 Properties of a VAR(1)

The properties of the VAR(1) are straightforward to derive. Importantly, section 5.2 shows that all
VAR(P)s can be rewritten as a VAR(1), and so the properties of any VAR follow from those of a
first-order VAR.

5.1.2.1 Stationarity

A VAR(1), driven by vector white noise shocks,

Yt = Φ0 +Φ1Yt−1 + ε t

is covariance stationary if the eigenvalues of Φ1 are less than 1 in modulus.1 In the univariate case,
this is statement is equivalent to the condition |φ1|< 1. Assuming the eigenvalues of Φ1 are less than
one in absolute value, backward substitution can be used to show that

1The definition of an eigenvalue is:
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Yt =
∞∑

i=0

Φ
i
1Φ0 +

∞∑
i=0

Φ
i
1ε t−i (5.3)

which, applying Theorem 5.3, is equivalent to

Yt = (Ik−Φ1)
−1

Φ0 +

∞∑
i=0

Φ
i
1ε t−i (5.4)

where the eigenvalue condition ensures that Φ
i
1 converges to zero as i grows large.

5.1.2.2 Mean

Taking expectations of Yt expressed in the backward substitution form yields

E [Yt ] = E
[
(Ik−Φ1)

−1
Φ0

]
+E

[ ∞∑
i=0

Φ
i
1ε t−i

]
(5.5)

= (Ik−Φ1)
−1

Φ0 +
∞∑

i=0

Φ
i
1E [ε t−i]

= (Ik−Φ1)
−1

Φ0 +
∞∑

i=0

Φ
i
10

= (Ik−Φ1)
−1

Φ0

The mean of a VAR process resembles that of a univariate AR(1), (1−φ1)
−1φ0.2 The long-run mean

depends on the intercept, Φ0, and the inverse of Φ1. The magnitude of the inverse is determined by

Definition 5.3 (Eigenvalue). λ is an eigenvalue of a square matrix A if and only if |A− λ In| = 0 where | · | denotes
determinant.

Definition 5.4. Eigenvalues play a unique role in the matrix power operator.

Theorem 5.1 (Singular Value Decomposition). Let A be an n by n real-valued matrix. Then A can be decomposed as
A = UΛV′ where V′U = U′V = In and Λ is a diagonal matrix containing the eigenvales of A.

Theorem 5.2 (Matrix Power). Let A be an n by n real-valued matrix. Then Am = AA . . .A = UΛV′UΛV′ . . .UΛV′ =
UΛ

mV′ where Λ
m is a diagonal matrix containing each eigenvalue of A raised to the power m.

The essential properties of eigenvalues for applications to VARs are given in the following theorem:

Theorem 5.3 (Convergent Matrices). Let A be an n by n matrix. Then the following statements are equivalent

• Am→ 0 as m→∞.

• All eigenvalues of A, λi, i = 1,2, . . . ,n, are less than 1 in modulus (|λi|< 1).

• The series
∑m

i=0 Am = In +A+A2 + . . .+Am→ (In−A)−1 as m→∞.

Note: Replacing A with a scalar a produces many familiar results: am → 0 as m→∞ (property 1) and
∑m

i=0 am →
(1−a)−1 as m→∞ (property 3) as long as |a|<1 (property 2).

2When a is a scalar where |a|< 1, then
∑∞

i=0 ai = 1/(1−a). This result extends to a k× k square matrix A when all
of the eigenvalues of A are less than 1, so that

∑∞
i=0 Ai = (Ik−A)

−1
.
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the eigenvalues of Φ1, and if any eigenvalue is close to one, then (Ik−Φ1)
−1 is large in magnitude

and, all things equal, the unconditional mean is larger. Similarly, if Φ1 = 0, then the mean is Φ0 since
{Yt} is a constant plus white noise.

5.1.2.3 Variance

Before deriving the variance of a VAR(1), it useful to express a VAR in deviations form. Define
µ = E[Yt ] to be the unconditional expectation (assumed it is finite). The deviations form of the
VAR(P)

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

is

Yt−µ = Φ1 (Yt−1−µ)+Φ2 (Yt−2−µ)+ . . .+ΦP (Yt−P−µ)+ ε t (5.6)

Ỹt = Φ1Ỹt−1 +Φ2Ỹt−2 + . . .+ΦPỸt−P + ε t .

The deviations form is mean 0 by construction, and so the backward substitution form in a VAR(1) is

Ỹt =
∞∑

i=1

Φ
i
1ε t−i. (5.7)

The deviations form translates the VAR from its original mean, µ , to a mean of 0. The process
written in deviations form has the same dynamics and shocks, and so can be used to derive the long-
run covariance and autocovariances and to simplify multistep forecasting. The long-run covariance is
derived using the backward substitution form so that

E
[
(Yt−µ)(Yt−µ)′

]
= E

[
ỸtỸ′t

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−i

)′]
(5.8)

= E

[ ∞∑
i=0

Φ
i
1ε t−iε

′
t−i
(
Φ
′
1
)′]

(Since ε t is WN)

=
∞∑

i=0

Φ
i
1E
[
ε t−iε

′
t−i
](

Φ
′
1
)′

=
∞∑

i=0

Φ
i
1Σ
(
Φ
′
1
)′

vec
(
E
[
(Yt−µ)(Yt−µ)′

])
= (Ik2−Φ1⊗Φ1)

−1 vec(Σ)

where µ = (Ik−Φ1)
−1Φ0. The similarity between the long-run covariance of a VAR(1) and the long-

run variance of a univariate autoregression, σ2/(1−φ 2
1 ), are less pronounced. The difference between
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these expressions arises since matrix multiplication is non-commutative (AB 6= BA, in general). The
final line makes use of the vec (vector) operator to compactly express the long-run covariance. The
vec operator and a Kronecker product stack the elements of a matrix product into a single column.3

The eigenvalues of Φ1 also affect the long-run covariance, and if any are close to 1, the long-run
covariance is large since the maximum eigenvalue determines the persistence of shocks. All things
equal, more persistence lead to larger long-run covariances since the effect of any shock last longer.

5.1.2.4 Autocovariance

The autocovariances of a vector-valued stochastic process are defined

Definition 5.7 (Autocovariance). The autocovariance matrices of k by 1 vector-valued covariance
stationary stochastic process {Yt} are defined

Γs = E[(Yt−µ)(Yt−s−µ)′] (5.10)

and
Γ−s = E[(Yt−µ)(Yt+s−µ)′] (5.11)

where µ = E[Yt ] = E[Yt− j] = E[Yt+ j].

The structure of the autocovariance function is the first significant deviation from the univariate
time-series analysis in chapter 4. Vector autocovarianes are reflected, and so are symmetric only when
transposed. Specifically,

3The vec of a matrix A is defined:

Definition 5.5 (vec). Let A = [ai j] be an m by n matrix. The vec operator (also known as the stack operator) is defined

vecA =


a1
a2
...

an

 (5.9)

where a j is the jth column of the matrix A.

The Kronecker Product is defined:

Definition 5.6 (Kronecker Product). Let A = [ai j] be an m by n matrix, and let B = [bi j] be a k by l matrix. The Kronecker
product is defined

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB


and has dimension mk by nl.

It can be shown that

Theorem 5.4 (Kronecker and vec of a product). Let A, B and C be conformable matrices as needed. Then

vec(ABC) = (C′⊗A)vecB
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Γs 6= Γ−s

but4

Γs = Γ
′
−s.

In contrast, the autocovariances of stationary scalar processes satisfy γs = γ−s. Computing the auto-
covariances uses the backward substitution form so that

Γs = E
[
(Yt−µ)(Yt−s−µ)′

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
(5.12)

= E

[(
s−1∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]

+E

[( ∞∑
i=0

Φ
s
1Φ

i
1ε t−s−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
(5.13)

= 0+Φ
s
1E

[( ∞∑
i=0

Φ
i
1ε t−s−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
= Φ

s
1V [Yt ]

and

Γ−s = E
[
(Yt−µ)(Yt+s−µ)′

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t+s−i

)′]
(5.14)

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
s
1Φ

i
1ε t−i

)′]

+E

( ∞∑
i=0

Φ
i
1ε t−i

)(
s−1∑
i=0

Φ
i
1ε t+s−i

)′ (5.15)

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

ε
′
t−i
(
Φ
′
1
)i (

Φ
′
1
)s

)]
+0

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

ε
′
t−i
(
Φ
′
1
)i

)](
Φ
′
1
)s

= V [Yt ]
(
Φ
′
1
)s

where V[Yt ] is the symmetric covariance matrix of the VAR. Like most properties of a VAR, the
autocovariance function of a VAR(1) closely resembles that of an AR(1): γs = φ

|s|
1 σ2/(1− φ 2

1 ) =

φ
|s|
1 V[Yt ].

4This follows directly from the property of a transpose that if A and B are compatible matrices, (AB)′ = B′A′.
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5.2 Companion Form

Any stationary VAR(P) can be rewritten as a VAR(1). Suppose {Yt} follows a VAR(P) process,

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t .

By subtracting the mean and stacking P lags of Yt into a large column vector denoted Zt , a VAR(P)
is equivalently expressed as a VAR(1) using the companion form.

Definition 5.8 (Companion Form of a VAR(P)). Let Yt follow a VAR(P) given by

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

where ε t is a vector white noise process and µ =
(

I−∑P
p=1 Φp

)−1
Φ0 = E[Yt ] is finite. The com-

panion form is
Zt = ϒZt−1 +ξ t (5.16)

where

Zt =


Yt−µ

Yt−1−µ

...
Yt−P+1−µ

 , (5.17)

ϒ =


Φ1 Φ2 Φ3 . . . ΦP−1 ΦP
Ik 0 0 . . . 0 0
0 Ik 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . Ik 0

 (5.18)

and

ξ t =


ε t
0
...
0

 ,E[ξ tξ
′
t ] =


Σ 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .. (5.19)

The properties of a VAR(P) are identical to that of its companion form VAR(1). For example, VAR(P)
is covariance stationary if all of the eigenvalues of ϒ - there are k×P of them - are less than one in
absolute value (modulus if complex).5

5.3 Empirical Examples

Two examples from the macrofinance literature are used throughout this chapter to illustrate the ap-
plication of VARs.

5The companion form is also useful when working with univariate AR(P) models. An AR(P) can be equivalently
expressed as a VAR(1), which simplifies computing properties such as the long-run variance and autocovariances.
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5.3.1 Example: The interaction of stock and bond returns

Stocks and bonds are often thought to hedge one another. VARs provide a simple method to determine
whether their returns are linked through time. Consider the VAR(1)[

VWMt
TERMt

]
=

[
φ01
φ02

]
+

[
φ11,1 φ12,1
φ21,1 φ22,1

][
VWMt−1
TERMt−1

]
+

[
ε1,t
ε2,t

]
where VWMt is the return on the value-weighted-market portfolio and T ERMt is the return on a port-
folio that is long the 10-year and short the 1-year U.S. government bond. The VAR contains a model
for stock returns

VWMt = φ01 +φ11,1VWMt−1 +φ12,1TERMt−1 + ε1,t

and a model for the return on the term premium,

TERMt = φ01 +φ21,1VWMt−1 +φ22,1TERMt−1 + ε2,t .

Since these models do not share any parameters, the coefficient can be estimated equation-by-equation
using OLS.6 A VAR(1) is estimated using monthly return data (multiplied by 12) for the VWM from
CRSP and the 10-year constant maturity treasury yield from FRED covering the period February 1962
until December 2018.7

[
VWMt
T ERMt

]
=

 0.801
(0.000)

0.232
(0.041)

+
 0.059

(0.122)
0.166
(0.004)

−0.104
(0.000)

0.116
(0.002)

[ VWMt−1
T ERMt−1

]
+

[
ε1,t
ε2,t

]

The p-value of each coefficient is reported in parenthesis. The estimates indicate that stock returns
are not predictable using past stock returns but are predictable using the returns on the lagged term
premium: positive returns on the term premium lead increase expected returns in stocks. In contrast,
positive returns in equities decrease the expected return on the term premium. The annualized long-
run mean can be computed from the estimated parameters as

12×
([

1 0
0 1

]
−
[

0.059 0.166
−0.104 0.116

])−1[ 0.801
0.232

]
=

[
10.558
1.907

]
.

These model-based estimates are similar to the sample averages of returns of 10.57 and 1.89 for VWM
and TERM, respectively.

5.3.2 Example: Monetary Policy VAR

VARs are widely used in macrofinance to model closely related macroeconomic variables. This exam-
ple uses a 3-variable VAR containing the unemployment rate, the effective federal funds rate, which
is the rate that banks use to lend to each other, and inflation. Inflation is measured using the implicit

6Theoretical motivations often lead to cross-parameter equality restrictions in VARs. These models cannot be esti-
mated equation-by-equation. A VAR subject to linear equality restrictions can be estimated using a system OLS estimator.

7The yields of the bonds are converted to prices, and then returns are computed as the log difference of the prices plus
accrued interest.
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Raw Data
∆ lnUNEMPt−1 FFt−1 ∆INFt−1

∆ lnUNEMPt 0.624
(0.000)

0.015
(0.001)

0.016
(0.267)

FFt −0.816
(0.000)

0.979
(0.000)

−0.045
(0.317)

∆INFt −0.501
(0.010)

−0.009
(0.626)

−0.401
(0.000)

Standardized Series
∆ lnUNEMPt−1 FFt−1 ∆INFt−1

∆ lnUNEMPt 0.624
(0.000)

0.153
(0.001)

0.053
(0.267)

FFt −0.080
(0.000)

0.979
(0.000)

−0.015
(0.317)

∆INFt −0.151
(0.010)

−0.028
(0.626)

−0.401
(0.000)

Table 5.1: Parameter estimates from the monetary policy VAR. The top panel contains estimates using
original, unmodified values while the bottom panel contains estimates from data standardized to have
unit variance. While the magnitudes of many coefficients change, the p-values and the eigenvalues of
the parameter matrices are identical, and the parameters are roughly comparable since the series have
the same variance.

GDP price deflator. Two of the three variables, the unemployment and inflation rates, appear to be
nonstationary when tested using an ADF test, and so are differenced.8

Using a VAR(1) specification, the model can be described

 ∆UNEMPt
FFt

∆INFt

= Φ0 +Φ1

 ∆UNEMPt−1
FFt−1

∆INFt−1

+
 ε1,t

ε2,t
ε3,t

 .
Two sets of parameters are presented in Table 5.1. The top panel contains estimates using non-
scaled data. The bottom panel contains estimates from data where each series is standardized to have
unit variance. Standardization produces coefficients that have comparable magnitudes. Despite this
transformation and very different parameter estimates, the p-values remain unchanged since OLS
t-stats are invariant to rescalings of this type. The eigenvalues of the two parameter matrices are
identical, and so the estimate of the persistence of the process is not affected by standardizing the
data.

