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Chapter 1

Probability, Random Variables and
Expectations

Note: The primary reference for these notes is Mittelhammer (1999). Other treatments of probability
theory include Gallant (1997), Casella and Berger (2001) and Grimmett and Stirzaker (2001 ).

This chapter provides an overview of probability theory as it applied to both dis-
crete and continuous random variables. The material covered in this chapter serves
as a foundation of the econometric sequence and is useful throughout financial
economics. The chapter begins with a discussion of the axiomatic foundations
of probability theory and then proceeds to describe properties of univariate ran-
dom variables. Attention then turns to multivariate random variables and important
difference from univariate random variables. Finally, the chapter discusses the ex-

pectations operator and moments.

1.1 Axiomatic Probability

Probability theory is derived from a small set of axioms — a minimal set of essential assumptions. A
deep understanding of axiomatic probability theory is not essential to financial econometrics or to the
use of probability and statistics in general, although understanding these core concepts does provide
additional insight.

The first concept in probability theory is the sample space, which is an abstract concept containing
primitive probability events.

Definition 1.1 (Sample Space). The sample space is a set, 2, that contains all possible outcomes.

Example 1.1. Suppose interest is on a standard 6-sided die. The sample space is 1-dot, 2-dots, ...,
6-dots.

Example 1.2. Suppose interest is in a standard 52-card deck. The sample space is then Ads, 2ée, 3¢,
vy JOo, Ode, Ko, AO, ..., KO, AQ .., KO,AM, ... KW

Example 1.3. Suppose interest is in the logarithmic stock return, defined as r; = In P, — InP,_, then
the sample space is R, the real line.



Probability, Random Variables and Expectations

The next item of interest is an event.
Definition 1.2 (Event). An event, o, is a subset of the sample space €.

An event may be any subsets of the sample space € (including the entire sample space), and the
set of all events is known as the event space.

Definition 1.3 (Event Space). The set of all events in the sample space Q is called the event space,
and is denoted F.

Event spaces are a somewhat more difficult concept. For finite event spaces, the event space
is usually the power set of the outcomes — that is, the set of all possible unique sets that can be
constructed from the elements. When variables can take infinitely many outcomes, then a more
nuanced definition is needed, although the main idea is to define the event space to be all non-empty
intervals (so that each interval has infinitely many points in it).

Example 1.4. Suppose interest lies in the outcome of a coin flip. Then the sample space is {H,T }
and the event space is {0, {H},{T},{H,T}} where () is the empty set.

The first two axioms of probability are simple: all probabilities must be non-negative and the total
probability of all events is one.

Axiom 1.1. For any event @ € F,
Pr(w) > 0. (1.1)

Axiom 1.2. The probability of all events in the sample space € is unity, i.e.
Pr(Q)=1. (1.2)

The second axiom is a normalization that states that the probability of the entire sample space
is 1 and ensures that the sample space must contain all events that may occur. Pr(-) is a set-valued
function — that is, Pr (@) returns the probability, a number between 0 and 1, of observing an event @.

Before proceeding, it is useful to refresh four concepts from set theory.

Definition 1.4 (Set Union). Let A and B be two sets, then the union is defined
AUB={x:xc€AorxecB}.
A union of two sets contains all elements that are in either set.

Definition 1.5 (Set Intersection). Let A and B be two sets, then the intersection is defined
ANB={x:x€Aandx € B}.

The intersection contains only the elements that are in both sets.

Definition 1.6 (Set Complement). Let A be a set, then the complement set, denoted
A°={x:x¢A}.

The complement of a set contains all elements which are not contained in the set.



1.1 Axiomatic Probability

Set Complement Disjoint Sets

AC

Set Intersection Set Union

Figure 1.1: The four set definitions presented in R>. The upper left panel shows a set and its
complement. The upper right shows two disjoint sets. The lower left shows the intersection of two
sets (darkened region) and the lower right shows the union of two sets (darkened region). In all
diagrams, the outer box represents the entire space.

Definition 1.7 (Disjoint Sets). Let A and B be sets, then A and B are disjoint if and only if ANB = ().

Figure 1.1 provides a graphical representation of the four set operations in a 2-dimensional space.
The third and final axiom states that probability is additive when sets are disjoint.

Axiom 1.3. Let {A;}, i =1,2,... be a finite or countably infinite set of disjoint events." Then

Pr GAi :iPr(Ai). (1.3)
i=1 i=1

Assembling a sample space, event space and a probability measure into a set produces what is
known as a probability space. Throughout the course, and in virtually all statistics, a complete prob-
ability space is assumed (typically without explicitly stating this assumption).?

Definition 1.8. A S set is countably infinite if there exists a bijective (one-to-one) function from the elements of S to the
natural numbers N = {1,2,...}. Common sets that are countable infinite include the integers (Z) and the rational numbers

Q.

2 A complete probability space is complete if and only if B € F where Pr(B) =0 and A C B, then A € F. This condition
ensures that probability can be assigned to any event.



Probability, Random Variables and Expectations

Definition 1.9 (Probability Space). A probability space is denoted using the tuple (€, F,Pr) where
Q is the sample space, F is the event space and Pr is the probability set function which has domain
oeF.

The three axioms of modern probability are very powerful, and a large number of theorems can
be proven using only these axioms. A few simple example are provided, and selected proofs appear
in the Appendix.

Theorem 1.1. Let A be an event in the sample space Q, and let A be the complement of A so that
Q =AUAC". Then Pr(A) =1—Pr(A°).

Since A and A€ are disjoint, and by definition A€ is everything not in A, then the probability of the
two must be unity.

Theorem 1.2. Let A and B be events in the sample space Q. Then Pr(AUB)= Pr(A) +Pr(B) —
Pr(ANB).

This theorem shows that for any two sets, the probability of the union of the two sets is equal to
the probability of the two sets minus the probability of the intersection of the sets.

1.1.1 Conditional Probability

Conditional probability extends the basic concepts of probability to the case where interest lies in the
probability of one event conditional on the occurrence of another event.

Definition 1.10 (Conditional Probability). Let A and B be two events in the sample space Q. If
Pr(B) # 0, then the conditional probability of the event A, given event B, is given by

Pr(ANB)

Pr(AlB) = —pr

(1.4)

The definition of conditional probability is intuitive. The probability of observing an event in set
A, given an event in the set B has occurred, is the probability of observing an event in the intersection
of the two sets normalized by the probability of observing an event in set B.

Example 1.5. In the example of rolling a die, suppose A = {1,3,5} is the event that the outcome is
odd and B = {1,2,3} is the event that the outcome of the roll is less than 4. Then the conditional
probability of A given B is
Pr({1,3})
Pr({1,2,3})

2
3

SNW| N

since the intersection of A and B is {1,3}.

The axioms can be restated in terms of conditional probability, where the sample space consists
of the events in the set B.
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1.1.2 Independence

Independence of two measurable sets means that any information about an event occurring in one set
has no information about whether an event occurs in another set.

Definition 1.11. Let A and B be two events in the sample space Q. Then A and B are independent if
and only if
Pr(ANB) =Pr(A)Pr(B) (1.5)

,A 1L Bis commonly used to indicate that A and B are independent.
One immediate implication of the definition of independence is that when A and B are inde-

pendent, then the conditional probability of one given the other is the same as the unconditional
probability of the random variable —i.e. Pr(A|B) = Pr(A).

1.1.3 Bayes Rule

Bayes rule is frequently encountered in both statistics (known as Bayesian statistics) and in financial
models where agents learn about their environment. Bayes rule follows as a corollary to a theorem
that states that the total probability of a set A is equal to the conditional probability of A given a set of
disjoint sets B which span the sample space.

Theorem 1.3. Let B;,i = 1,2... be a finite or countably infinite partition of the sample space € so
that Bj N\ By = 0 for j # k and | J:2, B; = Q. Let Pr(B;) > 0 for all i, then for any set A,

Pr(A) = Pr(A|B;)Pr(B;). (1.6)
i=1

Bayes rule restates the previous theorem so that the probability of observing an event in B; given
an event in A is observed can be related to the conditional probability of A given B;.

Corollary 1.1 (Bayes Rule). Let B;,i = 1,2... be a finite or countably infinite partition of the sample
space Q so that Bj(\ By =0 for j # k and | J;=, Bi = Q. Let Pr(B;) > 0 for all i, then for any set A
where Pr(A) > 0,
Pr (A|B;) Pr (B))
> o1 Pr(A[Bi)Pr(B;)
Pr (A|B;) Pr (B))
Pr(A)

Pr(B;|A) =

An immediate consequence of the definition of conditional probability is the
Pr(ANB) =Pr(A|B)Pr(B),

which is referred to as the multiplication rule. Also notice that the order of the two sets is arbitrary, so
that the rule can be equivalently stated as Pr(ANB) = Pr(B|A)Pr(A). Combining these two (as long

as Pr(A) > 0),
Pr(A|B)Pr(B) = Pr(B|A)Pr(A)
. Pr(BlA) — W. (1.7)

5
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Example 1.6. Suppose a family has 2 children and one is a boy, and that the probability of having a
child of either sex is equal and independent across children. What is the probability that they have 2
boys?

Before learning that one child is a boy, there are 4 equally probable possibilities: {B,B}, {B,G},
{G,B} and {G, G}. Using Bayes rule,

Pr(B > 1|{B,B}) x Pr({B,B})

Pr({B,B}[B>1) —
> _Sc{{B.B} {B,G},{G,B}.{G,5}} PT (B = 1|S) Pr(S)

1><}t
- 1 1 1 1
1XZ+1XZ+1XZ+OXZ
B 1
3

so that knowing one child is a boy increases the probability of 2 boys from % to % Note that

> Pr(B>1[S)Pr(S) = Pr(B>1).
Se{{B.B}.{B,G} {G,B} {G.B}}

Example 1.7. The famous Monte Hall Let’s Make a Deal television program is an example of Bayes
rule. Contestants competed for one of three prizes, a large one (e.g. a car) and two uninteresting
ones (duds). The prizes were hidden behind doors numbered 1, 2 and 3. Before the contest starts, the
contestant has no information about the which door has the large prize, and to the initial probabilities
are all % During the negotiations with the host, it is revealed that one of the non-selected doors
does not contain the large prize. The host then gives the contestant the chance to switch from the
door initially chosen to the one remaining door. For example, suppose the contestant choose door 1
initially, and that the host revealed that the large prize is not behind door 3. The contestant then has
the chance to choose door 2 or to stay with door 1. In this example, B is the event where the contestant
chooses the door which hides the large prize, and A is the event that the large prize is not behind door
2.

Initially there are three equally likely outcomes (from the contestant’s point of view), where D
indicates dud, L indicates the large prize, and the order corresponds to the door number.

{D,D,L},{D,L,D},{L,D,D}

The contestant has a % chance of having the large prize behind door 1. The host will never remove
the large prize, and so applying Bayes rule we have
Pr(H=3|S=1,L=2)xPr(L=2|S=1)
S Pr(H=3[S=1,L=i)xPr(L=iS=1)
1
1x 3
1 1 1
X 3 + 1 x 3 + 0 x 3

Pr(L=2H=3,8=1) =

W DN NI— W= I~
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where H is the door the host reveals, S is initial door selected, and L is the door containing the large
prize. This shows that the probability the large prize is behind door 2, given that the player initially
selected door 1 and the host revealed door 3 can be computed using Bayes rule.

Pr(H = 3|S = 1,L = 2) is the probability that the host shows door 3 given the contestant selected
door 1 and the large prize is behind door 2, which always happens since the host will never reveal
the large prize. P(L=2|S=1) is the probability that the large is in door 2 given the contestant
selected door 1, which is % Pr(H =3|S=1,L=1) is the probability that the host reveals door 3
given that door 1 was selected and contained the large prize, which is %, and P(H=3|S=1,L=3)
is the probability that the host reveals door 3 given door 3 contains the prize, which never happens.

Bayes rule shows that it is always optimal to switch doors. This is a counter-intuitive result and
occurs since the host’s action reveals information about the location of the large prize. Essentially, the
two doors not selected by the host have combined probability % of containing the large prize before
the doors are opened — opening the third assigns its probability to the door not opened.

1.2 Univariate Random Variables

Studying the behavior of random variables, and more importantly functions of random variables (i.e.
statistics) is essential for both the theory and practice of financial econometrics. This section covers
univariate random variables and multivariate random variables are discussed later.

The previous discussion of probability is set based and so includes objects which cannot be de-
scribed as random variables, which are a limited (but highly useful) sub-class of all objects that can
be described using probability theory. The primary characteristic of a random variable is that it takes
values on the real line.

Definition 1.12 (Random Variable). Let (Q, F,Pr) be a probability space. If X : Q — R is a real-
valued function have as its domain elements of €, then X is called a random variable.

A random variable is essentially a function which takes @ € Q as an input and returns a value
x € R, where R is the symbol for the real line. Random variables come in one of three forms:
discrete, continuous and mixed. Random variables which mix discrete and continuous distributions
are generally less important in financial economics and so here the focus is on discrete and continuous
random variables.

Definition 1.13 (Discrete Random Variable). A random variable is called discrete if its range consists
of a countable (possibly infinite) number of elements.

While discrete random variables are less useful than continuous random variables, they are still
commonly encountered.

Example 1.8. A random variable which takes on values in {0, 1} is known as a Bernoulli random
variable, and is the simplest non-degenerate random variable (see Section 1.2.3.1).> Bernoulli random
variables are often used to model “success” or “failure”, where success is loosely defined — a large
negative return, the existence of a bull market or a corporate default.

The distinguishing characteristic of a discrete random variable is not that it takes only finitely
many values, but that the values it takes are distinct in the sense that it is possible to fit small intervals
around each point without the overlap.

3A degenerate random variable always takes the same value, and so is not meaningfully random.
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Example 1.9. Poisson random variables take values in{0, 1,2,3,...} (an infinite range), and are com-
monly used to model hazard rates (i.e. the number of occurrences of an event in an interval). They
are especially useful in modeling trading activity (see Section 1.2.3.2).

1.2.1 Mass, Density, and Distribution Functions

Discrete random variables are characterized by a probability mass function (pmf) which gives the
probability of observing a particular value of the random variable.

