
Chapter 7

Univariate Volatility Modeling

Alternative references for volatility modeling include chapters 10 and 11 in Taylor (2005), chapter
21 of Hamilton (1994), and chapter 4 of Enders (2004). Many of the original articles have been
collected in Engle (1995).

Engle (1982) introduced the ARCH model and, in doing so, modern financial economet-
rics. Measuring and modeling conditional volatility is the cornerstone of the field. Models
used for analyzing conditional volatility can be extended to capture a variety of related phe-
nomena including Value-at-Risk, Expected Shortfall, forecasting the complete density of
financial returns and duration analysis. This chapter begins by examining the meaning of
“volatility” - it has many - before turning attention to the ARCH-family of models. The
chapter details estimation, inference, model selection, forecasting, and diagnostic testing.
The chapter concludes by covering new methods of measuring volatility: realized volatility,
which makes use of using ultra-high-frequency data, and implied volatility, a measure of
volatility computed from options prices.

Volatility measurement and modeling is the foundation of financial econometrics. This chapter
begins by introducing volatility as a meaningful concept and then describes a widely used framework
for volatility analysis: the ARCH model. The chapter describes the most widely used members of the
ARCH family, fundamental properties of each, estimation, inference and model selection. Attention
then turns to a new tool in the measurement and modeling of financial volatility, realized volatility,
before concluding with a discussion of option-based implied volatility.

7.1 Why does volatility change?

Time-varying volatility is a pervasive empirical regularity in financial time series, and it is difficult
to find an asset return series which does not exhibit time-varying volatility. This chapter focuses on
providing a statistical description of the time-variation of volatility but does not go into depth on the
economic causes of time-varying volatility. Many explanations have been proffered to explain this
phenomenon, and treated individually; none provide a complete characterization of the variation in
volatility observed in financial returns.

• News Announcements: The arrival of unanticipated news (or “news surprises”) forces agents to
update beliefs. These new beliefs lead to portfolio rebalancing and high volatility correspond to
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periods when agents are incorporating the news and dynamically solving for new asset prices.
While certain classes of assets have been shown to react to surprises, in particular, govern-
ment bonds and foreign exchange, many appear to be unaffected by large surprises (see, inter
alia Engle and Li (1998) and Andersen, Bollerslev, Diebold, and Vega (2007)). Additionally,
news-induced periods of high volatility are generally short, often on the magnitude of 5 to 30-
minutes and the apparent resolution of uncertainty is far too quick to explain the time-variation
of volatility seen in asset prices.

• Leverage: When a firm is financed using both debt and equity, only the equity reflects the
volatility of the firm’s cash flows. However, as the price of equity falls, the reduced equity
must reflect the same volatility of the firm’s cash flows and so negative returns should lead to
increases in equity volatility. The leverage effect is pervasive in equity returns, especially in
broad equity indices, although alone it is insufficient to explain the time variation of volatility
(Christie, 1982; Bekaert and Wu, 2000).

• Volatility Feedback: Volatility feedback is motivated by a model where the volatility of an asset
is priced. When the price of an asset falls, the volatility must increase to reflect the increased
expected return (in the future) of this asset, and an increase in volatility requires an even lower
price to generate a sufficient return to compensate an investor for holding a volatile asset. There
is evidence that empirically supports this explantion although this feature alone cannot explain
the totality of the time-variation of volatility (Bekaert and Wu, 2000).

• Illiquidity: Short run spells of illiquidity may produce time-varying volatility even when shocks
are i.i.d.. Intuitively, if the market is oversold (bought), a small negative (positive) shock pro-
duces a small decrease (increase) in demand. However, since few participants are willing to
buy (sell), this shock has a disproportionate effect on prices. Liquidity runs tend to last from 20
minutes to a few days and cannot explain the long cycles in present volatility.

• State Uncertainty: Asset prices are essential instruments that allow agents to express beliefs
about the state of the economy. When the state is uncertain, slight changes in beliefs may cause
significant shifts in portfolio holdings which in turn feedback into beliefs about the state. This
feedback loop can generate time-varying volatility and should have the most substantial effect
when the economy is transitioning between periods of growth and contraction (Veronesi, 1999;
Collard et al., 2018).

The economic causes of the time-variation in volatility include all of these and some not yet identified,
such as behavioral causes.

7.1.1 What is volatility?

Volatility comes in many shapes and forms. It is critical to distinguish between related but different
uses of “volatility”.
Volatility Volatility is the standard deviation. Volatility is often preferred to variance as it is measured
in the same units as the original data. For example, when using returns, the volatility is also measured
in returns, and so volatility of 5% indicates that ±5% is a meaningful quantity.
Realized Volatility Realized volatility has historically been used to denote a measure of the volatility
over some arbitrary period of time,



7.2 ARCH Models 417

σ̂ =

√√√√T−1
T∑

t=1

(rt− µ̂)2 (7.1)

but is now used to describe a volatility measure constructed using ultra-high-frequency (UHF) data
(also known as tick data). See section 7.8 for details.
Conditional Volatility Conditional volatility is the expected volatility at some future time t +h based
on all available information up to time t (Ft). The one-period ahead conditional volatility is denoted
Et [σt+1].
Implied Volatility Implied volatility is the volatility that correctly prices an option. The Black-Scholes
pricing formula relates the price of a European call option to the current price of the underlying, the
strike, the risk-free rate, the time-to-maturity, and the volatility,

BS(St ,K,r, t,σt) =Ct

where C is the price of the call. The implied volatility is the value which solves the Black-Scholes
taking the option and underlying prices, the strike, the risk-free and the time-to-maturity as given,

σ̂t(St ,K,r, t,C).

Recent econometric developments have produced nonparametric estimators that do not make strong
assumptions on the underlying price process. The VIX is a leading example of these these Model-free
Implied Volatility (MFIV) estimators.
Annualized Volatility When volatility is measured over an interval other than a year, such as a day,
week or month, it can always be scaled to reflect the volatility of the asset over a year. For example,
if σ denotes the daily volatility of an asset and there are 252 trading days in a year, the annualized
volatility is

√
252σ . Annualized volatility is a useful measure that removes the sampling interval

from reported volatilities.
Variance All of the uses of volatility can be replaced with variance, and this chapter focuses on
modeling conditional variance denoted Et [σ

2
t+1], or in the general case, Et

[
σ2

t+h

]
.

7.2 ARCH Models

In financial econometrics, an arch is not an architectural feature of a building; it is a fundamental tool
for analyzing the time-variation of conditional variance. The success of the ARCH (AutoRegressive
Conditional Heteroskedasticity) family of models can be attributed to three features: ARCH processes
are essentially ARMA models, and many of the tools of linear time-series analysis can be directly
applied, ARCH-family models are easy to estimate, and simple, parsimonious models are capable of
accurate descriptions of the dynamics of asset volatility.

7.2.1 The ARCH model

The complete ARCH(P) model (Engle, 1982) relates the current level of volatility to the past P squared
shocks.
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Definition 7.1 (Pth Order Autoregressive Conditional Heteroskedasticity (ARCH)). A Pth order ARCH
process is given by

rt = µt + εt (7.2)

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P

εt = σtet

et
i.i.d.∼ N(0,1).

where µt can be any adapted model for the conditional mean.1

The key feature of this model is that the variance of the shock, εt , is time varying and depends on
the past P shocks, εt−1,εt−2, . . . ,εt−P, through their squares. σ2

t is the time t−1 conditional variance.
All of the right-hand side variables that determine σ2

t are known at time t − 1, and so σ2
t is in the

time t−1 information set Ft−1. The model for the conditional mean can include own lags, shocks (in
an MA model) or exogenous variables such as the default spread or term premium. In practice, the
model for the conditional mean should be general enough to capture the dynamics present in the data.
In many financial time series, particularly when returns are measured over short intervals - one day to
one week - a constant mean, sometimes assumed to be 0, is sufficient.

An common alternative description an ARCH(P) model is

rt |Ft−1 ∼ N(µt ,σ
2
t ) (7.3)

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P

εt = rt−µt

which is read “rt given the information set at time t − 1 is conditionally normal with mean µt and
variance σ2

t ”. 2

The conditional variance, σ2
t , is

Et−1
[
ε

2
t
]
= Et−1

[
e2

t σ
2
t
]
= σ

2
t Et−1

[
e2

t
]
= σ

2
t (7.4)

and the unconditional variance, σ̄2, is

E
[
ε

2
t+1
]
= σ̄

2. (7.5)

The first interesting property of the ARCH(P) model is the unconditional variance. Assuming the

1A model is adapted if everything required to model the mean at time t is known at time t−1. Standard examples of
adapted mean processes include a constant mean, ARMA processes or models containing exogenous regressors known at
time t−1.

2It is implausible that the unconditional (long-run) mean return of many risky assets is zero. However, when using
daily equity data, the squared mean is typically less than 1% of the variance ( µ

2

σ2 < 0.01) and there are few consequences
for setting the conditional mean to 0. Some assets, e.g., electricity prices, have non-trivial predictability and an appropriate
model for the conditional mean is required before modeling the volatility.
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unconditional variance exists, σ̄2 = E[σ2
t ] can be derived from

E
[
σ

2
t
]
=E
[
ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P
]

(7.6)

=ω +α1E
[
ε

2
t−1
]
+α2E

[
ε

2
t−2
]
+ . . .+αPE

[
ε

2
t−P
]

=ω +α1E
[
Et−2

[
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2
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t−1
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σ

2
t−2e2

t−2
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+ . . .+αPE
[
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t−1
]]
+α2E

[
σ

2
t−2Et−3

[
e2

t−2
]]

+ . . .+αPE
[
σ

2
t−PEt−P−1

[
e2

t−P
]]

=ω +α1E
[
σ

2
t−1×1

]
+α2E

[
σ

2
t−2×1

]
+ . . .+αPE

[
σ

2
t−P×1

]
=ω +α1E

[
σ

2
t−1
]
+α2E

[
σ

2
t−2
]
+ . . .+αPE

[
σ

2
t−P
]

=ω +α1E
[
σ

2
t
]
+α2E

[
σ

2
t
]
+ . . .+αPE
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]
(1−α1−α2− . . .−αP) =ω

σ̄
2 =

ω

1−α1−α2− . . .−αP
. (7.7)

This derivation makes use of a number of properties of ARCH family models. First, the definition
of the shock ε2

t ≡ e2
t σ2

t is used to separate the i.i.d.normal innovation (et) from the conditional vari-
ance (σ2

t ) using the Law of Iterated Expectations. For example, σt−1 is known at time t−2 and so is
in Ft−2 and Et−1 [σt−1] = σt−1. et−1 is an i.i.d.draw at time t−1, a random variable at time t−2, and
so Et−2

[
e2

t−1
]
= 1. The result follows from the property that the unconditional expectation of σ2

t− j is
the same in any time period (E[σ2

t ] = E[σ2
t−p] = σ̄2) in a covariance stationary time series. Inspection

of the final line in the derivation reveals the condition needed to ensure that the unconditional expec-
tation is finite: 1−α1−α2− . . .−αP > 0. As was the case in an AR model, as the persistence (as
measured by α1,α2, . . .) increases towards a unit root, the process explodes.

7.2.1.1 Stationarity

An ARCH(P) model is covariance stationary as long as the model for the conditional mean corre-
sponds to a stationary process3 and 1−α1−α2− . . .−αP > 0.4 ARCH models have the property that
E[ε2

t ] = σ̄2 = ω/(1−α1−α2− . . .−αP) since

E[ε2
t ] = E[e2

t σ
2
t ] = E[Et−1

[
e2

t σ
2
t
]
] = E[σ2

t Et−1
[
e2

t
]
] = E[σ2

t ×1] = E[σ2
t ]. (7.8)

which exploits the conditional (on Ft−1) independence of et from σ2
t and the assumption that et is a

mean zero process with unit variance so that E[e2
t ] = 1.

One crucial requirement of any covariance stationary ARCH process is that the parameters of the
variance evolution, α1, α2, . . . , αP must all be positive.5 The intuition behind this requirement is that
if one of the αs were negative, eventually a shock would be sufficiently large to produce a negative

3For example, a constant or a covariance stationary ARMA process.
4When

∑P
i=1 αi > 1, and ARCH(P) may still be strictly stationary although it cannot be covariance stationary since it

has infinite variance.
5Since each α j ≥ 0, the roots of the characteristic polynomial associated with α1,α2, . . . ,αp are less than 1 if and only

if
∑P

p=1 αp < 1.
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conditional variance and an ill-defined process. Finally, it is also necessary that ω > 0 to ensure
covariance stationarity.

To aid in developing intuition about ARCH-family models consider a simple ARCH(1) with a
constant mean of 0,

rt = εt (7.9)

σ
2
t = ω +α1ε

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1).

While the conditional variance of an ARCH process appears different from anything previously en-
countered, the squared error ε2

t can be equivalently expressed as an AR(1). This transformation allows
many properties of ARCH residuals to be directly derived by applying the results of chapter 4. By
adding ε2

t −σ2
t to both sides of the volatility equation,

σ
2
t = ω +α1ε

2
t−1 (7.10)

σ
2
t + ε

2
t −σ

2
t = ω +α1ε

2
t−1 + ε

2
t −σ

2
t

ε
2
t = ω +α1ε

2
t−1 + ε

2
t −σ

2
t

ε
2
t = ω +α1ε

2
t−1 +σ

2
t
(
e2

t −1
)

ε
2
t = ω +α1ε

2
t−1 +νt ,

an ARCH(1) process can be shown to be an AR(1). The error term, νt represents the volatility
surprise, ε2

t − σ2
t , which can be decomposed as σ2

t (e
2
t − 1). The shock is a mean 0 white noise

process since et is i.i.d.and E[e2
t ] = 1. Using the AR representation, the autocovariances of ε2

t are
simple to derive. First note that ε2

t − σ̄2 =
∑∞

i=0 α i
1νt−i. The first autocovariance can be expressed

E
[(

ε
2
t − σ̄

2)(
ε

2
t−1− σ̄

2)]= E

( ∞∑
i=0

α
i
1νt−i

) ∞∑
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α
j−1

1 ν j−i

 (7.11)
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=

∞∑
i=1

α
i−1
1 ·0+E

α1

( ∞∑
i=1

α
i−1
1 νt−i

) ∞∑
j=1

α
j−1

1 νt− j


= α1E

( ∞∑
i=1

α
i−1
1 νt−i

)2


= α1E

( ∞∑
i=0

α
i
1νt−1−i

)2


= α1

 ∞∑
i=0

α
2i
1 E
[
ν

2
t−1−i

]
+2

∞∑
j=0

∞∑
k= j+1

α
jk

1 E
[
νt−1− jνt−1−k

]
= α1

 ∞∑
i=0

α
2i
1 V [νt−1−i]+2

∞∑
j=0

∞∑
k= j+1

α
jk

1 ·0


= α1

∞∑
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where V[ε2
t−1] = V[ε2

t ] is the variance of the squared innovations.6 By repeated substitution, the sth

autocovariance, E[(ε2
t − σ̄2)(ε2

t−s− σ̄2)], can be shown to be αs
1V[ε2

t ], and so that the autocovariances
of an ARCH(1) process are identical to those of an AR(1) process.