8All three series, UNRATE (unemployment), DFF (Federal Funds), and GDPDEF (deflator), are available in FRED.
The unemployment and Federal Funds rates are aggregated to quarterly by taking the mean of all observations within a
quarter. The inflation rate is computed from the deflator as 400ln(GDPDEFt/GDPDEFt−1) .
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5.4 VAR forecasting

Constructing forecasts of a vector time series is identical to constructing the forecast from a single
time series. h-step forecasts are recursively constructed starting with Et [Yt+1], using Et [Yt+1] to
construct Et [Yt+2], and continuing until Et [Yt+h].

Recall that the h-step ahead forecast, Ŷt+h|t in an AR(1) is

Et [Yt+h] =
h−1∑
j=0

φ
j

1 φ0 +φ
h
1Yt .

The h-step ahead forecast of a VAR(1) , Ŷt+h|t , has the same structure, and is

Et [Yt+h] =
h−1∑
j=0

Φ
j
1Φ0 +Φ

h
1Yt .

This formula can be used to produce multi-step forecast of any VAR using the companion form.
In practice, it is simpler to compute the forecasts using the deviations form of the VAR since it

includes no intercept,

Ỹt = Φ1Ỹt−1 +Φ2Ỹt−2 + . . .+ΦPỸt−P + ε t ,

where µ = (Ik−Φ1− . . .−ΦP)
−1

Φ0 and Ỹt = Yt − µ are mean 0. The h-step forecasts from the
deviations form are computed using the recurrence

Et [Ỹt+h] = Φ1Et [Ỹt+h−1]+Φ2Et [Ỹt+h−2]+ . . .+ΦPEt [Ỹt+h−P].

starting at Et [Ỹt+1]. Using the forecast of Et [Ỹt+h], the h-step ahead forecast of Yt+h is constructed
by adding the long-run mean, Et [Yt+h] = µ +Et [Ỹt+h].

5.4.1 Example: Monetary Policy VAR

Forecasts from VARs incorporate information beyond the history of a single time series. Table 5.2
contains the relative Mean Square Error of out-of-sample forecasts for the three variables in the policy
VAR. Each set of forecasts is produced by recursively estimating model parameters using a minimum
of 50% of the available sample. Forecasts are produced for up to 8 quarters ahead. Each series is also
forecast using a univariate AR model.

The out-of-sample MSE of the forecasts from a model is defined

MSE = 1/T−h−R

T−h∑
t=R

(
Yt+h− Ŷt+h|t

)2

where R is the size of the initial in-sample period, Yt+h is the realization of the variable in period t+h,
and Ŷt+h|t is the h-step ahead forecast produced at time t. The relative MSE is defined as

Relative MSE =
MSE

MSEbm
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VAR AR
Horizon Series Restricted Unrestricted Restricted Unrestricted

Unemployment 0.522 0.520 0.520 0.521
1 Fed. Funds Rate 0.887 0.903 0.917 0.927

Inflation 0.869 0.868 0.839 0.839

Unemployment 0.716 0.710 0.743 0.745
2 Fed. Funds Rate 0.923 0.943 1.102 1.119

Inflation 1.082 1.081 1.030 1.030

Unemployment 0.872 0.861 0.962 0.965
4 Fed. Funds Rate 0.952 0.976 1.071 1.098

Inflation 1.000 0.999 0.998 0.998

Unemployment 0.820 0.806 0.971 0.977
8 Fed. Funds Rate 0.974 1.007 1.058 1.105

Inflation 1.001 1.000 0.998 0.997

Table 5.2: Relative out-of-sample Mean Square Error for forecasts between 1 and 8-quarters ahead.
The benchmark model is a constant for the unemployment rate and the inflation rate and a random
walk for the Federal Funds rate. Model parameters are recursively estimated, and forecasts are pro-
duced once 50% of the available sample. Model order is selected using the BIC.

where MSEbm is the out-of-sample MSE of a benchmark model. The Federal Funds rate is modeled
in levels, and so the benchmark model is a random walk. The other two series are differenced, and so
use the historical mean (an AR(0)) as the benchmark model. The number of lags in either the VAR or
the AR is selected by minimizing the BIC (see Section 5.5).

Each model is estimated using two methods, the standard estimator and a restricted estimator
where the long-run mean forced to match the in-sample mean. The restricted model is estimated in
two steps. First, the sample mean is subtracted, and then the model is estimated without a constant.
The forecasts are then constructed using the sample mean plus the forecast of the demeaned data.
The two-step estimator ensures that the model mean reverts to the historical average. The unrestricted
model jointly estimates the intercept with the parameters that capture the dynamics and so does not
revert (exactly) to the sample mean even over long horizons. These two method can produce qual-
itatively different forecasts in persistent time series due to differences in the average values of the
data used as lags (Ȳt− j = (T −P)−1∑T− j

t=P− j+1 Yt for j = 1,2, . . . ,P) and the average value of the

contemporaneous values (Ȳt = (T −P)−1∑T
t=P+1 Yt). The two-step estimator uses the same mean

value for both, Ȳ = T−1∑P
t=1 Yt .

The VAR performs well in this forecasting problem. It produced the lowest MSE in 7 of 12
horizon-series combinations. When it is not the best model, it performs only slightly worse than
the autoregression. Ultimately, the choice of a model to use in forecasting applications – either
multivariate or univariate – is an empirical question that is best answered using in-sample analysis
and pseudo-out-of-sample forecasting.
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5.5 Estimation and Identification

Understanding the dependence structure in VAR models requires additional measures of cross-variable
relationships. The cross-correlation function (CCF) and partial cross-correlation function (PCCF) ex-
tend the autocorrelation and partial autocorrelation functions used to identify the model order in a
single time series.

Definition 5.9 (Cross-correlation). The sth cross correlations between two covariance stationary series
{xt} and {Yt} are defined

ρxy,s =
E[(xt−µx)(Yt−s−µy)]√

V[xt ]V[Yt ]
(5.20)

and

ρyx,s =
E[(Yt−µy)(xt−s−µx)]√

V[xt ]V[Yt ]
(5.21)

where the order of the indices indicates the lagged variable, E[Yt ] = µy and E[xt ] = µx.

Cross-correlations, unlike autocorelations, are not symmetric in the order of the arguments. Partial
cross-correlations are defined using a similar extension of partial autocorrelation as the correlation
between xt and Yt−s controlling for Yt−1, . . . ,Yt−(s−1).

Definition 5.10 (Partial Cross-correlation). The partial cross-correlations between two covariance
stationary series {xt} and {Yt} are defined as the population values of the coefficients ϕxy,s in the
regression

xt = φ0 +φx1xt−1 + . . .+φxs−1xt−(s−1)+φy1Yt−1 + . . .+φys−1Yt−(s−1)+ϕxy,sYt−s + εx,t (5.22)

and ϕyx,s in the regression

Yt = φ0 +φy1Yt−1 + . . .+φys−1Yt−(s−1)+φx1xt−1 + . . .+φxs−1xt−(s−1)+ϕyx,sxt−s + εy,t (5.23)

where the order of the indices indicates which lagged variable. In a k-variable VAR, the PCCF of
series i with respect to series j is the population value of the coefficient ϕYiY js in the regression

Yit = φ0 +φ
′
1Yt−1 + . . .+φ

′
s−1 +ϕYiY jsYjt−s + εi

where φ j are 1 by k vectors of parameters.
The controls in the sth partial cross-correlation are included variables in a VAR(s-1). If the data are
generated by a VAR(P), then the sth partial cross-correlation is 0 whenever s > P. This behavior
is analogous to the behavior of the PACF in an AR(P) model. The PCCF is a useful diagnostic to
identify the order of a VAR and for verifying the order of estimated models when applied to residuals.

Figure 5.1 plots 1,000 simulated data points from a high-order bivariate VAR. One component
of the VAR follows a HAR(22) process with no spillovers from the other component. The second
component is substantially driven by both spillovers from the HAR and its own innovation. The
complete specification of the VAR(22) is
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Simulated data from a VAR(22)
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Figure 5.1: Simulated data from the VAR(22) in eq. (5.24). Both processes are stationary but highly
persistent and have a high degree of comovement.

[
xt
Yt

]
=

[
0.5 0.9
.0 0.47

][
xt−1
Yt−1

]
+

5∑
i=2

[
0 0
0 0.06

][
xt−i
Yt−i

]
+

22∑
j=6

[
0 0
0 0.01

][
xt− j
Yt− j

]
+

[
εx,t
εy,t

]
.

(5.24)
Figure 5.2 contains plots of the theoretical ACF and CCF (cross-correlation function) of this VAR.
Both ACFs and CCFs indicate that the series are highly persistent. They also show that both variables
are a strong predictor of either at any lag since the squared correlation can be directly interpretable
as an R2. Figure 5.3 contains plots of the partial auto- and cross-correlation function. These are
markedly different from the ACFs and CCFs. The PACF and PCCF of x both cut off after one lag.
This happens since x has 0 coefficients on all lagged values after the first. The PACF and PCCF of y
are more complex. The PACF resembles the step-function of the coefficients in the HAR model. It
cuts off sharply after 22 lags since this is the order of the VAR. The PCCF of y is also non-zero for
many lags, and only cuts off after 21. The reduction in the cut-off is due to the structure of the VAR
where x is only exposed to the lagged value of y at the first lag, and so the dependence is reduced by
one.

These new definitions enable the key ideas of the Box-Jenkins methodology to be extended to vec-
tor processes. While this extension is technically possible, using the ACF, PACF, CCF, and PCCF
to determine the model lag length is difficult. The challenge of graphical identification of the or-
der is especially daunting in specifications with more than two variables since there are many de-
pendence measures to inspect – a k-dimensional stochastic process has 2

(
k2− k

)
distinct auto- and

cross-correlation functions.
The standard approach is to adopt the approach advocated in Sims (1980). The VAR specification

should include all variables that theory indicates are relevant, and the lag length should be chosen so
that the model has a high likelihood of capturing all of the dynamics. Once the maximum value of
the lag length is chosen, a general-to-specific search can be conducted to reduce the model order, or
an information criterion can be used to select an appropriate lag length. In a VAR, the Akaike IC,
Hannan and Quinn (1979) IC and the Schwarz/Bayesian IC are
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Auto and Cross Correlations
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Figure 5.2: The four panels contain the ACFs and CCFs of the VAR(22) process in eq. (5.24).

AIC: ln |Σ̂(P)|+ k2P
2
T

HQIC: ln |Σ̂(P)|+ k2P
2ln lnT

T

BIC: ln |Σ̂(P)|+ k2P
lnT
T

where Σ̂(P) is the covariance of the residuals estimated using a VAR(P) and | · | is the determinant.9 All
models must use the same values on the left-hand-side irrespective of the lags included when choosing
the lag length. In practice, it is necessary to adjust the sample when estimating the parameters of
models with fewer lags than the maximum allowed. For example, when comparing models with up to
2 lags, the largest model is estimated by fitting observations 3,4, . . . ,T since two lags are lost when
constructing the right-hand-side variables. The 1-lag model should also fit observations 3,4, . . . ,T
and so observation 1 is excluded from the model since it is not needed as a lagged variable.

9ln |Σ̂| is, up to an additive constant, the Gaussian log-likelihood divided by T . These three information criteria are all
special cases of the usual information criteria for log-likelihood models which take the form −L+PIC where PIC is the
penalty which depends on the number of estimated parameters in the model and the information criterion.
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Partial Auto and Cross Correlations
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Figure 5.3: The four panels contain the PACFs and PCCFs of the VAR(22) process in eq. (5.24).
Values marked with a red x are exactly 0.

The lag length should be chosen to minimize one of the criteria. The BIC has the most substantial
penalty term and so always chooses a (weakly) smaller model than the HQIC. The AIC has the small-
est penalty, and so selects the largest model of the three ICs. Ivanov and Kilian (2005) recommend
the AIC for monthly models and the HQIC for quarterly models unless the sample size is less than
120 quarters. In short samples, the BIC is preferred. Their recommendation is based on the accuracy
of the impulse response function, and so may not be ideal in other applications, e.g., forecasting.

Alternatively, a likelihood ratio test can be used to test whether to specifications are equivalent.
The LR test statistic is

(T −P2k2)
(
ln |Σ̂(P1)|− ln |Σ̂(P2)|

) A∼ χ
2
(P2−P1)k2 ,

where P1 is the number of lags in the restricted (smaller) model, P2 is the number of lags in the
unrestricted (larger) model and k is the dimension of Yt . Since model 1 is a restricted version of
model 2, its covariance is larger and so this statistic is always positive. The −P2k2 term in the log-
likelihood is a degree of freedom correction that generally improves small-sample performance of
the test. Ivanov and Kilian (2005) recommend against using sequential likelihood ratio testing in lag
length selection.
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Lag Length AIC HQIC BIC LR P-val

0 4.014 3.762 3.605 925 0.000
1 0.279 0.079 0.000HN 39.6 0.000
2 0.190 0.042 0.041 40.9 0.000
3 0.096 0.000H 0.076 29.0 0.001
4 0.050H 0.007 0.160 7.34 0.602H

5 0.094 0.103 0.333 29.5 0.001
6 0.047 0.108 0.415 13.2 0.155
7 0.067 0.180 0.564 32.4 0.000
8 0.007 0.172N 0.634 19.8 0.019
9 0.000N 0.217 0.756 7.68 0.566N

10 0.042 0.312 0.928 13.5 0.141
11 0.061 0.382 1.076 13.5 0.141
12 0.079 0.453 1.224 – –

Table 5.3: Normalized values for the AIC, HQIC, and BIC in a Monetary Policy VAR. The informa-
tion criteria are normalized by subtracting the smallest value from each column. The LR and P-value
in each row are for a test with the null that the coefficient on lag l+1 are all zero (H0 : Φl+1 = 0) and
the alternative H1 : Φl+1 6= 0. Values marked with H indicate the lag length selected using a specific-
to-general search. Values marked with N indicate the lag length selected using general-to-specific.