Definition 1.14 (Probability Mass Function). The probability mass function, f, for a discrete random
variable X is defined as f (x) = Pr(x) for all x € R(X), and f (x) = 0 for all x ¢ R (X) where R (X) is
the range of X (i.e. the values for which X is defined).

Example 1.10. The probability mass function of a Bernoulli random variable takes the form

flep)=p'(1-p)"
where p € [0, 1] is the probability of success.

Figure 1.2 contains a few examples of Bernoulli pmfs using data from the FTSE 100 and S&P
500 over the period 1984-2012. Both weekly returns, using Friday to Friday prices and monthly
returns, using end-of-month prices, were constructed. Log returns were used (r; = In(P/P_1)) in
both examples. Two of the pmfs defined success as the return being positive. The other two define
the probability of success as a return larger than -1% (weekly) or larger than -4% (monthly). These
show that the probability of a positive return is much larger for monthly horizons than for weekly.

Example 1.11. The probability mass function of a Poisson random variable is

X

A
flud)=-"Texp(=4)
where A € [0,00) determines the intensity of arrival (the average value of the random variable).

The pmf of the Poisson distribution can be evaluated for every value of x > 0, which is the support
of a Poisson random variable. Figure 1.4 shows empirical distribution tabulated using a histogram for
the time elapsed where .1% of the daily volume traded in the S&P 500 tracking ETF SPY on May 31,
2012. This data series is a good candidate for modeling using a Poisson distribution.

Continuous random variables, on the other hand, take a continuum of values — technically an
uncountable infinity of values.

Definition 1.15 (Continuous Random Variable). A random variable is called continuous if its range is
uncountably infinite and there exists a non-negative-valued function f (x) defined or all x € (—o0, )
such that for any event B C R(X), Pr(B) = [ _p f(x) dx and f (x) = 0 for all x ¢ R(X) where R (X)
is the range of X (i.e. the values for which X is defined).

The pmf of a discrete random variable is replaced with the probability density function (pdf) for
continuous random variables. This change in naming reflects that the probability of a single point of
a continuous random variable is 0, although the probability of observing a value inside an arbitrarily
small interval in R (X) is not.
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Positive Weekly Return Positive Monthly Return
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BMFTSE 100
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Weekly Return above -1% Monthly Return above -4%

Less than —1% Above -1% 0 Less than —4% Above -4%

Figure 1.2: These four charts show examples of Bernoulli random variables using returns on the
FTSE 100 and S&P 500. In the top two, a success was defined as a positive return. In the bottom two,
a success was a return above -1% (weekly) or -4% (monthly).

Definition 1.16 (Probability Density Function). For a continuous random variable, the function f is
called the probability density function (pdf).

Before providing some examples of pdfs, it is useful to characterize the properties that any pdf
should have.

Definition 1.17 (Continuous Density Function Characterization). A function f : R — R is a mem-
ber of the class of continuous density functions if and only if f(x) > 0 for all x € (—o00,00) and
SZf ) dr=1.

There are two essential properties. First, that the function is non-negative, which follows from
the axiomatic definition of probability, and second, that the function integrates to 1, so that the total
probability across R (X) is 1. This may seem like a limitation, but it is only a normalization since any
non-negative integrable function can always be normalized to that it integrates to 1.

Example 1.12. A simple continuous random variable can be defined on [0, 1] using the probability
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density function
2
1
=12({x—=
re=12(x-3)
and figure 1.3 contains a plot of the pdf.

This simple pdf has peaks near 0 and 1 and a trough at 1/2. More realistic pdfs allow for values
in (—00,00), such as in the density of a normal random variable.

Example 1.13. The pdf of a normal random variable with parameters i and ¢? is given by

1 (x—p)°
fx)= Wexp <_TC2> . (1.8)

N ( u, 02) is used as a shorthand notation for a random variable with this pdf. When 4 =0and 6> =1,
the distribution is known as a standard normal. Figure 1.3 contains a plot of the standard normal pdf
along with two other parameterizations.

For large values of x (in the absolute sense), the pdf of a standard normal takes very small values,
and peaks at x = 0 with a value of 0.3989. The shape of the normal distribution is that of a bell (and
is occasionally referred to a bell curve).

A closely related function to the pdf is the cumulative distribution function, which returns the total
probability of observing a value of the random variable /ess than its input.

Definition 1.18 (Cumulative Distribution Function). The cumulative distribution function (cdf) for a
random variable X is defined as F (¢) = Pr(x < ¢) for all ¢ € (—00,00).
Cumulative distribution function is used for both discrete and continuous random variables.

Definition 1.19 (Discrete cdf). When X is a discrete random variable, the cdf is

F)=) f(s) (1.9)
s<x
for x € (—o0,00).
Example 1.14. The cdf of a Bernoulli is
0 if x<0
Fx;p)=< p if 0<x<1 .

1 if x>1

The Bernoulli cdf is simple since it only takes 3 values. The cdf of a Poisson random variable
relatively simple since it is defined as sum the probability mass function for all values less than or
equal to the function’s argument.

Example 1.15. The cdf of a Poisson(A )random variable is given by

where |- | returns the largest integer smaller than the input (the floor operator).
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Continuous cdfs operate much like discrete cdfs, only the summation is replaced by an integral
since there are a continuum of values possible for X.

Definition 1.20 (Continuous cdf). When X is a continuous random variable, the cdf is
X
F (x) :/ f(s)ds (1.10)
— 00

for x € (—00,00).
The integral computes the total area under the pdf starting from —oo up to x.

Example 1.16. The cdf of the random variable with pdf given by 12 (x— 1/ 2)2 is

F(x) = 4x> — 6x% + 3x.
and figure 1.3 contains a plot of this cdf.

This cdf is the integral of the pdf, and checking shows that F (0) =0, F (1/2) = 1/2 (since it is
symmetric around 1/2) and F (1) = 1, which must be 1 since the random variable is only defined on
[0,1].h

Example 1.17. The cdf of a normally distributed random variable with parameters u and ¢ is given
by

Fie—— [ e =) (1.11)
- V2ol ) P 202 ' '

Figure 1.3 contains a plot of the standard normal cdf along with two other parameterizations.

In the case of a standard normal random variable, the cdf is not available in closed form, and so
when computed using a computer (i.e. in Excel or MATLAB), fast, accurate numeric approximations
based on polynomial expansions are used (Abramowitz and Stegun, 1964).

The cdf can be similarly derived from the pdf as long as the cdf is continuously differentiable. At
points where the cdf is not continuously differentiable, the pdf is defined to take the value 0.*

Theorem 1.4 (Relationship between cdf and pdf). Let f(x) and F (x) represent the pdf and cdf of a

continuous random variable X, respectively. The density function for X can be defined as f (x) = %

whenever f (x) is continuous and f (x) = 0 elsewhere.

Example 1.18. Taking the derivative of the cdf in the running example,

JF (x)
ox

= 1222 —12x+3

1
= 12(x>—x+-
( 4

2
1
= 12(x—=< ) .
“Formally a pdf does not have to exist for a random variable, although a cdf always does. In practice, this is a technical
point and distributions which have this property are rarely encountered in financial economics.
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Figure 1.3: The top panels show the pdf for the density f(x) = 12 (x — %)2 and its associated cdf.
The bottom left panel shows the probability density function for normal distributions with alternative
values for u and 6. The bottom right panel shows the cdf for the same parameterizations.

1.2.2 Quantile Functions

The quantile function is closely related to the cdf — and in many important cases, the quantile function
is the inverse (function) of the cdf. Before defining quantile functions, it is necessary to define a
quantile.

Definition 1.21 (Quantile). Any number ¢ satisfying Pr(x < ¢) = o and Pr(x > ¢) = 1 — o is known
as the a-quantile of X and is denoted ¢.

A quantile is just the point on the cdf where the total probability that a random variable is smaller
is a and the probability that the random variable takes a larger value is 1 — . The definition of
a quantile does not necessarily require uniqueness and non-unique quantiles are encountered when
pdfs have regions of 0 probability (or equivalently cdfs are discontinuous). Quantiles are unique
for random variables which have continuously differentiable cdfs. One common modification of
the quantile definition is to select the smallest number which satisfies the two conditions to impose
uniqueness of the quantile.
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The function which returns the quantile is known as the quantile function.

Definition 1.22 (Quantile Function). Let X be a continuous random variable with cdf F (x). The
quantile function for X is defined as G (&) = g where Pr(x < ¢) = a and Pr(x > ¢) = 1 — a. When
F (x) is one-to-one (and hence X is strictly continuous) then G (o) = F~! ().

Quantile functions are generally set-valued when quantiles are not unique, although in the com-

mon case where the pdf does not contain any regions of 0 probability, the quantile function is the
inverse of the cdf.

Example 1.19. The cdf of an exponential random variable is
x
FoA)=1— (——)
(2)=1-exp(~
for x > 0and A > 0. Since f (x;A) > 0 for x > 0, the quantile function is
F o) =-2In(1—a).

The quantile function plays an important role in simulation of random variables. In particular, if
u~U/(0,1)°, thenx = F~! (u) is distributed F. For example, when u is a standard uniform (U (0, 1)),
and F~! () is the quantile function of an exponential random variable with shape parameter A, then
x = F~!(u; 1) follows an exponential (1) distribution.

Theorem 1.5 (Probability Integral Transform). Let U be a standard uniform random variable, Fx (x)
be a continuous, increasing cdf . Then Pr (F~! (U) < x) = Fx (x) and so F~' (U) is distributed F .

Proof. Let U be a standard uniform random variable, and for an x € R (X),
Pr(U <F(x))=F(x),
which follows from the definition of a standard uniform.

Pr(U<F(x)) = Pr(F'(U)

]

The key identity is that Pr(F~' (U) < x) = Pr(X <x), which shows that the distribution of
F~1(U) is F by definition of the cdf. The right panel of figure 1.8 shows the relationship between the
cdf of a standard normal and the associated quantile function. Applying F (X) produces a uniform U
through the cdf and applying F~! (U) produces X through the quantile function.
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Time for .1% of Volume in SPY
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Figure 1.4: The left panel shows a histogram of the elapsed time in seconds required for .1% of the
daily volume being traded to occur for SPY on May 31, 2012. The right panel shows both the fitted
scaled x? distribution and the raw data (mirrored below) for S-minute “realized variance” estimates
for SPY on May 31, 2012.

1.2.3 Common Univariate Distributions

Discrete
1.2.3.1 Bernoulli

A Bernoulli random variable is a discrete random variable which takes one of two values, 0 or 1. It
is often used to model success or failure, where success is loosely defined. For example, a success
may be the event that a trade was profitable net of costs, or the event that stock market volatility as
measured by VIX was greater than 40%. The Bernoulli distribution depends on a single parameter p
which determines the probability of success.

Parameters

p€[0,1]

3The mathematical notation ~ is read “distributed as”. For example, x ~ U (0, 1) indicates that x is distributed as a
standard uniform random variable.
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Support
xe{0,1}

Probability Mass Function

fap)=p(1-p)' ", p>0

Moments

Mean p
Variance p(1—p)

1.2.3.2 Poisson

A Poisson random variable is a discrete random variable taking values in {0,1,...}. The Poisson
depends on a single parameter A (known as the intensity). Poisson random variables are often used
to model counts of events during some interval, for example the number of trades executed over a
S-minute window.

Parameters
A>0
Support
xe{0,1,...}

Probability Mass Function

fxd)=2rexp(—2)

Moments

Mean A
Variance A

Continuous

1.2.3.3 Normal (Gaussian)

The normal is the most important univariate distribution in financial economics. It is the familiar “bell-
shaped” distribution, and is used heavily in hypothesis testing and in modeling (net) asset returns (e.g.
rr=InP—InPF_jorr = % where F, is the price of the asset in period 7).

Parameters

M < (_00700)7 6220
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Figure 1.5: Weekly and monthly densities for the FTSE 100 and S&P 500. All panels plot the

pdf of a normal and a standardized Student’s ¢ using parameters estimated with maximum likelihood
estimation (See Chapterl). The points below 0 on the y-axis show the actual returns observed during
this period.
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Support

x € (—00,00)

Probability Density Function
Y

f (i, 0%) = hexp (580

Cumulative Distribution Function

F (x; u, 62) = % + %erf <\/L§ %) where erf is the error function.®
Moments

Mean u

Variance o2

Median u

Skewness 0

Kurtosis 3
Notes

The normal with mean u and variance 62

Below each figure is a plot of the raw data.

1.2.3.4 Log-Normal

Log-normal random variables are closely related to normals. If X is log-normal, then ¥ = In(X) is
normal. Like the normal, the log-normal family depends on two parameters, i and o2, although
unlike the normal these parameters do not correspond to the mean and variance. Log-normal random
variables are commonly used to model gross returns, P, 1 /P (although it is often simpler to model

r; =InP, —InP,_| = In(P,/P,—1) which is normally distributed).

Parameters

M€ (_00700)7 6220

Support

x € (0,00)

5The error function does not have a closed form and is defined

erf (x) = % /Oxexp (fsz) ds.

is written N (u, 62). A normally distributed random vari-

able with 4 = 0 and 62 = 1 is known as a standard normal. Figure 1.5 shows the fit normal distribu-
tion to the FTSE 100 and S&P 500 using both weekly and monthly returns for the period 1984-2012.
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Probability Density Function

2
f (X;'u’ 62) - X\/217'L'62 xp (_ (lnzo'zu) )

Cumulative Distribution Function

Since Y =In(X) ~N (/.L, 62), the cdf is the same as the normal only using Inx in place of x.

Moments
2
Mean exp ( U+ %)
Median exp (1)

Variance {exp (62) — 1} exp (2;,L + 62)

1.2.3.5 x? (Chi-square)

x‘z, random variables depend on a single parameter v known as the degree-of-freedom. They are com-
monly encountered when testing hypotheses, although they are also used to model continuous vari-
ables which are non-negative such as conditional variances. y2 random variables are closely related
to standard normal random variables and are defined as the sum of v independent standard normal
random variables which have been squared. Suppose Z1,...,Z, are standard normally distributed and
independent, then x = Ziv:1 ziz follows a x2.