7.2.1.2 Autocorrelations

Using the autocovariances, the autocorrelations are

Corr(ε2
t ,ε

2
t−s) =

αs
1V[ε2

t ]

V[ε2
t ]

= α
s
1. (7.12)

Further, the relationship between the sth autocorrelation of an ARCH process and an AR process holds
for ARCH processes with other orders. The autocorrelations of an ARCH(P) are identical to those
of an AR(P) process with {φ1,φ2, . . . ,φP} = {α1,α2, . . . ,αP}. One interesting aspect of ARCH(P)
processes (and any covariance stationary ARCH-family model) is that the autocorrelations of

{
ε2

t
}

must be positive. If one autocorrelation were negative, eventually a shock would be sufficiently large
to force the conditional variance negative, and so the process would be ill-defined. In practice it is
often better to examine the absolute values (Corr(|εt | , |εt−s|)) rather than the squares since financial
returns frequently have outliers that are exacerbated when squared.

7.2.1.3 Kurtosis

The second interesting property of ARCH models is that the kurtosis of shocks (εt) is strictly greater
than the kurtosis of a normal. This may seem strange since all of the shocks εt = σtet are normal by

6For the time being, assume this is finite.
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Returns of the S&P 500 and WTI
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Figure 7.1: Plots of S&P 500 and WTI returns (scaled by 100) from 1999 until 2018. The bulges in
the return plots are graphical evidence of time-varying volatility.

assumption. An ARCH model is a variance-mixture of normals, and so must have a kurtosis larger
than three. The direct proof is simple,
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E
[
ε4

t
]
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t
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3σ4

t
]

E
[
σ2

t
]2 = 3

E
[
σ4

t
]
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[
σ2

t
]2 ≥ 3. (7.13)

The key steps in this derivation are that ε4
t = e4

t σ4
t and that Et [e4

t ] = 3 since et is a standard normal.
The final conclusion that E[σ4

t ]/E[σ2
t ]

2 > 1 follows from noting that for any random variable Y ,

V [Y ] = E
[
Y 2]−E [Y ]2 ≥ 0 and so it must be the case that E

[
σ4

t
]
≥ E

[
σ2

t
]2 or

E[σ4
t ]

E[σ2
t ]

2 ≥ 1. The

kurtosis, κ , of an ARCH(1) can be shown to be

κ =
3(1−α2

1 )

(1−3α2
1 )

> 3 (7.14)
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Squared Returns of the S&P 500 and WTI
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Figure 7.2: Plots of the squared returns of the S&P 500 Index and WTI. Time-variation in the squared
returns is evidence of ARCH.

which is greater than 3 since 1− 3α2
1 < 1−α2

1 for any value of α 6= 0. The complete derivation of
the kurtosis is involved and is presented in Appendix 7.A.

7.2.2 The GARCH model

The ARCH model has been deemed a sufficient contribution to economics to warrant a Nobel prize.
Unfortunately, like most models, it has problems. ARCH models typically require 5-8 lags of the
squared shock to model conditional variance adequately. The Generalized ARCH (GARCH) pro-
cess, introduced by Bollerslev (1986), improves the original specification adding lagged conditional
variance, which acts as a smoothing term. A low-order GARCH model typically fits as well as a
high-order ARCH.

Definition 7.2 (Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process). A
GARCH(P,Q) process is defined as

rt = µt + εt (7.15)
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σ
2
t = ω +

P∑
p=1

αpε
2
t−p +

Q∑
q=1

βqσ
2
t−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean.

The GARCH(P,Q) model builds on the ARCH(P) model by including Q lags of the conditional vari-
ance, σ2

t−1,σ
2
t−2, . . . ,σ

2
t−Q. Rather than focusing on the general specification with all of its complica-

tions, consider a simpler GARCH(1,1) model where the conditional mean is assumed to be zero,

rt = εt (7.16)

σ
2
t = ω +α1ε

2
t−1 +β1σ
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εt = σtet
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i.i.d.∼ N(0,1)

In this specification, the future variance will be an average of the current shock, ε2
t−1, the current vari-

ance, σ2
t−1, and a constant. Including the lagged variance produces a model that can be equivalently

expressed as an ARCH(∞). Begin by backward substituting for σ2
t−1,
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and the ARCH(∞) representation can be derived.7 The conditional variance in period t depends on
a constant,

∑∞
i=0 β i

1ω = ω

1−β
, and a weighted average of past squared innovations with weights α1,

β1α1, β 2
1 α1, β 3

1 α1, . . ..
As was the case in the ARCH(P) model, the coefficients of a GARCH model must be restricted

to ensure the conditional variances are uniformly positive. In a GARCH(1,1), these restrictions are
ω > 0, α1 ≥ 0 and β1 ≥ 0. In a GARCH(P,1) model the restriction change to αp ≥ 0, p = 1,2, . . . ,P
with the same restrictions on ω and β1. The minimal parameter restrictions needed to ensure that

7Since the model is assumed to be stationary, it must be the case that 0≤ β < 1 and so lim j→∞β jσt− j = 0.



7.2 ARCH Models 425

variances are always positive are difficult to derive for the full class of GARCH(P,Q) models. For
example, in a GARCH(2,2), one of the two β ’s (β2) can be slightly negative while ensuring that all
conditional variances are positive. See Nelson and Cao (1992) for further details.

The GARCH(1,1) model can be transformed into a standard time series model for ε2
t by adding

ε2
t −σ2

t to both sides.
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t−1 (7.18)

σ
2
t + ε

2
t −σ

2
t = ω +α1ε

2
t−1 +β1σ

2
t−1 + ε

2
t −σ

2
t

ε
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1 + ε

2
t −σ

2
t

ε
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1−β1ε

2
t−1 +β1ε

2
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t = ω +α1ε

2
t−1 +β1ε
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2
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t −σ
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t = ω +α1ε
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t−1−β1νt−1 +νt
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t = ω +(α1 +β1)ε

2
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The squared shock in a GARCH(1,1) follows an ARMA(1,1) process where νt = ε2
t − σ2

t is the
volatility surprise. In the general GARCH(P,Q), the ARMA representation takes the form of an
ARMA(max(P,Q),Q).

ε
2
t = ω +

max(P,Q)∑
i=1

(αi +βi)ε
2
t−i−

Q∑
q=1

β1νt−q +νt (7.19)

The unconditional variance is computed by taking expectations of both sides, so that

E[σ2
t ] = ω +α1E[ε2

t−1]+β1E[σ2
t−1] (7.20)

σ̄
2 = ω +α1σ̄

2 +β1σ̄
2

σ̄
2−α1σ̄

2−β1σ̄
2 = ω

σ̄
2 =

ω

1−α1−β1
.

Inspection of the ARMA model leads to an alternative derivation of σ̄2 since the AR coefficient is
α1 +β1 and the intercept is ω , and the unconditional mean in an ARMA(1,1) is the intercept divided
by one minus the AR coefficient, ω/(1−α1− β1). In a general GARCH(P,Q) the unconditional
variance is

σ̄
2 =

ω

1−∑P
p=1 αp−

∑Q
q=1 βq

. (7.21)

The requirements on the parameters for stationarity in a GARCH(1,1) are 1−α1−β > 0 and α1 ≥ 0,
β1 ≥ 0 and ω > 0.

The ARMA(1,1) form can be used directly to solve for the autocovariances. Recall the definition
of a mean zero ARMA(1,1),

Yt = φYt−1 +θεt−1 + εt (7.22)
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The 1stautocovariance can be computed as

E[YtYt−1] = E[(φYt−1 +θεt−1 + εt)Yt−1] (7.23)

= E[φY 2
t−1]+ [θε

2
t−1]

= φV[Yt−1]+θV[εt−1]

γ1 = φV[Yt−1]+θV[εt−1]

and the sth autocovariance is γs = φ s−1γ1. In the notation of a GARCH(1,1) model, φ = α1 + β1,
θ = −β1, Yt−1 is ε2

t−1 and ηt−1 is σ2
t−1− ε2

t−1. Thus, V[ε2
t−1] and V[σ2

t − ε2
t ] must be solved for.

This derivation is challenging and so is presented in the appendix. The key to understanding the
autocovariance (and autocorrelation) of a GARCH is to use the ARMA mapping. First note that
E[σ2

t − ε2
t ] = 0 so V[σ2

t − ε2
t ] is simply E[(σ2

t − ε2
t )

2]. This can be expanded to E[ε4
t ]− 2E[ε2

t σ2
t ]+

E[σ4
t ] which can be shown to be 2E[σ4

t ]. The only remaining step is to complete the tedious derivation
of the expectation of these fourth powers which is presented in Appendix 7.B.

7.2.2.1 Kurtosis

The kurtosis can be shown to be

κ =
3(1+α1 +β1)(1−α1−β1)

1−2α1β1−3α2
1 −β 2

1
> 3. (7.24)

The kurtosis is larger than that of a normal despite the innovations, et , all having normal distributions
since that model is a variance mixture of normals. The formal derivation is presented in 7.B.
Exponentially Weighted Moving Averages (EWMA)

Exponentially Weighted Moving Averages, popularized by RiskMetrics, are commonly used to mea-
sure and forecast volatilities from returns without estimating any parameters (J.P.Morgan/Reuters,
1996). An EWMA is a restricted GARCH(1,1) model where ω = 0 and α +β = 1. The recursive
form of an EWMA is

σ
2
t = (1−λ )ε2

t−1 +λσ
2
t−1,

which can be equivalently expressed as an ARCH(∞)

σ
2
t = (1−λ )

∞∑
i=0

λ
i
ε

2
t−i−1.

The weights on the lagged squared returns decay exponentially so that the ratio of two consecutive
weights is λ . The single parameter λ is typically set to 0.94 when using daily returns, 0.97 when
using weekly return data, or 0.99 when using monthly returns. These values were calibrated on a
wide range of assets to forecast volatility well.

7.2.3 The EGARCH model

The Exponential GARCH (EGARCH) model represents a major shift from the ARCH and GARCH
models (Nelson, 1991). Rather than model the variance directly, EGARCH models the natural log-
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arithm of the variance, and so no parameters restrictions are required to ensure that the conditional
variance is positive.

Definition 7.3 (Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH)
process). An EGARCH(P,O,Q) process is defined

rt = µt + εt (7.25)

ln(σ2
t ) = ω +

P∑
p=1

αp

(∣∣∣∣ εt−p

σt−p

∣∣∣∣−
√

2
π

)
+

O∑
o=1

γo
εt−o

σt−o
+

Q∑
q=1

βq ln(σ2
t−q)

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean. P and O were assumed to be equal in
the original parameterization of Nelson (1991).

Rather than working with the complete specification, consider a simpler version, an EGARCH(1,1,1)
with a constant mean,

rt = µ + εt (7.26)

ln(σ2
t ) = ω +α1

(∣∣∣∣ εt−1

σt−1

∣∣∣∣−
√

2
π

)
+ γ1

εt−1

σt−1
+β1 ln(σ2

t−1)

εt = σtet

et
i.i.d.∼ N(0,1).

Three terms drive the dynamics in the log variance. The first term,
∣∣∣ εt−1

σt−1

∣∣∣−√ 2
π

=|et−1|−
√

2
π

, is the

absolute value of a normal random variable, et−1, minus its expectation,
√

2/π , and so it is a mean
zero shock. The second term, et−1 – a standard normal – is an additional mean zero shock and the
final term is the lagged log variance. The two shocks behave differently: the absolute value in the first
produces a symmetric rise in the log variance for a given return while the sign of the second produces
an asymmetric effect. γ1 is typically estimated to negative so that volatility rises more after negative
shocks than after positive ones. In the usual case where γ1 < 0, the magnitude of the shock can be
decomposed by conditioning on the sign of et−1

Shock coefficient =

{
α1 + γ1 when et−1 < 0
α1− γ1 when et−1 > 0 (7.27)

Since both shocks are mean zero and the current log variance is linearly related to past log variance
through β1, the EGARCH(1,1,1) model is an AR model.

EGARCH models often provide superior fits when compared to standard GARCH models. The
presence of the asymmetric term is largely responsible for the superior fit since many asset return
series have been found to exhibit a “leverage” effect. Additionally, the use of standardized shocks
(et−1) in the dynamics of the log-variance reduces the effect of outliers.
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Summary Statistics
S&P 500 WTI

Ann. Mean 14.03 5.65
Ann. Volatility 38.57 19.04
Skewness 0.063 -0.028
Kurtosis 7.22 11.45

Table 7.1: Summary statistics for the S&P 500 and WTI. Means and volatilities are reported in annu-
alized terms using 100 × returns. Skewness and kurtosis are scale-free by definition.

7.2.3.1 The S&P 500 and West Texas Intermediate Crude

The application of GARCH models will be demonstrated using daily returns on both the S&P 500 and
West Texas Intermediate (WTI) Crude spot prices from January 1, 1999, until December 31, 2018.
The S&P 500 data is from Yahoo! Finance and the WTI data is from the St. Louis Federal Reserve’s
FRED database. All returns are scaled by 100. The returns are plotted in Figure 7.1, the squared
returns are plotted in Figure 7.2, and the absolute values of the returns are plotted in Figure 7.3. The
plots of the squared returns and the absolute values of the returns are useful graphical diagnostics for
detecting ARCH. If the residuals are conditionally heteroskedastic, both plots provide evidence of
volatility dynamics in the transformed returns. In practice, the plot of the absolute returns is a more
helpful graphical tool than the plot of the squares. Squared returns are noisy proxies for the variance,
and the dynamics in the data may be obscured by a small number of outliers.

Summary statistics are presented in table 7.1, and estimates from an ARCH(5), and GARCH(1,1)
and an EGARCH(1,1,1) are presented in table 7.2. The summary statistics are typical of financial
data where both series are heavy-tailed (leptokurtotic).

Definition 7.4 (Leptokurtosis). A random variable xt is said to be leptokurtic if its kurtosis,

κ =
E[(xt−E[xt ])

4]

E[(xt−E[xt ])2]2

is greater than that of a normal (κ > 3). Leptokurtic variables are also known as “heavy-tailed” or
“fat tailed”.

Definition 7.5 (Platykurtosis). A random variable xt is said to be platykurtic if its kurtosis,

κ =
E[(xt−E[xt ])

4]

E[(xt−E[xt ])2]2

is less than that of a normal (κ < 3). Platykurtic variables are also known as “thin-tailed”.

Table 7.2 contains estimates from an ARCH(5), a GARCH(1,1) and an EGARCH(1,1,1) model.
All estimates were computed using maximum likelihood assuming the innovations are conditionally
normally distributed. There is strong evidence of time-varying variance since most p-values are near
0. The highest log-likelihood (a measure of fit) is produced by the EGARCH model in both series.
This is likely due to the EGARCH’s inclusion of asymmetries, a feature excluded from both the
ARCH and GARCH models.
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S&P 500
ARCH(5)

ω α1 α2 α3 α4 α5 Log Lik.

0.294
(0.000)

0.095
(0.000)

0.204
(0.000)

0.189
(0.000)

0.193
(0.000)

0.143
(0.000)

−7008

GARCH(1,1)
ω α1 β1 Log Lik.

0.018
(0.000)

0.102
(0.000)

0.885
(0.000)

−6888

EGARCH(1,1,1)
ω α1 γ1 β1 Log Lik.

0.000
(0.909)

0.136
(0.000)

−0.153
(0.000)

0.975
(0.000)

−6767

WTI
ARCH(5)

ω α1 α2 α3 α4 α5 Log Lik.

2.282
(0.000)

0.138
(0.000)

0.129
(0.000)

0.131
(0.000)

0.094
(0.000)

0.130
(0.000)

−11129

GARCH(1,1)
ω α1 β1 Log Lik.

0.047
(0.034)

0.059
(0.000)

0.934
(0.000)

−11030

EGARCH(1,1,1)
ω α1 γ1 β1 Log Lik.