5.5.1 Example: Monetary Policy VAR

The Monetary Policy VAR is used to illustrate lag length selection. The information criteria, log-
likelihoods, and p-values from the LR tests are presented in Table 5.3. This table contains the AIC,
HQIC, and BIC values for lags 0 (no dynamics) through 12 as well as likelihood ratio test results for
testing l lags against l +1. Note that the LR and P-value corresponding to lag l test the null that the
fit using l lags is equivalent to the fit using l + 1 lags. Using the AIC, 9 lags produces the smallest
value and is selected in a general-to-specific search. A specific-to-general search stops at 4 lags since
the AIC of 5 lags is larger than the AIC of 4. The HQIC chooses 3 lags in a specific-to-general
search and 9 in a general-to-specific search. The BIC selects a single lag irrespective of the search
direction. A general-to-specific search using the likelihood ratio chooses 9 lags, and a hypothesis-
test-based specific-to-general procedure chooses 4. The specific-to-general stops at 4 lags since the
null H0 : P = 4 tested against the alternative that H1 : P = 5 has a p-value of 0.602, which indicates
that these models provide similar fits of the data.

Finally, the information criteria are applied in a “global search” that evaluates models using every
combination of lags up to 12. This procedure fits a total of 4096 VARs (which only requires a few
seconds on a modern computer), and the AIC, HQIC, and the BIC are computed for each.10 Using
this methodology, the AIC search selected lags 1–3 and 7–9, the HQIC selects lags 1–3, 6, and 8, and
the BIC continues to select a parsimonious model that includes only the first lag. Search procedures
of this type are computationally viable for checking up to 20 lags.

10For a maximum lag length of L, 2L models must be estimated.
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5.6 Granger causality

Granger causality (GC, also known as prima facia causality) is the first concept exclusive to vector
analysis. GC is the standard method to determine whether one variable is useful in predicting another
and evidence of Granger causality it is a good indicator that a VAR, rather than a univariate model, is
needed.

Granger causality is defined in the negative.

Definition 5.11 (Granger causality). A scalar random variable xt does not Granger cause Yt if E[Yt |xt−1,Yt−1,xt−2,Yt−2, . . .]=
E[Yt |,Yt−1,Yt−2, . . .].11 That is, xt does not Granger cause Yt if the forecast of Yt is the same whether
conditioned on past values of xt or not.

Granger causality can be simply illustrated in a bivariate VAR.[
xt
Yt

]
=

[
φ11,1 φ12,1
φ21,1 φ22,1

][
xt−1
Yt−1

]
+

[
φ11,2 φ12,2
φ21,2 φ22,2

][
xt−2
Yt−2

]
+

[
ε1,t
ε2,t

]
In this model, if φ21,1 = φ21,2 = 0 then xt does not Granger cause Yt . Note that xt not Granger causing
Yt says nothing about whether Yt Granger causes xt .

An important limitation of GC is that it does not account for indirect effects. For example, suppose
xt and Yt are both Granger caused by Zt . xt is likely to Granger cause Yt in a model that omits Zt if
E[Yt |Yt−1,xt−1, . . .] 6= E[Yt |Yt−1, . . .] even though E[Yt |Yt−1,Zt−1,xt−1, . . .] = E[Yt |Yt−1,Zt−1, . . .].

Testing

Testing Granger causality in a VAR(P) is implemented using a likelihood ratio test. In the VAR(P),

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t ,

Yj,t does not Granger cause Yi,t if φi j,1 = φi j,2 = . . . = φi j,P = 0. The likelihood ratio test statistic
for testing the null H0 : φi j,m = 0, ∀m ∈ {1,2, . . . ,P} against the alternative H1 : φi j,m 6= 0 ∃m ∈
{1,2, . . . ,P} is

(T − (Pk2− k))
(
ln |Σ̂r|− ln |Σ̂u|

) A∼ χ
2
P

where Σr is the estimated residual covariance when the null of no Granger causation is imposed
(H0 : φi j,1 = φi j,2 = . . .= φi j,P = 0) and Σu is the estimated covariance in the unrestricted VAR(P).12

5.6.1 Example: Monetary Policy VAR

The monetary policy VAR is used to illustrate testing Granger causality. Table 5.4 contains the results
of Granger causality tests in the monetary policy VAR with three lags (as chosen by the HQIC). Tests
of a variable causing itself have been omitted since these are not informative about the need for a

11Technically, this definition is for Granger causality in the mean. Other definition exist for Granger causality in the
variance (replace conditional expectation with conditional variance) and distribution (replace conditional expectation with
conditional distribution).

12The multiplier in the test is a degree of freedom adjusted factor. There are T data points, and there are Pk2− k
parameters in the restricted model.



336 Analysis of Multiple Time Series

Fed. Funds Rate Inflation Unemployment
Exclusion P-val Stat P-val Stat P-val Stat

Fed. Funds Rate – – 0.001 13.068 0.014 8.560
Inflation 0.001 14.756 – – 0.375 1.963
Unemployment 0.000 19.586 0.775 0.509 – –
All 0.000 33.139 0.000 18.630 0.005 10.472

Table 5.4: Tests of Granger causality. This table contains tests where the variable on the left-hand
side is excluded from the regression for the variable along the top. Since the null is no GC, rejection
indicates a relationship between past values of the variable on the left and contemporaneous values of
variables on the top.

multivariate model. The table contains tests whether the variables in the left-hand column Granger
Cause the variables labeled across the top. Each row contains a p-value indicating significance using
standard test sizes (5 or 10%), and so each variable causes at least one other variable. Column-by-
column examination demonstrated that every variable is caused by at least one other variable. The
final row labeled All tests the null that a univariate model performs as well as a multivariate model by
restricting all variable other than the target to have zero coefficients. This test further confirms that
the VAR is required for each component.

5.7 Impulse Response Functions

In the univariate world, the MA(∞) representation of an ARMA is sufficient to understand how a
shock decays. When analyzing vector data, this is no longer the case. A shock to one series has an
immediate effect on that series, but it can also affect the other variables in the system which, in turn,
feed back into the original variable. It is not possible to visualize the propagation of a shock using
only the estimated parameters in a VAR. Impulse response functions simplify this task by providing
a visual representation of shock propagation.

5.7.1 Defined

Definition 5.12 (Impulse Response Function). The impulse response function of Yi, an element of Y,
with respect to a shock in ε j, an element of ε , for any j and i, is defined as the change in Yit+s, s≥ 0
for a one standard deviation shock in ε j,t .

This definition is somewhat difficult to parse and the impulse response function easier to under-
stand using the vector moving average (VMA) representation of a VAR.13 When Yt is covariance
stationary then it must have a VMA representation,

Yt = µ + ε t +Ξ1ε t−1 +Ξ2ε t−2 + . . .

13Recall that a stationary AR(P) can also be transformed into a MA(∞). Transforming a stationary VAR(P) into a
VMA(∞) is the multivariate time-series analogue.
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Using this VMA, the impulse response of Yi with respect to a shock in ε j at period h is

IRFh = σ jΞhe j (5.25)

where e j is a vector of 0s with 1 in position j, e j =

0, . . . ,0︸ ︷︷ ︸
j−1

,1,0, . . . ,0︸ ︷︷ ︸
k− j


′

and where σ j is the stan-

dard deviation of ε j. These impulse responses are then
{

σ j,σ jΞ
[ii]
1 ,σ jΞ

[ii]
2 ,σ jΞ

[ii]
3 , . . .

}
if i = j and{

0,σ jΞ
[i j]
1 ,σ jΞ

[i j]
2 ,σ jΞ

[i j]
3 , . . .

}
otherwise where Ξ

[i j]
m is the element in row i and column j of Ξm. The

coefficients of the VMA can be computed from the VAR using the relationship

Ξ j = Φ1Ξ j−1 +Φ2Ξ j−2 + . . .+ΦPΞ j−P

where Ξ0 = Ik and Ξm = 0 for m < 0. For example, in a VAR(2),

Yt = Φ1Yt−1 +Φ2Yt−2 + ε t ,

Ξ0 = Ik, Ξ1 = Φ1, Ξ2 = Φ
2
1 +Φ2, and Ξ3 = Φ

3
1 +Φ1Φ2 +Φ2Φ1.

5.7.2 Orthogonal Impulse Response Functions

The previous discussion assumed shocks are uncorrelated so that a shock to component j had no
effect on the other components of the error. This assumption is problematic since the shocks are
often correlated, and so it is not possible to change one in isolation. The model shocks have covari-
ance Cov [ε t ] = Σ, and so a set of orthogonal shocks can be produced as η t = Σ

−1/2
ε t . Using these

uncorrelated and standardized shocks, the VMA is now

Yt = µ + ε t +Ξ1Σ
1/2

Σ
−1/2

ε t−1 +Ξ2Σ
1/2

Σ
−1/2

ε t−2 + . . .

= µ +Σ
1/2

η t + Ξ̃1η t−1 + Ξ̃2η t−2 + . . .

where Ξ̃m = ΞmΣ
1/2. The impulse response for a shock to series j in period h is Σ

1/2e j in period 0,

OIRFh = Ξ̃he j (5.26)

for h≥ 1. If Σ is diagonal, then these impulse responses are identical to the expression in eq. (5.25).
In practice, the Cholesky factor is used as the square root of the covariance matrix. The Cholesky

factor is a lower triangular matrix which imposes a de facto ordering to the shocks. For example, if

Σ =

[
1 1
1 4

]
,

then the Cholesky factor is

Σ
1/2
C =

[
1 0
1 2

]
so that Σ = Σ

1/2
C

(
Σ

1/2
C

)′
. Shocking element j has an effect of every series the appears after j ( j, . . . ,k)

but not on the first j−1 (1, . . . , j−1). In some contexts, it is plausible that there is a natural order to
the shocks since some series are faster than others.
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In the monetary policy VAR, it is commonly assumed that changes in the Federal Funds rate
immediately spillover to unemployment and inflation, but that unemployment and inflation only feed-
back into the Federal Funds rate with a lag. Similarly, it is commonly assumed that changes in
unemployment affect inflation immediately, but that inflation does not have a contemporaneous im-
pact on unemployment. When using the Cholesky factor, the impulse responses depend on the order
of the variables in the VAR. Additionally, in many important applications – for example when a VAR
includes multiple financial variables – then there is no plausible method to order the shocks since
financial variables are likely to react simultaneously to a shock.

The leading alternative to the using the Cholesky factor is to use a Generalized Impulse Response
function (Pesaran and Shin, 1998). This method is invariant to the order of the variables since it does
not use a matrix square root. The GIRF is justified as the difference measuring between the conditional
expectation of Yt+h given shock j is one standard deviation and the conditional expectation of Yt+h,

Et
[
Yt+h|ε j = σ j

]
−Et [Yt+h] .

When the VAR is driven by normally distributed errors, this expression is

GIRFh = σ
−1
j ΞhΣe j. (5.27)

The GIRF is equivalently expressed as

Ξh
[
σ1 j,σ2 j, . . . ,σk j

]′
/σ j j×σ j = Ξh

[
β1 j,β2 j, . . . ,βk j

]′
σ j

where βi j is the population value of th regression coefficient of regressing εit on ε jt .

5.7.3 Example: Impulse Response in the Monetary Policy VAR

The monetary policy VAR is used to illustrate impulse response functions. Figure 5.4 contains the
impulse responses of the three variable to the three shocks. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky, and it is assumed that
the shock to the Federal Funds Rate impacts all variables immediately, the shock the unemployment
affects inflation immediately but not the Federal Funds rate, and that the inflation shock has no im-
mediate effect. The unemployment rate is sensitive to changes in the Federal Funds rate, and one
standard deviation shock reduces the change (∆UNEMPt) in the unemployment rate by up to 0.15%
as the impulse evolves.

5.7.4 Confidence Intervals

Impulse response functions, like the parameters of the VAR, are estimated quantities and subject to
statistical variation. Confidence bands are used to determine whether an impulse response different
from zero. Since the parameters of the VAR are asymptotically normally distributed (as long as it
is stationary and the innovations are white noise), the impulse responses also asymptotically normal,
which follows as an application of the δ -method. The analytical derivation of the covariance of the
impulse response function is tedious (see Section 11.7 in Hamilton (1994) for details). Instead, two
computational methods to construct confidence bands of impulse response functions are described:
Monte Carlo and bootstrap.
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Impulse Response Function
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Figure 5.4: Impulse response functions for 16 quarters. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky so that a shock to the
Federal Funds rate spills over immediately to the other two variables, an unemployment shock spills
over to inflation, and an inflation shock has no immediate effect on the other series.

5.7.4.1 Monte Carlo Confidence Intervals

Monte Carlo confidence intervals come in two forms, one that directly simulates Φ̂i from its asymp-
totic distribution and one that simulates the VAR and draws Φ̂i as the result of estimating the unknown
parameters in the simulated VAR. The direct sampling method is simple:
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1. Compute θ̂ from the data and estimate the covariance matrix Λ̂ in the asymptotic distribution√
T (θ̂ −θ)

A∼ N(0, Λ̂) where θ is the collection of all model parameters, Φ0,Φ1, . . . ,ΦP and Σ.

2. Using θ̂ and Λ̂, generate simulated values Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b from the asymptotic distri-
bution as θ̂ +Λ̂

1/2
ε where ε

i.i.d.∼ N(0,Ik2(P+1)). These are i.i.d.draws from a N(θ̂ , Λ̂) distribution.

3. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̂ jb} where j = 1,2, . . . ,h.
Save these values.

4. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

5. For each impulse response and each horizon, sort the responses. The 5th and 95th percentile of
this distribution are the confidence intervals.

The second Monte Carlo method simulates data assuming the errors are i.i.d.normally distributed,
and then uses these values to produce a draw from the joint distribution of the model parameters. This
method avoids the estimation of the parameter covariance matrix Λ̂ in the alternative Monte Carlo
method.

1. Compute Φ̂ from the initial data and estimate the residual covariance Σ̂.

2. Using Φ̂ and Σ̂, simulate a time-series {Ỹt} with as many observations as the original data.
These can be computed directly using forward recursion

Ỹt = Φ̂0 + Φ̂1Yt−1 + . . .+ Φ̂PYt−P + Σ̂
1/2

ε t

where ε
i.i.d.∼ N(0,Ik) are multivariate standard normally distributed. The P initial values are

set to a consecutive block of the historical data chosen at random, Yτ ,Yτ+1, . . . ,Yτ+P−1 for
τ ∈ {1, . . . ,T −P}.

3. Using {Ỹt}, estimate the model parameters Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b.

4. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̂ jb} where j = 1,2, . . . ,h.
Save these values.

5. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

6. For each impulse response for each horizon, sort the impulse responses. The 5th and 95th

percentile of this distribution are the confidence intervals.