Parameters

v € [0,00)

Support

x € [0,00)

Probability Density Function
8

flxv)= Xrl X7 exp(—3), v €{1,2,...} where I (a) is the Gamma function.

221(3)

Cumulative Distribution Function

<

F(x;v)= ﬁy(%, %) where y(a,b) is the lower incomplete gamma function.
3
Moments
Mean v

Variance 2v

v does not need to be an integer,
8The x2 is related to the gamma distribution which has pdf f (x; o, b) = Wxa_l exp (—x/B) by setting @ = v/2
and = 2.



1.2 Univariate Random Variables

19

Notes

Figure 1.4 shows a 2 pdf which was used to fit some simple estimators of the 5-minute variance
of the S&P 500 from May 31, 2012. These were computed by summing and squaring 1-minute
returns within a 5-minute interval (all using log prices). 5-minute variance estimators are important
in high-frequency trading and other (slower) algorithmic trading.

1.2.3.6 Student’s r and standardized Student’s ¢

Student’s ¢ random variables are also commonly encountered in hypothesis testing and, like x> ran-
dom variables, are closely related to standard normals. Student’s ¢ random variables depend on a
single parameter, v, and can be constructed from two other independent random variables. If Z a
standard normal, W a x3 and Z 11 W, then x = z/ \/¥ follows a Student’s ¢ distribution. Student’s ¢
are similar to normals except that they are heavier tailed, although as v — oo a Student’s ¢ converges
to a standard normal.

Support

x € (—00,00)

Probability Density Function

v+1

F(VT“) 2 ) .
flov)= N 6] < ) where I"(a) is the Gamma function.
Moments

Mean 0,v>1

Median 0

Variance —2 v>2

Skewness 0,v>3

Kurtosis 3( ) ,v>4
Notes

When v = 1, a Student’s ¢ is known as a Cauchy random variable. Cauchy random variables are so
heavy-tailed that even the mean does not exist.

The standardized Student’s ¢ extends the usual Student’s ¢ in two directions. First, it removes the
variance’s dependence on Vv so that the scale of the random variable can be established separately
from the degree of freedom parameter. Second, it explicitly adds location and scale parameters so
that if Y is a Student’s # random variable with degree of freedom v, then

Vv=2
N

follows a standardized Student’s ¢ distribution (v > 2 is required). The standardized Student’s 7 is
commonly used to model heavy-tailed return distributions such as stock market indices.

X=u+o
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Figure 1.5 shows the fit (using maximum likelihood) standardized ¢ distribution to the FTSE 100
and S&P 500 using both weekly and monthly returns from the period 1984-2012. The typical degree
of freedom parameter was around 4, indicating that (unconditional) distributions are heavy-tailed with
a large kurtosis.

1.2.3.7 Uniform

The continuous uniform is commonly encountered in certain test statistics, especially those testing
whether assumed densities are appropriate for a particular series. Uniform random variables, when
combined with quantile functions, are also useful for simulating random variables.

Parameters

a, b the end points of the interval, where a < b

Support

X € [a,b]

Probability Density Function

Cumulative Distribution Function

F(x)=3-tfora<x<b,F(x)=0forx<aand F (x) =1forx>b

Moments

i
IS

Mean
Median

2
Variance (bf—)
Skewness
Kurtosis

S
SIS
Q

NS

wio S

Notes

A standard uniform has a = 0 and b = 1. When x ~ F, then F (x) ~ U (0,1)

1.3 Multivariate Random Variables

While univariate random variables are very important in financial economics, most applications re-
quire the use multivariate random variables. Multivariate random variables allow the relationship
between two or more random quantities to be modeled and studied. For example, the joint distribu-
tion of equity and bond returns is important for many investors.
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Throughout this section, the multivariate random variable is assumed to have n components,

Xi
X2
X = .
Xn
which are arranged into a column vector. The definition of a multivariate random variable is virtually
identical to that of a univariate random variable, only mapping @ € Q to the n-dimensional space R".

Definition 1.23 (Multivariate Random Variable). Let (Q,F, P) be a probability space. If X : Q — R”
is a real-valued vector function having its domain the elements of Q, then X : Q — R” is called a
(multivariate) n-dimensional random variable.

Multivariate random variables, like univariate random variables, are technically functions of events
in the underlying probability space X (@), although the function argument @ (the event) is usually
suppressed.

Multivariate random variables can be either discrete or continuous. Discrete multivariate random
variables are fairly uncommon in financial economics and so the remainder of the chapter focuses
exclusively on the continuous case. The characterization of a what makes a multivariate random
variable continuous is also virtually identical to that in the univariate case.

Definition 1.24 (Continuous Multivariate Random Variable). A multivariate random variable is said
to be continuous if its range is uncountably infinite and if there exists a non-negative valued function
f(x1,...,x,) defined for all (xy,...,x,) € R" such that for any event B C R (X),

PI‘(B):/.../ f(xl,...,xn) dx;...dx, (1.12)
{x1,-sxn }EB

and f (x1,...,x,) =0 forall (xq,...,x,) ¢ R(X).

Multivariate random variables, at least when continuous, are often described by their probability
density function.

Definition 1.25 (Continuous Density Function Characterization). A function f : R” — R is a member
of the class of multivariate continuous density functions if and only if f (x1,...,x,) > 0 for all x € R"
and

/Oo.../OOf(xl,...,xn)dxl...dxn:1. (1.13)

Definition 1.26 (Multivariate Probability Density Function). The function f (xy,...,x,) is called a
multivariate probability function (pdf).

A multivariate density, like a univariate density, is a function which is everywhere non-negative
and which integrates to unity. Figure 1.7 shows the fit joint probability density function to weekly
returns on the FTSE 100 and S&P 500 (assuming that returns are normally distributed). Two views
are presented — one shows the 3-dimensional plot of the pdf and the other shows the iso-probability
contours of the pdf. The figure also contains a scatter plot of the raw weekly data for comparison. All
parameters were estimated using maximum likelihood.
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Example 1.20. Suppose X is a bivariate random variable, then the function f (x;,x;) = % (x% +x%)
defined on [0, 1] x [0, 1] is a valid probability density function.

Example 1.21. Suppose X is a bivariate standard normal random variable. Then the probability

density function of X is
1 x% +x%
f(XI,XZ)—ECXp (—T .

The multivariate cumulative distribution function is virtually identical to that in the univariate
case, and measure the total probability between —oo (for each element of X) and some point.

Definition 1.27 (Multivariate Cumulative Distribution Function). The joint cumulative distribution
function of an n-dimensional random variable X is defined by

F(x1,...,xp) =Pr(X; <xj,i=1,...,n)

for all (xi,...,x,) € R", and is given by

Xn X1
F(xl,...,xn):/ / F(s1,...,8,) dsy...dsy. (1.14)
—00 —00

Example 1.22. Suppose X is a bivariate random variable with probability density function

f(x1,x) = % (x1 +3)

defined on [0, 1] x [0, 1]. Then the associated cdf is

3 3
X7X2 +X1X5

F (x1,x) = >

Figure 1.6 shows the joint cdf of the density in the previous example. As was the case for uni-
variate random variables, the probability density function can be determined by differentiating the
cumulative distribution function with respect to each component.

Theorem 1.6 (Relationship between cdf and pdf). Let f (xi,...,x,) and F (xi,...,x,) represent the
pdf and cdf of an n-dimensional continuous random variable X, respectively. The density func-
tion for X can be defined as f(x1,...,x,) = % whenever f(xi,...,x,) is continuous and

f(x1,...,x,) = 0 elsewhere.

Example 1.23. Suppose X is a bivariate random variable with cumulative distribution function F (x;,x;) =

3 3
1200 The probability density function can be determined using

82F (Xl,xz)
aX18XQ

10 (3x%x2 +x§)

2 ox)

3
= 5( %—FX%).

fx,x) =



1.3 Multivariate Random Variables 23

1.3.1 Marginal Densities and Distributions

The marginal distribution is the first concept unique to multivariate random variables. Marginal den-
sities and distribution functions summarize the information in a subset, usually a single component,
of X by averaging over all possible values of the components of X which are not being marginalized.
This involves integrating out the variables which are not of interest. First, consider the bivariate case.

Definition 1.28 (Bivariate Marginal Probability Density Function). Let X be a bivariate random vari-
able comprised of X and X;. The marginal distribution of X is given by

f1(x1) =/_ f(x1,x2) dxa. (1.15)

The marginal density of X is a density function where X, has been integrated out. This integration
is simply a form of averaging — varying x; according to the probability associated with each value of
x> — and so the marginal is only a function of x;. Both probability density functions and cumulative
distribution functions have marginal versions.

Example 1.24. Suppose X is a bivariate random variable with probability density function

fx1,x) = % (x% +X%)

and is defined on [0, 1] x [0, 1]. The marginal probability density function for X; is

At =3 (4+3),

and by symmetry the marginal probability density function of X, is

b (XZ) = % (x%—k%) .

Example 1.25. Suppose X is a bivariate random variable with probability density function f (x1,x;) =
6 (x1x3) and is defined on [0, 1] x [0, 1]. The marginal probability density functions for X; and X, are

fi(x1) = 2x; and f (x2) = 3x3.

Example 1.26. Suppose X is bivariate normal with parameters y = [u; ,uz]’ and

ol on
Z - 2 ;

then the marginal pdf of X is N (,u] , 612) , and the marginal pdf of X, is N ( U, 622).

Figure 1.7 shows the fit marginal distributions to weekly returns on the FTSE 100 and S&P 500
assuming that returns are normally distributed. Marginal pdfs can be transformed into marginal cdfs
through integration.
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Definition 1.29 (Bivariate Marginal Cumulative Distribution Function). The cumulative marginal
distribution function of X; in bivariate random variable X is defined by

F] (xl) :PI‘(X] le)

Fi(x)) = /_XI f1(s1) ds;.

The general j-dimensional marginal distribution partitions the n-dimensional random variable X
into two blocks, and constructs the marginal distribution for the first j by integrating out (averaging
over) the remaining n — j components of X. In the definition, both X; and X, are vectors.

for all x; € R, and is given by

Definition 1.30 (Marginal Probability Density Function). Let X be a n-dimensional random variable
and partition the first j (1 < j < n) elements of X into Xj, and the remainder into X, so that X =
[X{ X}]". The marginal probability density function for X; is given by

fl, o xla -y X / / f Xy X ) j+1 - - doxy,. (116)

The marginal cumulative distribution function is related to the marginal probability density func-
tion in the same manner as the joint probability density function is related to the cumulative distribu-
tion function. It also has the same interpretation.

Definition 1.31 (Marginal Cumulative Distribution Function). Let X be a n-dimensional random vari-
able and partition the first j (1 < j < n) elements of X into Xj, and the remainder into X, so that
X =[X{ XZ’]/. The marginal cumulative distribution function for X; is given by

X1 X j
Fi.j(xt,..,x)) :/ / fi,.j(s1,...,55) dsp...ds;. (1.17)
— —00

1.3.2 Conditional Distributions

Marginal distributions provide the tools needed to model the distribution of a subset of the compo-
nents of a random variable while averaging over the other components. Conditional densities and
distributions, on the other hand, consider a subset of the components a random variable conditional
on observing a specific value for the remaining components. In practice, the vast majority of model-
ing makes use of conditioning information where the interest is in understanding the distribution of
a random variable conditional on the observed values of some other random variables. For example,
consider the problem of modeling the expected return of an individual stock. Balance sheet infor-
mation such as the book value of assets, earnings and return on equity are all available, and can be
conditioned on to model the conditional distribution of the stock’s return.
First, consider the bivariate case.

Definition 1.32 (Bivariate Conditional Probability Density Function). Let X be a bivariate random
variable comprised of X; and X,. The conditional probability density function for X; given that
X, € B where B is an event where Pr(X; € B) > 0 is

S f (x1,%2) dxa
[z fo(x2) dxy

f(x1|X2 €B) = (1.18)



1.3 Multivariate Random Variables 25
When B is an elementary event (e.g. single point), so that Pr(X; = x;) =0 and f> (x2) > 0, then
S (xl 7x2)
X1 X2 =X3)=——". (1.19)
f(x1] ) 7 (2)

Conditional density functions differ slightly depending on whether the conditioning variable is re-
stricted to a set or a point. When the conditioning variable is specified to be a set where Pr(X; € B) >
0, then the conditional density is the joint probability of X; and X, € B divided by the marginal prob-
ability of X, € B. When the conditioning variable is restricted to a point, the conditional density is the
ratio of the joint pdf to the margin pdf of X>.

Example 1.27. Suppose X is a bivariate random variable with probability density function
3
fx1,x) = 3 (x% —|—x%)

and is defined on [0, 1] x [0, 1]. The conditional probability of X; given X, € [%, 1]

1 1 2
f <x1|X2 € [5’ 1]) =17 (12x1 +7) ,
the conditional probability density function of X; given X; € [0, %] is
1

1
flaXae |0,5] ) =< (124 +1),

2 5
and the conditional probability density function of X; given X, = x; is
x% +x§
x% +1°

Figure 1.6 shows the joint pdf along with both types of conditional densities. The upper left panel

shows that conditional density for X, € [0.25,0.5]. The highlighted region contains the components
of the joint pdf which are averaged to produce the conditional density. The lower left also shows the
pdf but also shows three (non-normalized) conditional densities of the form f (x;|x;). The lower right
pane shows these three densities correctly normalized.

The previous example shows that, in general, the conditional probability density function differs
as the region used changes.

fxXo=x) =

Example 1.28. Suppose X is bivariate normal with mean y = [u; i)’ and covariance
y — |: 612 O12 :|
Oi2 On |’

2
then the conditional distribution of X given X, = xp is N (,ul + 3—1222 (x2 — Ua), (‘712 — Z—?)

Marginal distributions and conditional distributions are related in a number of ways. One obvious
way is that f (x1|X2 € R(X2)) = fi1 (x1) — that is, the conditional probability of X; given that X, is in
its range is the marginal pdf of X;. This holds since integrating over all values of x, is essentially
not conditioning on anything (which is known as the unconditional, and a marginal density could, in
principle, be called the unconditional density since it averages across all values of the other variable).