0.020
(0.002)

0.109
(0.000)

−0.050
(0.000)

0.990
(0.000)

−11001

Table 7.2: Parameter estimates, p-values and log-likelihoods from ARCH(5), GARCH(1,1) and
EGARCH(1,1,1) models for the S&P 500 and WTI. These parameter values are typical of models
estimated on daily data. The persistence of conditional variance, as measured by the sum of the αs in
the ARCH(5), α1 +β1 in the GARCH(1,1) and β1 in the EGARCH(1,1,1), is high in all models. The
log-likelihoods indicate the EGARCH model is preferred for both return series.
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Absolute Returns of the S&P 500 and WTI
Absolute S&P 500 Returns
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Figure 7.3: Plots of the absolute returns of the S&P 500 and WTI. Plots of the absolute value are often
more useful in detecting ARCH as they are less noisy than squared returns yet still show changes in
conditional volatility.

7.2.4 Alternative Specifications

Many extensions to the basic ARCH model have been introduced to capture important empirical
features. This section outlines three of the most useful extensions in the ARCH-family.

7.2.4.1 GJR-GARCH

The GJR-GARCH model was named after the authors who introduced it, Glosten, Jagannathan, and
Runkle (1993). It extends the standard GARCH(P,Q) by adding asymmetric terms that capture a
common phenomenon in the conditional variance of equities: the propensity of the volatility to rise
more after large negative shocks than to large positive shocks (known as the “leverage effect”).

Definition 7.6 (GJR-Generalized Autoregressive Conditional Heteroskedasticity (GJR-GARCH) pro-
cess). A GJR-GARCH(P,O,Q) process is defined as

rt = µt + εt (7.28)
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σ
2
t = ω +

P∑
p=1

αpε
2
t−p +

O∑
o=1

γoε
2
t−oI[εt−o<0]+

Q∑
q=1

βqσ
2
t−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean, and I[εt−o<0] is an indicator function that
takes the value 1 if εt−o < 0 and 0 otherwise.

The parameters of the GJR-GARCH, like the standard GARCH model, must be restricted to en-
sure that the fit variances are always positive. This set is difficult to describe for all GJR-GARCH(P,O,Q)
models although it is simple of a GJR-GARCH(1,1,1). The dynamics in a GJR-GARCH(1,1,1) evolve
according to

σ
2
t = ω +α1ε

2
t−1 + γ1ε

2
t−1I[εt−1<0]+β1σ

2
t−1. (7.29)

and it must be the case that ω > 0, α1 ≥ 0, α1+γ ≥ 0 and β1 ≥ 0. If the innovations are conditionally
normal, a GJR-GARCH model will be covariance stationary as long as the parameter restriction are
satisfied and α1 +

1
2γ1 +β1 < 1.

7.2.4.2 AVGARCH/TARCH/ZARCH

The Threshold ARCH (TARCH) model (also known as AVGARCH and ZARCH) makes one fun-
damental change to the GJR-GARCH model (Taylor, 1986; Zakoian, 1994). The TARCH model
parameterizes the conditional standard deviation as a function of the lagged absolute value of the
shocks. It also captures asymmetries using an asymmetric term that is similar to the asymmetry in the
GJR-GARCH model.

Definition 7.7 (Threshold Autoregressive Conditional Heteroskedasticity (TARCH) process). A TARCH(P,
O, Q) process is defined as

rt = µt + εt (7.30)

σt = ω +
P∑

p=1

αp|εt−p|+
O∑

o=1

γo|εt−o|I[εt−o<0]+

Q∑
q=1

βqσt−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean. TARCH models are also known as
ZARCH due to Zakoian (1994) or AVGARCH when no asymmetric terms are included (O= 0, Taylor
(1986)).

Below is an example of a TARCH(1,1,1) model.

σt = ω +α1|εt−1|+ γ1|εt−1|I[εt−1<0]+β1σt−1, α1 + γ1 ≥ 0 (7.31)

where I[εt−1<0] is an indicator variable which takes the value 1 if εt−1 < 0. Models of the conditional
standard deviation often outperform models that parameterize the conditional variance. The absolute
shocks are less responsive than the squared shocks.
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7.2.4.3 APARCH

The third model extends the TARCH and GJR-GARCH models by directly parameterizing the non-
linearity in the conditional variance. Where the GJR-GARCH model uses 2, and the TARCH model
uses 1, the Asymmetric Power ARCH (APARCH) of Ding, Granger, and Engle (1993) parameter-
izes this value directly (using δ ). This form provides greater flexibility in modeling the memory of
volatility while remaining parsimonious.

Definition 7.8 (Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH) pro-
cess). An APARCH(P,O,Q) process is defined as

rt = µt + εt (7.32)

σ
δ
t = ω +

max(P,O)∑
j=1

α j
(
|εt− j|+ γ jεt− j

)δ
+

Q∑
q=1

βqσ
δ
t−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean. It must be the case that P ≥ O in an
APARCH model, and if P > O, then γ j = 0 for j > O. If that ω > 0, αk ≥ 0 and −1 ≤ γ j ≤ 1, then
the conditional variance are always positive.

It is not completely obvious to see that the APARCH model nests the GJR-GARCH and TARCH
models as special cases. To examine how an APARCH nests a GJR-GARCH, consider an APARCH(1,1,1)
model.

σ
δ
t = ω +α1 (|εt−1|+ γ1εt−1)

δ +β1σ
δ
t−1 (7.33)

Suppose δ = 2, then

σ
2
t = ω +α1 (|εt−1|+ γ1εt−1)

2 +β1σ
2
t−1 (7.34)

= ω +α1|εt−1|2 +2α1γ1εt−1|εt−1|+α1γ
2
1 ε

2
t−1 +β1σ

2
t−1

= ω +α1ε
2
t−1 +α1γ

2
1 ε

2
t−1 +2α1γ1ε

2
t−1sign(εt−1)+β1σ

2
t−1

where sign(·) is a function that returns 1 if its argument is positive and -1 if its argument is negative.
Consider the total effect of ε2

t−1 as it depends on the sign of εt−1,

Shock coefficient =

{
α1 +α1γ2

1 +2α1γ1 when εt > 0
α1 +α1γ2

1 −2α1γ1 when εt < 0
(7.35)

γ is usually estimated to be less than zero which corresponds to the typical “leverage effect” in GJR-
GARCH models.8 The relationship between a TARCH model and an APARCH model works anal-
ogously by setting δ = 1. The APARCH model also nests the ARCH(P), GARCH(P,Q) and AV-
GARCH(P,Q) models as special cases when γ1 = 0.

8The explicit relationship between an APARCH and a GJR-GARCH can be derived when δ = 2 by solving a system
of two equation in two unknowns where eq. (7.35) is equated with the effect in a GJR-GARCH model.
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New Impact Curves
S&P 500 News Impact Curve
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Figure 7.4: News impact curves for returns on both the S&P 500 and WTI. While the ARCH and
GARCH curves are symmetric, the others show substantial asymmetries to negative news. Addition-
ally, the fit APARCH models chose δ̂ ≈ 1, and so the NIC of the APARCH and the TARCH models
appear similar.

7.2.5 The News Impact Curve

With a wide range of volatility models, each with a different specification for the dynamics of con-
ditional variances, it can be difficult to determine the precise effect of a shock to the conditional
variance. News impact curves measure the effect of a shock in the current period on the conditional
variance in the subsequent period, and so facilitate comparison between models.

Definition 7.9 (News Impact Curve (NIC)). The news impact curve of an ARCH-family model is
defined as the difference between the variance with a shock et and the variance with no shock (et = 0).
The variance in all previous periods is set to the unconditional expectation of the variance, σ̄2,

n(et) = σ
2
t+1(et |σ2

t = σ̄
2
t ) (7.36)

NIC(et) = n(et)−n(0). (7.37)
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Setting the variance in the current period to the unconditional variance has two consequences. First,
it ensures that the NIC does not depend on the level of variance. Second, this choice for the lagged
variance improves the comparison of linear and non-linear specifications (e.g., EGARCH).

News impact curves for ARCH and GARCH models only depend on the terms which include ε2
t .

GARCH(1,1)

n(et) = ω +α1σ̄
2e2

t +β1σ̄
2 (7.38)

NIC(et) = α1σ̄
2e2

t (7.39)

News impact curve are more complicated when models is not linear in ε2
t . For example, consider the

NIC for a TARCH(1,1,1),

σt = ω +α1|εt |+ γ1|εt |I[εt<0]+β1σt−1. (7.40)

n(et) = ω
2 +2ω(α1 + γ1I[εt<0])|εt |+2β (α1 + γ1I[εt<0])|εt |σ̄ +β

2
1 σ̄

2 +2ωβ1σ̄ +(α1 + γ1I[εt<0])
2
ε

2
t

(7.41)

NIC(et) = (α1 + γ1I[εt<0])
2
ε

2
t +(2ω +2β1σ̄)(α1 + γ1I[εt<0])|εt | (7.42)

While deriving explicit expressions for NICs can be tedious, practical implementation only re-
quires computing the conditional variance for a shock of 0 (n(0)) and a set of shocks between -3
and 3 (n(z) for z ∈ (−3,3)). The difference between the conditional variance with a shock and the
conditional variance without a shock is the NIC.

7.2.5.1 The S&P 500 and WTI

Figure 7.4 contains plots of the news impact curves for both the S&P 500 and WTI. When the models
include asymmetries, the news impact curves are asymmetric and show a much larger response to
negative shocks than to positive shocks, although the asymmetry is stronger in the volatility of the
returns of the S&P 500 than it is in the volatility of WTI’s returns.

7.3 Estimation and Inference

Consider a simple GARCH(1,1) specification,

rt = µt + εt (7.43)

σ
2
t = ω +α1ε

2
t−1 +βσ

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1)
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Since the errors are assumed to be conditionally i.i.d.normal9, maximum likelihood is a natural choice
to estimate the unknown parameters, θ which contain both the mean and variance parameters. The
normal likelihood for T independent variables is

f (r;θ) =

T∏
t=1

(2πσ
2
t )
− 1

2 exp
(
−(rt−µt)

2

2σ2
t

)
(7.44)

and the normal log-likelihood function is

l(θ ;r) =
T∑

t=1

−1
2

log(2π)− 1
2

log(σ2
t )−

(rt−µt)
2

2σ2
t

. (7.45)

If the mean is set to 0, the log-likelihood simplifies to

l(θ ;r) =
T∑

t=1

−1
2

log(2π)− 1
2

log(σ2
t )−

r2
t

2σ2
t
, (7.46)

and is maximized by solving the first order conditions.

∂ l(θ ;r)
∂σ2

t
=

T∑
t=1

− 1
2σ2

t
+

r2
t

2σ4
t
= 0, (7.47)

which can be rewritten to provide some insight into the estimation of ARCH models,

∂ l(θ ;r)
∂σ2

t
=

1
2

T∑
t=1

1
σ2

t

(
r2
t

σ2
t
−1
)
. (7.48)

This expression clarifies that the parameters of the volatility are chosen to make
(

r2
t

σ2
t
−1
)

as close to

zero as possible.10 These first order conditions are not complete since ω , α1 and β1, not σ2
t , are the

parameters of a GARCH(1,1) model and

∂ l(θ ;r)
∂θi

=
∂ l(θ ;r)

∂σ2
t

∂σ2
t

∂θi
(7.49)

9The use of conditional is to denote the dependence on σ2
t , which is in Ft−1.

10If Et−1

[
r2
t

σ2
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]
= 0, and so the volatility is correctly specified, then the scores of the log-likelihood have expectation
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The derivatives follow a recursive form not previously encountered,

∂σ2
t

∂ω
= 1+β1

∂σ2
t−1

∂ω
(7.50)

∂σ2
t

∂α1
= ε

2
t−1 +β1

∂σ2
t−1

∂α1

∂σ2
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∂β1
= σ

2
t−1 +β1

∂σ2
t−1

∂β1
,

although the recursion in the first order condition for ω can be removed noting that

∂σ2
t

∂ω
= 1+β1

∂σ2
t−1

∂ω
≈ 1

1−β1
. (7.51)

Eqs. (7.49) – (7.51) provide the necessary formulas to implement the scores of the log-likelihood
although they are not needed to estimate a GARCH model.11

The use of the normal likelihood has one strong justification; estimates produced by maximizing
the log-likelihood of a normal are strongly consistent. Strong consistency is a property of an estimator
that ensures parameter estimates converge to the true parameters even if the assumed conditional
distribution is misspecified. For example, in a standard GARCH(1,1), the parameter estimates would
still converge to their true value if estimated with the normal likelihood as long as the volatility model
was correctly specified. The intuition behind this result comes from the generalized error(

ε2
t

σ2
t
−1
)
. (7.52)

Whenever σ2
t = Et−1[ε

2
t ],

E
[(

ε2
t

σ2
t
−1
)]

= E
[(

Et−1[ε
2
t ]

σ2
t
−1
)]

= E
[(

σ2
t

σ2
t
−1
)]

= 0. (7.53)

Thus, as long as the GARCH model nests the true DGP, the parameters are chosen to make the
conditional expectation of the generalized error 0; these parameters correspond to those of the original
DGP even if the conditional distribution is misspecified.12 This is a unique property of the normal
distribution and is not found in other common distributions.

7.3.1 Inference

Under some regularity conditions, parameters estimated by maximum likelihood are asymptotically
normally distributed,

11MATLAB and many other econometric packages are capable of estimating the derivatives using a numerical ap-
proximation that only requires the log-likelihood. Numerical derivatives use the definition of a derivative, f ′(x) =
limh→0

f (x+h)− f (x)
h to approximate the derivative using f ′(x)≈ f (x+h)− f (x)

h for some small h.
12An assumption that a GARCH specification nests the DGP is extremely strong and likely wrong in most cases.

However, the strong consistency property of the normal likelihood in volatility models justifies estimation of models
where the standardized residuals are leptokurtotic and skewed.
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√
T (θ̂ −θ 0)

d→ N(0,I−1) (7.54)

where

I =−E
[

∂ 2l(θ 0;rt)

∂θ∂θ
′

]
(7.55)

is the negative of the expected Hessian. The Hessian measures how much curvature there is in the
log-likelihood at the optimum just like the second-derivative measures the rate-of-change in the rate-
of-change of the function in a standard calculus problem. The sample analog estimator that averages
the time-series of Hessian matrices computed at θ̂ is used to estimate I,

Î =−T−1
T∑

t=1

∂ 2l(θ̂ ;rt)

∂θ∂θ
′ . (7.56)

Chapter 2 shows that the Information Matrix Equality (IME) generally holds for MLE problems,
so that

I = J (7.57)

where

J = E
[

∂ l(rt ;θ 0)

∂θ

∂ l(rt ;θ 0)

∂θ
′

]
(7.58)

is the covariance of the scores. The scores behave like errors in ML estimators and so large score
variance indicate the parameters are difficult to estimate accurately. The estimator of J is the sample
analog averaging the outer-product of the scores evaluated at the estimated parameters,

Ĵ = T−1
T∑

t=1

∂ l(θ̂ ;rt)

∂θ

∂ l(θ̂ ;rt)

∂θ
′ . (7.59)

The IME generally applies when the parameter estimates are maximum likelihood estimates,
which requires that both the likelihood used in estimation is correct and that the specification for
the conditional variance is general enough to nest the true process. When one specification is used
for estimation (e.g., normal) but the data follow a different conditional distribution, these estimators
are known as Quasi-Maximum Likelihood Estimators (QMLE), and the IME generally fails to hold.
Under some regularity conditions, the estimated parameters are still asymptotically normal but with a
different covariance,

√
T (θ̂ −θ 0)

d→ N(0,I−1J I−1) (7.60)

If the IME is valid, I = J and so this covariance simplifies to the usual MLE variance estimator.
In most applications of ARCH models, the conditional distribution of shocks is decidedly not

normal, and standardized residuals have excess kurtosis and are skewed. Bollerslev and Wooldridge
(1992) were the first to show that the IME does not generally hold for GARCH models when the
distribution is misspecified and the “sandwich” form

Î−1Ĵ Î−1 (7.61)
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WTI
ω α1 γ1 β1

Coefficient 0.031 0.030 0.055 0.942
Std. T-stat 3.62 4.03 7.67 102.94
Robust T-stat 1.85 2.31 4.45 49.66

S&P 500
ω α1 γ1 β1

Coefficient 0.026 0.0 0.172 0.909
Std. T-stat 9.63 0.0 14.79 124.92
Robust T-stat 6.28 0.0 10.55 93.26

Table 7.3: Estimates from a TARCH(1,1,1) for the S&P 500 and WTI using alternative parameter
covariance estimators.

of the covariance estimator is often referred to as the Bollerslev-Wooldridge covariance matrix or
alternatively a robust covariance matrix. Standard Wald tests can be used to test hypotheses of interest,
such as whether an asymmetric term is statistically significant, although likelihood ratio tests are not
reliable since they do not have the usual χ2

m distribution.