Of these two methods, the former should be preferred since the assumption of i.i.d.normally dis-
tributed errors in the latter may be unrealistic, especially when modeling financial data.
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5.7.4.2 Bootstrap Confidence Intervals

The bootstrap is a simulation-based method that resamples from the observed data produce a simu-
lated data set. The idea behind this method is simple: if the residuals are realizations of the actual
error process, one can use them directly to simulate this distribution rather than making an arbitrary
assumption about the error distribution (e.g., i.i.d.normal). The procedure is essentially identical to
the second Monte Carlo procedure outlined above:

1. Compute Φ̂ from the initial data and estimate the residuals ε̂ t .

2. Using ε̂ t , compute a new series of residuals ε̃ t by sampling, with replacement, from the original
residuals. The new series of residuals can be described

{ε̂u1, ε̂u2, . . . , ε̂uT }

where ui are i.i.d.discrete uniform random variables taking the values 1,2, . . . ,T . In essence,
the new set of residuals is just the old set of residuals reordered with some duplication and
omission.14

3. Using Φ̂ and {ε̂u1, ε̂u2, . . . , ε̂uT }, simulate a time-series {Ỹt} with as many observations as the
original data. These can be computed directly using the VAR

Ỹt = Φ̂0 + Φ̂1Yt−1 + . . .+ Φ̂PYt−P + ε̂ut

4. Using {Ỹt}, compute estimates of Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b from a VAR.

5. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̆ jb} where j = 1,2, . . . ,h.
Save these values.

6. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

7. For each impulse response for each horizon, sort the impulse responses. The 5th and 95th

percentile of this distribution are the confidence intervals.

5.8 Cointegration

Many economic time-series are nonstationarity and so standard VAR analysis which assumes all
series are covariance stationary is unsuitable. Cointegration extends stationary VAR models to non-
stationary time series. Cointegration analysis also provides a method to characterize the long-run
equilibrium of a system of non-stationary variables. Before more formally examining cointegration,
consider the consequences if two economic variables that have been widely documented to contain
unit roots, consumption and income, have no long-run relationship. Without a stable equilibrium
relationship, the values of these two variables would diverge over time. Individuals would either have
extremely high saving rates – when income is far above consumption, or become incredibly indebted.

14This is one version of the bootstrap and is appropriate for homoskedastic data. If the data are heteroskedastic, some
form of block bootstrap is needed.
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These two scenarios are implausible, and so there must be some long-run (or equilibrium) relationship
between consumption and income. Similarly, consider the relationship between the spot and future
price of oil. Standard finance theory dictates that future’s price, ft , is a conditionally unbiased estimate
of the spot price in period t +1, st+1 (Et [st+1] = ft , assuming various costs such as the risk-free rate
and storage are 0). Additionally, today’s spot price is also an unbiased estimate of tomorrow’s spot
price (Et [st+1] = st). However, both the spot and future price contain unit roots. Combining these two
identities reveals a cointegrating relationship: st − ft should be stationary even if the spot and future
prices contain unit roots.15

In stationary time-series, whether scalar or when the multiple processes are linked through a VAR,
the process is self-equilibrating; given enough time, a process reverts to its unconditional mean. In a
VAR, both the individual series and linear combinations of the series are stationary. The behavior of
cointegrated processes is meaningfully different. Each component of a cointegrated process contains
a unit root, and so has shocks with a permanent impact. However, when combined with another series,
a cointegrated pair revert towards one another. A cointegrated pair is mean reverting to a stochastic
trend (a unit root process), rather than to fixed value.

Cointegration and error correction provide a set of tools to analyze long-run relationships and
short-term deviations from the equilibria. Cointegrated time-series exhibit temporary deviations from
a long-run trend but are ultimately mean reverting to this trend. The Vector Error Correction Model
(VECM) explicitly includes the deviation from the long-run relationship when modeling the short-
term dynamics of the time series to push the components towards their long-run relationship.

5.8.1 Definition

Recall that a first-order integrated process is not stationary in levels but is stationary in differences.
When this is the case, Yt is I(1) and ∆Yt = Yt −Yt−1 is I(0). Cointegration builds on this structure
by defining relationships across series which transform multiple I(1) series into I(0) series without
using time-series differences.

Definition 5.13 (Bivariate Cointegration). Let {xt} and {Yt} be two I(1) series. These series are
cointegrated if there exists a vector β with both elements non-zero such that

β
′[xt Yt ]

′ = β1xt−β2Yt ∼ I(0) (5.28)

This definition states that there exists a nontrivial linear combination of xt and Yt that is station-
ary. This feature – a stable relationship between the two series, is a powerful tool in the analysis of
nonstationary data. When treated individually, the data are extremely persistent; however, there is a
well-behaved linear combination with transitory shocks that is stationary. Moreover, in many cases,
this relationship takes a meaningful form such as Yt− xt .

Cointegrating relationships are only defined up to a non-zero constant. For example if xt −βYt
is a cointegrating relationship, then 2xt − 2βYt = 2(xt − βYt) is also a cointegrating relationship.
The standard practice is to normalize the vector on one of the variables so that its coefficient is
unity. For example, if β1xt − β2Yt is a cointegrating relationship, the two normalized versions are
xt−β2/β1Yt = xt− β̃Yt and Yt−β1/β2xt = Yt− β̈xt .

The complete definition in the general case is similar, albeit slightly more intimidating.

15This assumes the horizon is short.
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Nonstationary and Stationary VAR(1)s
Cointegration (Φ11) Independent Unit Roots(Φ12)

20 40 60 80 100 20 40 60 80 100

Persistent, Stationary (Φ21) Anti-persistent, Stationary(Φ22)

20 40 60 80 100 20 40 60 80 100

Figure 5.5: A plot of four time-series that all begin at the same initial value and use the same shocks.
All data are generated by Yt = Φi jYt−1 + ε t where Φi j varies across the panels.

Definition 5.14 (Cointegration). A set of k variables Yt are cointegrated if at least two series are I(1)
and there exists a non-zero, reduced rank k by k matrix π such that

πYt ∼ I(0). (5.29)

The non-zero requirement is obvious: if π = 0 then πYt = 0 and this time series is trivially I(0).
The second requirement that π is reduced rank is not. This technical requirement is necessary since
whenever π is full rank and πYt ∼ I(0), the series must be the case that Yt is also I(0). However, for
variables to be cointegrated, they must be integrated. If the matrix is full rank, the common unit roots
cannot cancel, and πYt must have the same order of integration as Y. Finally, the requirement that at
least two of the series are I(1) rules out the degenerate case where all components of Yt are I(0), and
allows Yt to contain both I (0) and I(1) random variables. If Yt contains both I(0) and I(1) random
variables, then the long-run relationship only depends on the I(1) random variable.

For example, suppose the components of Yt = [Y1t ,Y2t ]
′ are cointegrated so that Y1t − βY2t is

stationary. One choice for π is

π =

[
1 −β

1 −β

]
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To begin developing an understanding of cointegration, examine the plots in Figure 5.5. These four
plots show two nonstationary processes and two stationary processes all initialized at the same value
and using the same shocks. These plots contain simulated data from VAR(1) processes with different
parameters, Φi j.

Yt = Φi jYt−1 + ε t ,

Φ11 =

[
.8 .2
.2 .8

]
, Φ12 =

[
1 0
0 1

]
,

λi = 1,0.6 λi = 1,1

Φ21 =

[
.7 .2
.2 .7

]
, Φ22 =

[
−.3 .3
.1 −.2

]
,

λi = 0.9,0.5 λi =−0.43,−0.06

where λi are the eigenvalues of the parameter matrices. The nonstationary processes both have unit
eigenvalues. The eigenvalues in the stationary processes are all less than 1 (in absolute value). The
cointegrated process has a single unit eigenvalue while the independent unit root process has two. In
a VAR(1), the number of unit eigenvalues plays a crucial role in cointegration and higher dimension
cointegrated systems may contain between 1 and k− 1 unit eigenvalues. The number of unit eigen-
values shows the count of the unit root “drivers” in the system of equations.16 The picture presents
evidence of the most significant challenge in cointegration analysis: it can be challenging to tell when
two series are cointegrated, a feature in common with unit root testing of a single time series.

5.8.2 Vector Error Correction Models (VECM)

The Granger representation theorem provides a key insight into cointegrating relationships. Granger
demonstrated that if a system is cointegrated then there exists a vector error correction model with a
reduced rank coefficient matrix and if there is a VECM with a reduced rank coefficient matrix then the
system must be cointegrated. A VECM describes the short-term deviations from the long-run trend
(a stochastic trend/unit root). The simplest VECM is[

∆xt
∆Yt

]
=

[
π11 π12
π21 π22

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
(5.30)

which states that changes in xt and Yt are related to the levels of xt and Yt through the cointe-
grating matrix (π). However, since xt and Yt are cointegrated, there exists β such that xt − βYt =[

1 −β
][

xt Yt
]
~I(0) . Substituting this value into this equation, equation 5.30 is equivalently

expressed as [
∆xt
∆Yt

]
=

[
α1
α2

][
1 −β

][ xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
. (5.31)

The short-run dynamics evolve according to

∆xt = α1(xt−1−βYt−1)+ ε1,t (5.32)

16In higher order VAR models, the eigenvalues must be computed from the companion form.
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and
∆Yt = α2(xt−1−βYt−1)+ ε2,t . (5.33)

The important elements of this VECM can be clearly labeled: xt−1− βYt−1 is the deviation from
the long-run trend (also known as the equilibrium correction term) and α1 and α2 are the speed of
adjustment parameters. VECMs impose one restriction of the αs: they cannot both be 0 (if they
were, π would also be 0). In its general form, an VECM can be augmented to allow past short-run
deviations to also influence present short-run deviations and to include deterministic trends. In vector
form, an VECM(P) evolves according to

∆Yt = δ 0 +πYt−1 +π1∆Yt−1 +π2∆Yt−2 + . . .++πP∆Yt−P + ε t

where πYt−1 = αβ
′Yt captures the cointegrating relationship, δ 0 represents a linear time trend in the

original data (levels) and π j∆Yt− j, j = 1,2, . . . ,P capture short-run dynamics around the stochastic
trend.

5.8.2.1 The Mechanics of the VECM

Any cointegrated VAR can be transformed into an VECM. Consider a simple cointegrated bivariate
VAR(1) [

xt
Yt

]
=

[
.8 .2
.2 .8

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
To transform this VAR to an VECM, begin by subtracting [xt−1 Yt−1]

′ from both sides

[
xt
Yt

]
−
[

xt−1
Yt−1

]
=

[
.8 .2
.2 .8

][
xt−1
Yt−1

]
−
[

xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
(5.34)[

∆xt
∆Yt

]
=

([
.8 .2
.2 .8

]
−
[

1 0
0 1

])[
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
[

∆xt
∆Yt

]
=

[
−.2 .2
.2 −.2

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
[

∆xt
∆Yt

]
=

[
−.2
.2

][
1 −1

][ xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
In this example, the speed of adjustment parameters are−.2 for ∆xt and .2 for ∆Yt and the normalized
(on xt) cointegrating relationship is [1 −1].
In the general multivariate case, a cointegrated VAR(P) can be turned into an VECM by recursive
substitution. Consider a cointegrated VAR(3),

Yt = Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−3 + ε t

This system is cointegrated if at least one but fewer than k eigenvalues of π = Φ1 +Φ2 +Φ3− Ik are
not zero. To begin the transformation, add and subtract Φ3Yt−2 to the right side
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Yt = Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−2−Φ3Yt−2 +Φ3Yt−3 + ε t

= Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−2−Φ3∆Yt−2 + ε t

= Φ1Yt−1 +(Φ2 +Φ3)Yt−2−Φ3∆Yt−2 + ε t .

Next, add and subtract (Φ2 +Φ3)Yt−1 to the right-hand side,

Yt = Φ1Yt−1 +(Φ2 +Φ3)Yt−1− (Φ2 +Φ3)Yt−1 +(Φ2 +Φ3)Yt−2−Φ3∆Yt−2 + ε t

= Φ1Yt−1 +(Φ2 +Φ3)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t

= (Φ1 +Φ2 +Φ3)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t .

Finally, subtract Yt−1 from both sides,

Yt−Yt−1 = (Φ1 +Φ2 +Φ3)Yt−1−Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t

∆Yt = (Φ1 +Φ2 +Φ3− Ik)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t .

The final step is to relabel the equation in terms of π notation,

Yt−Yt−1 = (Φ1 +Φ2 +Φ3− Ik)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t (5.35)
∆Yt = πYt−1 +π1∆Yt−1 +π2∆Yt−2 + ε t .

which is equivalent to

∆Yt = αβ
′Yt−1 +π1∆Yt−1 +π2∆Yt−2 + ε t . (5.36)

where α contains the speed of adjustment parameters, and β contains the cointegrating vectors. This
recursion can be used to transform any VAR(P), whether cointegrated or not,

Yt−1 = Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

into its VECM from

∆Yt = πYt−1 +π1∆Yt−1 +π2∆Yt−2 + . . .+πP−1∆Yt−P+1 + ε t

using the identities π =−Ik +
∑P

i=1 Φi and π p =−
∑P

i=p+1 Φi.17

17Stationary VAR(P) models can be written as VECM with one important difference. When {Yt} is covariance sta-
tionary, then π must have rank k. In cointegrated VAR models, the coefficient π in the VECM always has rank between
1 and k− 1. If π has rank 0, then the VAR(P) contains k distinct unit roots and it is note possible to construct a linear
combination that is I(0).
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5.8.2.2 Cointegrating Vectors

The key to understanding cointegration in systems with three or more variables is to note that the
matrix which governs the cointegrating relationship, π , can always be decomposed into two matrices,

π = αβ
′

where α and β are both k by r matrices where r is the number of cointegrating relationships. For
example, suppose the parameter matrix in an VECM is

π =

 0.3 0.2 −0.36
0.2 0.5 −0.35
−0.3 −0.3 0.39


The eigenvalues of this matrix are .9758, .2142 and 0. The 0 eigenvalue of π indicates there are two
cointegrating relationships since the number of cointegrating relationships is rank(π). Since there are
two cointegrating relationships, β can be normalized to be

β =

 1 0
0 1
β1 β2


and α has 6 unknown parameters. αβ

′ combine to produce

π =

 α11 α12 α11β1 +α12β2
α21 α22 α21β1 +α22β2
α31 α32 α31β1 +α32β2

 ,
and α can be determined using the left block of π . Once α is known, any two of the three remaining
elements can be used to solve of β1 and β2. Appendix A contains a detailed illustration of the steps
used to find the speed of adjustment coefficients and the cointegrating vectors in trivariate cointegrated
VARs.