The general definition allows for an n-dimensional random vector where the conditioning variable
has a dimension between 1 and j < n.
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Definition 1.33 (Conditional Probability Density Function). Let f(xi,...,x,) be the joint density
function for an n-dimensional random variable X = [X] .. .Xn]/ and and partition the first j (1 < j <n)
elements of X into X;, and the remainder into X, so that X = [X] Xé]/. The conditional probability
density function for X; given that X, € B is given by

f(xj+l7~-,Xn>EBf(xl’ ey Xp) Ay dxjiq

f(x1,...,xj|X> € B) = , (1.20)
f(xjH7...7xn)erj+17-~~7" (xj+17 e ,.xn) dxn e d'xj+l
and when B is an elementary event (denoted X») and if fjy1,. ,(x2) >0,
f(xlv"'vxﬁXZ)
f xl,...,X'|X2:X2 = (121)
( / ) fit1,..n(x2)
In general the simplified notation f (x1 R ¥ j|x2) will be used to represent f (x1 X)X = Xz).

1.3.3 Independence

A special relationship exists between the joint probability density function and the marginal density
functions when random variables are independent— the joint must be the product of each marginal.

Theorem 1.7 (Independence of Random Variables). The random variables Xy,. .., X, with joint den-
sity function f (x1,...,x,) are independent if and only if

flx) =] fi@) (1.22)
i=1

where f;(x;) is the marginal distribution of X;.

The intuition behind this result follows from the fact that when the components of a random
variable are independent, any change in one component has no information for the others. In other
words, both marginals and conditionals must be the same.

Example 1.29. Let X be a bivariate random variable with probability density function f (x,x) =
x1x2 on [0,1] x [0, 1], then X; and X; are independent. This can be verified since

f1 (X1> = X1 and f2 ()CQ) =X
so that the joint is the product of the two marginal densities.

Independence is a very strong concept, and it carries over from random variables to functions of
random variables as long as each function involves only one random variable.’

Theorem 1.8 (Independence of Functions of Independent Random Variables). Let X| and X, be in-
dependent random variables and define y; = Y (x1) and y, = Y (x2), then the random variables Y,
and Y, are independent.

This can be generalized to the full multivariate case where X is an n-dimensional random variable where the first j
components are independent from the last n — j components defining y; =Y (x1,...,x;) and yo = Y2 (Xjy1,...,X,).
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Bivariate cdf Conditional Probability
— f (1] € [0.25,0.5])

3. @2 € [0.25,0.5]

f(CUh 3?2)

L1 00 T 1 0 )

Conditional Densities Normalized Conditional Densities
‘
11\11407)\ P 3 ‘Z'l Ty = 2
3 f(z1]x2 = 0.5) 5 % : 25 f(.’,l,'1|$2 =0. 7) ""
f(@r]zy = 0.3) S22
N2
&-\
g
=1
0
1

1 00 i)

Figure 1.6: These four panels show four views of a distribution defined on [0, 1] x [0,1]. The upper
left panel shows the joint cdf. The upper right shows the pdf along with the portion of the pdf used to
construct a conditional distribution f (x|x, € [0.25,0.5]). The line shows the actual correctly scaled
conditional distribution which is only a function of x; plotted at E [X5|X> € [0.25,0.5]]. The lower
left panel also shows the pdf along with three non-normalized conditional densities. The bottom right
panel shows the correctly normalized conditional densities.
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Independence is often combined with an assumption that the marginal distribution is the same to
simplify the analysis of collections of random data.

Definition 1.34 (Independent, Identically Distributed). Let {X;} be a sequence of random variables.
If the marginal distribution for X; is the same for all i and X; LL X; for all i # j, then {X;} is said to
be an independent, identically distributed (i.i.d.) sequence.

1.3.4 Bayes Rule

Bayes rule is used both in financial economics and econometrics. In financial economics, it is often
used to model agents learning, and in econometrics it is used to make inference about unknown
parameters given observed data (a branch known as Bayesian econometrics). Bayes rule follows
directly from the definition of a conditional density so that the joint can be factored into a conditional
and a marginal. Suppose X is a bivariate random variable, then

Fxnx) = f(xalx)fa(x)
= f(xalx1) fi(x2).

The joint can be factored two ways, and equating the two factorizations results in Bayes rule.

Definition 1.35 (Bivariate Bayes Rule). Let X by a bivariate random variable with components X
and X,, then

f (x2lxr) f1 (x1)
f2(x2)

Bayes rule states that the probability of observing X; given a value of X, is equal to the joint
probability of the two random variables divided by the marginal probability of observing X;. Bayes
rule is normally applied where there is a belief about X; (f] (x1), called a prior), and the conditional
distribution of X; given X; is a known density (f (xz|x), called the likelihood), which combine to
form a belief about X; (f (x1]x2), called the posterior). The marginal density of X, is not important
when using Bayes rule since the numerator is still proportional to the conditional density of X given
X; since f> (x2) is a number, and so it is common to express the non-normalized posterior as

f (xtlxa) oc f (x2lxr) f1 (x1),

where o is read “is proportional to”.

f(x1]x2) (1.23)

Example 1.30. Suppose interest lies in the probability a firm does bankrupt which can be modeled
as a Bernoulli distribution. The parameter p is unknown but, given a value of p, the likelihood that a
firm goes bankrupt is

flp)=p (1-p)'~.

While p is known, a prior for the bankruptcy rate can be specified. Suppose the prior for p follows a
Beta (o, B) distribution which has pdf

Pt (1—p)P!

f(p)= B(aB)
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where B (a, b) is Beta function that acts as a normalizing constant.'” The Beta distribution has support

on [0, 1] and nests the standard uniform as a special case when a = 8 = 1. The expected value of a
. . . o . . aB
random variable with a Beta (¢, B) is @B and the variance is @B BT where @ >0 and 8 > 0.
Using Bayes rule,

pet(1—p)P!

fplx) o< p*(1—p)'~x B(a.p)

poc—H—x(l _p)B—x
B(a,p)

Note that this isn’t a density since it has the wrong normalizing constant. However, the component of

the density which contains p is pla—n-1 (1— p)(ﬁ —x+1)-1 (known as the kernel) is the same as in the
Beta distribution, only with different parameters. Thus the posterior, f (p|x) is Beta (ot +x,8 —x+1).
Since the posterior is the same as the prior, it could be combined with another observation (and the
Bernoulli likelihood) to produce an updated posterior. When a Bayesian problem has this property,
the prior density said to be conjugate to the likelihood.

Example 1.31. Suppose M is a random variable representing the score on the midterm, and interest
lies in the final course grade, C. The prior for C is normal with mean u and variance 2, and that the
distribution of M given C is also conditionally normal with mean C and variance 72. Bayes rule can
be used to make inference on the final course grade given the midterm grade.

_<m—c>2> L (_(c—mz)
212 V2ro? P 2072

flclm) o< f(mlc) fe(c)

0.6

1 1 m U m? uz
2 — — — — — — —
Z{C (1:2+62) 26<Tz+62>+(‘52+(72

This (non-normalized) density can be shown to have the kernel of a normal by completing the

square,l I

10The beta function can only be given as an indefinite integral,
1
B(a,b) = / sa71(1 —s)bilds‘
0

"Suppose a quadratic in x has the form ax? + bx + c. Then
2 _ 2
ax“+bx+c=a(x—d) +e

where d = b/(2a) and e = ¢ — b?/ (4a).
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f(clm)xexp | — c—

—1
2(3+3)

This is the kernel of a normal density with mean
(#+)

(4+3)
1 1\ !
St

The mean is a weighted average of the prior mean, ¢ and the midterm score, m, where the weights
are determined by the inverse variance of the prior and conditional distributions. Since the weights
are proportional to the inverse of the variance, a small variance leads to a relatively large weight. If
72 = o2 then the posterior mean is the average of the prior mean and the midterm score. The variance
of the posterior depends on the uncertainty in the prior (62) and the uncertainty in the data (72). The
posterior variance is always less than the smaller of 62 and 72. Like the Bernoulli-Beta combination
in the previous problem, the normal distribution is a conjugate prior when the conditional density is
normal.

m Hu 2
1 (?+?>

1

7z

and variance

1.3.5 Common Multivariate Distributions
1.3.5.1 Multivariate Normal

Like the univariate normal, the multivariate normal depends on 2 parameters, i and n by 1 vector of
means and X an n by n positive semi-definite covariance matrix. The multivariate normal is closed
to both to marginalization and conditioning — in other words, if X is multivariate normal, then all
marginal distributions of X are normal, and so are all conditional distributions of X; given X, for any
partitioning.

Parameters

u € R" ¥ a positive semi-definite matrix

Support

x € R"
Probability Density Function

_n _1 _
fpE) = (2m) 2 2] 2 exp (5 (x— ) =7 (x— )

Cumulative Distribution Function

Can be expressed as a series of n univariate normal cdfs using repeated conditioning.
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Marginal Densities

Weekly FTSE and S&P 500 Returns
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Figure 1.7: These four figures show different views of the weekly returns of the FTSE 100 and
the S&P 500. The top left contains a scatter plot of the raw data. The top right shows the marginal
distributions from a fit bivariate normal distribution (using maximum likelihood). The bottom two
panels show two representations of the joint probability density function.
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Moments

Mean u
Median u
Variance X
Skewness 0
Kurtosis 3

Marginal Distribution

The marginal distribution for the first j components is

i _1 1 _
fxix; (x1,005x5) = (2m) 2 [E41| " Zexp (_E(Xl —u)'Z (x —.U1)> ;

where it is assumed that the marginal distribution is that of the first j random variables!'?, u = [u u5)’
where (1 correspond to the first j entries, and

X X2
Y = .
{ o In

In other words, the distribution of [Xj,...X j}/ is N(11,Z11). Moreover, the marginal distribution of

a single element of X is N (,ui, Giz) where y; is the i element of p and Gi2 is the i diagonal element
of X.

Conditional Distribution
The conditional probability of X given X, = x3 is
N (u)+ B (x2— 1), Z11 — B'Ex)

where B = X,,/%,.
When X is a bivariate normal random variable,

) 2 9
*2 H2 O O

the conditional distribution is

O12 2 c7122
Xi[Xo=xo~N(t+— (2—),01 —— |,
%) %)

where the variance can be seen to always be positive since 612622 > 6122 by the Cauchy-Schwarz
inequality (see 1.15).

12 Any two variables can be reordered in a multivariate normal by swapping their means and reordering the correspond-
ing rows and columns of the covariance matrix.
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Notes

The multivariate Normal has a number of novel and useful properties:
* A standard multivariate normal has 4 =0 and £ =1,,.
* If the covariance between elements i and j equals zero (so that o;; = 0), they are independent.

* For the normal, zero covariance (or correlation) implies independence. This is not true of most
other multivariate random variables.

* Weighted sums of multivariate normal random variables are normal. In particular is ¢ is a n by
1 vector of weights, then ¥ = ¢/X is normal with mean ¢/u and variance ¢/Zc.

1.4 Expectations and Moments

Expectations and moments are (non-random) functions of random variables that are useful in both
understanding properties of random variables — e.g. when comparing the dispersion between two
distributions — and when estimating parameters using a technique known as the method of moments
(see Chapter 1).

1.4.1 Expectations

The expectation is the value, on average, of a random variable (or function of a random variable).
Unlike common English language usage, where one’s expectation is not well defined (e.g. could be
the mean or the mode, another measure of the tendency of a random variable), the expectation in a
probabilistic sense always averages over the possible values weighting by the probability of observing
each value. The form of an expectation in the discrete case is particularly simple.

Definition 1.36 (Expectation of a Discrete Random Variable). The expectation of a discrete random
variable, defined E[X] =" cp(x)xf (x), exists if and only if D g (x) [x] f (x) < c0.

When the range of X is finite then the expectation always exists. When the range is infinite, such
as when a random variable takes on values in the range 0, 1,2, .. ., the probability mass function must
be sufficiently small for large values of the random variable in order for the expectation to exist.'?
Expectations of continuous random variables are virtually identical, only replacing the sum with an
integral.

Definition 1.37 (Expectation of a Continuous Random Variable). The expectation of a continuous
random variable, defined E[X] = [*_xf(x)dwx, exists if and only if [*_[x| £ (x) dx < cc.

The existence of an expectation is a somewhat difficult concept. For continuous random variables,
expectations may not exist if the probability of observing an arbitrarily large value (in the absolute
sense) is very high. For example, in a Student’s ¢ distribution when the degree of freedom parameter
v is 1 (also known as a Cauchy distribution), the probability of observing a value with size |x| is

13An expectation is said to be nonexistent when the sum converges to 400 or oscillates. The use of the |x| in the
definition of existence is to rule out both the —oo and the oscillating cases.
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Approximation to Std. Normal cdf and Quantile Function
—Standard Normal PDF | | 1
M Discrete Approximation Cumulative Distribution Function
4 1 o8
0.6
>

0.4 Quantile Function

0.2

BT 1 o
X
Figure 1.8: The left panel shows a standard normal and a discrete approximation. Discrete approxi-

mations are useful for approximating integrals in expectations. The right panel shows the relationship
between the quantile function and the cdf.

proportional to x~! for large x (in other words, f (x) o cx~ 1) so that xf (x) ~ ¢ for large x. The range
is unbounded, and so the integral of a constant, even if very small, will not converge, and so the
expectation does not exist. On the other hand, when a random variable is bounded, it’s expectation
always exists.

Theorem 1.9 (Expectation Existence for Bounded Random Variables). If |x| < ¢ for all x € R(X),
then E [X] exists.

The expectation operator, E|[-] is generally defined for arbitrary functions of a random variable,
g (x). In practice, g (x) takes many forms — x, x>, x” for some p, exp (x) or something more compli-
cated. Discrete and continuous expectations are closely related. Figure 1.8 shows a standard normal
along with a discrete approximation where each bin has a width of 0.20 and the height is based on
the pdf value at the mid-point of the bin. Treating the normal as a discrete distribution based on this
approximation would provide reasonable approximations to the correct (integral) expectations.

Definition 1.38 (Expectation of a Function of Random Variable). The expectation of a random vari-
able defined as a function of X, Y = g(x), is E[Y] =E[g(X))] = [~ g (x) f(x)dx exists if and only
if ffooo lg (x)] dx < o0.