7.3.1.1 The S&P 500 and WTI

A TARCH(1,1,1) models were estimated on both the S&P 500 and WTI returns to illustrate the
differences between the MLE and the Bollerslev-Wooldridge (QMLE) covariance estimators. Ta-
ble 7.3 contains the estimated parameters and t-stats using both the MLE covariance matrix and the
Bollerslev-Wooldridge covariance matrix. The robust t-stats are substantially smaller than conven-
tional ones, although conclusions about statistical significance are not affected except for ω in the
WTI model. These changes are due to the heavy-tail in the standardized residuals, êt = rt−µ̂t/σ̂t , in
these series.

7.3.1.2 Independence of the mean and variance parameters

Inference on the parameters of the ARCH model is still valid when using normal MLE or QMLE
when the model for the mean is general enough to nest the true form. This property is important
in practice since mean and variance parameters can be estimated separately without correcting the
covariance matrix of the estimated parameters.13 This surprising feature of QMLE estimators em-
ploying a normal log-likelihood comes from the cross-partial derivative of the log-likelihood with
respect to the mean and variance parameters,

13The estimated covariance for the mean should use a White covariance estimator. If the mean parameters are of
particular interest, it may be more efficient to jointly estimate the parameters of the mean and volatility equations as a
form of GLS (see Chapter 3).
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l(θ ;rt) =−
1
2

log(2π)− 1
2

log(σ2
t )−

(rt−µt)
2

2σ2
t

. (7.62)

The first order condition is,

∂ l(θ ;r)
∂ µt

∂ µt

∂φ
=−

T∑
t=1

(rt−µt)

σ2
t

∂ µt

∂φ
(7.63)

and the second order condition is

∂ 2l(θ ;r)
∂ µt∂σ2

t

∂ µt

∂φ

∂σ2
t

∂ψ
=

T∑
t=1

(rt−µt)

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ
(7.64)

where φ is a parameter of the conditional mean and ψ is a parameter of the conditional variance. For
example, in a simple ARCH(1) model with a constant mean,

rt = µ + εt (7.65)

σ
2
t = ω +α1ε

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1),

φ = µ and ψ can be either ω or α1. Taking expectations of the cross-partial,

E
[

∂ 2l(θ ;r)
∂ µt∂σ2

t
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∂ψ

]
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]
(7.66)

= E

[
Et−1

[
T∑

t=1

rt−µt

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ

]]

= E

[
T∑
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Et−1 [rt−µt ]

σ4
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∂ µt

∂φ

∂σ2
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∂ψ

]

= E

[
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0
σ4

t

∂ µt

∂φ

∂σ2
t

∂ψ

]
= 0

it can be seen that the expectation of the cross derivative is 0. The intuition behind the result follows
from noticing that when the mean model is correct for the conditional expectation of rt , the term
rt−µt has conditional expectation 0 and knowledge of the variance is not needed. This argument is a
similar one used to establish the validity of the OLS estimator when the errors are heteroskedastic.
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7.4 GARCH-in-Mean

The GARCH-in-mean model (GiM) makes a significant change to the role of time-varying volatility
by explicitly relating the level of volatility to the expected return (Engle, Lilien, and Robins, 1987).
A simple GiM model can be specified as

rt = µ +δσ
2
t + εt (7.67)

σ
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1)

although virtually any ARCH-family model could be used to model the conditional variance. The
obvious difference between the GiM and a standard GARCH(1,1) is that the variance appears in the
mean of the return. Note that the shock driving the changes in variance is not the mean return but
still ε2

t−1, and so the ARCH portion of a GiM is unaffected. Other forms of the GiM model have been
employed where the conditional standard deviation or the log of the conditional variance are used in
the mean equation14,

rt = µ +δσt + εt (7.68)

or
rt = µ +δ ln(σ2

t )+ εt (7.69)

Because the variance appears in the mean equation for rt , the mean and variance parameters cannot
be separately estimated. Despite the apparent feedback, processes that follow a GiM are stationary as
long as the variance process is stationary. The conditional variance (σ2

t ) in the conditional mean does
not feedback into the conditional variance process and so behaves like an exogenous regressor.

7.4.1 The S&P 500

Standard asset pricing theory dictates that there is a risk-return trade-off. GARCH-in-mean models
provide a natural method to test whether this is the case. Using the S&P 500 data, three GiM models
were estimated (one for each transformation of the variance in the mean equation), and the results
are presented in table 7.4. Based on these estimates, there does appear to be a trade-off between
mean and variance and higher variances produce higher expected means, although the magnitude is
economically small and the coefficients are only significant at the 10% level.

7.5 Alternative Distributional Assumptions

Despite the strengths of the assumption that the errors are conditionally normal – estimation is simple,
and parameters are strongly consistent for the true parameters – GARCH models can be specified and
estimated with alternative distributional assumptions. The motivation for using something other than
the normal distribution is two-fold. First, a better approximation to the conditional distribution of

14The model for the conditional mean can be extended to include ARMA terms or any other predetermined regressor.
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S&P 500 Garch-in-Mean Estimates
µ δ ω α γ β Log Lik.

σ2 0.004
(0.753)

0.022
(0.074)

0.022
(0.000)

0.000
(0.999)

0.183
(0.000)

0.888
(0.000)

−6773.7

σ −0.034
(0.304)

0.070
(0.087)

0.022
(0.000)

0.000
(0.999)

0.182
(0.000)

0.887
(0.000)

−6773.4

lnσ2 0.038
(0.027)

0.030
(0.126)

0.022
(0.000)

0.000
(0.999)

0.183
(0.000)

0.888
(0.000)

−6773.8

Table 7.4: GARCH-in-mean estimates for the S&P 500 series. δ measures the strength of the
GARCH-in-mean, and so is the most interesting parameter. The volatility process was a standard
GARCH(1,1). P-values are in parentheses.

the standardized returns may improve the precision of the volatility process parameter estimates and,
in the case of MLE, the estimates will be fully efficient. Second, GARCH models are often used in
applications where the choice of the assumed density is plays a larger role such as in Value-at-Risk
estimation or option pricing.

Three distributions stand among the dozens that have been used to estimate the parameters of
GARCH processes. The first is a standardized Student’s t (to have a unit variance for any value ν , see
Bollerslev (1987)) with ν degrees of freedom,

Standardized Student’s t

f (rt ; µ,σ2
t ,ν) =

Γ
(

ν+1
2

)
Γ
(

ν

2

) 1√
π(ν−2)

1
σt

1(
1+ (rt−µ)2

σ2
t (ν−2)

) ν+1
2

(7.70)

where Γ(·) is the gamma function.15 This distribution is always fat-tailed and produces a better fit
than the normal for most asset return series. This distribution is only well defined if ν > 2 since the
variance of a Student’s t with ν ≤ 2 is infinite. The second is the generalized error distribution (GED,
see Nelson (1991)),

Generalized Error Distribution

f (rt ; µ,σ2
t ,ν) =

ν exp
(
−1

2 |
rt−µ

σtλ
|ν
)

σtλ2
ν+1

ν Γ( 1
ν
)

(7.71)

λ =

√√√√2−
2
ν Γ( 1

ν
)

Γ( 3
ν
)

(7.72)

15The standardized Student’s t differs from the usual Student’s t so that it is necessary to scale data by
√

ν

ν−2 if using
functions (such as the CDF) for the regular Student’s t distribution.
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Density of standardized residuals for the S&P 500
Std. Student’s t, ν = 7.2 GED, ν = 1.4
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Figure 7.5: The four panels of this figure contain the estimated density for the S&P 500 and the
density implied by the distributions: Student’s t, GED, Hansen’s Skew t and a kernel density plot of
the standardized residuals, êt = εt/σ̂t , along with the PDF of a normal (dotted line) for comparison.
The shape parameters, ν and λ , were jointly estimated with the variance parameters in the Student’s
t, GED, and skewed t.

which nests the normal when ν = 2. The GED is fat-tailed when ν < 2 and thin-tailed when ν > 2. It
is necessary that ν ≥ 1 to use the GED in volatility model estimation to ensure that variance is finite.
The third useful distribution, introduced in Hansen (1994), extends the standardized Student’s t to
allow for skewness of returns

Hansen’s skewed t
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f (εt ; µ,σt ,ν ,λ ) =
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(7.73)

where

a = 4λc
(

ν−2
ν−1

)
,

b =
√

1+3λ 2−a2,

and

c =
Γ
(

ν+1
2

)√
π(ν−2)Γ

(
ν

2

) .
The two shape parameters, ν and λ , control the kurtosis and the skewness, respectively.

These distributions may be better approximations to the actual distribution of the standardized
residuals since they allow for kurtosis greater than that of the normal, an important empirical fact, and,
in the case of the skewed t, skewness in the standardized returns. Chapter 8 applies these distributions
in the context of Value-at-Risk and density forecasting.

7.5.1 Alternative Distribution in Practice

To explore the role of alternative distributional assumptions in the estimation of GARCH models, a
TARCH(1,1,1) was fit to the S&P 500 returns using the conditional normal, the Student’s t, the GED
and Hansen’s skewed t. Figure 7.5 contains the empirical density (constructed with a kernel) and
the fit density of the three distributions. The shape parameters, ν and λ , were jointly estimated with
the conditional variance parameters. Figure 7.6 plots of the estimated conditional variance for both
the S&P 500 and WTI using all four distributional assumptions. The most important aspect of this
figure is that the fit variances are indistinguishable. This is a common finding: estimating models
using alternative distributional assumptions produce little difference in the estimated parameters or
the fitted conditional variances from the volatility model.16

7.6 Model Building

Since ARCH and GARCH models are similar to AR and ARMA models, the Box-Jenkins methodol-
ogy is a natural way to approach the problem. The first step is to analyze the sample ACF and PACF

16While the volatilities are similar, the models do not fit the data equally well. The alternative distributions often
provide a better fit as measured by the log-likelihood and provide a more accurate description of the probability in the
tails of the distribution.
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Conditional Variance and Distributional Assumptions
S&P 500 Annualized Volatility (TARCH(1,1,1))
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WTI Annualized Volatility (TARCH(1,1,1))
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Figure 7.6: The choice of the distribution for the standardized innovation makes little difference to
the fit variances or the estimated parameters in most models. The alternative distributions are more
useful in application to Value-at-Risk and Density forecasting where the choice of density plays a
more significant role.

of the squared returns, or if the model for the conditional mean is non-trivial, the sample ACF and
PACF of the estimated residuals, ε̂t , should be examined for heteroskedasticity. Figures 7.7 and 7.8
contains the ACF and PACF for the squared returns of the S&P 500 and WTI respectively. The mod-
els used in selecting the final model are reproduced in tables 7.5 and 7.6 respectively. Both selections
began with a simple GARCH(1,1). The next step was to check if more lags were needed for either the
squared innovation or the lagged variance by fitting a GARCH(2,1) and a GARCH(1,2) to each series.
Neither of these meaningfully improved the fit, and a GARCH(1,1) was assumed to be sufficient to
capture the symmetric dynamics.

The next step in model building is to examine whether the data exhibit any evidence of asym-
metries using a GJR-GARCH(1,1,1). The asymmetry term was significant and so other forms of the
GJR model were explored. All were found to provide little improvement in the fit. Once a GJR-
GARCH(1,1,1) model was decided upon, a TARCH(1,1,1) was fit to examine whether evolution in
variances or standard deviations was more appropriate for the data. Both series preferred the TARCH
to the GJR-GARCH (compare the log-likelihoods), and the TARCH(1,1,1) was selected. In compar-
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α1 α2 γ1 γ2 β1 β2 Log Lik.

GARCH(1,1) 0.102
(0.000)

0.885
(0.000)

−6887.6

GARCH(1,2) 0.102
(0.000)

0.885
(0.000)

0.000
(0.999)

−6887.6

GARCH(2,1) 0.067
(0.003)

0.053
(0.066)

0.864
(0.000)

−6883.5

GJR-GARCH(1,1,1) 0.000
(0.999)

0.185
(0.000)

0.891
(0.000)

−6775.1

GJR-GARCH(1,2,1) 0.000
(0.999)

0.158
(0.000)

0.033
(0.460)

0.887
(0.000)

−6774.5

TARCH(1,1,1)? 0.000
(0.999)

0.172
(0.000)

0.909
(0.000)

−6751.9

TARCH(1,2,1) 0.000
(0.999)

0.165
(0.000)

0.009
(0.786)

0.908
(0.000)

−6751.8

TARCH(2,1,1) 0.000
(0.999)

0.003
(0.936)

0.171
(0.000)

0.907
(0.000)

−6751.9

EGARCH(1,0,1) 0.211
(0.000)

0.979
(0.000)

−6908.4

EGARCH(1,1,1) 0.136
(0.000)

−0.153
(0.000)

0.975
(0.000)

−6766.7

EGARCH(1,2,1) 0.129
(0.000)

−0.213
(0.000)

0.067
(0.045)

0.977
(0.000)

−6761.7

EGARCH(2,1,1) 0.020
(0.651)

0.131
(0.006)

−0.162
(0.000)

0.970
(0.000)

−6757.6

Table 7.5: The models estimated in selecting a final model for the conditional variance of the S&P
500 Index. ? indicates the selected model.

ing alternative specifications, an EGARCH was fit and found to provide a good description of the data.
In both cases, the EGARCH was expanded to include more lags of the shocks or lagged log volatility.
The EGARCH did not improve over the TARCH for the S&P 500, and so the TARCH(1,1,1) was se-
lected. The EGARCH did fit the WTI data better, and so the preferred model is an EGARCH(1,1,1),
although a case could be made for the EGARCH(2,1,1) which provided a better fit. Overfitting is
always a concern, and the opposite signs on α1 and α2 in the EGARCH(2,1,1) are suspicious.