5.8.3 Rank and the number of unit roots

The rank of π is the same as the number of distinct cointegrating vectors. Decomposing π = αβ
′

shows that if π has rank r, then α and β must both have r linearly independent columns. α contains the
speed of adjustment parameters, and β contains the cointegrating vectors. There are r cointegrating
vectors, and so the system contains m = k− r distinct unit roots. This relationship holds since when
there are k variables and m distinct unit roots, it is always possible to find r distinct linear combinations
eliminate the unit roots and so are stationary.

Consider a trivariate cointegrated system driven by either one or two unit roots. Denote the under-
lying unit root processes as w1,t and w2,t . When there is a single unit root driving all three variables,
the system can be expressed

Y1,t = κ1w1,t + ε1,t

Y2,t = κ2w1,t + ε2,t

Y3,t = κ3w1,t + ε3,t
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where ε j,t is a covariance stationary error (or I(0), but not necessarily white noise).
In this system there are two linearly independent cointegrating vectors. First consider normalizing

the coefficient on Y1,t to be 1 and so in the equilibrium relationship Y1,t−β1Y2,t−β1Y3,t must satisfy

κ1 = β1κ2 +β2κ3.

This equality ensures that the unit roots are not present in the difference. This equation does not have
a unique solution since there are two unknown parameters. One solution is to further restrict β1 = 0
so that the unique solution is β2 = κ1/κ3 and an equilibrium relationship is Y1,t − (κ1/κ3)Y3,t . This
alternative normalization produces a cointegrating vector since

Y1,t−
κ1

κ3
Y3,t = κ1w1,t + ε1,t−

κ1

κ3
κ3w1,t−

κ1

κ3
ε3,t = ε1,t−

κ1

κ3
ε3,t

Alternatively one could normalize the coefficient on Y2,t and so the equilibrium relationship Y2,t −
β1Y1,t−β2Y3,t would require

κ2 = β1κ1 +β2κ3.

This equation is also not identified since there are two unknowns and one equation. To solve assume
β1 = 0 and so the solution is β2 = κ2/κ3, which is a cointegrating relationship since

Y2,t−
κ2

κ3
Y3,t = κ2w1,t + ε2,t−

κ2

κ3
κ3w1,t−

κ2

κ3
ε3,t = ε2,t−

κ2

κ3
ε3,t

These solutions are the only two needed since any other definition of the equilibrium must be a
linear combination of these. The redundant equilibrium is constructed by normalizing on Y1,t to define
an equilibrium of the form Y1,t−β1Y2,t−β2Y3,t . Imposing β3 = 0 to identify the solution, β1 = κ1/κ2
which produces the equilibrium condition

Y1,t−
κ1

κ2
Y2,t .

This equilibrium is already implied by the first two,

Y1,t−
κ1

κ3
Y3,t and Y2,t−

κ2

κ3
Y3,t

and can be seen to be redundant since

Y1,t−
κ1

κ2
Y2,t =

(
Y1,t−

κ1

κ3
Y3,t

)
− κ1

κ2

(
Y2,t−

κ2

κ3
Y3,t

)
In this system of three variables and one common unit root the set of cointegrating vectors can be
expressed as

β =

 1 0
0 1
κ1
κ3

κ2
κ3

 .
When a system has only one unit root and three series, there are two non-redundant linear combina-
tions of the underlying variables which are stationary. In a complete system with k variables and a
single unit root, there are k−1 non-redundant linear combinations that are stationary.
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Next consider a trivariate system driven by two unit roots,

Y1,t = κ11w1,t +κ12w2,t + ε1,t

Y2,t = κ21w1,t +κ22w2,t + ε2,t

Y3,t = κ31w1,t +κ32w2,t + ε3,t

where the errors ε j,t are again covariance stationary but not necessarily white noise. If the coefficient
on Y1,t is normalized to 1, then it the weights in the equilibrium condition, Y1,t−β1Y2,t−β2Y3,t , satisfy

κ11 = β1κ21 +β2κ31

κ12 = β1κ22 +β2κ32

to order to eliminate both unit roots. This system of two equations in two unknowns has the solution[
β1
β2

]
=

[
κ21 κ31
κ22 κ32

]−1[
κ11
κ12

]
.

This solution is unique (up to the initial normalization), and there are no other cointegrating vectors
so that

β =

 1
κ11κ32−κ12κ22
κ21κ32−κ22κ31
κ12κ21−κ11κ31
κ21κ32−κ22κ31


This line of reasoning extends to k-variate systems driven by m unit roots. One set of r cointe-

grating vectors is constructed by normalizing the first r elements of Y one at a time. In the general
case

Yt = Kwt + ε t

where K is a k by m matrix, wt an m by 1 set of unit root processes, and ε t is a k by 1 vector of
covariance stationary errors. Normalizing on the first r variables, the cointegrating vectors in this
system are

β =

[
Ir

β̃

]
(5.37)

where Ir is an r-dimensional identity matrix. β̃ is a m by r matrix of loadings,

β̃ = K−1
2 K′1, (5.38)

where K1 is the first r rows of K (r by m) and K2 is the bottom m rows of K (m by m). In the trivariate
example driven by one unit root,

K1 =

[
κ1
κ2

]
and K2 = κ3

and in the trivariate system driven by two unit roots,
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K1 = [κ11 κ12] and K2 =

[
κ21 κ22
κ31 κ32

]
.

Applying eqs. (5.37) and (5.38) produces the previously derived set of cointegrating vectors. Note
that when r = 0 then the system contains k unit roots and so is not cointegrated (in general) since the
system would have three equations and only two unknowns. Similarly when r = k there are no unit
roots and any linear combination is stationary.

5.8.3.1 Relationship to Common Features and common trends

Cointegration is a particular case of a broader concept known as common features. In the case of
cointegration, both series have a common stochastic trend (or common unit root). Other examples
of common features include common heteroskedasticity, defined as xt and Yt are heteroskedastic but
there exists a combination, xt −βYt , which is not, common nonlinearities which are defined analo-
gously (replacing heteroskedasticity with nonlinearity), and cobreaks, where two series both contain
structural breaks but xt−βYt does now. Incorporating common features often produces simpler mod-
els than leaving them unmodeled.

5.8.4 Testing

Testing for cointegration, like testing for a unit root in a single series, is complicated. Two meth-
ods are presented, the original Engle-Granger 2-step procedure and the more sophisticated Johansen
methodology. The Engle-Granger method is generally only applicable if there are two variables, if the
system contains exactly one cointegrating relationship, or if the cointegration vector is known (e.g.,
an accounting identity where the left-hand side has to add up to the right-hand side). The Johansen
methodology is substantially more general and can be used to examine complex systems with many
variables and multiple cointegrating relationships.

5.8.4.1 Johansen Methodology

The Johansen methodology is the dominant technique used to determine whether a system of I(1)
variables is cointegrated and if so, to determine the number of cointegrating relationships. Recall that
one of the requirements for a set of integrated variables to be cointegrated is that π has reduced rank,

∆Yt = πYt−1 +π1∆Yt−1 + . . .+πP∆Yt−Pε t ,

and the number of non-zero eigenvalues of π is between 1 and k− 1. If the number of non-zero
eigenvalues is k, the system is stationary. If no non-zero eigenvalues are present, then the system
contains k unit roots, is not cointegrated and it is not possible to define a long-run relationship. The
Johansen framework for cointegration analysis uses the magnitude of the eigenvalues of π̂ to test for
cointegration. The Johansen methodology also allows the number of cointegrating relationships to be
determined from the data directly, a key feature missing from the Engle-Granger two-step procedure.

The Johansen methodology makes use of two statistics, the trace statistic (λtrace) and the maximum
eigenvalue statistic (λmax). Both statistics test functions of the estimated eigenvalues of π but have
different null and alternative hypotheses. The trace statistic tests the null that the number of cointe-
grating relationships is less than or equal to r against an alternative that the number is greater than r.



5.8 Cointegration 351

Define λ̂i, i = 1,2, . . . ,k to be the complex modulus of the eigenvalues of π̂1 and let them be ordered
such that λ1 > λ2 > .. . > λk.18 The trace statistic is defined

λtrace (r) =−T
k∑

i=r+1

ln
(

1− λ̂i

)
.

There are k trace statistics. The trace test is applied sequentially, and the number of cointegrating
relationships is determined by proceeding through the test statistics until the null is not rejected. The
first trace statistic, λtrace(0) =−T

∑k
i=1 ln(1− λ̂i), tests the null there are no cointegrating relationships

(i.e., the system contains k unit roots) against an alternative that the number of cointegrating relation-
ships is one or more. If there are no cointegrating relationships, then the true rank of π is 0, and each
of the estimated eigenvalues should be close to zero. The test statistic λtrace(0) ≈ 0 since every unit
root “driver” corresponds to a zero eigenvalue in π . When the series are cointegrated, π has one or
more non-zero eigenvalues. If only one eigenvalue is non-zero, so that λ1 > 0, then in large samples
ln
(

1− λ̂1

)
< 0 and λtrace (0)≈−T (1−λ1), which becomes arbitrarily large as T grows.

Like unit root tests, cointegration tests have nonstandard distributions that depend on the included
deterministic terms if any. Software packages return the appropriate critical values for the length of
the time-series analyzed and included deterministic regressors if any.

The maximum eigenvalue test examines the null that the number of cointegrating relationships is
r against the alternative that the number is r+1. The maximum eigenvalue statistic is defined

λmax(r,r+1) =−T ln
(

1− λ̂r+1

)
Intuitively, if there are r+1 cointegrating relationships, then the r+1th ordered eigenvalue should be
positive, ln

(
1− λ̂r+1

)
< 0, and the value of λmax(r,r+1)≈−T ln(1−λr+1) should be large. On the

other hand, if there are only r cointegrating relationships, the r+ 1th eigenvalue is zero, its estimate
should be close to zero, and so the statistic should be small. Again, the distribution is nonstandard,
but statistical packages provide appropriate critical values for the number of observations and the
included deterministic regressors.
The steps to implement the Johansen procedure are:
Step 1: Plot the data series being analyzed and perform univariate unit root testing. A set of vari-
ables can only be cointegrated if they are all integrated. If the series are trending, either linearly or
quadratically, remember to include deterministic terms when estimating the VECM.
Step 2: The second stage is lag length selection. Select the lag length using one of the procedures
outlined in the VAR lag length selection section (e.g., General-to-Specific or AIC). For example, to
use the General-to-Specific approach, first select a maximum lag length L and then, starting with
l = L, test l lags against l−1 use a likelihood ratio test,

LR = (T − l · k2)(ln |Σl−1|− ln |Σl|)∼ χ
2
k .

Repeat the test by decreasing the number of lags (l) until the LR rejects the null that the smaller model
is equivalent to the larger model.
Step 3: Estimate the selected VECM,

18The complex modulus is defined as |λi|= |a+bi|=
√

a2 +b2.
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∆Yt = πYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

and determine the rank of π where P is the lag length previously selected. If the levels of the series
appear to be trending, then the model in differences should include a constant and

∆Yt = δ 0 +πYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

should be estimated. Using the λtrace and λmax tests, determine the cointegrating rank of the system. It
is important to check that the residuals are weakly correlated – so that there are no important omitted
variables, the residuals are not excessively heteroskedastic, which affects the size and power of the
procedure, and are approximately Gaussian.
Step 4: Analyze the normalized cointegrating vectors to determine whether these conform to implica-
tions of finance theory. Hypothesis tests on the cointegrating vector can also be performed to examine
whether the long-run relationships conform to a particular theory.
Step 5: The final step of the procedure is to assess the adequacy of the model by plotting and an-
alyzing the residuals. This step should be the final task in the analysis of any time-series data, not
just the Johansen methodology. If the residuals do not resemble white noise, the model should be
reconsidered. If the residuals are stationary but autocorrelated, more lags may be necessary. If the
residuals are I(1), the system may not be cointegrated.

Lag Length Selection

Tests of cointegration using the two test statistic, λtrace and λmax, are sensitive to the lag length. The
number of included lags must be sufficient to produce white noise residuals. The lag length is com-
monly chosen using an IC, and given the trade-off between a model that is too small – which leaves
serial correlation in the model residuals – and too large, which produces noisier estimates of parame-
ters but no serial correlation, a loose criterion like the AIC is preferred to a more strict one.

Trends

Nonstationary time series often contain time trends. Like the Augmented Dickey-Fuller test, Jo-
hansen’s λtrace and λmax tests are both sensitive to the choice of included trends. There are five different
configurations of trends in the VECM,

∆Yt = δ 0 +δ 1t +α
′ (βYt−1 + γ0 + γ1t)+π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

The five test configurations of the test are:

• no trends, δ 0 = δ 1 = γ0 = γ1 = 0;

• linear trend in Yt , α ′βYt−1 is mean 0, δ 1 = γ0 = γ1 = 0;

• linear trend in Yt , non-zero mean α ′βYt−1, δ 1 = γ1 = 0;

• quadratic trend in Yt , non-zero mean α ′βYt−1, γ1 = 0;and

• quadratic trend in Yt , linear trend in α ′βYt−1, no restrictions on the parameters.
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The simplest specification sets all trends to be 0, so that

∆Yt = α
′
βYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

The specification is only appropriate if the components of Yt are not trending. When the component
time series of Yt have linear time trends, then

∆Yt = δ 0 +α
′ (βYt−1 + γ0)+π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

allows them to appear in two places. The two intercepts, δ 0 and α ′γ0 play different roles. δ 0 allows
for time trends in the component series since the left-hand-side has been differenced, so that a time-
trend in the level becomes an intercept in the difference. γ0 allows the cointegrating relationship
to have a non-zero mean, which is practically important in many applications of cointegration. The
model can be estimated assuming γ0 = 0 so that

∆Yt = δ 0 +α
′
βYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

In this specification, the components are allowed to have unrestricted time trends but the cointegrating
relationships are restricted to be mean zero. In practice, this requires that the growth rates of the
component time series in Yt are the same. The full set of time trends are included in the model, the Yt
is allowed to have a quadratic time trend (the difference has a linear time trend) and the cointegrating
relationship,

βYt−1 + γ0 + γ1t

may also have a time trend. The specification with a time trend can be restricted so that γ1 = 0 in
which case the cointegrating relationships are allowed to have a mean different from 0 but not to be
trending.

Additional trend components increase the critical values of the λtrace and λmax test statistics, and so,
all things equal, it is harder to reject the null. The principle behind selecting deterministic terms in
the Johansen’s framework is the same as when including deterministic terms in ADF tests – any de-
terministic that is present in the data must be included, and failing to include a required deterministic
term prevents the null from being rejected even in large samples. Similarly, including more deter-
ministic trends than required lowers the power of the test and so makes it more challenging to find
cointegration when it is present. Deterministic trends should be eliminated using a general-to-specific
search starting with the full set of terms, and eliminating any that are (jointly) insignificant.