When g (x) is either concave or convex, Jensen’s inequality provides a relationship between the

expected value of the function and the function of the expected value of the underlying random vari-
able.

Theorem 1.10 (Jensen’s Inequality). If g (+) is a continuous convex function on an open interval con-
taining the range of X, then E[g(X)] > g (E[X]). Similarly, if g(-) is a continuous concave function
on an open interval containing the range of X, then E[g (X)] < g (E[X]).

The inequalities become strict if the functions are strictly convex (or concave) as long as X is not
degenerate.'# Jensen’s inequality is common in economic applications. For example, standard utility

14A degenerate random variable has probability 1 on a single point, and so is not meaningfully random.
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functions (U (-)) are assumed to be concave which reflects the idea that marginal utility (U’ (-)) is
decreasing in consumption (or wealth). Applying Jensen’s inequality shows that if consumption is
random, then E[U (c¢)] < U (E [¢]) — in other words, the economic agent is worse off when facing
uncertain consumption. Convex functions are also commonly encountered, for example in option
pricing or in (production) cost functions. The expectations operator has a number of simple and
useful properties:

o If ¢ is a constant, then E [c] = ¢. This property follows since the expectation is an integral
against a probability density which integrates to unity.

* If ¢ is a constant, then E[cX]| = cE[X]. This property follows directly from passing the
constant out of the integral in the definition of the expectation operator.

* The expectation of the sum is the sum of the expectations,

k k
E|Y &) =) ElaX).
i=1 i=1

This property follows directly from the distributive property of multiplication.

* If a is a constant, then E [+ X] = a + E [X]. This property also follows from the distribu-
tive property of multiplication.

* E[f(X)] = f(E[X]) when f(x) is affine (i.e. f(x) = a+ bx where a and b are constants).
For general non-linear functions, it is usually the case that E[f (X)] # f (E[X]) when X is
non-degenerate.

» E[X?] # E[X]? except when p = 1 when X is non-degenerate.

These rules are used throughout financial economics when studying random variables and functions
of random variables.

The expectation of a function of a multivariate random variable is similarly defined, only integrat-
ing across all dimensions.

Definition 1.39 (Expectation of a Multivariate Random Variable). Let (X;,X3,...,X,) be a continu-
ously distributed n-dimensional multivariate random variable with joint density function f (x,x2,...xy).
The expectation of Y = g (X1,Xp,...,X,) is defined as

/ / / g(x1,x0,. .., xn) f (x1,X2,...,x,) dxydxy ... dxy,. (1.24)

It is straight forward to see that rule that the expectation of the sum is the sum of the expectation
carries over to multivariate random variables, and so

Zgz X1, .. ZE[& Xi,... Xn)].

Additionally, taking g; (Xi,...X,) = X;, wehave E > | X;] = 7" | E[X]].
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1.4.2 Moments

Moments are expectations of particular functions of a random variable, typically g (x) = x* for s =
1,2,..., and are often used to compare distributions or to estimate parameters.

Definition 1.40 (Noncentral Moment). The r noncentral moment of a continuous random variable
X is defined

u =EX'] = / X f (x) dx (1.25)

—00
forr=1,2,....
The first non-central moment is the average, or mean, of the random variable.

Definition 1.41 (Mean). The first non-central moment of a random variable X is called the mean of
X and is denoted U.

Central moments are similarly defined, only centered around the mean.

Definition 1.42 (Central Moment). The r central moment of a random variables X is defined

(o]

w=E[X-p)]= / (x— )" f(x) dx (1.26)

—00
forr=2,3....

Aside from the first moment, references to “moments” refer to central moments. Moments may
not exist if a distribution is sufficiently heavy-tailed. However, if the ™ moment exists, then any
moment of lower order must also exist.

Theorem 1.11 (Lesser Moment Existence). If W, exists for some r, then llexists for s < r. Moreover,
for any r, U/ exists if and only if U, exists.

Central moments are used to describe a distribution since they are invariant to changes in the
mean. The second central moment is known as the variance.

Definition 1.43 (Variance). The second central moment of a random variable X , E [(X - u)z] is
called the variance and is denoted 6 or equivalently V [X].

The variance operator (V [-]) also has a number of useful properties.

If ¢ is a constant, then V [c] = 0.

If ¢ is a constant, then V [cX] = ¢*V [X].

If a is a constant, then V [a + X]| = V [X].

The variance of the sum is the sum of the variances plus twice all of the covariances?,

ZX,‘ = ZV[XI] —|—22 Z Cov [Xj,Xk}
i=1 i=1

j=1k=j+1

\Y%

“See Section 1.4.7 for more on covariances.
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The variance is a measure of dispersion, although the square root of the variance, known as the
standard deviation, is typically more useful.'?

Definition 1.44 (Standard Deviation). The square root of the variance is known as the standard devi-
ations and is denoted o or equivalently std (X).

The standard deviation is a more meaningful measure than the variance since its units are the
same as the mean (and random variable). For example, suppose X is the return on the stock market
next year, and that the mean of X is 8% and the standard deviation is 20% (the variance is .04). The
mean and standard deviation are both measured as the percentage change in investment, and so can
be directly compared, such as in the Sharpe ratio (Sharpe, 1994). Applying the properties of the
expectation operator and variance operator, it is possible to define a studentized (or standardized)
random variable.

Definition 1.45 (Studentization). Let X be a random variable with mean p and variance o2, then

x—p
(0}

7 —

(1.27)

is a studentized version of X (also known as standardized). Z has mean O and variance 1.

Standard deviation also provides a bound on the probability which can lie in the tail of a distribu-
tion, as shown in Chebyshev’s inequality.

Theorem 1.12 (Chebyshev’s Inequality). Pr[|x — | > ko] < 1/k? for k > 0.

Chebyshev’s inequality is useful in a number of contexts. One of the most useful is in establishing
consistency in any an estimator which has a variance that tends to O as the sample size diverges.

The third central moment does not have a specific name, although it is called the skewness when
standardized by the scaled variance.

Definition 1.46 (Skewness). The third central moment, standardized by the second central moment
raised to the power 3/2,

E [(X—E[X])Sl . (125
E[x—EKX)?|’

H3

(6?)

[NS/AS4]

1s defined as the skewness where Z is a studentized version of X.

The skewness is a general measure of asymmetry, and is O for symmetric distribution (assuming
the third moment exists). The normalized fourth central moment is known as the kurtosis.

Definition 1.47 (Kurtosis). The fourth central moment, standardized by the squared second central
moment,

w  E|@—ERDY|
(62 E[(x_E[xpz]z_E[Zﬂ -

is defined as the kurtosis and is denoted x where Z is a studentized version of X.

5The standard deviation is occasionally confused for the standard error. While both are square roots of variances, the
standard deviation refers to deviation in a random variable while the standard error is reserved for parameter estimators.
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Kurtosis measures of the chance of observing a large (and absolute terms) value, and is often
expressed as excess kurtosis.

Definition 1.48 (Excess Kurtosis). The kurtosis of a random variable minus the kurtosis of a normal
random variable, k¥ — 3, is known as excess kurtosis.

Random variables with a positive excess kurtosis are often referred to as heavy-tailed.

1.4.3 Related Measures

While moments are useful in describing the properties of a random variable, other measures are also
commonly encountered. The median is an alternative measure of central tendency.

Definition 1.49 (Median). Any number m satisfying Pr(X < m) =0.5 and Pr (X > m) = 0.5 is known
as the median of X.

The median measures the point where 50% of the distribution lies on either side (it may not be
unique), and is just a particular quantile. The median has a few advantages over the mean, and in
particular, it is less affected by outliers (e.g. the difference between mean and median income) and it
always exists (the mean doesn’t exist for very heavy-tailed distributions).

The interquartile range uses quartiles'® to provide an alternative measure of dispersion than stan-
dard deviation.

Definition 1.50 (Interquartile Range). The value g 75 — ¢ 25 is known as the interquartile range.

The mode complements the mean and median as a measure of central tendency. A mode is a local
maximum of a density.

Definition 1.51 (Mode). Let X be a random variable with density function f(x). A point ¢ where
f (x) attains a maximum is known as a mode.

Distributions can be unimodal or multimodal.

Definition 1.52 (Unimodal Distribution). Any random variable which has a single, unique mode is
called unimodal.

Note that modes in a multimodal distribution do not necessarily have to have equal probability.

Definition 1.53 (Multimodal Distribution). Any random variable which as more than one mode is
called multimodal.

Figure 1.9 shows a number of distributions. The distributions depicted in the top panels are all
unimodal. The distributions in the bottom pane are mixtures of normals, meaning that with probability
p random variables come from one normal, and with probability 1 — p they are drawn from the other.
Both mixtures of normals are multimodal.

16Qther tiles include terciles (3), quartiles (4), quintiles (5), deciles (10) and percentiles (100). In all cases the bin ends
are[(i — 1/m) ,i/m] where m is the number of bins and i = 1,2,...,m.
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Figure 1.9: These four figures show two unimodal (upper panels) and two multimodal (lower panels)
distributions. The upper left is a standard normal density. The upper right shows three x> densities

for v =1, 3 and 5. The lower panels contain mixture distributions of 2 normals — the left is a 50-50
mixture of N(—1,1) and N (1,1) and the right is a 30-70 mixture of N (—2,1) and N(1,1).
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1.4.4 Multivariate Moments

Other moment definitions are only meaningful when studying 2 or more random variables (or an n-
dimensional random variable). When applied to a vector or matrix, the expectations operator applies
element-by-element. For example, if X is an n-dimensional random variable,

Xi E[X]
E[X] = E )fz - E[?(Z] . (1.30)
X, E[X,)]

Covariance is a measure which captures the tendency of two variables to move together in a linear
sense.

Definition 1.54 (Covariance). The covariance between two random variables X and Y is defined
Cov[X,Y] = oxy=E[X—-E[X])(Y—-E[Y])]. (1.31)

Covariance can be alternatively defined using the joint product moment and the product of the
means.

Theorem 1.13 (Alternative Covariance). The covariance between two random variables X and Y
can be equivalently defined

oxy =E[XY]—E[X]E[Y]. (1.32)

Inverting the covariance expression shows that no covariance is sufficient to ensure that the ex-
pectation of a product is the product of the expectations.

Theorem 1.14 (Zero Covariance and Expectation of Product). If X and Y have oxy = 0, then
E[XY]=E[X]E[Y].

The previous result follows directly from the definition of covariance since oxy = E[XY] —
E[X]E[Y]. In financial economics, this result is often applied to products of random variables so
that the mean of the product can be directly determined by knowledge of the mean of each variable
and the covariance between the two. For example, when studying consumption based asset pricing, it
is common to encounter terms involving the expected value of consumption growth times the pricing
kernel (or stochastic discount factor) —in many cases the full joint distribution of the two is intractable
although the mean and covariance of the two random variables can be determined.

The Cauchy-Schwarz inequality is a version of the triangle inequality and states that the expecta-
tion of the squared product is less than the product of the squares.

Theorem 1.15 (Cauchy-Schwarz Inequality). E [(X Y )2} <E[X?|E[Y?].

Example 1.32. When X is an n-dimensional random variable, it is useful to assemble the variances
and covariances into a covariance matrix.
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Definition 1.55 (Covariance Matrix). The covariance matrix of an n-dimensional random variable X
is defined

o} 6122 . Ol
COV[X] :ZZEKX_E[X])(X—E[X])/} _ 6.12 6.2 6.2”
On Oop .. Gr%

where the i" diagonal element contains the variance of X; (61-2) and the element in position (i, j)
contains the covariance between X; and X; (o;;).

When X is composed of two sub-vectors, a block form of the covariance matrix is often conve-
nient.

Definition 1.56 (Block Covariance Matrix). Suppose X is an nj-dimensional random variable and
X, is an n,-dimensional random variable. The block covariance matrix of X = [X] X}]" is

Y X
ZZ{Z,E ZZ} (1.33)

where X is the n; by n; covariance of Xi, X5 is the ny by ny covariance of X and X5 is the n; by
ny covariance matrix between X; and X, and element (i, j) equal to Cov [Xl’,-,Xz’ j} .

A standardized version of covariance is often used to produce a scale-free measure.

Definition 1.57 (Correlation). The correlation between two random variables X and Y is defined

Corr [X,Y] = pxy = . (1.34)

Additionally, the correlation is always in the interval [—1,1], which follows from the Cauchy-
Schwarz inequality.

Theorem 1.16. If X and Y are independent random variables, then pxy = 0 as long as G)% and G%
exist.

It is important to note that the converse of this statement is not true — that is, a lack of correla-
tion does not imply that two variables are independent. In general, a correlation of 0 only implies
independence when the variables are multivariate normal.

Example 1.33. Suppose X and Y have pyxy = 0, then X and ¥ are not necessarily independent. Sup-
pose X is a discrete uniform random variable taking values in {—1,0,1} and Y = X2, so that 67 =2/3,
G% =2/9 and oxy = 0. While X and Y are uncorrelated, the are clearly not independent, since when
the random variable Y takes the value 1, X must be 0.

The corresponding correlation matrix can be assembled. Note that a correlation matrix has 1s on the
diagonal and values bounded by [—1, 1] on the off-diagonal positions.

Definition 1.58 (Correlation Matrix). The correlation matrix of an n-dimensional random variable X
is defined | |
Xol,) 22XEoel,) ? (1.35)

where the i, /™ element has the form oy,x;/ (Ox,0x;) when i # j and 1 when i = j.
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1.4.5 Conditional Expectations

Conditional expectations are similar to other forms of expectations only using conditional densities
in place of joint or marginal densities. Conditional expectations essentially treat one of the variables
(in a bivariate random variable) as constant.

Definition 1.59 (Bivariate Conditional Expectation). Let X be a continuous bivariate random variable
comprised of X; and X;. The conditional expectation of X; given X,

o0

Efg (X1) X2 = xo] :/ g (x1) f (x1|x2) dxy (1.36)

—00
where f (x1]x,) is the conditional probability density function of X; given X;.!”

In many cases, it is useful to avoid specifying a specific value for X, in which case E [X; |X;] will
be used. Note that E [X; |X;] will typically be a function of the random variable X;.