7.6.0.1 Testing for (G)ARCH

Although conditional heteroskedasticity can often be identified by graphical inspection, a formal test
of conditional homoskedasticity is also useful. The standard method to test for ARCH is to use
the ARCH-LM test which is implemented as a regression of squared residuals on lagged squared
residuals. The test directly exploits the AR representation of an ARCH process (Engle, 1982) and is
computed as T times the R2 (LM = T ×R2) from the regression

ε̂
2
t = φ0 +φ1ε̂

2
t−1 + . . .+φPε̂

2
t−P +ηt . (7.74)

The test statistic is asymptotically distributed χ2
P where ε̂t are residuals constructed from the returns

by subtracting the conditional mean. The null hypothesis is H0 : φ1 = . . .= φP = 0 which corresponds
to no persistence in the conditional variance.
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ACF and PACF of squared returns of the S&P 500
Squared Residuals ACF Squared Residuals PACF
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Figure 7.7: ACF and PACF of the squared returns for the S&P 500. The bottom two panels plot the
ACF and PACF of the standardized squared residuals,ê2

t = ε̂2
t /σ̂2

t . The top panels indicate persistence
through both the ACF and PACF. These plots suggest that a GARCH model is needed. The ACF and
PACF of the standardized residuals are consistent with those of a white noise process.

7.7 Forecasting Volatility

Forecasting conditional variances with ARCH-family models ranges from simple for ARCH and
GARCH processes to difficult for non-linear specifications. Consider the simple ARCH(1) process,

εt = σtet (7.75)

et
i.i.d.∼ N(0,1)

σ
2
t = ω +α1ε

2
t−1

Iterating forward, σ2
t+1 = ω +α1ε2

t , and taking conditional expectations, Et [σ
2
t+1] = Et [ω +α1ε2

t ] =
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ACF and PACF of squared returns of WTI
Squared Residuals ACF Squared Residuals PACF
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Figure 7.8: ACF and PACF of the squared returns for WTI. The bottom two panels plot the ACF and
PACF of the standardized squared residuals,ê2

t = ε̂2
t /σ̂2

t . The top panels indicate persistence through
both the ACF and PACF. These plots suggest that a GARCH model is needed. The ACF and PACF of
the standardized residuals are consistent with those of a white noise process. When compared to the
S&P 500 ACF and PACF, the ACF and PACF of the WTI returns indicate less persistence in volatility.

ω +α1ε2
t since all of these quantities are known at time t. This is a property common to all ARCH-

family models: the forecast of σ2
t+1 is known at time t.17

The 2-step ahead forecast follows from an application of the law of iterated expectations,

Et [σ
2
t+2] = Et [ω +α1ε

2
t+1]. (7.76)

= ω +α1Et [ε
2
t+1]

17Not only is this property common to all ARCH-family members, but it is also the defining characteristic of an ARCH
model.
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α1 α2 γ1 γ2 β1 β2 Log Lik.

GARCH(1,1) 0.059
(0.000)

0.934
(0.000)

−11030.1

GARCH(1,2) 0.075
(0.000)

0.585
(0.000)

0.331
(0.027)

−11027.4

GARCH(2,1) 0.059
(0.001)

0.000
(0.999)

0.934
(0.000)

−11030.1

GJR-GARCH(1,1,1) 0.026
(0.008)

0.049
(0.000)

0.945
(0.000)

−11011.9

GJR-GARCH(1,2,1) 0.026
(0.010)

0.049
(0.102)

0.000
(0.999)

0.945
(0.000)

−11011.9

TARCH(1,1,1) 0.030
(0.021)

0.055
(0.000)

0.942
(0.000)

−11005.6

TARCH(1,2,1) 0.030
(0.038)

0.055
(0.048)

0.000
(0.999)

0.942
(0.000)

−11005.6

TARCH(2,1,1) 0.030
(0.186)

0.000
(0.999)

0.055
(0.000)

0.942
(0.000)

−11005.6

EGARCH(1,0,1) 0.148
(0.000)

0.986
(0.000)

−11029.5

EGARCH(1,1,1)† 0.109
(0.000)

−0.050
(0.000)

0.990
(0.000)

−11000.6

EGARCH(1,2,1) 0.109
(0.000)

−0.056
(0.043)

0.006
(0.834)

0.990
(0.000)

−11000.5

EGARCH(2,1,1)? 0.195
(0.000)

−0.101
(0.019)

−0.049
(0.000)

0.992
(0.000)

−10994.4

Table 7.6: The models estimated in selecting a final model for the conditional variance of WTI. ?
indicates the selected model. † indicates a model that could be considered for model selection.

= ω +α1(ω +α1ε
2
t )

= ω +α1ω +α
2
1 ε

2
t

The expression for an h-step ahead forecast can be constructed by repeated substitution and is given
by

Et [σ
2
t+h] =

h−1∑
i=0

α
i
1ω +α

h
1 ε

2
t . (7.77)

An ARCH(1) is an AR(1), and this formula is identical to the expression for the multi-step forecast
of an AR(1).

Forecasts from GARCH(1,1) models are constructed following the same steps. The one-step-
ahead forecast is

Et [σ
2
t+1] = Et [ω +α1ε

2
t +β1σ

2
t ] (7.78)

= ω +α1ε
2
t +β1σ

2
t .

The two-step-ahead forecast is
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Et [σ
2
t+2] = Et [ω +α1ε

2
t+1 +β1σ

2
t+1]

= ω +α1Et [ε
2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [e2
t+1σ

2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [e2
t+1]Et [σ

2
t+1]+β1Et [σ

2
t+1]

= ω +α1 ·1 ·Et [σ
2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [σ
2
t+1]+β1Et [σ

2
t+1]

= ω +(α1 +β1)Et [σ
2
t+1].

Substituting the one-step-ahead forecast, Et [σ
2
t+1], shows that the forecast only depends on time t

information,

Et [σ
2
t+2] = ω +(α1 +β1)(ω +α1ε

2
t +β1σ

2
t ) (7.79)

= ω +(α1 +β1)ω +(α1 +β1)α1ε
2
t +(α1 +β1)β1σ

2
t .

Note that Et [σ
2
t+3] = ω +(α1 +β1)Et [σ

2
t+2], and so

Et [σ
2
t+3] = ω +(α1 +β1)(ω +(α1 +β1)ω +(α1 +β1)α1ε

2
t +(α1 +β1)β1σ

2
t ) (7.80)

= ω +(α1 +β1)ω +(α1 +β1)
2
ω +(α1 +β1)

2
α1ε

2
t +(α1 +β1)

2
β1σ

2
t .

Repeated substitution reveals a pattern in the multi-step forecasts which is compactly expressed as

Et [σ
2
t+h] =

h−1∑
i=0

(α1 +β1)
i
ω +(α1 +β1)

h−1(α1ε
2
t +β1σ

2
t ). (7.81)

Despite similarities to ARCH and GARCH models, forecasts from GJR-GARCH are complicated
by the presence of the asymmetric term. If the expected value of the squared shock does not depend
on the sign of the return, so that E

[
e2

t |et < 0
]
= E

[
e2

t |et > 0
]
= 1, then the probability that et−1 < 0

appears in the forecasting formula. When the standardized residuals are normal (or any other sym-
metric distribution), then this probability is 1

2 . If the density is unknown, this probability must be
estimated from the model residuals.

In the GJR-GARCH model, the one-step-ahead forecast is

Et [σ
2
t+1] = ω +α1ε

2
t +α1ε

2
t I[εt<0]+β1σ

2
t . (7.82)

The two-step-ahead forecast is

Et [σ
2
t+2] = ω +α1Et [ε

2
t+1]+α1Et [ε

2
t+1I[εt+1<0]]+β1Et [σ

2
t+1] (7.83)

= ω +α1Et [σ
2
t+1]+α1Et [ε

2
t+1|εt+1 < 0]+β1Et [σ

2
t+1]. (7.84)
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Assuming the residuals are conditionally normally distributed, then Et [ε
2
t+1|εt+1 < 0] = 0.5E[σ2

t+1].
Multi-step forecasts from other models in the ARCH-family, particularly those that are not lin-

ear combinations of ε2
t , are nontrivial and generally do not have simple recursive formulas. For

example, consider forecasting the variance from the simplest nonlinear ARCH-family member, a
TARCH(1,0,0) model,

σt = ω +α1|εt−1| (7.85)

As is always the case, the 1-step ahead forecast is known at time t,

Et [σ
2
t+1] = Et [(ω +α1|εt |)2] (7.86)

= Et [ω
2 +2ωα1|εt |+α

2
1 ε

2
t ]

= ω
2 +2ωα1Et [|εt |]+α

2
1 Et [ε

2
t ]

= ω
2 +2ωα1|εt |+α

2
1 ε

2
t

The 2-step ahead forecast is more complicated and is given by

Et [σ
2
t+2] = Et [(ω +α1|εt+1|)2] (7.87)

= Et [ω
2 +2ωα1|εt+1|+α

2
1 ε

2
t+1]

= ω
2 +2ωα1Et [|εt+1|]+α

2
1 Et [ε

2
t+1]

= ω
2 +2ωα1Et [|et+1|σt+1]+α

2
1 Et [e2

t σ
2
t+1]

= ω
2 +2ωα1Et [|et+1|]Et [σt+1]+α

2
1 Et [e2

t ]Et [σ
2
t+1]

= ω
2 +2ωα1Et [|et+1|](ω +α1|εt |)+α

2
1 ·1 · (ω2 +2ωα1|εt |+α

2
1 ε

2
t )

The challenge in multi-step ahead forecasting of a TARCH model arises since the forecast depends
on more than Et [e2

t+h] ≡ 1. In the above example, the forecast depends on both Et [e2
t+1] = 1 and

Et [|et+1|]. When returns are normally distributed, Et [|et+1|] =
√

2
π

, but if the driving innovations
have a different distribution, this expectation will differ. The forecast is then, assuming the conditional
distribution is normal,

Et [σ
2
t+2] = ω

2 +2ωα1

√
2
π
(ω +α1|εt |)+α

2
1 (ω

2 +2ωα1|εt |+α
2
1 ε

2
t ). (7.88)

The difficulty in multi-step forecasting using “nonlinear” GARCH models – those which involve
powers other than two – follows directly from Jensen’s inequality. In the case of TARCH,

Et [σt+h]
2 6= Et [σ

2
t+h] (7.89)

or in the general case of an arbitrary power,

Et [σ
δ
t+h]

2
δ 6= Et [σ

2
t+h]. (7.90)
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7.7.1 Evaluating Volatility Forecasts

The evaluation of volatility forecasts is similar to the evaluation of forecasts from conditional mean
models with one caveat. In standard time series models, once time t + h has arrived, the value of
the variable being forecast is known. However, the value of σ2

t+h is always unknown in volatility
model evaluation and so the realization must be replaced by a proxy. The standard choice is to use the
squared return, r2

t . This proxy is reasonable if the squared conditional mean is small relative to the
variance, a plausible assumption for high-frequency applications to daily or weekly returns. If using
longer horizon measurements of returns, e.g., monthly returns, squared residuals (ε̂2

t ) estimated from
a model for the conditional mean can be used instead. Realized Variance, RV (m)

t , is nn alternative
choice is to use as a proxy for the unobserved volatility (see section 7.8). Once a choice of proxy has
been made, Generalized Mincer-Zarnowitz regressions can be used to assess forecast optimality,

r2
t+h− σ̂

2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt +ηt (7.91)

where z jt are any instruments known at time t. Common choices for z jt include r2
t , |rt |, rt or indicator

variables for the sign of the lagged return. The GMZ regression is testing one key property of a
well-specified model: Et

[
r2
t+h− σ̂2

t+h|t

]
= 0.

The GMZ regression in equation 7.91 has a heteroskedastic variance, and so a more accurate regres-
sion, GMZ-GLS, can be constructed as

r2
t+h− σ̂2

t+h|t

σ̂2
t+h|t

= γ0
1

σ̂2
t+h|t

+ γ11+ γ2
z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+νt (7.92)

r2
t+h

σ̂2
t+h|t
−1 = γ0

1
σ̂2

t+h|t
+ γ11+ γ2

z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+νt (7.93)

by dividing both sized by the time t forecast, σ̂2
t+h|t where νt = ηt/σ̂2

t+h|t . Equation 7.93 shows that
the GMZ-GLS is a regression of the generalized error from a normal likelihood. If one were to use
the Realized Variance as the proxy, the GMZ and GMZ-GLS regressions are

RVt+h− σ̂
2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt +ηt (7.94)

and

RVt+h− σ̂2
t+h|t

σ̂2
t+h|t

= γ0
1

σ̂2
t+h|t

+ γ1
σ̂2

t+h|t

σ̂2
t+h|t

+ γ2
z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+
ηt

σ̂2
t+h|t

. (7.95)

Diebold-Mariano tests can also be used to test the relative performance of two models. A loss
function must be specified when implementing a DM test. Two natural choices for the loss function
are MSE, (

r2
t+h− σ̂

2
t+h|t

)2
(7.96)

and QML-loss (which is the kernel of the normal log-likelihood),
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(
ln(σ̂2

t+h|t)+
r2
t+h

σ̂2
t+h|t

)
. (7.97)

The DM statistic is a t-test of the null H0 : E [δt ] = 0 where

δt =
(

r2
t+h− σ̂

2
A,t+h|t

)2
−
(

r2
t+h− σ̂

2
B,t+h|t

)2
(7.98)

in the case of the MSE loss or

δt =

(
ln(σ̂2

A,t+h|t)+
r2
t+h

σ̂2
A,t+h|t

)
−
(

ln(σ̂2
B,t+h|t)+

r2
t+h

σ̂2
B,t+h|t

)
(7.99)

when using QML-loss. Statistically significant positive values of δ̄ = R−1∑R
r=1 δr indicate that B is a

better model than A while negative values indicate the opposite (recall R is used to denote the number
of out-of-sample observations used to compute the DM statistic). The QML-loss is preferred since
it is a “heteroskedasticity corrected” version of the MSE. For more on the evaluation of volatility
forecasts using MZ regressions see Patton and Sheppard (2009).

7.8 Realized Variance

Realized Variance (RV ) is a new econometric methodology for measuring the variance of asset returns.
RV differs from ARCH-models since it does not require a specific model to measure the volatility.
Realized Variance instead uses a nonparametric estimator of the variance that is computed using ultra
high-frequency data.18

Suppose the log-price process, pt , is continuously available and is driven by a standard Wiener
process with a constant mean and variance,

dpt = µ dt +σ dWt .

The coefficients are normalized so that the return during one day is the difference between p at two
consecutive integers (e.g., p1− p0 is the first day’s return). For the S&P 500 index, µ ≈ .00031 and
σ ≈ .0125, which correspond to 8% and 20% for the annualized mean and volatility, respectively.

Realized Variance is estimated by sampling pt throughout the trading day. Suppose that prices on
day t were sampled on a regular grid of m+1 points, 0,1, . . . ,m and let pi,t denote the ith observation
of the log price. The m-sample Realized Variance on day t is defined

RV (m)
t =

m∑
i=1

(pi,t− pi−1,t)
2 =

m∑
i=1

r2
i,t . (7.100)

Since the price process is a standard Brownian motion, each return is an i.i.d.normal random
variable with mean µ/m and variance σ2/m (or volatility of σ/

√
m). First, consider the expectation

of RV (m)
t ,

18Realized Variance was invented somewhere between 1972 and 1997. However, its introduction to modern econo-
metrics clearly dates to the late 1990s (Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and Labys, 2003;
Barndorff-Nielsen and Shephard, 2004).
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E
[
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t

]
= E

[
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i,t

]
= E

[
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µ

m
+

σ√
m

εi,t

)2
]

(7.101)

where εi,t are i.i.d. standard normal random variables.