5.8.4.2 Example: Consumption Aggregate Wealth

To illustrate cointegration and error correction, three series which have revived the CCAPM in re-
cent years are examined (Lettau and Ludvigson, 2001a; Lettau and Ludvigson, 2001b). These three
series are consumption (c), asset prices (a) and labor income (y). The data are made available by
Martin Lettau on his web site, and contain quarterly data from 1952:1 until 2017:3. These series are
documented to be cointegrated in published papers, and the cointegrating error is related to expected
future returns. When c−δ0−βaa−βy is positive, then consumption is above its long-run trend, and
so asset returns are expected to be above average. When this error is negative, then c is relatively low
compared to asset values and labor income, and so asset values are too high.

https://sites.google.com/view/martinlettau/data
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Trace Test
Null Alternative λtrace Crit. Val.

r = 0 r ≥ 1 19.06 29.80
r = 1 r ≥ 2 8.68 15.49
r = 2 r = 3 2.03 3.84

Max Test
Null Alternative λmax Crit. Val.

r = 0 r = 1 10.39 21.13
r = 1 r = 2 6.64 14.26
r = 2 r = 3 2.03 3.84

Table 5.5: Results of testing using the Johansen methodology to the cay time series.

The Johansen methodology begins by examining the original data for unit roots. The results in
Table 5.6 establish that all series have unit roots using ADF tests. The next step tests eigenvalues of
π in the VECM

∆Yt = δ 0 +π (Yt−1 + γ0)+π1∆Yt−1 +π2∆Yt−2 + . . .++πP∆Yt−P + ε t .

using λtrace and λmax tests. Table 5.5 contains the results of the two tests. These tests are applied
sequentially. The first null hypothesis is not rejected for either test, which indicates that the π has
rank 0, and so the system contains three distinct unit roots, and so the variables are not cointegrated.19

5.8.4.3 A Single Cointegrating Relationship: Engle-Granger Methodology

The Engle-Granger method exploits the defining characteristic of a cointegrated system with a single
cointegrating relationship – if the time series are cointegrated, then a linear combination of the se-
ries can be constructed that is stationary. If they are not, then any linear combination remains I(1).
When there are two variables, the Engle-Granger methodology begins by specifying the cross-section
regression

Yt = βxt + εt

where β̂ can be estimated using OLS. It may be necessary to include a constant,

Yt = δ0 +βxt + εt

or a constant and time trend,

Yt = δ0 +δ1t +βxt + εt ,

if the residuals from the simple cross-sectional regression are not mean 0 or trending. The model
residuals, ε̂t , are constructed from the OLS estimates of the model coefficients and are tested for the

19The first null not rejected indicates the cointegrating rank of the system. If all null hypotheses are rejected, then the
original system appears stationary, and a reanalysis of the I(1) classification of the original data is warranted.
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presence of a unit root. If xt and Yt are both I(1) and ε̂t is I(0), then the series are cointegrated. If
the null that ε̂t contains a unit root is not rejected, then the two series are no cointegrated since the
difference did not eliminate the unit root. The procedure concludes by using ε̂t to estimate the VECM
to estimate parameters which may be of interest (e.g., the speed of convergence parameters).
Step 1: Begin by analyzing xt and Yt in isolation to ensure that they are both integrated, plot the data,
and perform ADF tests. Remember, variables can only be cointegrated if they are integrated.
Step 2: Estimate the long-run relationship by fitting

Yt = δ0 +δ1t +βxt + εt ,

where the two deterministic terms are included only if necessary, using OLS and computing the
estimated residuals {ε̂t}. Use an ADF test (or DF-GLS for more power) and test H0 : γ = 0 against
H1 : γ < 0 in the regression

∆ε̂t = γε̂t−1 +ψ1∆ε̂t−1 + . . .+ψp∆ε̂t−P +ηt .

Deterministic effects are removed in the cross-sectional regression, and so are not included in the ADF
test. If the null is rejected and ε̂t is stationary, then xt and Yt appear to be cointegrated. Alternatively,
if ε̂t still contains a unit root, the series are not cointegrated.20

Step 3: If a cointegrating relationship is found, specify and estimate the VECM[
∆xt
∆Yt

]
=

[
π01
π02

]
+

[
α1(Yt−1−δ0−δ1t−βxt−1)
α2(Yt−1−δ0−δ1t−βxt−1)

]
+π1

[
∆xt−1
∆Yt−1

]
+. . .+πP

[
∆xt−P
∆Yt−P

]
+

[
η1,t
η2,t

]
Note that this specification is not linear in its parameters. Both equations have interactions between
the α and β parameters and so OLS cannot be used. Engle and Granger noted that the terms involving
β can be replaced with ε̂t−1 = (Yt−1− β̂1− β̂2xt−1),[

∆xt
∆Yt

]
=

[
π01
π02

]
+

[
α1ε̂t−1
α2ε̂t−1

]
+π1

[
∆xt−1
∆Yt−1

]
+ . . .+πP

[
∆xt−P
∆Yt−P

]
+

[
η1,t
η2,t

]
,

and so parameters of these specifications can be estimated using OLS. The substitution has no impact
on the standard errors of the estimated parameters since the parameters of the cointegrating relation-
ship are super-consistent (i.e., they converge faster than the standard

√
T rate).

Step 4: The final step is to assess the model adequacy and test hypotheses about α1 and α2. Standard
diagnostic checks including plotting the residuals and examining the ACF should be used to examine
model adequacy. Impulse response functions for the short-run deviations can be examined to assess
the effect of a shock on the deviation of the series from the long term trend.

Deterministic Regressors

The cross-sectional regression in the Engle-Granger methodology can be modified to accommodate
three configurations of deterministic regressors. The simplest configuration has no deterministic terms
so that the regression is

Yt = βxt + εt .

20The distribution of the ADF is different when testing cointegration than when testing for a unit root. Software
packages report the correct value which depends on the number of variables in the cointegrating relationship and the
deterministic terms if any.



356 Analysis of Multiple Time Series

Engle-Granger is only limited finding a single cointegrating relationship, which might exist between
k variables, not just 2. In this case, the cross-sectional regression is

Yt = β
′Xt + εt

where Xt is the k−1 by 1 vector, and the cointegrating vector is
[
1,−β

′]. This generalized form can
be further extended by altering the deterministic terms in the model. For example, it is common to
include an intercept in the cross-sectional regression,

Yt = δ0 +β
′Xt + εt .

This structure allows the long-run relationship between Yt and Xt to have a non-zero mean. The
intercept should be included except where theory suggests that the cointegrating errors should be
zero, e.g., in the relationship between spot and future prices or the long-run relationship between
prices of the same security trading in different markets.

The cross-sectional regression can be further extended to include a time trend,

Yt = δ0 +δ1t +β
′Xt + εt .

When the model includes a time-trend, the long-run relationship, Yt and Xt , is assumed to be trending
over time, so that Yt−δ0−δ1t−β

′Xt is a mean-zero I(0) process. This might occur if the growth rates
of Yt and the components Xt differ. It is much less common to include time-trends in the cointegrating
relationship. Best practice is to only include δ1 if there is some a priori reason to believe that the
relationship has a time-trend and when δ̂1 is statistically different from 0 when the cross-sectional
regression is estimated. The cross-sectional regression can be compactly expressed as

Yt = δ
′dt +β

′Xt + εt

where dt is the vector of included deterministic regressors, i.e., on of [] (nothing), [1], or [1, t].

Dynamic OLS

The parameter estimators of the cointegrating vector estimated using a cross-sectional regression
is not normally distributed in large samples. It is also not efficient since the I(1) variables might
have short-run dynamics. Dynamic OLS, a simple modification of the Engle-Granger regression,
addresses both of these. It adds lags and leads of the differences on the right-hand-side variables to
the cross-sectional regression. These extra terms effectively remove the short term dynamics in the
right-hand-side variables. In a bivariate cointegrated relationship, the Dynamic OLS regression is

Yt = δ
′dt +β1xt +

P∑
i=−P

γi∆xt−i + εt

where dt is a vector of deterministic terms in the model. This regression is estimated using OLS, and
the estimated cointegrating relationship is Yt − δ̂

′
dt − β̂1xt . If there are more than 1-right-hand-side

variables, then the regression is

Yt = δ
′dt +β

′Xt +

P∑
i=−P

γ
′
∆Xt−i + εt
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Unit Root Tests
Series T-stat P-val ADF Lags

c -1.198 0.674 5
a -0.205 0.938 3
y -2.302 0.171 0

ε̂c
t -2.706 0.379 1

ε̂a
t -2.573 0.447 0

ε̂
y
t -2.679 0.393 1

Table 5.6: The top three lines contain the results of ADF tests for unit roots in the three components of
cay : Consumption, Asset Prices and Aggregate Wealth. The final lines contain the results of unit root
tests on the estimated residuals from the cross-sectional regressions. The variable in the superscript is
the dependent variable in the Engle-Granger regression. The lags column reports the number of lags
used in the ADF procedure, which is automatically selected using the AIC.

where β , γ i and Xt are k− 1 by 1 vectors. The estimators of the cointegrating vector are asymptot-
ically normally distributed, although the parameter covariance must be estimated using a long-run
covariance estimator that accounts for dependence, e.g., Newey-West (see Section 5.9.2). The num-
ber of leads and lags to include in the model is can be selected using an information criterion. In
application in macrofinance, it is often chosen to capture 1 year of data, so either 4 (quarterly) or 12
(monthly).

5.8.4.4 Cointegration in Consumption, Asset Prices and Income

The Engle-Granger procedure begins by performing unit root tests on the individual series and exam-
ining the data. Table 5.6 and contain the results from ADF tests and Figure 5.6 plots the detrended
series. The null of a unit root is not rejected in any of the three series, and all have time-detrended
errors which appear to be nonstationary.

The next step is to specify the cointegrating regression

ct = δ0 +βaat +βyYt + εt

and to estimate the long-run relationship using OLS. The estimated cointegrating vector from is [1 −
0.249 − 0.785], and corresponds to a long-run relationship of ε̂t = ct + .643− 0.249at − 0.785Yt .
Finally, the residuals are tested for the presence of a unit root. The results of this test are labeled ε̂c

t
in Table 5.6 and indicate that the null is not rejected, and so the three series are not cointegrated. The
Engle-Granger methodology agrees with the Johansen methodology that it is not possible to eliminate
the unit roots from the three series using a single linear combination. It is also possible to normalize
the coefficients on a or y by using these are the dependent variable. The final two lines in Table 5.6
contain results for these specifications. The results for the alternative agree with the finding for c, and
the series do not appear to be cointegrated. The middle panel of Figure 5.6 plot the three residual series
where each of the variables is used as the dependent. The residuals constructed from the regression
when a or y are the dependent are multiplied by −1 so that the sign on c is always positive, and all
three series are normalized to have unit variance (for comparability). The three residual series are very
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Comparing Engle-Granger and Dynamic OLS
Dependent Variable

c a y

δ0 −0.643 −0.640
(−6.896)

1.917 1.874
(7.784)

0.702 0.713
(5.312)

βc 2.284 2.385
(6.994)

1.163 1.180
(18.521)

βa 0.249 0.260
(6.187)

−0.214 −0.229
(−3.790)

βy 0.785 0.773
(17.339)

−1.322 −1.421
(−4.024)

Table 5.7: Each column reports estimates of the cointegrating relationship where the dependent vari-
able varies across the three series. The parameter estimators in Engle-Granger regressions are not
asymptotically normally distributed, and so t-stats are not reported. The t-stats reported for the esti-
mates produces using Dynamic OLS are computed using the Newey-West covariance estimator with
14 lags.

similar which indicates that the choice of the dependent variable has little impact on the estimates of
the cointegrating relationship.

The VECM uses the residuals estimated using the cross-sectional regression, ε̂t = ct− δ̂0− β̂aat−
β̂yYt .

 ∆ct
∆at
∆yt

=


0.003
(0.000)

0.004
(0.014)

0.003
(0.000)

+

−0.000
(0.281)

0.002
(0.037)

0.000
(0.515)

 ε̂t−1 +


0.192
(0.005)

0.102
(0.000)

0.147
(0.004)

0.282
(0.116)

0.220
(0.006)

−0.149
(0.414)

0.369
(0.000)

0.061
(0.088)

−0.139
(0.140)


 ∆ct−1

∆at−1
∆yt−1

+η t

The coefficients on the lagged residual measure the speed of adjustment. The estimates are all close to
0 indicating that deviations from the equilibrium are highly persistent. Two of the speed of adjustment
coefficients are not statistically different from zero, which indicates that three series are not well
described as a cointegrated system. The lag length in the VECM is selected by minimizing the HQIC
using up to 4 lags of the quarterly data.

Table 5.7 contains estimates of the parameters from the Engle-Granger cross-sectional regressions
and the Dynamic OLS regressions. The DOLS estimates are asymptotically normal (if the series
are cointegrated) and so standard errors, computed using the Newey-West covariance estimator, are
reported for the coefficients. The bottom panel of Figure 5.6 plot the residual from the two estimators
when c is the dependent variable. The leads and lags have little effect on the estimated cointegration
vector, and so the two series are very similar.

5.8.5 Spurious Regression and Balance

When a regression is estimated using two related I(1) variables, the cointegrating relationship domi-
nates and the regression coefficients can be directly interpreted as the cointegrating vectors. However,
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Analysis of cay
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1960 1970 1980 1990 2000 2010

−0.04

−0.02

0.00

0.02

0.04

Dynamic OLS Residual Engle-Granger Residual

Figure 5.6: The top panel contains plots of detrended residuals from regressions of consumption, asset
prices and labor income on a linear time trend. The middle panel contains a plot of residuals from
the three specifications of the Engle-Granger regression where each of the three series is used as the
dependent variable. The residuals are multiplied by -1 when a or y is the dependent variable so they
the sign on c is always positive. The residuals are all normalized to have unit variance. The bottom
panel plots the residuals computed using the Dynamic OLS estimates of the cointegrating relationship
when c is the dependent variable and 4 leads and lags are used.

when a model is estimated on two unrelated I(1) variables, the regression estimator is no longer con-
sistent. For example, let xt and Yt be independent random walk processes.
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xt = xt−1 +ηt

and

Yt = Yt−1 +νt

In the regression

xt = βYt + εt

β̂ is not consistent for 0 despite the independence of xt and Yt .
Models that include independent I(1) processes are known as spurious regressions. When the

regressions are spurious, the estimated β̂ can take any value and typically have t-stats that indicate
significance at conventional levels. The solution to this problems is simple: whenever regressing
one I(1) variable on another, always check to be sure that the regression residuals are I(0) and not
I(1) – in other words, verify that the series are cointegrated. If the series are not cointegrated, it is
not possible to estimate a meaningful long-run relationship between the two (or more) I(1) random
variables. Nonstationary time series that are not cointegrated can be differenced to be I(0) and then
modeled as a stationary VAR.