Example 1.34. Suppose X is a bivariate normal distribution with components X; and Xa, 4 = [i; /Jz]/
and

612 O12
Z == 2 ,
012 O

then E[X;|X; = x] = 1 + % (x — 4p). This follows from the conditional density of a bivariate
2

random variable.

The law of iterated expectations uses conditional expectations to show that the conditioning does
not affect the final result of taking expectations — in other words, the order of taking expectations does
not matter.

Theorem 1.17 (Bivariate Law of Iterated Expectations). Let X be a continuous bivariate random
variable comprised of X| and X,. Then E[E[g(X) |Xz]] = E[g (X1)].

The law of iterated expectations follows from basic properties of an integral since the order of
integration does not matter as long as all integrals are taken.

Example 1.35. Suppose X is a bivariate normal distribution with components X; and X», 1 = [y; [,Lz]/
and

o o
Z = 2 ,
012 O

then E[X;]| = u; and

EEX|X2]] = E [.Ul + 2—1222 (Xo — Nz)}

(o}
= m+— (B[] - )
%)

c
= H1+—122(H2—IJ2)
%)

— ‘Ll/l.

17 A conditional expectation can also be defined in a natural way for functions of X; given X, € B where Pr(X> € B) > 0.
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When using conditional expectations, any random variable conditioned on behaves “as-if” non-
random (in the conditional expectation), and so E [E [X|X»|X>]] = E [X2E [X; |X>]]. This is a very useful
tool when combined with the law of iterated expectations when E [X; |X;] is a known function of Xj.

Example 1.36. Suppose X is a bivariate normal distribution with components X; and X, 4 = 0 and

612 O12
Z = 2 5
012 05

then

E[X1X;] = E[E[X1X2]Xs]]
= E[X;E[X1|X;]]

- ol (G)

_ Oi2pye
- GZZE[XZ]
_ %12

0.22 (62)

= O0]12.

One particularly useful application of conditional expectations occurs when the conditional ex-
pectation is known and constant, so that E [X;|Xz] = c.

Example 1.37. Suppose X is a bivariate random variable composed of X; and X, and that E [X; |X;] =
c. Then E[X] = ¢ since
EX|] = E[E[X[X]
= E[]
c.

Conditional expectations can be taken for general n-dimensional random variables, and the law of
iterated expectations holds as well.

Definition 1.60 (Conditional Expectation). Let X be a n-dimensional random variable and and parti-
tion the first j (1 < j < n) elements of X into X;, and the remainder into X; so that X = [X{ Xé]/. The
conditional expectation of g (X;) given X» = x

E[g(X1)|X2:X2]:/ / g(xl,...,xj)f(xl,...,xj|xz) dxj...dxl (1.37)

where f (xl, coX j|x2) is the conditional probability density function of X; given X, = x.
The law of iterated expectations also holds for arbitrary partitions as well.

Theorem 1.18 (Law of Iterated Expectations). Let X be a n-dimensional random variable and and
partition the first j (1 < j < n) elements of X into X,, and the remainder into X, so that X = [X] Xé]/

Then E[E[g (X)) |X2]] = E[g (X1)]. The law of iterated expectations is also known as the law of total
expectations.
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Full multivariate conditional expectations are extremely common in time series. For example,
when using daily data, there are over 30,000 observations of the Dow Jones Industrial Average avail-
able to model. Attempting to model the full joint distribution would be a formidable task. On the
other hand, modeling the conditional expectation (or conditional mean) of the final observation, con-
ditioning on those observations in the past, is far simpler.

Example 1.38. Suppose {X; } is a sequence of random variables where X; comes after X;_; for j > 1.
The conditional conditional expectation of X; given its past is

E [X[|Xt_1_‘Xt_2, .o ] .

Example 1.39. Let {¢} be a sequence of independent, identically distributed random variables
with mean 0 and variance 62 < co. Define Xo = 0 and X; = X,_; +&. X; is a random walk, and
E [Xz‘Xzfl] =Xi—1.

This leads naturally to the definition of a martingale, which is an important concept in financial
economics which related to efficient markets.

Definition 1.61 (Martingale). If E [X;;|X,—1,X2...] =X, for all j > 0 and E[|X;|] < oo, both
holding for all 7, then {X;} is a martingale. Similarly, if E [Xt+ =X Xi—1, X2 . ] = 0 for all
j > 0and E[|X;|] < oo, both holding for all #, then {X,} is a martingale.

1.4.6 Conditional Moments

All moments can be transformed made conditional by integrating against the conditional probability
density function. For example, the (unconditional) mean becomes the conditional mean, and the
variance becomes a conditional variance.

Definition 1.62 (Conditional Variance). The variance of a random variable X conditional on another
random variable Y is

VIX[Y] = E[(X—E[xyy])zyy} (1.38)
= E[X*|Y] —E[X|r].

The two definitions of conditional variance are identical to those of the (unconditional) variance
where the (unconditional) expectation has been replaced by a conditional expectation. Conditioning
can be used to compute higher-order moments as well.

Definition 1.63 (Conditional Moment). The r'! central moment of a random variables X conditional
on another random variable Y is defined

w-=E[(X —E[X|Y])"|Y] (1.39)
forr=2,3,....

Combining the conditional expectation and the conditional variance leads to the law of total vari-
ance.
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Theorem 1.19. The variance of a random variable X can be decomposed into the variance of the
conditional expectation plus the expectation of the conditional variance,

VX] = V[E[X|Y]]+E[VX|Y]]. (1.40)

The law of total variance shows that the total variance of a variable can be decomposed into the
variability of the conditional mean plus the average of the conditional variance. This is a useful
decomposition for time-series.

Independence can also be defined conditionally.

Definition 1.64 (Conditional Independence). Two random variables X; and X, are conditionally in-
dependent, conditional on Y, if

f(x,xaly) = fi (aly) f2 (ly) -

Note that random variables that are conditionally independent are not necessarily unconditionally
independent.

Example 1.40. Suppose X is a trivariate normal random variable with mean 0 and covariance

of 0 0
T=| 0 o7 0
0 0 of

and define Y; = x; +x3 and ¥, = x, +x3. Then Y] and Y, are correlated bivariate normal with mean 0
and covariance

o[t o
3 2 3

but the joint distribution of ¥; and Y, given X3 is bivariate normal with mean 0 and

2
of O
[ 8]

and so Y] and Y, are independent conditional on X3.

Other properties of unconditionally independent random variables continue to hold for condi-
tionally independent random variables. For example, when X; and X, are independent conditional
on X3, then the conditional covariance between X; and X; is O (as is the conditional correlation),
and E [E [X1X2|X3]] = E[E [X;|X3] E [X2|X3]] — that is, the conditional expectation of the product is the
product of the conditional expectations.

1.4.7 Vector and Matrix Forms

Vector and matrix forms are particularly useful in finance since portfolios are often of interest where
the underlying random variables are the individual assets and the combination vector is the vector of
portfolio weights.

Theorem 1.20. Let Y =", ¢;X; where ¢j, i =1,...,n are constants. Then E[Y] ="\, c;E[X;]. In
matrix notation, Y = ¢/x where ¢ is an n by 1 vector and E[Y] = ¢E[X].
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The variance of the sum is the weighted sum of the variance plus all of the covariances.

Theorem 1.21. LetY = Z?:l ciX; where c; are constants. Then

VY=Y VIX]+2) > c¢jeCov [X;, X;] (1.41)
i=1

j=lk=j+1

or equivalently

n n n
2 2 2
Oy = E C; GX,-+2 E E CjCkOX;X, -
i=1

j=1k=j+1
This result can be equivalently expressed in vector-matrix notation.

Theorem 1.22. Let ¢ in an n by 1 vector and let X by an n-dimensional random variable with covari-
ance ¥. Define Y = ¢/x. The variance of Y is 62 = ¢/Cov [X] ¢ = ¢/Ze.

Note that the result holds when ¢ is replaced by a matrix C.

Theorem 1.23. Let C be an n by m matrix and let X be an n-dimensional random variable with mean
Wy and covariance Lx. Define Y = C'x. The expected value of Y is E[Y] = uy = C'E[X] = C'uy and
the covariance of Y is Ly = C'Cov[X]C = C'ZxC.

Definition 1.65 (Multivariate Studentization). Let X be an n-dimensional random variable with mean
u and covariance X, then

Z=%"1(x—p) (1.42)

1
is a studentized version of X where X2 is a matrix square root such as the Cholesky factor or one
based on the spectral decomposition of . Z has mean 0 and covariance equal to the identity matrix
L.

The final result for vectors relates quadratic forms of normals (inner-products) to x2 distributed
random variables.

Theorem 1.24 (Quadratic Forms of Normals). Let X be an n-dimensional normal random variable
with mean 0 and identity covariance I,,. Then x'x = Z?:l xiz ~ )(,%

Combing this result with studentization, when X is a general n-dimensional normal random vari-
able with mean u and covariance X,

() (278) 2 () = () T (e )

1.4.8 Monte Carlo and Numerical Integration

Expectations of functions of continuous random variables are integrals against the underlying pdf.
In some cases, these integrals are analytically tractable, although in many situations integrals cannot
be analytically computed and so numerical techniques are needed to compute expected values and
moments.

Monte Carlo is one method to approximate an integral. Monte Carlo utilizes simulated draws
from the underlying distribution and averaging to approximate integrals.
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Definition 1.66 (Monte Carlo Integration). Suppose X ~ F (6) and that it is possible to simulate a
series {x;} from F (6). The Monte Carlo expectation of a function g (x) is defined

EgX)]=m"Y gx),

i=1
Moreover, as long as E[|g (x)[] < oo, limy—eom 131 g (x;) = E[g (x)].

The intuition behind this result follows from the properties of {x;}. Since these are i.i.d.draws
from F (0), they will, on average, tend to appear in any interval B € R (X) in proportion to the proba-
bility Pr (X € B). In essence, the simulated values coarsely approximating the discrete approximation
shown in 1.8.

While Monte Carlo integration is a general technique, there are some important limitations. First,
if the function g (x) takes large values in regions where Pr(X € B) is small, it may require a very
large number of draws to accurately approximate E [g (x)] since, by construction, there are unlikely to
many points in B. In practice the behavior of / (x) = g (x) f (x) plays an important role in determining
the appropriate sample size.!® Second, while Monte Carlo integration is technically valid for random
variables with any number of dimensions, in practice it is usually only reliable when the dimension
is small (typically 3 or fewer), especially when the range is unbounded (R(X) € R"). When the
dimension of X is large, many simulated draws are needed to visit the corners of the (joint) pdf, and
if 1,000 draws are sufficient for a unidimensional problem, 1000” may be needed to achieve the same
accuracy when X has n dimensions.

Alternatively the function to be integrated can be approximated using a polygon with an easy-
to-compute area, such as the rectangles approximating the normal pdf shown in figure 1.8. The
quality of the approximation will depend on the resolution of the grid used. Suppose u and [ are the
upper and lower bounds of the integral, respectively, and that the region can be split into m intervals
l=by<b; <...<by_1 < by =u. Then the integral of a function /() is

/luh(x)dxzé/:lh(x)dx.

In practice, / and u may be infinite, in which case some cut-off point is required. In general, the cut-off
should be chosen to that they vast majority of the probability lies between / and u ( fl” fx)dx=1).

This decomposition is combined with an area for approximating the area under /4 between b;_
and b;. The simplest is the rectangle method, which uses a rectangle with a height equal to the value
of the function at the mid-point.

Definition 1.67 (Rectangle Method). The rectangle rule approximates the area under the curve with

arectangle and is given by
“ l
/ h(x)de ~h (”; ) (u—1).
!

The rectangle rule would be exact if the function was piece-wise flat. The trapezoid rule improves
the approximation by replacing the function at the midpoint with the average value of the function
and would be exact for any piece-wise linear function (including piece-wise flat functions).

"¥Monte Carlo integrals can also be seen as estimators, and in many cases standard inference can be used to determine
the accuracy of the integral. See Chapter 1 for more details on inference and constructing confidence intervals.
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Definition 1.68 (Trapezoid Method). The trapezoid rule approximates the area under the curve with
a trapezoid and is given by

/uh(x)dx%w(u—l).
I

The final method is known as Simpson’s rule which is based on using a quadratic approximation
to the underlying function. It is exact when the underlying function is piece-wise linear or quadratic.

Definition 1.69 (Simpson’s Rule). Simpson’s Rule uses an approximation that would be exact if they
underlying function were quadratic, and is given by

/luh(x)dx% ”gl (h(u)+4h(u;l> +h(l)>.

Example 1.41. Consider the problem of computing the expected payoff of an option. The payoff of
a call option is given by

¢ = max (s; —k,0)

where k is the strike price, syis the stock price at expiration and s 1s the current stock price. Suppose
returns are normally distributed with mean p = .08 and standard deviation 6 = .20. In this problem,
g(r) = (soexp (r) — k) I s exp(r)>k] Where I;] and a binary indicator function which takes the value 1
when the argument is true, and

_ ! (r—p)’
f(l")— Wexp <_W> :

Combined, the function the be integrated is

/OO h(r)dr = /Oog(r)f(r)dr

—00 —00

N 1 r—u)?
= /_OO (SoeXP(r)—k)l[soexp(r)>k}\/ﬁexp (_( 26/;) >dr

so = k = 50 was used in all results.

All four methods were applied to the problem. The number of bins and the range of integration
was varied for the analytical approximations. The number of bins ranged across {10,20, 50, 1000}
and the integration range spanned {+30, +40, +60, £100} and the bins were uniformly spaced
along the integration range. Monte Carlo integration was also applied with m € {100, 1000}.

All thing equal, increasing the number of bins increases the accuracy of the approximation. In
this example, 50 appears to be sufficient. However, having a range which is too small produces values
which differ from the correct value of 7.33. The sophistication of the method also improves the
accuracy, especially when the number of nodes is small. The Monte Carlo results are also close, on
average. However, the standard deviation is large, about 5%, even when 1000 draws are used, so that
large errors would be commonly encountered and so many more points are needed to ensure that the
integral is always accurate.
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Shorter Problems
Problem 1.1. Suppose

X L o 0

~N , 5

U 0 0 op
andY =2X+U. Whatis E[Y] and V [Y]?
Problem 1.2. Show Cov [aX + DY, cX +dY] = acV [X]+bdV [Y]+ (ad 4 bc) Cov [X,Y].
Problem 1.3. Show that the two forms of the covariance,

EXY]|-E[X|E[Y] andE[(X —E[X]) (Y —E[Y])]

are equivalent when X and Y are continuous random variables.