E
[
RV (m)

t

]
= E

[
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(7.102)
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The expected value is nearly σ2, the variance, and it is asymptotically unbiased, limm→∞E
[
RV (m)

t

]
=

σ2. The variance of RV (m)
t can be similarly computed,

V
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]
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m2 +2
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(7.103)

= V

[
m∑

i=1

µ2

m2

]
+V

[
m∑

i=1

2
µσ

m
3
2

εi,t

]
+V

[
m∑

i=1

σ2

m
ε

2
i,t

]
+2Cov

[
m∑

i=1

µ2

m2 ,
m∑

i=1

2
µσ

m
3
2

εi,t

]

+2Cov

[
m∑

i=1

µ2

m2 ,
m∑

i=1

σ2

m
ε

2
i,t

]
+2Cov

[
m∑

i=1

2
µσ

m
3
2

εi,t ,
m∑

i=1

σ2

m
ε

2
i,t

]
.

First, the variance and covariance terms that involve the mean term are all zero,

V

[
m∑

i=1

µ2

m2

]
= Cov

[
m∑

i=1

µ2

m2 ,

m∑
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2
µσ

m
3
2

εi,t

]
= Cov

[
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µ2

m2 ,

m∑
i=1

σ2

m
ε

2
i,t

]
= 0,
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since µ
2

m2 is a constant. The remaining covariance term also has expectation 0 since εi,t are i.i.d. standard
normal and so have a skewness of 0,

Cov

[
m∑

i=1

2
µσ

m
3
2

εi,t ,
m∑

i=1

σ2

m
ε

2
i,t

]
= 0

The other two terms can be shown to be (left as exercises)

V

[
m∑

i=1

2
µσ

m
3
2

εi,t

]
= 4

µ2σ2

m2

V

[
m∑

i=1

σ2

m
ε

2
i,t

]
= 2

σ4

m

and so

V
[
RV (m)

t

]
= 4

µ2σ2

m2 +2
σ4

m
. (7.104)

The variance is decreasing as m→∞, RV (m)
t is asymptotically unbiased, and so RV (m)

t is a consistent
estimator of σ2.

In the empirically realistic case where the price process has a time-varying drift and stochastic
volatility,

d pt = µtdt +σtdWt ,

RV (m)
t is a consistent estimator of the integrated variance,

lim
m→∞

RV (m)
t

p→
∫ t+1

t
σ

2
s ds. (7.105)

The integrated variance measures the average variance of the measurement interval, usually a day.
If the price process contains jumps, RV (m)

t is still a consistent estimator although its limit is the
quadratic variation rather than the integrated variance, and so

lim
m→∞

RV (m)
t

p→
∫ t+1

t
σ

2
s ds+

∑
t≤1

∆J2
s . (7.106)

where
∑

t≤1 ∆J2
s is the sum of the squared jumps if any. Similar results hold if the price process

exhibits leverage (instantaneous correlation between the price and the variance). The two conditions
for RV (m)

t to be a reasonable method to estimate the integrated variance on day t are essentially that
the price process, pt , is arbitrage-free and that the efficient price is observable. Empirical evidence
suggests that prices of liquid asset are compatible with the first condition. The second condition is
violated since assets trade at either the best bid or best ask price – neither of which is the efficient
price.
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7.8.1 Implementing Realized Variance

In practice, naïve implementations of Realized Variance do not perform well. The most pronounced
challenge is that observed prices are contaminated by noise; there is no singles price, and traded
prices are only observed at the bid and the ask. This feature of asset price transactions produces bid-
ask bounce where consecutive prices oscillate between the two. Consider a simple model of bid-ask
bounce where returns are computed as the log difference in observed prices composed of the true
(unobserved) efficient prices, p∗i,t , contaminated by an independent mean zero shock, νi,t ,

pi,t = p∗i,t +νi,t .

The shock νi,t captures the difference between the efficient price and the observed prices which are
always on the bid or ask price.

The ith observed return, ri,t can be decomposed into the actual (unobserved) return r∗i,t and an
independent noise term ηi,t = νi,t−νi−1,t ,

pi,t− pi−1,t =
(

p∗i,t +νi,t
)
−
(

p∗i−1,t +νi−1,t
)

(7.107)

pi,t− pi−1,t =
(

p∗i,t− p∗i−1,t
)
+(νi,t−νi−1,t)

ri,t = r∗i,t +ηi,t

The error in the observed return process, ηi,t = νi,t−νi−1,t , is a MA(1) and so is serially correlated.
Computing the RV from returns contaminated by noise has an unambiguous effect on Realized

Variance; RV is biased upward.

RV (m)
t =

m∑
i=1

r2
i,t (7.108)

=

m∑
i=1

(r∗i,t +ηi,t)
2

=

m∑
i=1

r∗i,t
2 +2r∗i,tηi,t +η

2
i,t

≈ R̂V t +mτ
2

where τ2 is the variance of ηi,t and R̂V t is the Realized Variance that would be computed if the
efficient returns could be observed. The bias is increasing in the number of samples (m) and can be
substantial for assets with large bid-ask spreads.
The simplest “solution” to the bias is to avoid the issue using sparse sampling, i.e., not using all
of the observed prices. The noise imposes limits on m to ensure that the bias is small relative to the
integrated variance. In practice the maximum m is always much higher than 1 – a single open-to-close
return – and is typically somewhere between 13 (30-minute returns on a stock listed on the NYSE)
and 390 (1-minute returns), and so even when RV (m)

t is not consistent, it is still a better proxy, often
substantially, for the latent variance on day t than r2

t (the “1-sample Realized Variance”, see Bandi
and Russell (2008)). The signal-to-noise ratio (which measures the ratio of useful information to pure
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SPY RV AC1 for sampling frequencies of 15s and 1, 5 and 15 minutes
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Figure 7.9: The four panels of this figure contain a noise-robust version Realized Variance, RV AC1, for
every day the market was open from January 2007 until December 2018 transformed into annualized
volatility. The 15-second RV AC1 is better behaved than the 15-second RV .

noise) is approximately 1 for RV but is between .05 and .1 for r2
t . In other words, RV is 10-20 times

more precise than squared daily returns (Andersen and Bollerslev, 1998).
Another simple and effective method is to filter the data using an MA(1). Transaction data contain a
strong negative MA due to bid-ask bounce, and so RV computed using the errors (ε̂i,t) from a model,

ri,t = θεi−1,t + εi,t (7.109)

eliminates much of the bias. A better method to remove the bias is to use an estimator known as
RV AC1 which is similar to a Newey-West estimator.

RV AC1
t

(m) =

m∑
i=1

r2
i,t +2

m∑
i=2

ri,tri−1,t (7.110)
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Volatility Signature Plots
Volatility Signature Plot for SPY RV
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Figure 7.10: The volatility signature plot for the RV shows a clear trend. Based on visual inspection,
it would be difficult to justify sampling more frequently than 30 seconds. Unlike the volatility signa-
ture plot of the RV , the signature plot of RV AC1 does not monotonically increase with the sampling
frequency except when sampling every second, and the range of the values is considerably smaller
than in the RV signature plot.

In the case of a constant drift, constant volatility Brownian motion subject to bid-ask bounce, this
estimator can be shown to be unbiased, although it is not consistent in large samples. A more general
class of estimators that use a kernel structure that can be tuned to match the characteristics of specific
asset prices and which are consistent as m→∞ even in the presence of noise has been introduced in
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).19

Another problem for Realized Variance is that prices are not available at regular intervals. For-
tunately, this issue has a simple solution: last price interpolation. Last price interpolation sets the
price at time t to the last observed price pτ where τ is the largest time index less where τ ≤ t. Other
interpolation schemes produce bias in RV . Consider, for example, linear interpolation which sets
prices at time-t price to pt = wpτ1 +(1−w)pτ2 where τ1 is the time subscript of the last observed

19The Newey-West estimator is a particular implementation of a broad class of estimators known as kernel variance
estimators. They all share the property that they are weighted sums of autocovariances where a kernel function determines
the weights.
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price before t and τ2 is the time subscript of the first price after time t, and the interpolation weight is
w = (τ2− t)/(τ2− τ1). The averaging of prices in linear interpolation – which effectively produces a
smoother price path than the efficient price path – produces a notable downward bias in RV .

Finally, most markets do not operate 24 hours a day, and RV cannot be computed when markets are
closed. The standard procedure is to augment high-frequency returns with the squared close-to-open
return to construct an estimate of the total variance. The close-to-close (CtC) RV is then defined

RV (m)
CtC,t = r2

CtO,t +RV (m)
t (7.111)

where r2
CtO,t is the return between the close on day t − 1 and the market open on day t. Since the

overnight return is not measured frequently, the adjusted RV must be treated as a random variable
(and not an observable). An improved method to handle the overnight return has been proposed in
Hansen and Lunde (2005) and Hansen and Lunde (2006) which weighs the overnight squared return
by λ1 and the daily Realized Variance by λ2 to produce an estimator with a lower mean-square error,

R̃V
(m)

CtC,t = λ1r2
CtO,t +λ2RV (m)

t .

7.8.2 Modeling RV

If RV is observable, then it can be modeled using standard time series tools such as ARMA models.
This approach has been widely used in the academic literature although there are issues in treating the
RV “as-if” it is the variance. If RV has measurement error, then parameter estimates in ARMA models
suffer from an errors-in-variables problem, and the estimated coefficient are biased (see chapter 4).
Corsi (2009) proposed the heterogeneous autoregression (HAR) as a simple method to capture the
dynamics in RV in a parsimonious model. The standard HAR models the RV as a function of the RV
in the previous day, the average RV over the previous week, and the average RV over the previous
month (22 days). The HAR in levels is then

RVt = φ0 +φ1RVt−1 +φ5RV t−5 +φ22RV t−22 + εt (7.112)

where RV t−5 =
1
5
∑5

i=1 RVt−i and RV t−22 =
1

22
∑2

i=1 2RVt−i (suppressing the (m) terms). The HAR
is also commonly estimated in logs,

lnRVt = φ0 +φ1 lnRVt−1 +φ5 lnRV t−5 +φ22lnRV t−22 + εt . (7.113)

HARs are technically AR(22) models with many parameter restrictions. These restrictions maintain
parsimony while allowing HARs to capture both the high degree of persistence in volatility (through
the 22-day moving average) and short term dynamics (through the 1-day and 5-day terms).

The alternative is to model RV using ARCH-family models, which can be interpreted as multi-
plicative error models for any non-negative process, not only squared returns (Engle, 2002a).20 Stan-
dard statistical software can be used to model RV as an ARCH process by defining r̃t = sign(rt)

√
RVt

where sign(rt) is 1 if the end-of-day return is positive or -1 otherwise. The transformed RV , r̃t , is the
signed square root of the Realized Variance on day t. Any ARCH-family model can be applied to these

20ARCH-family models have, for example, been successfully applied to both durations (time between trades) and
hazards (number of trades in an interval of time), two non-negative processes.
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transformed values. For example, when modeling the variance evolution as a GJR-GARCH(1,1,1)
process,

σ
2
t = ω +α1r̃2

t−1 + γ1r̃2
t−1I[r̃t−1<0]+β1σ

2
t−1 (7.114)

which is equivalently expressed in terms of Realized Variance as

σ
2
t = ω +α1RVt−1 + γ1RVt−1I[rt−1<0]+β1σ

2
t−1. (7.115)

Maximum likelihood estimation, assuming normally distributed errors, can be used to estimate
the parameters of this model. This procedure solves the errors-in-variables problem present when
RV is treated as observable and facilitates modeling RV using standard software. Inference and the
method to build a model are unaffected by the change from end-of-day returns to the transformed RV .

7.8.3 Realized Variance of the S&P 500

Returns on S&P 500 Depository Receipts, known as SPiDeRs (NYSEARCA:SPY) is used to illustrate
the gains and pitfalls of RV . Price data was taken from TAQ and includes every transaction between
January 2007 until December 2018, a total of 3,020 days. SPDRs track the S&P 500 and are among
the most liquid assets in the U.S. market with an average volume of 150 million shares per day. There
were more than 100,000 trades on a typical day throughout the sample, which is more than 4 per
second. TAQ data contain errors, and observations were filtered by removing the prices outside the
daily high or low from an audited database. Only trade prices that occurred during the usual trading
hours of 9:30 – 16:00 were retained.

The primary tool for examining different Realized Variance estimators is the volatility signature
plot.

Definition 7.10 (Volatility Signature Plot). The volatility signature plot displays the time-series aver-
age of Realized Variance

RV (m)
t = T−1

T∑
t=1

RV (m)
t

as a function of the number of samples, m. An equivalent representation displays the amount of time,
whether in calendar time or tick time (number of trades between observations) along the X-axis.

Figures 7.11 and 7.9 contain plots of the annualized volatility constructed from the RV and RV AC1.
The estimates have been annualized to facilitate interpretation. Figures 7.11 shows that the 15-second
RV is larger than the RV sampled at 1, 5 or 15 minutes and that the 1 and 5 minute RV are less noisy
than the 15-minute RV . These plots provide some evidence that sampling more frequently than 15
minutes may be desirable. The two figures show that there is a reduction in the scale of the 15-second
RV AC1 relative to the 15-second RV . The 15-second RV is heavily influenced by the noise in the data
(bid-ask bounce) while the RV AC1 is less affected.

Figures 7.10 and 7.10 contain the annualized volatility signature plot for RV and RV AC1, respec-
tively. The dashed horizontal line depicts the volatility computed using the standard variance esti-
mator computed from open-to-close returns. There is a striking difference between the two figures.
The RV volatility signature plot diverges when sampling more frequently than 30 seconds while the
RV AC1 plot is flat except at the highest sample frequency. RV AC1 appears to allow sampling every 5
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SPY RV for sampling frequencies of 15s and 1, 5 and 15 minutes
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Figure 7.11: The four panels of this figure contain the Realized Variance for every day the market
was open from January 2007 until December 2018. The estimated RV have been transformed into

annualized volatility (
√

252 ·RV (m)
t ). While these plots appear superficially similar, the 1- and 5-

minute RV are the most precise and the 15-second RV is biased upward.

seconds – 6 times more frequently than RV . This is a common finding when comparing RV AC1 to RV
across a wide range of asset price data.

7.9 Implied Volatility and VIX

Implied volatility differs from other measures in that it is both market-based and forward-looking.
Implied volatility was originally conceived as the “solution” to the Black-Scholes options pricing
formula where all values except the volatility are observable. Recall that the Black-Scholes formula
is derived from an assuming that stock prices follow a geometric Brownian motion plus drift,
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dSt = µStdt +σStdWt (7.116)

where St is the time t stock prices, µ is the drift, σ is the (constant) volatility, and dWt is a Wiener
process. Under some additional assumptions sufficient to ensure no arbitrage, the price of a call option
can be shown to be

Ct(T,K) =StΦ(d1)+Ke−rT
Φ(d2) (7.117)

d1 =
ln(St/K)+

(
r+σ2/2

)
T

σ
√

T

d2 =
ln(St/K)+

(
r−σ2/2

)
T

σ
√

T

where K is the strike price, T is the time to maturity, reported in years, r is the risk-free interest
rate, and Φ(·) is the normal CDF. The price of a call option is monotonic in the volatility, and so the
formula can be inverted to express the volatility as a function of the call price and other observables.
The implied volatility,

σ
Implied
t = g(Ct(T,K),St ,K,T,r) , (7.118)

is the expected volatility between t and T under the risk-neutral measure (which is the same as under
the physical when volatility is constant).21

7.9.1 The smile

When computing the Black-Scholes implied volatility across a range of strikes, the volatility usually
resembles a “smile” (higher IV for out-of-the-money options than in the money) or “smirk” (higher
IV for out-of-the-money puts). This pattern emerges since asset returns are heavy-tailed (“smile”) and
skewed (“smirk”). The BSIV is derived under an assumption that the asset price follows a geometric
Brownian motion so that the log returns are assumed to be normal. The smile reflects misspecification
of the model underlying the Black-Scholes option pricing formula. Figure 7.12 shows the smile in
the BSIV for SPY out-of-the-month options on January 15, 2017. The x-axis rescaled from the strike
price to moneyness by dividing the strike by the spot price. The current spot price is 100, smaller
values indicate strikes below the current price (out-of-the-money puts), and positive values are strikes
above the current price (out-of-the-money calls).