Balance is an important concept when data which contain both stationary and integrated data. An
equation is balanced if all variables have the same order of integration. The usual case occurs when
a stationary variable (I(0)) is related to one or more other stationary variables. It is illustrative to
consider the four combinations:

• I(0) on I(0): The usual case. Standard asymptotic arguments apply. See section 5.9 for more
issues in cross-section regression using time-series data.

• I(1) on I(0): This regression is unbalanced. An I(0) variable can never explain the long-run
variation in an I(1) variable. The usual solution is to difference the I(1) and then examine
whether the short-run dynamics in the differenced I(1), which are I(0), can be explained by the
I(0).

• I(1) on I(1): One of two outcomes: cointegration or spurious regression.

• I(0) on I(1): This regression is unbalanced. An I(1) variable can never explain the variation
in an I(0) variable, and unbalanced regressions are not useful tools for explaining economic
phenomena. Unlike spurious regressions, the t-stat still has a standard asymptotic distribu-
tion although caution is needed since the CLT does not, in empirically relevant samples sizes,
provide an accurate approximation to the finite sample distribution. Poor finite-sample approx-
imations are common in applications where a stationary variable, e.g., returns on the market,
is regressed on a highly persistent predictor (such as the default premium, dividend yield or
price-to-earnings ratio).

5.9 Cross-sectional Regression with Time-series Data

Cross-sectional regressions are commonly estimated using data that occur sequentially, e.g., the CAP-
M and related models. Chapter 3 used n to index the observations to indicate that the data are not
ordered,
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Yn = β1xn1 +β2xn2 + . . .+βkxnk + εn. (5.39)

Here the observation index is replaced with t to indicate that ordered time-series data are used in the
regression,

Yt = β1xt1 +β2xt2 + . . .+βkxtk + εt . (5.40)

Five assumptions are used to establish the asymptotic distribution of the parameter estimated. Here
these assumptions are restated using time-series indices.

Assumption 5.1 (Linearity). The model specification is linear in Xt , Yt = Xtβ + εt .

Assumption 5.2 (Stationary Ergodicity). {(Xt ,εt)} is a strictly stationary and ergodic sequence.

Assumption 5.3 (Rank). E[X′tXt ] = ΣXX is non-singular and finite.

Assumption 5.4 (Martingale Difference). {X′tεt ,Ft−1} is a martingale difference sequence, E
[(

x j,tεt
)2
]
<

∞ j = 1,2, . . . ,k, t = 1,2 . . . and S = V[T−
1
2 X′ε] is finite and non singular.

Assumption 5.5 (Moment Existence). E[x4
j,t ]<∞, j = 1,2, . . . ,k, t = 1,2, . . . and E[ε2

t ] = σ2 <∞,
t = 1,2, . . ..

Assumption 3.9 may be violated when estimating cross-sectional models using time series data. When
this assumption is violated, the scores from the linear regression, X′tεt are a not martingale difference
with respect to the time t− 1 information set, Ft−1. The autocorrelation in the scores occurs when
the errors from the model, εt , have a persistent component that is not explained by the regressors.
The MDS assumption featured prominently in two theorems: the asymptotic distribution of β̂ and the
estimation of the covariance of the parameters.

Theorem 5.5. Under assumptions 3.1 and 3.7 - 3.9

√
T (β̂ T −β )

d→ N(0,Σ−1
XX SΣ

−1
XX ) (5.41)

where ΣXX = E[X′tXt ] and S = V[T−1/2X′ε]

Theorem 5.6. Under assumptions 3.1 and 3.7 - 3.10,

Σ̂XX =T−1X′X p→ ΣXX

Ŝ =T−1
T∑

n=1

e2
t X′tXt

p→ S

=T−1 (X′ÊX
)

and
Σ̂
−1
XX ŜΣ̂

−1
XX

p→ Σ
−1
XX SΣ

−1
XX

where Ê = diag(ε̂2
1 , . . . , ε̂

2
T ) is a matrix with the squared estimated residuals along the diagonal.
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When the MDS assumption does now hold, the asymptotic covariance takes a different form that re-
flects the persistence in the data, and so an alternative estimator is required to estimate the covariance
of β̂ . The new estimator is an extended version of White’s covariance estimator that accounts for the
predictability of the scores (X′tεt). The correlation in the scores alters the amount of “unique” informa-
tion available to estimate the parameters. The standard covariance estimator assumes that the scores
are uncorrelated with their past and so each contributes its full share to the precision to β̂ . When
the scores are autocorrelated, only the unpredictable component of the score is informative about the
value of the regression coefficient, and the covariance estimator must account for this change in the
available information. Heteroskedasticity Autocorrelation Consistent (HAC) covariance estimators
are consistent even in the presence of score autocorrelation.

5.9.1 Estimating the mean with time-series errors

To understand why a HAC estimator is needed, consider estimating the mean in two different setups.
In the first, the shock, {εt}, is assumed to be a white noise process with variance σ2. In the second,
the shock follows an MA(1) process.

5.9.1.1 White Noise Errors

Suppose the data generating process for Yt is,

Yt = µ + εt

where {εt} is a white noise process. It is simple to show that

E[Yt ] = µ and V[Yt ] = σ
2

since the error is a white noise process. Define the sample mean estimator in the usual way,

µ̂ = T−1
T∑

t=1

Yt

The sample mean is unbiased,

E[µ̂] = E

[
T−1

T∑
t=1

Yt

]

= T−1
T∑

t=1

E[Yt ]

= T−1
T∑

t=1

µ

= µ.

The variance of the mean estimator exploits the white noise property which ensures E[εiε j]=0 when-
ever i 6= j.
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V[µ̂] = E[(T−1
T∑

t=1

Yt−µ)2]

= E[(T−1
T∑

t=1

εt)
2]

= E[T−2(
T∑

t=1

ε
2
t +

T∑
r=1

T∑
s=1,r 6=s

εrεs)]

= T−2
T∑

t=1

E[ε2
t ]+T−2

T∑
r=1

T∑
s=1,r 6=s

E[εrεs]

= T−2
T∑

t=1

σ
2 +T−2

T∑
r=1

T∑
s=1,r 6=s

0

= T−2T σ
2

= σ
2/T ,

and so, V[µ̂] = σ
2/T , the standard result.

5.9.1.2 MA(1) errors

Suppose the model is altered so that the error process ({ηt}) is a mean zero MA(1) constructed from
white noise shocks ({εt}),

ηt = θεt−1 + εt .

The properties of the error are easily derived using the results in Chapter 4. The mean is 0,
E[ηt ] = E[θεt−1 + εt ] = θE[εt−1]+E[εt ] = θ0+0 = 0,

and the variance depends on the MA parameter,

V[ηt ] = E[(θεt−1 + εt)
2]

= E[θ 2
ε

2
t−1 +2εtεt−1 + ε

2
t ]

= E[θ 2
ε

2
t−1]+2E[εtεt−1]+E[ε2

t ]

= θ
2
σ

2 +2 ·0+σ
2

= σ
2(1+θ

2).

The DGP for Yt is

Yt = µ +ηt ,

and so the mean and variance of Yt are

E[Yt ] = µ and V[Yt ] = V[ηt ] = σ
2(1+θ

2).
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The sample mean estimator remains unbiased,

µ̂ = T−1
T∑

t=1

Yt

E[µ̂] = E

[
T−1

T∑
t=1

Yt

]

= T−1
T∑

t=1

E[Yt ]

= T−1
T∑

t=1

µ

= µ.

The variance of the mean estimator, however, is different, since ηt is autocorrelated, and so E[ηtηt−1] 6=
0.

V[µ̂] = E

[
(T−1

T∑
t=1

Yt−µ)2

]

= E

[
(T−1

T∑
t=1

ηt)
2

]

= E

[
T−2(

T∑
t=1

η
2
t +2

T−1∑
t=1

ηtηt+1 +2
T−2∑
t=1

ηtηt+2 + . . .+2
2∑

t=1

ηtηt+T−2 +2
1∑

t=1

ηtηt+T−1)

]

= T−2
T∑

t=1

E[η2
t ]+2T−2

T−1∑
t=1

E[ηtηt+1]+2T−2
T−2∑
t=1

E[ηtηt+2]+ . . .+

2T−2
2∑

t=1

E[ηtηt+T−2]+2T−2
1∑

t=1

E[ηtηt+T−1]

= T−2
T∑

t=1

γ0 +2T−2
T−1∑
t=1

γ1 +2T−2
T−2∑
t=1

γ2 + . . .+2T−2
2∑

t=1

γT−2 +2T−2
1∑

t=1

γT−1

where γ0 = E[η2
t ] = V[ηt ] and γs = E[ηtηt−s]. Only γ0 and γ1 are non-zero when the error follows an

MA(1) process. γ0 = V [ηt ] = σ2 (1+θ 2) and
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γ1 = E[ηtηt−1]

= E[(θεt−1 + εt)(θεt−2 + εt−1)]

= E[θ 2
εt−1εt−2 +θε

2
t−1 +θεtεt−2 + εtεt−1]

= θ
2E[εt−1εt−2]+θE[ε2

t−1]+θE[εtεt−2]+E[εtεt−1]

= θ
20+θσ

2 +θ0+0

= θσ
2.

The remaining autocovariance are all 0 since γs = 0, s > Q in a MA(Q). Returning to the variance of
µ̂ ,

V[µ̂] = T−2
T∑

t=1

γ0 +2T−2
T−1∑
t=1

γ1 (5.42)

= T−2T γ0 +2T−2(T −1)γ1

≈ γ0 +2γ1

T
.

When the errors are autocorrelated, the usual mean estimator has a different variance that reflects the
dependence in the errors. Importantly, the usual estimator variance is no longer correct and V[µ̂] 6=
γ0/T .

This simple illustration captures the key idea that underlies the Newey-West variance estimator,

σ̂
2
NW = γ̂0 +2

L∑
l=1

(
1− l

L+1

)
γ̂l.

When L= 1, the only weight is 1−1/2 = 1/2 and σ̂2
NW = γ̂0+ γ̂1, which is different from the variance in

the MA(1) error example. However as L increases, the weight on γ1 converges to 1since limL→∞ 1−
1

L+1 = 1. The Newey-West variance estimator asymptotically includes all of the autocovariance in the
variance, γ0 +2γ1, and when L grows large,

σ̂
2
NW → γ0 +2γ1.

The variance of the estimated mean can be consistently estimated using σ2
NW as

V[µ̂] =
γ0 +2γ1

T
≈ σ2

NW
T

.

As a general principle, the variance of the sum is the sum of the variances only true when the errors
are uncorrelated. HAC covariance estimators account for time-series dependence and lead to correct
inference as long as L grows with the sample size.21

It is tempting to estimate eq. (5.42) using the natural estimator σ̂2
HAC = γ̂0+2γ̂1/T . This estimator

is not guaranteed to be positive in finite samples, an in general unweighted estimators of the form

21Allowing L to grow at the rate T 1/3 is optimal in a certain sense related to testing.
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σ̂2
HAC = γ̂0 + 2γ̂1 + 2γ̂2 + . . .+ 2γ̂L, may be negative. The Newey-West variance estimator, σ̂2

NW , is
guaranteed to be positive for any L. The weights that scale the autocovariances,

(
1− l

L+1

)
, alter the

estimator and ensure that the estimate is positive.

5.9.2 Estimating the variance of β̂ when the errors are autocorrelated

There are two solutions to modeling cross-sectional data that have autocorrelated errors. The direct
method is to alter the cross-sectional model to capture the time-series variation by including both
contemporaneous effects of Xt as well as lagged values of Yt (and possibly lags of Xt). This approach
needs to include sufficient lags so that the errors are white noise. If the dependence is fully modeled,
then White’s heteroskedasticity (but not autocorrelation) consistent covariance estimator is consistent,
and there is no need for a more complex covariance estimator.

The second approach modifies the covariance estimator to account for the dependence in the data.
The key insight in White’s estimator of S,

Ŝ = T−1
T∑

t=1

e2
t X′tXt ,

is that this form explicitly captures the dependence between the e2
t and X′tXt . Heteroskedasticity

Autocorrelation Consistent estimators work similarly by capturing both the dependence between the
e2

t and X′tXt (heteroskedasticity) and the dependence between the Xtet and Xt− jet− j (autocorrelation).
HAC estimators of the score covariance in linear regressions use the same structure, and

ŜHAC = T−1

 T∑
t=1

e2
t X′tXt +

L∑
l=1

wl

 T∑
s=l+1

eses−lX′sXs−l +
T∑

q=l+1

eq−leqX′q−lXq

 (5.43)

= Γ̂0 +

L∑
l=1

wl
(
Γ̂l + Γ̂−l

)
= Γ̂0 +

L∑
l=1

wl

(
Γ̂l + Γ̂

′
l

)
where {wl} are a set of weights. The Newey-West estimator uses wl = 1− l

L+1 and is always positive
semi-definite. Other estimators alter the weights and have different finite-sample properties.

5.A Cointegration in a trivariate VAR

This section details how to:

• determine whether a trivariate VAR is cointegrated;

• determine the number of cointegrating vectors in a cointegrated system; and

• decompose the π matrix into α , the adjustment coefficient, and β , the cointegrating vectors.
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5.A.1 Stationary VAR

Consider the VAR(1),  xt
Yt
Zt

=

 .9 −.4 .2
.2 .8 −.3
.5 .2 .1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the parameter matrix determine the stationarity properties of this VAR process. If
the eigenvalues are all less than one in modulus, then the VAR(1) is stationary. This is the case here,
and the eigenvalues are 0.97, 0.62, and 0.2. An alternative method is to transform the model into an
VECM  ∆xt

∆Yt
∆Zt

=

 .9 −.4 .2
.2 .8 −.3
.5 .2 .1

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −.1 −.4 .2
.2 −.2 −.3
.5 .2 −.9

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


∆wt = πwt + ε t

where wt is a vector composed of xt , Yt and Zt . The rank of the parameter matrix π can be determined
by transforming it into row-echelon form. −0.1 −0.4 0.2

0.2 −0.2 −0.3
0.5 0.2 −0.9

⇒
 1 4 −2

0.2 −0.2 −0.3
0.5 0.2 −0.9

⇒
 1 4 −2

0 −1 0.1
0 −1.8 0.1

⇒
 1 4 −2

0 1 −0.1
0 −1.8 0.1


⇒

 1 0 −1
0 1 −0.1
0 0 −0.08

⇒
 1 0 −1

0 1 −0.1
0 0 1

⇒
 1 0 0

0 1 0
0 0 1


Since the π matrix is full rank, the system must be stationary. This method is equivalent to computing
the eigenvalues of the parameter matrix in the VAR.