Problem 1.4. Suppose {X;} is a sequence of random variables where V [X;] = 6 for all i, Cov [X;, X;_1] =
6 and Cov [X;,X;—;] =0 for j > 1. Whatis V[X] where X =n~! Y"1 | X;?

Problem 1.5. Suppose Y = BX +¢& where X ~ N (ux,03), € ~ N (0,62) and X and € are indepen-
dent. What is Corr [X,Y]?

Problem 1.6. Prove that E [a 4+ bX]| = a+ bE [X] when X is a continuous random variable.
Problem 1.7. Prove that V [a + bX] = b?V [X]| when X is a continuous random variable.

Problem 1.8. Prove that Cov [a + bX,c+dY] = bdCov [X,Y]| when X and Y are a continuous random
variables.

Problem 1.9. Prove that V [a+bX +cY]| = b*V[X] + >V [Y] + 2bcCov [X,Y] when X and Y are a
continuous random variables.

Problem 1.10. Suppose {X;} is an i.i.d.sequence of random variables. Show that
1 n
ox
n

i=1

V[X]=V =nlo?

where 62 is V [X]].
Problem 1.11. Prove that Corr [a +bX,c+dY] = Corr [X,Y].

Problem 1.12. Suppose {X;} is a sequence of random variables where, for all i, V [X;] = 62, Cov [X;, X;_{] =
6 and Cov [X;,X;—;] =0 for j > 1.. What is V [X]?

Problem 1.13. Prove that E [a + bX |Y] = a+bE [X|Y] when X and Y are continuous random variables.

Problem 1.14. Suppose that E[X|Y] = Y2 where Y is normally distributed with mean p and variance
o2. What is E [a + bX]?

Problem 1.15. Suppose E[X|Y =y] = a+ by and V[X|Y = y] = ¢ + dy* where Y is normally dis-
tributed with mean u and variance 62. What is V [X]?

Problem 1.16. Show that the law of total variance holds for a V [X;] when X is a bivariate normal
with mean p = [ u»]" and covariance

612 O12
Z - 2 .
012 O
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Longer Exercises

Exercise 1.1. Sixty percent (60%) of all traders hired by a large financial firm are rated as performing
satisfactorily or better in their first-year review. Of these, 90% earned a first in financial econometrics.
Of the traders who were rated as unsatisfactory, only 20% earned a first in financial econometrics.

1.

3.

What is the probability that a trader is rated as satisfactory or better given they received a first
in financial econometrics?

. What is the probability that a trader is rated as unsatisfactory given they received a first in

financial econometrics?

Is financial econometrics a useful indicator of trader performance? Why or why not?

Exercise 1.2. Large financial firms use automated screening to detect rogue trades — those that exceed
risk limits. One of your colleagues has introduced a new statistical test using the trading data that,
given that a trader has exceeded her risk limit, detects this with probability 98%. It also only indicates
false positives — that is non-rogue trades that are flagged as rogue — 1% of the time.

1.

Assuming 99% of trades are legitimate, what is the probability that a detected trade is rogue?
Explain the intuition behind this result.

Is this a useful test? Why or why not?

. How low would the false positive rate have to be to have a 98% chance that a detected trade

was actually rogue?

Exercise 1.3. Your corporate finance professor uses a few jokes to add levity to his lectures. Each
week he tells 3 different jokes. However, he is also very busy, and so forgets week to week which
jokes were used.

1.
2.

Assuming he has 12 jokes, what is the probability of 1 repeat across 2 consecutive weeks?

What is the probability of hearing 2 of the same jokes in consecutive weeks?

. What is the probability that all 3 jokes are the same?

Assuming the term is 8 weeks long, and they your professor has 96 jokes, what is the probability
that there is no repetition during the term? Note that he remembers the jokes he gives in a
particular lecture, only forgets across lectures.

. How many jokes would your professor need to know to have a 99% chance of not repeating any

in the term?

Exercise 1.4. A hedge fund company manages three distinct funds. In any given month, the proba-
bility that the return is positive is shown in the following table:

Pr(ri;>0)=.55 Pr(ri;>0Ur,; >0)=.82
Pr(rp; >0)=.60 Pr(ri;>0Ursz; >0)=.7525
Pr(r;3; >0)=.45 Pr(ry; >0Ur3; >0)=.78
Pr(ry, >0Nr3; > 0[r;, >0) =.20
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1. Are the events of “positive returns” pairwise independent?
2. Are the events of “positive returns” independent?

3. What is the probability that funds 1 and 2 have positive returns, given that fund 3 has a positive
return?

4. What is the probability that at least one fund will have a positive return in any given month?

Exercise 1.5. Suppose the probabilities of three events, A, B and C are as depicted in the following
diagram:

[N

1. Are the three events pairwise independent?
2. Are the three events independent?
3. Whatis Pr(ANB)?
4. Whatis Pr(ANB|C)?
5. What is Pr(C|ANB)?
(

6. What is Pr(C|AUB)?

Exercise 1.6. At a small high-frequency hedge fund, two competing algorithms produce trades. Al-
gorithm a produces 80 trades per second and 5% lose money. Algorithm 3 produces 20 trades per
second but only 1% lose money. Given the last trade lost money, what is the probability it was pro-
duced by algorithm 3?

Exercise 1.7. Suppose f (x,y) =2 —x—y where x € [0,1] and y € [0, 1].
1. Whatis Pr(X >.750Y > .75)?
2. Whatis Pr(X +Y > 1.5)?

3. Show formally whether X and Y are independent.
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4. What is Pr(Y < .5|X =x)?
Exercise 1.8. Suppose f (x,y) = xy forx € [0,1] and y € [0,2].
1. What is the joint cdf?
2. Whatis Pr(X <0.5NnY < 1)?
3. What is the marginal cdf of X? What is Pr(X < 0.5)?
4. What is the marginal density of X?
5. Are X and Y independent?
Exercise 1.9. Suppose F (x) =1 —p**! forx € [0,1,2,...] and p € (0, 1).
1. Find the pmf.
2. Verify that the pmf is valid.
3. Whatis Pr(X < 8) if p =.75?
4. Whatis Pr(X <'1) given X < 8?

Exercise 1.10. A firm producing widgets has a production function g (L) = L% where L is the amount
of labor. Sales prices fluctuate randomly and can be $10 (20%), $20 (50%) or $30 (30%). Labor
prices also vary and can be $1 (40%), 2 (30%) or 3 (30%). The firm always maximizes profits after
seeing both sales prices and labor prices.

1. Define the distribution of profits possible?
2. What is the probability that the firm makes at least $100?

3. Given the firm makes a profit of $100, what is the probability that the profit is over $200?

Exercise 1.11. A fund manager tells you that her fund has non-linear returns as a function of the
market and that his return is r; ; = 0.02 + 27, ; — O.Sr%” where r;, is the return on the fund and r,; is
the return on the market.

1. She tells you her expectation of the market return this year is 10%, and that her fund will have
an expected return of 22%. Can this be?

2. At what variance is would the expected return on the fund be negative?

Exercise 1.12. For the following densities, find the mean (if it exists), variance (if it exists), median
and mode, and indicate whether the density is symmetric.

1. f(x) =3x*forx € [0,1]

2. f(x)=2x3forx € [l,00)
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3. f(x)=[n(1 +x2)]71 for x € (—o00,00)
4. f(x)= ( i ) 2584 forx € {0,1,2,3,4}
Exercise 1.13. The daily price of a stock has an average value of £2. Then then Pr(X > 10) < .2

where X denotes the price of the stock. True or false?

Exercise 1.14. An investor can invest in stocks or bonds which have expected returns and covariances

as
| .10 v _ 04 —.003
H=1 03] %7 | —.003 .0009
where stocks are the first component.

1. Suppose the investor has £1,000 to invest and splits the investment evenly. What is the expected
return, standard deviation, variance and Sharpe Ratio (i /o) for the investment?

2. Now suppose the investor seeks to maximize her expected utility where her utility is defined is
defined in terms of her portfolio return, U (r) = E [r] — .01V [r]. How much should she invest in
each asset?

Exercise 1.15. Suppose f(x) = (1 —p)*p for x € (0,1,...) and p € (0,1]. Show that a random
variable from the distribution is “memoryless” in the sense that Pr(X > s+r|X > r) =Pr(X >s). In
other words, the probability of surviving s or more periods is the same whether starting at O or after
having survived r periods.

Exercise 1.16. Your Economics professor offers to play a game with you. You pay £1,000 to play and
your Economics professor will flip a fair coin and pay you 2* where x is the number of tries required
for the coin to show heads.

1. What is the pmf of X?

2. What is the expected payout from this game?

Exercise 1.17. Consider the roll of a fair pair of dice where a roll of a 7 or 11 pays 2x and anything
else pays —x where x is the amount bet. Is this game fair?

Exercise 1.18. Suppose the joint density function of X and Y is given by f(x,y) = 1/2xexp (—xy)
where x € [3,5] and y € (0, 00).

1. Give the form of E[Y|X = x].
2. Graph the conditional expectation curve.

Exercise 1.19. Suppose a fund manager has $10,000 of yours under management and tells you that
the expected value of your portfolio in two years time is $30,000 and that with probability 75% your
investment will be worth at least $40,000 in two years time.

1. Do you believe her?
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2. Next, suppose she tells you that the standard deviation of your portfolio value is 2,000. Assum-
ing this is true (as is the expected value), what is the most you can say about the probability
your portfolio value falls between $20,000 and $40,000 in two years time?

Exercise 1.20. Suppose the joint probability density function of two random variables is given by
f(x) =2 (3x+2y) where x € [0,1] and y € [0, 1].

1. What is the marginal probability density function of X?

2. Whatis E[X|Y =y|? Are X and Y independent? (Hint: What must the form of E[X|Y] be when
they are independent?)

Exercise 1.21. Let Y be distributed 1125.

1. What is Pr(y > 27.488)?
2. What is Pr(6.262 < y < 27.488)?

3. Find C where Pr(y > ¢) = o for a € {0.01,0.05,0.01}.
Next, Suppose Z is distributed x52 and is independent of Y .

4. Find C where Pr(y+z > ¢) = a for o € {0.01,0.05,0.01}.

Exercise 1.22. Suppose X is a bivariate random variable with parameters

5 2 -1
I |
1. What is E[X;|X,]?

2. What is V [X]|X>]?
3. Show (numerically) that the law of total variance holds for Xj.
Exercise 1.23. Suppose y ~ N (5,36) and x ~ N (4,25) where X and Y are independent.
1. What is Pr(y > 10)?
2. Whatis Pr(—10 <y < 10)?
3. Whatis Pr(x—y > 0)?

4. Find C where Pr(x—y > C) = a for € {0.10,0.05,0.01}?
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Rectangle Method
Bins +30 +40 +60 =£100

10 7.19 743 758  8.50
20 7.13 735 739  7.50
50 7.2 733 734  7.36
1000 7.11 7.32 7.33  7.33

Trapezoid Method
Bins +30 440 460 =+100

10 696 7.11 686  5.53
20 7.08 727 722 701
50 7.11 7.31 731 7.28
1000 7.11 7.32 7.33  7.33

Simpson’s Rule
Bins +30 +40 +60 =100

10 7.1 7.32 734 751
20 7.11 7.32 733  7.34
50 7.11 7.32 7.33  7.33
1000 7.11 7.32 733 7.33

Monte Carlo
Draws (m) 100 1000

Mean 7.34 7.33
Std. Dev. 0.88 0.28

Table 1.1: Computed values for the expected payout for an option, where the correct value is 7.33 The
top three panels use approximations to the function which have simple to compute areas. The bottom
panel shows the average and standard deviation from a Monte Carlo integration where the number of
points varies and 10,000 simulations were used.
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Chapter 2

Estimation, Inference, and Hypothesis
Testing

Note: The primary reference for these notes is Ch. 7 and 8 of Casella and Berger (2001). This text
may be challenging if new to this topic and Ch. 7 — 10 of Wackerly, Mendenhall, and Scheaftfer (2001)
may be useful as an introduction.

This chapter provides an overview of estimation, distribution theory, inference, and
hypothesis testing. Testing the implications of an economic or financial model is a
multi-step process. First, an estimator for the unknown model parameters is con-
structed. Next, the distribution of the estimator is determined. Finally, formal hy-
pothesis tests are conducted to examine whether the data are consistent with the
implications of the theoretical model. This chapter is intentionally “generic” by
design and focuses on independent and identically distributed random variables.
Properties of specific models are studied in detail in the chapters on linear regres-
sion, time series, and univariate volatility modeling.

Using data to evaluate an economic theory is a three-step process:

* construct an estimator for the unknown parameters;

¢ determine the distributional of the estimator; and

* conduct hypothesis tests to examine whether the data are compatible with a theoretical model.

This chapter covers each of these steps with a focus independent and identically distributed data
(i.i.d.). The heterogeneous but independent data are covered in the chapter on linear regression (chap-
ter 3), and dependent data are covered in the chapters on time series (chapters 4, 5, 7, and 9).

2.1 Estimation

Once a model has been specified and hypotheses postulated, the first step is to estimate the model’s
parameters. Many methods are available to accomplish this task. These include parametric, semi-
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parametric, semi-nonparametric, and nonparametric estimators and a variety of estimation methods
often classified as M-, R- and L-estimators.!

Parametric models are tightly parameterized and have desirable statistical properties when their
specification is correct. Nonparametric estimators are more flexible and avoid making strong as-
sumptions about the relationship between variables. This structure allows nonparametric estimators
to capture a wide range of relationships but comes at the cost of precision. In many cases, nonpara-
metric estimators have a slower rate of convergence than similar parametric estimators. The practical
consequence of the rate is that nonparametric estimators are more useful in large data sets where the
relationships between variables may be difficult to postulate a priori. When less data is available, or
when an economic model proffers a relationship among variables, parametric estimators are generally
preferable.