7.9.2 Model-Free Volatility

B-S implied volatility suffers from three key issues:

• Derived under constant volatility: The returns on most asset prices exhibit conditional het-
eroskedasticity, and time-variation in the volatility of returns generates heavy tails which in-
creases the probability of a large asset price change.

21The implied volatility is computed by numerically inverting the B-S pricing formula, or using some other approxi-
mation..
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Black-Scholes Implied Volatility
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Figure 7.12: Plot of the Black-Scholes implied volatility “smile” on January 15, 2018, based on
options on SPY expiring on February 2, 2018.

• Leverage effects are ruled out: Leverage, or negative correlation between the price and volatility
of an asset, can generate negative skewness. This feature of asset prices increases the probability
of extreme negative returns relative to the log-normal price process assumed in the B-S option
pricing formula.

• No jumps: Jumps are also an empirical fact of most asset prices. Jumps, like time-varying
volatility, increase the chance of seeing an extreme return.

The consequences of these limits are that, contrary to what the model underlying the B-S implies, B-S
implied volatilities are not constant across strike prices, and so cannot be interpreted as market-based
estimated of volatility.

Model-free implied volatility (MFIV) was been developed as an alternative to B-S implied volatil-
ity by Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000) with an important extension
to jump processes and practical implementation details provided by Jiang and Tian (2005). These
estimators build on Breeden and Litzenberger (1978) which contains key result that demonstrates
how option prices are related to the risk-neutral measure – the distribution of asset price returns after
removing risk premia. Suppose that the risk-neutral measure Q exists and is unique. Then, under the
risk-neutral measure, it must be the case that
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∂St

St
= σ(t, ·)dWt (7.119)

is a martingale where σ(t, ·) is a (possibly) time-varying volatility process that may depend on the
stock price or other state variables. From the relationship, the price of a call option can be computed
as

C(t,K) = EQ

[
(St−K)+

]
(7.120)

for t > 0, K > 0 where the function (x)+ = max(x,0). Thus

C(t,K) =

∫ ∞
K

(St−K)φt(St)dSt (7.121)

where φt(·) is the risk-neutral measure. Differentiating with respect to K,

∂C(t,K)

∂K
=−

∫ ∞
K

φt(St)dSt . (7.122)

Differentiating this expression again with respect to K (note K in the lower integral bound),

∂ 2C(t,K)

∂K2 = φt(K), (7.123)

and so that the risk-neutral density can be recovered from options prices. This result provides a basis
for nonparametrically estimating the risk-neutral density from observed options prices (see, e.g., Aït-
Sahalia and Lo (1998)). Another consequence of this result is that the expected (under Q) variation
in a stock price over the interval [t1, t2] measure can be recovered from

EQ

[∫ t2

t1

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t2,K)−C(t1,K)

K2 dK. (7.124)

This expression cannot be directly implemented to recover the expected volatility since it requires a
continuum of strike prices.

Equation 7.124 assumes that the risk-free rate is 0. When it is not, a similar result can be derived
using the forward price

EF

[∫ t2

t1

(
∂Ft

Ft

)2
]
= 2

∫ ∞
0

CF(t2,K)−CF(t1,K)

K2 dK (7.125)

where F is the forward probability measure – that is, the probability measure where the forward
price is a martingale and CF(·, ·) is used to denote that this option is defined on the forward price.
Additionally, when t1 is 0, as is usually the case, the expression simplifies to

EF

[∫ t

0

(
∂Ft

Ft

)2
]
= 2

∫ ∞
0

CF(t,K)− (F0−K)+

K2 dK. (7.126)

A number of important caveats are needed for employing this relationship to compute MFIV from
option prices:
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• Spot rather than forward prices. Because spot prices are usually used rather than forwards, the
dependent variable needs to be redefined. If interest rates are non-stochastic, then define B(0,T )
to be the price of a bond today that pays $1 time T . Thus, F0 = S0/B(0,T ), is the forward price
and CF(T,K) = C(T,K)/B(0,T ) is the forward option price. With the assumption of non-
stochastic interest rates, the model-free implied volatility can be expressed

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K)/B(0,T )− (S0/B(0,T )−K)+

K2 dK (7.127)

or equivalently using a change of variables as

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K/B(0,T ))− (S0−K)+

K2 dK. (7.128)

• Discretization. Because only finitely many options prices are available, the integral must be
approximated using a discrete grid. Thus the approximation

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K/B(0,T ))− (S0−K)+

K2 dK (7.129)

≈
M∑

m=1

[g(T,Km)+g(T,Km−1)] (Km−Km−1) (7.130)

The is used where

g(T,K) =
C(t,K/B(0,T ))− (S0−K)+

K2 (7.131)

If the option tree is rich, this should not pose a significant issue. For option trees on individual
firms, asset-specific study (for example, using data-calibrated Monte Carlo experiment) may be
needed to ascertain whether the MFIV is a good estimate of the volatility under the forward
measure.

• Maximum and minimum strike prices. The integral cannot be implemented from 0 to∞, and
so the implied volatility has a downward bias due to the effect of the tails. In rich options trees,
such as for the S&P 500, this issue is minor.

7.9.3 VIX

The VIX – Volatility Index – is a volatility measure produced by the Chicago Board Options Exchange
(CBOE). It is computed using a “model-free” like estimator which uses both call and put prices.22

The VIX is an estimator of the price of a variance swap, which applies put-call parity to the previous
expression to produce

2
T

exp(rT )

(∫ F0

0

P(t,K/B(0,T ))
K2 dK +

∫ ∞
F0

C(t,K/B(0,T ))
K2 dK

)
.

22The VIX is based exclusively on out-of-the-money prices, so calls are used for strikes above the current price and
puts are used for strikes below the current price.
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The term (S0−K)+drops out of this expression since it only used out-of-the-money options.
The VIX is computed according to

σ
2 =

2
T

exp(rT )
N∑

i=1

∆Ki

K2
i

Q(Ki)−
1
T

(
F0

K0
−1
)2

(7.132)

where T is the time to expiration of the options used, F0 is the forward price which is computed from
index option prices, Ki is the strike of the ith out-of-the-money option, ∆Ki = (Ki+1−Ki−1)/2 is half
of the distance of the interval surrounding the option with a strike price of Ki, K0 is the strike of the
option immediately below the forward level, F0, r is the risk-free rate and Q(Ki) is the mid-point of
the bid and ask for the call or put used at strike Ki. The forward index price is extracted using put-call
parity as F0 = K0 + exp(rT )(C0−P0) where K0 is the strike price where the price difference between
put and call is smallest, and C0 and P0 are, respectively, the call and put prices at this node. The VIX
is typically calculated from options at the two maturities closes to the 30-day horizon (for example
28- and 35-days when using options that expire weekly). More details on the implementation of the
VIX can be found in the CBOE whitepaper (CBOE, 2003).
The first term in the formula for the VIX can be viewed as

∆Ki

K2
i

Q(Ki) =
∆Ki

Ki︸︷︷︸
% width of interval

× Q(Ki)

Ki︸ ︷︷ ︸
% option premium

,

so that the implied variance depends on only the option premium as a percent of the strike price. The
division in the second term by K0 similarly transforms the forward price to a percentage of strike
measure. Each of these terms is width time height (premium), and so the VIX is the area below the
out-of-the-money option pricing curve. When volatility is higher, all options are more valuable, and
so there is more area below the curve. Figure 7.13 illustrates this area using option prices computed
from the Black-Scholes formula for volatilities of 20% and 60%.

7.9.4 Computing the VIX from Black-Scholes prices

Put and call options values were computed from the Black-Scholes option pricing formula for an
underlying with a price of $100, an option time to maturity of a month (T = 1/12), a volatility of 20%,
and a risk-free rate of 2%. Figure 7.13 plots the put and call options values from the Black-Scholes
formula. The solid lines indicate the options that are out-of-the-money – puts with strike prices below
$100 or calls with strikes above $100 – that are used to compute the VIX. The dotted lines show the
option prices that are in-the-money. The values in Table 7.7 show all strikes where the out-of-the-
month option price was at least $0.01. These values are marked in Figure 7.13. The VIX is computed
using the out-of-the-money option price Q(Ki) rescaled by 2/T exp(rT )∆Ki/K2

i = 2/1/12 exp(.02/12)×
4/Ki since the strikes are measured every $4. The final line shows the total – 0.0430. The VIX index
computed from these values is then 100×

√
0.0430−3.338×10−5% = 20.75%, which is close to

the true value of 20%. The second term in the square root is the adjustment 1/T (F/K0−1)2 which is
small. The small difference between the MFIV and the true volatility of 20% is due to discretization
error since the strikes are only observed every $4 and truncation error since only options with values
larger than $0.01 were used. The bottom panel of Figure 7.13 plots the option prices and highlights
the area estimated by the VIX formula when the asset price volatility is 60%.
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Figure 7.13: Option prices generated from the Black-Scholes pricing formula for an underlying with a
price of $100 with a volatility of 20% or 60% (bottom). The options expire in 1 month (T = 1/12), and
the risk-free rate is 2%. The solid lines show the out-of-the-money options that are used to compute
the VIX. The solid markers show the values where the option price to be at least $0.01 using a $4 grid
of strike prices.
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Strike Call Put Abs. Diff. VIX Contrib.

88 12.17 0.02 12.15 0.0002483
92 8.33 0.17 8.15 0.0019314
96 4.92 0.76 4.16 0.0079299
100 2.39 2.22 0.17 0.0221168
104 0.91 4.74 3.83 0.0080904
108 0.27 8.09 7.82 0.0022259
112 0.06 11.88 11.81 0.0004599
116 0.01 15.82 15.81 7.146e-05

Total 0.0430742

Table 7.7: Option prices generated from the Black-Scholes pricing formula for an underlying with a
price of $100 with a volatility of 20%. The options expire in 1 month (T = 1/12), and the risk-free
rate is 2%. The third column shows the absolute difference which is used to determine K0 in the
VIX formula. The final column contains the contribution of each option to the VIX as measured by
2/T exp(rT )∆Ki/K2

i ×Q(Ki).

7.9.5 Empirical Relationships

The daily VIX series from January 1990 until December 2018 is plotted in Figure 7.14 against a
22-day forward moving average computed as

σ
MA
t =

√
252
22

∑
i=021

r2
t+i.

The second panel shows the difference between these two series. The VIX is consistently, but not uni-
formly, higher than the forward volatility. This relationship highlights both a feature and a drawback
of using a measure of the volatility computed under the risk-neutral measure: it captures a (possi-
bly) time-varying risk premium. This risk premium captures investor compensation for changes in
volatility (volatility of volatility) and jump risks.

7.A Kurtosis of an ARCH(1)

The necessary steps to derive the kurtosis of an ARCH(1) process are

E[ε4
t ] = E[Et−1[ε

4
t ]] (7.133)

= E[3(ω +α1ε
2
t−1)

2]

= 3E[(ω +α1ε
2
t−1)

2]

= 3E[ω2 +2ωα1ε
2
t−1 +α

2
1 ε

4
t−1]

= 3
(
ω

2 +ωα1E[ε2
t−1]+α

2
1 E[ε4

t−1]
)

= 3ω
2 +6ωα1E[ε2

t−1]+3α
2
1 E[ε4

t−1].
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VIX and alternative measures of volatility
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Figure 7.14: Plots of the VIX against a TARCH-based estimate of the volatility (top panel) and a 22-
day forward moving average (bottom panel). The VIX is consistently above both measures reflecting
the presence of a risk premium that compensates for time-varying volatility and jumps in the market
return.

Using µ4 to represent the expectation of the fourth power of εt (µ4 = E[ε4
t ]),

E[ε4
t ]−3α

2
1 E[ε4

t−1] = 3ω
2 +6ωα1E[ε2

t−1] (7.134)

µ4−3α
2
1 µ4 = 3ω

2 +6ωα1σ̄
2

µ4(1−3α
2
1 ) = 3ω

2 +6ωα1σ̄
2

µ4 =
3ω2 +6ωα1σ̄2

1−3α2
1

µ4 =
3ω2 +6ωα1

ω

1−α1

1−3α2
1

µ4 =
3ω2(1+2 α1

1−α1
)

1−3α2
1
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µ4 =
3ω2(1+α1)

(1−3α2
1 )(1−α1)

.

This derivation makes use of the same principals as the intuitive proof and the identity that σ̄2 =
ω/(1−α1). The final form highlights two important issues: first, µ4 (and thus the kurtosis) is only

finite if 1−3α2
1 > 0 which requires that α1 <

√
1
3 ≈ .577, and second, the kurtosis, κ = E[ε4

t ]

E[ε2
t ]

2 =
µ4
σ̄2 ,

is always greater than 3 since

κ =
E[ε4

t ]

E[ε2
t ]

2 (7.135)

=

3ω
2(1+α1)

(1−3α2
1 )(1−α1)

ω2

(1−α1)2

=
3(1−α1)(1+α1)

(1−3α2
1 )

=
3(1−α2

1 )

(1−3α2
1 )

> 3.

Finally, the variance of ε2
t can be computed noting that for any variable Y , V[Y ] = E[Y 2]−E[Y ]2, and

so

V[ε2
t ] = E[ε4

t ]−E[ε2
t ]

2 (7.136)

=
3ω2(1+α1)

(1−3α2
1 )(1−α1)
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1 )(1−α1)

(1−3α2
1 )(1−α1)(1−α1)2

=
3ω2(1+α1)(1−α1)−ω2(1−3α2

1 )

(1−3α2
1 )(1−α1)2

=
3ω2(1−α2

1 )−ω2(1−3α2
1 )

(1−3α2
1 )(1−α1)2

=
3ω2(1−α2

1 )−3ω2(1
3 −α2

1 )

(1−3α2
1 )(1−α1)2

=
3ω2[(1−α2

1 )− (1
3 −α2

1 )]

(1−3α2
1 )(1−α1)2

=
2ω2

(1−3α2
1 )(1−α1)2

=

(
ω

1−α1

)2 2
(1−3α2

1 )
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=
2σ̄4

(1−3α2
1 )

The variance of the squared returns depends on the unconditional level of the variance, σ̄2, and the
innovation term (α1) squared.