5.A.2 Independent Unit Roots

Consider the simple VAR  xt
Yt
Zt

=

 1 0 0
0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the coefficient matrix are all 1 and the VECM is ∆xt

∆Yt
∆Zt

=

 1 0 0
0 1 0
0 0 1

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 0 0 0
0 0 0
0 0 0

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t
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and the rank of π is clearly 0, so this system contains three independent unit roots. This structure also
applies to higher order nonstationary VAR models that contain independent unit root processes – the
coefficient matrix in the VECM is always rank 0 when the system contains as many distinct unit roots
as variables.

5.A.3 Cointegrated with one cointegrating relationship

Consider the VAR(1), xt
Yt
Zt

=

 0.8 0.1 0.1
−0.16 1.08 0.08
0.36 −0.18 0.82

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the parameter matrix are 1, 1 and .7. The VECM form of this model is ∆xt

∆Yt
∆Zt

=

 0.8 0.1 0.1
−0.16 1.08 0.08
0.36 −0.18 0.82

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −0.2 0.1 0.1
−0.16 0.08 0.08
0.36 −0.18 −0.18

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of π are 0, 0 and −.3, and so rank(π) = 1. Recall that the number of cointegrating
vectors is the rank of π in a cointegrated system. In this example, there is one cointegrating vector,
which can be computed by transforming π into row-echelon form,

 −0.2 0.1 0.1
−0.16 0.08 0.08
0.36 −0.18 −0.18

⇒
 1 −0.5 −0.5
−0.16 0.08 0.08
0.36 −0.18 −0.18

⇒
 1 −0.5 −0.5

0 0 0
0 0 0


The cointegrating vector is β = [1 −0.5 −0.5]′ and α is found by noting that

π = αβ
′ =

 α1 −1
2α1 −1

2α1
α2 −1

2α2 −1
2α2

α3 −1
2α3 −1

2α3

 ,
so that α = [−.2 − .16 0.36]′ is the first column of π .

5.A.4 Cointegrated with two cointegrating relationships

Consider the VAR(1),  xt
Yt
Zt

=

 0.3 0.4 0.3
0.1 0.5 0.4
0.2 0.2 0.6

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .



5.A Cointegration in a trivariate VAR 369

The eigenvalues of the parameter matrix are 1, .2+.1i and .2-.1i, which have complex moduli of 1,
.223 and .223, respectively. The VECM form of this model is ∆xt

∆Yt
∆Zt

=

 0.3 0.4 0.3
0.1 0.5 0.4
0.2 0.2 0.6

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −0.7 0.4 0.3
0.1 −0.5 0.4
0.2 0.2 −0.4

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of π are 0, −0.8+0.1i and −0.8−0.1i, and so rank(π) = 2. The number of cointe-
grating vectors is the rank of π . One set of cointegrating vectors can be found by transforming π into
row-echelon form22,

 −0.7 0.4 0.3
0.1 −0.5 0.4
0.2 0.2 −0.4

⇒
 1 −0.57143 −0.42857

0.1 −0.5 0.4
0.2 0.2 −0.4

⇒
 1 −0.57143 −0.42857

0 −0.44286 0.44286
0 0.31429 −0.31429

⇒
 1 −0.57143 −0.42857

0 1 −1
0 0.31429 −0.31429

⇒
 1 0 −1

0 1 −1
0 0 0


β is the transpose of first two rows of the row-echelon form,

β =

 1 0
0 1
−1 −1


α is found using the relationship

π = αβ
′ =

 α11 α12 −α11−α12
α21 α22 −α21−α22
α31 α32 −α31−α32

 ,
and so α is the first two columns of π ,

α =

 −0.7 0.4
0.1 −0.5
0.2 0.2

 .

22The cointegrating vectors are only defined up to an arbitrary normalization. Any set of cointegrating vectors β and be
used to create a different set by multiplying by a k by k full-rank matrix A so that β̃ = Aβ is also a cointegrating vector.



370 Analysis of Multiple Time Series

Exercises

Shorter Questions

Problem 5.1. Under what conditions are two random variables cointegrated?

Problem 5.2. Suppose Yt = Φ0 +Φ1Yt−1 + ε t where Yt is a k by 1 vector values variable and Φ0
and Φ1 are conformable. What are the 1 and 2 step forecasts from this model?

Longer Questions

Exercise 5.1. Consider the estimation of a mean where the errors are a white noise process.

i. Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are i.i.d.

Now suppose error process follows an MA(1) so that εt = νt +θ1νt−1 where νt is a WN process.

ii. Show that the usual mean estimator is still unbiased and derive the variance of the mean.

Suppose that {η1,t} and {η2,t} are two sequences of uncorrelated i.i.d. standard normal random
variables.

xt = η1,t +θ11η1,t−1 +θ12η2,t−1

Yt = η2,t +θ21η1,t−1 +θ22η2,t−1

iii. What are Et [xt+1] and Et [xt+2]?

iv. Define the autocovariance matrix of a vector process.

v. Compute the autocovariance matrix Γ j for j = 0,±1.

Exercise 5.2. Consider an AR(1)

i. What are the two types of stationarity? Provide precise definitions.

ii. Which of the following bivariate Vector Autoregressions are stationary? If they are not station-
ary are they cointegrated, independent unit roots or explosive? Assume[

ε1t
ε2t

]
i.i.d.∼ N (0,I2)

Recall that the eigenvalues values of a 2×2 non-triangular matrix

π =

[
π11 π12
π21 π22

]
can be solved using the two-equation, two-unknowns system λ1 +λ2 = π11 +π22 and λ1λ2 =
π11π22−π12π21.
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(a) [
xt
Yt

]
=

[
1.4 .4
−.6 .4

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
(b) [

xt
Yt

]
=

[
1 0
0 1

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
(c) [

xt
Yt

]
=

[
.8 0
.2 .4

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
iii. What are spurious regression and balance?

iv. Why is spurious regression a problem?

v. Briefly outline the steps needed to test for a spurious regression in

Yt = β1 +β2xt + εt .

Exercise 5.3. Consider the AR(2)

Yt = φ1Yt−1 +φ2Yt−2 + εt .

i. Rewrite the model with ∆Yt on the left-hand side and Yt−1 and ∆Yt−1 on the right-hand side.

ii. What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in the first
differences?

iii. When the model collapses, what does this imply about Yt?

Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

i. Are xt and Yt cointegrated?

ii. Write this model in error correction form.

Consider the VAR(1) [
xt
Yt

]
=

[
0.4 0.3
0.8 0.6

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
where {ε t} is a vector white noise process.

i. Verify that xt and Yt are cointegrated.
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ii. Write this model in error correction form.

iii. Compute the speed of adjustment coefficient α and the cointegrating vector β where the β on
xt is normalized to 1.

Exercise 5.4. Data on interest rates on US government debt is collected for 3-month (3MO) T-bills,
and 3-year (3Y R) and 10-year (10Y R) bonds from 1957 until 2009. Three transformed variables are
defined using these three series:

Level 3MO
Slope 10Y R−3MO

Curvature (10Y R−3Y R)− (3Y R−3MO)

i. In terms of VAR analysis, does it matter whether the original data or the level-slope-curvature
model is fit? Hint: Think about reparameterizations between the two.

Granger Causality analysis is performed on this set, and the p-values are

Levelt−1 Slopet−1 Curvaturet−1

Levelt 0.000 0.244 0.000
Slopet 0.000 0.000 0.000

Curvaturet 0.000 0.000 0.000
All (excl. self) 0.000 0.000 0.000

ii. Interpret this table.

iii. When constructing impulse response graphs the selection of the covariance of the shocks is
important. Outline the alternatives and describe situations when each may be preferable.

iv. Figure 5.7 contains the impulse response curves for this model. Interpret the graph. Also,
comment on why the impulse responses can all be significantly different from 0 in light of the
Granger Causality table.

v. Why are some of the lag-0 impulses precisely 0.0?

Exercise 5.5. Answer the following questions:

i. Consider the AR(2)
Yt = φ1Yt−1 +φ2Yt−2 + εt

(a) Rewrite the model with ∆Yt on the left-hand side and Yt−1 and ∆Yt−1 on the right-hand
side.

(b) What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in the
first differences?

(c) When the model collapses, what does this imply about Yt?
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Level-Slope-Curvature Impulse Response
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Figure 5.7: Impulse response functions and 95% confidence intervals for the level-slope-curvature
exercise.

ii. Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

(a) Are xt and Yt cointegrated?

(b) Write this model in error correction form.

iii. Consider the VAR(1)[
xt
Yt

]
=

[
0.625 −0.3125
−0.75 0.375

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
where {ε t} is a vector white noise process.

(a) Verify that xt and Yt are cointegrated.

(b) Write this model in error correction form.
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(c) Compute the speed of adjustment coefficient α and the cointegrating vector β where the
β on xt is normalized to 1.

Exercise 5.6. Consider the estimation of a mean where the errors are a white noise process.

i. Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are i.i.d.

Now suppose error process follows an AR(1) so that Yt = µ +εt and εt = ρεt−1+νt where {νt}
is a WN process.

ii. Show that the usual mean estimator is still unbiased and derive the variance of the sample mean.

iii. What is Granger Causality and how is it useful in Vector Autoregression analysis? Be as specific
as possible.

Suppose that {η1,t} and {η2,t} are two sequences of uncorrelated i.i.d. standard normal random
variables.

xt = η1,t +θ11η1,t−1 +θ12η2,t−1

Yt = η2,t +θ21η1,t−1 +θ22η2,t−1

iv. Define the autocovariance matrix of a vector process.

v. Compute the autocovariance matrix Γ j for j = 0,±1.

vi. The AIC, HQIC, and BIC are computed for a bivariate VAR with lag length ranging from 0 to
12 and are in the table below. Which model is selected by each criterion?

Lag Length AIC HQIC BIC

0 2.1916 2.1968 2.2057
1 0.9495 0.9805 1.0339
2 0.9486 1.0054 1.1032
3 0.9716 1.0542 1.1965
4 0.9950 1.1033 1.2900
5 1.0192 1.1532 1.3843
6 1.0417 1.2015 1.4768
7 1.0671 1.2526 1.5722
8 1.0898 1.3010 1.6649
9 1.1115 1.3483 1.7564

10 1.1331 1.3956 1.8478
11 1.1562 1.4442 1.9406
12 1.1790 1.4926 2.0331
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Exercise 5.7. Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

i. Are xt and Yt cointegrated?

ii. Write this model in error correction form.

Exercise 5.8. Answer the following questions.

i. Describe two methods for determining the number of lags to use in a VAR(P)

ii. Consider the VAR(P)
Yt = Φ1Yt−1 +Φ2Yt−2 + ε t.

Write this VAR in companion form. Under what conditions is this process stationary?

iii. For the remainder of the question, consider the 2-dimentional VAR(1)

Yt = Φ1Yt−1 + ε t.

Define Granger Causality and explain what conditions on Φ1 are needed for no series in yt to
Granger cause any other series in yt .

iv. Define cointegration in this system.

v. What conditions on Φ1 are required for the VAR(1) to be cointegrated?

vi. Write the VAR(1) in error correction form.

vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.9. Consider a VAR(1)
Yt = Φ1Yt−1 + ε t

i. What are the impulses in this model?

ii. Define cointegration for this model.

iii. What conditions on the eigenvalues of Φ1 are required for cointegration to be present?

iv. Consider a 2-dimensional VAR(1) written in error correction form

∆Yt = ΠYt−1 + ε t .

Assume each of the variables in Yt are I(1). What conditions on the rank of Π must hold when:

(a) Yt−1 are stationary

(b) Yt−1 are cointegrated
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(c) Yt−1 are random walks

v. Define spurious regression. Why is this a problem?

Exercise 5.10. Consider the VAR(P)

Yt = Φ1Yt−1 +Φ2Yt−2 + ε t

i. Write this in companion form. Under what conditions is the VAR(P) stationary?

ii. Consider the 2-dimentional VAR
Yt = Φ1Yt−1 + ε t

(a) What conditions on Φ1 are required for the VAR(1) to have cointegration?

(b) Describe how to test for cointegration using the Engle-Granger method.

Exercise 5.11. Consider a VAR(1)
Yt = Φ1Yt−1 + ε t

i. What is an impulse response function for this model?

ii. Define cointegration for this model.

iii. What conditions on the eigenvalues of Φ1 are required for cointegration to be present?

iv. Consider a 2-dimensional VAR(1) written in error correction form

∆Yt = ΠYt−1 + ε t .

Assume each of the variables in Yt are I(1). What conditions on the rank of Π must hold when:

(a) Yt−1 are stationary

(b) Yt−1 are cointegrated

(c) Yt−1 are random walks

v. Define spurious regression. Why is this a problem?

Exercise 5.12. Answer the following questions.

i. Describe two methods for determining the number of lags to use in a VAR(P)

ii. Consider the VAR(P)
Yt = Φ1Yt−1 +Φ2Yt−2 + ε t .

Write this in companion form. Under what conditions is the VAR(P) stationary?

iii. For the remainder of the question, consider the 2-dimentional VAR(1)

Yt = Φ1Yt−1 + ε t .

Define Granger Causality and explain what conditions on Φ1 are needed for no series in Yt to
Granger cause any other series in Yt .
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iv. Define cointegration in this system.

v. What conditions on Φ1 are required for the VAR(1) to have cointegration?

vi. Write the VAR(1) in error correction form.

vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.13. Answer the following questions.

i. Suppose Yt = φ0 +φ1y+φ2Yt−2 + εt where {εt} is a white noise process.

ii. Write this model in companion form.

(a) Using the companion form, derive expressions for the first two autocovariances of Yt . (It
is not necessary to explicitly solve them in scalar form)

(b) Using the companion form, determine the formal conditions for φ1 and φ2 to for {Yt} to be
covariance stationary. You can use the result that when A is a 2 by 2 matrix, its eigenvalues
solve the two equations

λ1λ2 = a11a22−a12a21

λ1 +λ2 = a11 +a22
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