7.B Kurtosis of a GARCH(1,1)

First, note that E[σ2
t − ε2

t ] = 0, so thatV[σ2
t − ε2

t ] = E[(σ2
t − ε2

t )
2]. This term can be expanded to

E[ε4
t ]−2E[ε2

t σ2
t ]+E[σ4

t ] which can be shown to be 2E[σ4
t ] since

E[ε4
t ] = E[Et−1[e4

t σ
4
t ]] (7.137)

= E[Et−1[e4
t ]σ

4
t ]

= E[3σ
4
t ]

= 3E[σ4
t ]

and

E[ε2
t σ

2
t ] = E[Et−1[e2

t σ
2
t ]σ

2
t ] (7.138)

= E[σ2
t σ

2
t ]

= E[σ4
t ]

so

E[ε4
t ]−2E[ε2

t σ
2
t ]+E[σ4

t ] = 3E[σ4
t ]−2E[σ4

t ]+E[σ4
t ] (7.139)

= 2E[σ4
t ]

The only remaining step is to complete the tedious derivation of the expectation of this fourth
power,

E[σ4
t ] = E[(σ2

t )
2] (7.140)

= E[(ω +α1ε
2
t−1 +β1σ

2
t−1)

2]

= E[ω2 +2ωα1ε
2
t−1 +2ωβ1σ

2
t−1 +2α1β1ε

2
t−1σ

2
t−1 +α

2
1 ε

4
t−1 +β

2
1 σ

4
t−1]

= ω
2 +2ωα1E[ε2

t−1]+2ωβ1E[σ2
t−1]+2α1β1E[ε2

t−1σ
2
t−1]+α

2
1 E[ε4

t−1]+β
2
1 E[σ4

t−1]

Noting that

• E[ε2
t−1] = E[Et−2[ε

2
t−1]] = E[Et−2[e2

t−1σ2
t−1]] = E[σ2

t−1Et−2[e2
t−1]] = E[σ2

t−1] = σ̄2

• E[ε2
t−1σ2

t−1] = E[Et−2[ε
2
t−1]σ

2
t−1] = E[Et−2[e2

t−1σ2
t−1]σ

2
t−1] = E[Et−2[e2

t−1]σ
2
t−1σ2

t−1] = E[σ4
t ]
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• E[ε4
t−1] = E[Et−2[ε

4
t−1]] = E[Et−2[e4

t−1σ4
t−1]] = 3E[σ4

t−1]

the final expression for E[σ4
t ] can be arrived at

E[σ4
t ] = ω

2 +2ωα1E[ε2
t−1]+2ωβ1E[σ2

t−1]+2α1β1E[ε2
t−1σ

2
t−1]+α

2
1 E[ε4

t−1]+β
2
1 E[σ4

t−1] (7.141)

= ω
2 +2ωα1σ̄

2 +2ωβ1σ̄
2 +2α1β1E[σ4

t−1]+3α
2
1 E[σ4

t−1]+β
2
1 E[σ4

t−1].

E[σ4
t ] can be solved for (replacing E[σ4

t ] with µ4),

µ4 = ω
2 +2ωα1σ̄

2 +2ωβ1σ̄
2 +2α1β1µ4 +3α

2
1 µ4 +β

2
1 µ4 (7.142)

µ4−2α1β1µ4−3α
2
1 µ4−β

2
1 µ4 = ω

2 +2ωα1σ̄
2 +2ωβ1σ̄

2

µ4(1−2α1β1−3α
2
1 −β

2
1 ) = ω

2 +2ωα1σ̄
2 +2ωβ1σ̄

2

µ4 =
ω2 +2ωα1σ̄2 +2ωβ1σ̄2

1−2α1β1−3α2
1 −β 2

1

finally substituting σ̄2 = ω/(1−α1−β1) and returning to the original derivation,

E[ε4
t ] =

3(1+α1 +β1)

(1−α1−β1)(1−2α1β1−3α2
1 −β 2

1 )
, (7.143)

and the kurtosis, κ = E[ε4
t ]

E[ε2
t ]

2 =
µ4
σ̄2 , which simplifies to

κ =
3(1+α1 +β1)(1−α1−β1)

1−2α1β1−3α2
1 −β 2

1
> 3. (7.144)

Exercises

Exercise 7.1. What is Realized Variance and why is it useful?

Exercise 7.2. Suppose rt = σtεt where σ2
t = ω +αr2

t−1 +βσ2
t−1, and εt

i.i.d.∼ N (0,1). What conditions
are required on the parameters ω , α , and β for rt to be covariance stationary?

Exercise 7.3. What is Realized Variance?

Exercise 7.4. Discuss the properties of the generalized forecast error from a correctly specified
volatility model.

Exercise 7.5. Outline the steps the in Mincer-Zarnowitz framework to objectively evaluate a sequence
of variance forecasts

{
σ̂2

t+1|t

}
.

Exercise 7.6. How do you use a likelihood function to estimate an ARCH model?

Exercise 7.7. Why are Bollerslev-Wooldridge standard errors important when testing coefficients in
ARCH models?
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Exercise 7.8. Why does the Black-Scholes implied volatility vary across strikes?

Exercise 7.9. Suppose we model log-prices at time t, written pt , as an ARCH(1) process

pt |Ft−1 ∼ N(pt−1,σ
2
t ),

where Ft denotes the information up to and including time t and

σ
2
t = α +β (pt−1− pt−2)

2 .

1. Is pt a martingale?

2. What is
E
[
σ

2
t
]
?

3. For s > 0, Calculate
Cov

[
(pt− pt−1)

2 ,(pt−s− pt−1−s)
2
]

4. Comment on the importance of this result from a practical perspective.

5. How can the ARCH(1) model be generalized better capture the variance dynamics of asset
prices?

6. In the ARCH(1) case, what can you say about the properties of

pt+s|Ft−1,

for s > 0, i.e., the multi-step ahead forecast of prices?

Exercise 7.10. Derive explicit relationships between the parameters of an APARCH(1,1,1),

rt = µt + εt

σ
δ
t = ω +α1 (|εt−1|+ γ1εt−1)

δ +β1σ
δ
t−1

εt = σtet

et
i.i.d.∼ N(0,1),

and:

1. ARCH(1)

2. GARCH(1,1)

3. AVGARCH(1,1)

4. TARCH(1,1,1)

5. GJR-GARCH(1,1,1)
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Exercise 7.11. Consider the following GJR-GARCH process,

rt = ρrt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1 + γε

2
t−1I[εt−1<0]+βσ

2
t−1

et
i.i.d.∼ N(0,1)

where Et [·] = E[·|Ft ] is the time t conditional expectation and Vt [·] = V[·|Ft ] is the time t conditional
variance.

1. What conditions are necessary for this process to be covariance stationary?

Assume these conditions hold in the remaining questions. Note: If you cannot answer one or
more of these questions for an arbitrary γ , you can assume that γ = 0 and receive partial credit.

2. What is E[rt+1]?

3. What is Et [rt+1]?

4. What is V[rt+1]?

5. What is Vt [rt+1]?

6. What is Vt [rt+2]?

Exercise 7.12. Let rt follow a GARCH process

rt = σtet

σ
2
t = ω +αr2

t−1 +βσ
2
t−1

et
i.i.d.∼ N(0,1)

1. What are the values of the following quantities?

(a) E[rt+1]

(b) Et [rt+1]

(c) V[rt+1]

(d) Vt [rt+1]

(e) ρ1 = Corr [rt ,rt−1]

2. What is E[(r2
t − σ̄2)(r2

t−1− σ̄2)] where σ̄ = E[σ2
t ]. Hint: Consider the relationship to ARMA

models.

3. Describe the h-step ahead forecast from this model.

Exercise 7.13. Let rt follow an ARCH process

rt = σtet

σ
2
t = ω +α1r2

t−1

et
i.i.d.∼ N(0,1)
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1. What are the values of the following quantities?

(a) E[rt+1]

(b) Et [rt+1]

(c) V[rt+1]

(d) Vt [rt+1]

(e) ρ1 = Corr [rt ,rt−1]

2. What is E[(r2
t − σ̄2)(r2

t−1− σ̄2)] where σ̄ = E[σ2
t ]. Hint: Think about the AR duality.

3. Describe the h-step ahead forecast from this model.

Exercise 7.14. Consider an EGARCH(1,1,1) model:

lnσ
2
t = ω +α1

(
|et−1|−

√
2
π

)
+ γ1et−1 +β1 lnσ

2
t−1

where et
i.i.d.∼ N(0,1).

1. What are the required conditions on the model parameters for this process to be covariance
stationary?

2. What is the one-step-ahead forecast of σ2
t , Et

[
σ2

t+1
]
?

3. What is the most you can say about the two-step-ahead forecast of σ2
t (Et

[
σ2

t+2
]
)?

Exercise 7.15. Answer the following questions:

1. Describe three fundamentally different procedures to estimate the volatility over some interval.
What the strengths and weaknesses of each?

2. Why is Realized Variance useful when evaluating a volatility model?

3. What considerations are important when computing Realized Variance?

Exercise 7.16. Consider a general volatility specification for an asset return rt :

rt |Ft−1 ∼ N
(
0,σ2

t
)

and let et ≡
rt

σt

so et |Ft−1
i.i.d.∼ N (0,1)

1. Find the conditional kurtosis of the returns:

Kurtt−1 [rt ]≡
Et−1

[
(rt−Et−1 [rt ])

4
]

(Vt−1 [rt ])
2
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2. Show that if V
[
σ2

t
]
> 0, then the unconditional kurtosis of the returns,

Kurt [rt ]≡
E
[
(rt−E [rt ])

4
]

(V [rt ])
2

is greater than 3.

3. Find the conditional skewness of the returns:

Skewt−1 [rt ]≡
Et−1

[
(rt−Et−1 [rt ])

3
]

(Vt−1 [rt ])
3/2

4. Find the unconditional skewness of the returns:

Skew [rt ]≡
E
[
(rt−E [rt ])

3
]

(V [rt ])
3/2

Exercise 7.17. Answer the following questions:

1. Describe three fundamentally different procedures to estimate the volatility over some interval.
What are the strengths and weaknesses of each?

2. Why does the Black-Scholes implied volatility vary across strikes?

3. Consider the following GJR-GARCH process,

rt = µ +ρrt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1 + γε

2
t−1I[εt−1<0]+βσ

2
t−1

et
i.i.d.∼ N(0,1)

where Et [·] = E[·|Ft ] is the time t conditional expectation and Vt [·] = V[·|Ft ] is the time t
conditional variance.

(a) What conditions are necessary for this process to be covariance stationary?

Assume these conditions hold in the remaining questions.

(b) What is E[rt+1]?

(c) What is Et [rt+1]?

(d) What is Et [rt+2]?

(e) What is V[rt+1]?

(f) What is Vt [rt+1]?

(g) What is Vt [rt+2]?
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Exercise 7.18. Answer the following questions about variance estimation.

1. What is Realized Variance?

2. How is Realized Variance estimated?

3. Describe two models which are appropriate for modeling Realized Variance.

4. What is an Exponential Weighted Moving Average (EWMA)?

5. Suppose an ARCH model for the conditional variance of daily returns was fit

rt+1 = µ +σt+1et+1

σ
2
t+1 = ω +α1ε

2
t +α2ε

2
t−1

et
i.i.d.∼ N(0,1)

What are the forecasts for t +1, t +2 and t +3 given the current (time t) information set?

6. Suppose an EWMA was used instead for the model of conditional variance with smoothing
parameter = .94. What are the forecasts for t + 1, t + 2 and t + 3 given the current (time t)
information set?

7. Compare the ARCH(2) and EWMA forecasts when the forecast horizon is large (e.g., Et
[
σ2

t+h

]
for large h).

8. What is VIX?

Exercise 7.19. Suppose {Yt} is covariance stationary and can be described by the following process:

yt = φ1yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

what are the values of the following quantities:

1. Et [Yt+1]

2. Et [Yt+2]

3. limh→∞Et [Yt+h]

4. Vt [εt+1]

5. Vt [Yt+1]

6. Vt [Yt+2]

7. limh→∞Vt [εt+h]
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Exercise 7.20. Answer the following questions:
Suppose {yt} is covariance stationary and can be described by the following process:

yt = φ0 +θ1εt−1 +θ2εt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +βσ

2
t−1

et
i.i.d.∼ N (0,1)

what are the values of the following quantities:

1. Et [Yt+1]

2. Et [Yt+2]

3. limh→∞Et [Yt+h]

4. Vt [εt+1]

5. Vt [Yt+2]

6. limh→∞Vt [εt+h]

Exercise 7.21. Consider the AR(2)-ARCH(2) model

Yt = φ0 +φ1yt−1 +φ2yt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2

et
i.i.d.∼ N (0,1)

1. What conditions are required for φ0, φ1 and, φ2 for the model to be covariance stationary?

2. What conditions are required for ω, α1, and α2 for the model to be covariance stationary?

3. Show that {εt} is a white noise process.

4. Are εt and εt−s independent for s 6= 0?

5. What are the values of the following quantities:

(a) E [Yt ]

(b) Et [Yt+1]

(c) Et [Yt+2]

(d) Vt [Yt+1]

(e) Vt [Yt+2]
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Exercise 7.22. Suppose {Yt} is covariance stationary and can be described by the following process:

Yt = φ1Yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

1. What are the values of the following quantities:

(a) Et [Yt+1]

(b) Et [Yt+2]

(c) limh→∞Et [Yt+h]

(d) Vt [εt+1]

(e) Vt [Yt+1]

(f) Vt [Yt+2]

(g) V [Yt+1]

Exercise 7.23. Consider the MA(2)-GARCH(1,1) model

Yt = φ0 +θ1εt−1 +φ2εt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1

et
i.i.d.∼ N (0,1)

1. What conditions are required for φ0, θ1, and θ2 for the model to be covariance stationary?

2. What conditions are required for ω,α1, and β1 for the model to be covariance stationary?

3. Show that {εt} is a white noise process.

4. Are εt and εt−1 independent?

5. What are the values of the following quantities:

(a) E [Yt ]

(b) Et [Yt+1]

(c) Et [Yt+2]

(d) limh→∞Et [Yt+h]

(e) Vt [Yt+1]

(f) Vt [Yt+2]
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Exercise 7.24. Suppose {Yt} is covariance stationary and can be described by the following process:

Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

What are the values of the following quantities:

1. E [Yt+1]

2. Et [Yt+1]

3. Et [Yt+2]

4. limh→∞Et [Yt+h]

5. Vt [εt+1]

6. Vt [Yt+1]

7. Vt [Yt+2]

8. V [Yt+1]

Exercise 7.25. If lnRVt is modeled as a HAR

lnRVt = 0.1+0.4lnRVt−1 +0.3lnRVt−1:5 +0.22lnRVt−1:22 + εt

where εt
i.i.d.∼ N(0,σ2) where lnRVt−1:h = h−1∑h

i=1 lnRVt−i is the average of h lags of lnRV .

1. What is Et [lnRVt+1]?

2. What is Et [lnRVt+2]?

3. What is limh→∞Et [lnRVt+h]?

4. What is the conditional distribution of the 2-step forecast error, lnRVt+2−Et [lnRVt+2]?

5. What is Et [RVt+1]?

6. What is Et [RVt+2]?

Exercise 7.26. DefineR̃t = sgn(Rt)
√

RVt where Rt is the close-to-close return and RVt is the realized
variance on day t. Suppose this time series is modeled as a GARCH(1,1)

σ
2
t+1 = 0.1+0.25R̃2

t +0.7σ
2
t

R̃t+1|Ft ∼ N
(
0,σ2

t+1
)

where εt ∼ N(0,σ2) where lnRVt−1:h = h−1∑h
i=1 lnRVt−i is the average of h lags of lnRV .
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1. What is Et [RVt+1]?

2. What is Et [RVt+2]?

3. What is Et
[
σ2

t+1
]
?

4. What is limh→∞Et [RVt+h]?

5. What alternative models are commonly used to model Realized Variance?