Semi-parametric and semi-nonparametric estimators bridge the gap between fully parametric es-
timators and nonparametric estimators. Their difference lies in “how parametric” the model and
estimator are. Estimators that postulate parametric relationships between variables but estimate the
underlying distribution of errors flexibly are semi-parametric. Estimators that take a stand on the
distribution of the errors but allow flexible relationships between variables are semi-nonparametric.
This chapter focuses exclusively on parametric models and estimators. This choice is more reflective
of the common practice than a critique of alternative methods.

Another important characterization of estimators is whether they are members of the M-, L- or
R-estimator classes.> M-estimators (also known as extremum estimators) always involve maximizing
or minimizing some objective function. M-estimators are the most commonly used class in financial
econometrics and include maximum likelihood, regression, classical minimum distance, and both the
classical and the generalized method of moments. L-estimators, also known as linear estimators, are
a class where the estimator can be expressed as a linear function of ordered data. Members of this
family can always be written as

n
6=> wiyi
i=1

for some set of weights {w;} where the data, y;, are ordered such that y;_; <y; for j =2,3,...,n.
This class of estimators obviously includes the sample mean by setting w; = % for all i, and also
includes the median by setting w; = 0 for all i except w; = 1 where j = (n+1)/2 (n is odd) or
wj=wjy1 = 1/2 where j =n/2 (nis even). R-estimators exploit the order of the data. Common
examples of R-estimators include the minimum, maximum and Spearman’s rank correlation, which
is the usual correlation estimator applied to the ranks of the data. Rank statistics are often robust to
outliers and non-linearities.

2.1.1 M-Estimators

The use of M-estimators is pervasive in financial econometrics. The three most common variants of
M-estimators are the method of moments, both classical and generalized, maximum likelihood, and

I'There is another important dimension in the categorization of estimators: Bayesian or frequentist. Bayesian esti-
mators use Bayes’ rule to perform inference about unknown quantities (parameters) conditioning on the observed data.
Frequentist estimators rely on randomness averaging out across observations. Frequentist methods are dominant in finan-
cial econometrics, although the use of Bayesian methods has been recently increasing.

2Many estimators are members of more than one class. For example, the median is a member of all three.
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classical minimum distance.

2.1.2 Maximum Likelihood

Maximum likelihood uses the distribution of the data to estimate unknown parameters by finding the
values which make the data as likely as possible to have been observed — in other words, by max-
imizing the likelihood. Maximum likelihood estimation begins by specifying the joint distribution,
f(y;0), of the observable data, y = {y;,y2,...,¥n}, as a function of a k by 1 vector 6, which con-
tains all parameters. Note that this is the joint density, and so it includes both the information in
the marginal distributions of y; and information relating the marginals to one another.> Maximum
likelihood estimation “reverses” the likelihood, so that it is a function of 6 given the observed Yy,
L(6:y) = f(y:0). )
The maximum likelihood estimator, 0, is defined as the solution to

6 = argmax L(6;y) (2.1)
0

where argmax returns the value of the parameter that maximizes the equation.* Since L(0;y) is
strictly positive, the log of the likelihood can be used to estimate 6.° The log-likelihood is defined
as [(0;y) =InL(6;y). In most situations the maximum likelihood estimator (MLE) can be found by
solving the k by 1 score vector,

1(8;y)

a0
although a score-based solution does not work when 6 is constrained, if 0 lies on the boundary of
the parameter space, or when the permissible range of values for ¥; depends on 0. The first problem

is common enough that it is worth keeping in mind. The other two issues are rarely encountered in
financial econometrics.

=0

2.1.2.1 Maximum Likelihood Estimation of a Poisson Model

Realizations from a Poisson process are non-negative and discrete. The Poisson is common in ultra-
high-frequency econometrics, where the usual assumption that prices lie in a continuous space is

3Formally the relationship between the marginal is known as the copula. Copulas and their use in financial economet-
rics are examined in chpater 9.

“Many likelihoods have more than one maximum (i.e., local maxima). The maximum likelihood estimator is always
defined as the global maximum.

SNote that the log transformation is strictly increasing and globally concave. If z* is the maximum of g(z), and thus

0
s _,
az z=z*
then z* must also be the maximum of In(g(z)) since
dn(e(z)| _&gE@| _ 0 _,
P B ()
2 | 8@ |- &@)

which follows since g(z) > 0 for any value of z.
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implausible. For example, US equities’ transaction prices evolve on a grid of prices typically sepa-
rated by $0.01. Suppose ¥; ~ Poisson(A ). The pdf of a single observation is

exp(—A)Ai
f(Yi=yl-;?L):—p( ,> (2.2)
Yi:
and since the data are independent and identically distributed (i.i.d.), the joint likelihood is simply the
product of the n individual likelihoods,

L exp(—A)AYi
lyi2) = Lihay) = [[Z2EDE
i=1 r
The log-likelihood is
(A:y) =) —2A+yiln(A) —In(y;!) (2.3)
i=1

which can be further simplified to

[(A:y) =—nA+In(A)> yi— > In(y;!)
i=1 j=1

The first derivative is

al(l;)’)_ -1 - .
Sa =Nt A ;y,. (2.4)

The MLE is found by setting the derivative to 0 and solving,

—n—l—i_liy,- =0

i=1

n
2! Z yi=n
i=1
n A
Z)’i =ni
i=1
n
A=n"! Zyi
i=1
The maximum likelihood estimator of A in a Poisson is the sample mean.

2.1.2.2 Maximum Likelihood Estimation of a Normal (Gaussian) Model

Suppose y; is assumed to be i.i.d.normally distributed with mean p and variance 6. The pdf of a
normal is
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1 (vi—w)*

where 0 = [,u 62] ' The joint likelihood is the product of the n individual likelihoods,

f(y;0)=L(6:y) = ﬁ;exp (—M> .
1 V2mo? 202

Taking logs,
~ 1 1 2y Oi— “)2
1(6:y) :;—Eln(zn)—zln(a )= oo (2.6)
which simplifies to
n n I~ i u)2
[(8;y) = = In(2m) — JIn(c?) — 5 Z B

Taking the derivative with respect to the parameters 6 = ( u, 62)/,

2l(6:y) _ z": (i — )

i 2.7)
oOy)  n I (i—w)’
902~ 202 2 ; o4 2.8)

Setting these equal to zero, the first condition can be directly solved by multiplying both sides by 62,
assumed positive, and the estimator for u is the sample average.

n

Z ()’i(;ﬂ) 0

i=1

n A
Azz()’i—ﬂ)_q
(9 .]T_G x 0

l:
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Plugging the estimator {l into the second component of the score and setting equal to 0, the ML
estimator of 67 is

2.1.3 Conditional Maximum Likelihood

Interest often lies in the distribution of a random variable conditional on one or more observed values,
where the distribution of the variables conditioned on is not directly of interest. When this occurs, it is
natural to use conditional maximum likelihood. Suppose interest lies in modeling a random variable
Y conditional on one or more variables X. The likelihood for a single observation is f; (y;|x;), and
when Y; are conditionally i.i.d., then

aY|X Hf )’1|Xz

and the log-likelihood is
(6:y/X) = Zlnf (vilxi)

The conditional likelihood is not usually sufﬁc1ent to estimate parameters since the relationship
between Y and X has not been specified. Conditional maximum likelihood specifies the model pa-
rameters conditionally on x;. For example, when Y; is conditionally normally distributed, Y;|x; ~
N (/.Li, 62) where ; = g(B,x;) is some function which links parameters and conditioning variables.
In many applications a linear relationship is assumed so that

Vi = xif+g

k

= ) BiXij+e
j=1

= Wi+E.

Other relationships are possible, including functions g (x;8) which limits to range of x; such as
exp (x;B) (positive numbers), the normal cdf (® (x;)) or the logistic function,

A(xiB) = exp(xiB) /(1 +exp (xiB)),

since both limit the range to (0, 1).
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2.1.3.1 Example: Conditional Bernoulli

Suppose Y; and X; are Bernoulli random variables where the conditional distribution of ¥; given X; = x;
is

Y;|X; = x; ~ Bernoulli (6 + 0,x;)

so that the conditional probability of observing a success (¥; = 1) is p; = 6y + 61x;. The conditional
likelihood is

n

L(8:y1x) = [ (60 -+ 01x:) (1 — (60 + 613:)) ™,
i=1

the conditional log-likelihood is

n
1(6:y[x) = yiln(60+ 61x;) + (1 —y;)In (1 — (6 + 61x;)),
i=1

and the maximum likelihood estimator can be found by differentiation.

21(0;y|x) _ i yi 1=y _0
20, i1 6+60ix; 1—6y—61x;
oO:yx) _ <~ xwyi  x(l-y)
00, =1 éo-i-élxi 1—é0—é1xi

Using the fact that X; is also Bernoulli, the second score can be solved

P 6+ 6, (1—90—01) i1 6y + 6, 1—06p—0yx;
= ny (1= (60+61)) = (ne =) (B0 + 61)
= Nyy —Nyy (éo—l—él)—nx (éo—l—él)-i-nxy (éo—l—él)
b+6 = @,

nx

Define ny =Y i xi,ny =y i yi and ny, = > x;y;. The first score than also be rewritten as

O:i yi  l-yi _ iYi(l—xi)+ yixi  1=yi(l—x) (1—yi)x
i1 6b+61x; 1—6p—61x; i1 6o 6o+ 6, 1—6y 1—6y— 6
_ iyi(l—xi)_l—yi(l—xi)+{ xiyi  xi(l—y) }
p é() 1—@0 éo—l—é] 1—@0—@1
ny—n n—ny—ny+n
_ Ty S 2 e N )
6 1— 6y
= ny—nxy—éony+é0n—éon+éony+éonx—éonxy
gy — My
y = — 2

l’l—l’lx
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so that §; = 22 njl Z’” The “0” in the previous derivation follows from noting that the quantity in
braces ({}) is the first score and so is O at the MLE. If X; was not a Bernoulli random variable, then
it is not usually possible to analytically solve this problem. In these cases, numerical methods are

needed.®

2.1.3.2 Example: Conditional Normal

Suppose u; = Bx; where Y; given X; = x; is conditionally normal. Assuming that ¥; are conditionally
1.1.d., the likelihood and log-likelihood are

o - T 222
1 V2no? 202

n

1(8;y]x) = Z—% (ln(2n)+ln(02)+w>.

: o?
i=1

The scores of the likelihood are

d1(0;yx) n_Xi (yi—ﬁ)@') 0
K i:lT_
L (6:y]x) 1i 1 (y"_Bx")z

Cdor 24282 (g2

i=1

After multiplying both sides the first score by 62, and both sides of the second score by —26*, solving
the scores is straight forward, and so

z:l:1 XiYi
Z? 1 xz

62 = *IZ ﬁx,

=
|

2.1.3.3 Example: Conditional Poisson

Suppose ¥; is conditional on X; i.i.d. distributed Poisson(A;) where A; = exp (0x;). The likelihood and
log-likelihood are

" exp(— )4
H it Vil

L(6:yx) = o

i=1

1(6;yx) = Zexp(@x,-) +yi(0x;) —In(y;!).
i=1

®When X; is not Bernoulli, it is also usually necessary to use a function to ensure p;, the conditional probability, is in
[0,1]. The normal cdf and the logistic function are commonly used to enforce this constraint.
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The score of the likelihood is

(0:y]x)
26

=) —xiexp (6x;) +x,¥; =0.

i=1
This score cannot be analytically solved and so a numerical optimizer must be used to find the solu-
tion. It is possible, however, to show the score has expectation 0 since E [Y;|x; = x;] = A;.

. {51(93”")}

n
= = E Z —X;exp (0x;) + XiY;

Li=1

X

B n
= E|E [Z —X;exp (0x;) +X;Y;

i=1

= ZE [—x;exp (0x;) | X] + x;E [Y;|X]

i=1
n

= ) —xidi+xE[Y[X]
i=1
n

— Z —xi)L,' —|—x,-7L,- =0.

i=1

2.1.4 The Method of Moments

The Method of moments, often referred to as the classical method of moments to differentiate it from
the generalized method of moments (GMM, chapter 6), uses the data to match noncentral moments.

Definition 2.1 (Noncentral Moment). The r'? noncentral moment is defined
H =E[X] (2.9)
forr=1,2,....
Central moments are similarly defined, only centered around the mean.
Definition 2.2 (Central Moment). The ' central moment is defined
w=E[(X—p)] (2.10)
for r =2,3,... where the first central moment is defined to be equal to the first noncentral moment.

Since E [X/] is not known any estimator based on it is infeasible. The natural solution is to use the
sample analogue to estimate its value, and the feasible method of moments estimator is

bp=n="'> X, (2.11)
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the sample average of the data raised to the r power. While the classical method of moments was
originally specified using noncentral moments, the central moments are usually the quantities of in-
terest. The central moments can be directly estimated,

Pe=n""> (Xi— ), (2.12)
i=1

by first estimating the mean (f1;) and then estimating any higher-order central moments required. An
alternative is to expand the noncentral moment in terms of central moments. For example, the second
noncentral moment can be expanded in terms of the first two central moments,

W5 =ty + i

which is the usual identity that states that expectation of a random variable squared, E[Xl-z] ,1s equal to
the variance, 1, = 62, plus the mean squared, ,ulz. Likewise, it is easy to show that

W4 = i3+ 3o + 1}

directly by expanding E [(X — )3} and solving for p}. To understand that the method of moments

is in the class of M-estimators, note that the expression in eq. (2.12) is the first order condition of a
simple quadratic form,

N

n k
argmin ™' Y (- p)?+ 3% <n—‘ (X;— ) — uj>2. (2.13)
R | j=2 i=1

The solution is exact since the number of unknown parameters is identical to the number of equa-
o7
tions.

2.1.4.1 Method of Moments Estimation of the Mean and Variance

The classical method of moments estimator for the mean and variance for a set of i.i.d.data {y;}" ,
where E[Y;] = p and E [(Y, — ,u)z} = o7 is given by estimating the first two noncentral moments and

then solving for 2.

so that the variance estimator is 62 =n~"! Z;’:l Yi2 — 1. Following some algebra, it is simple to show
that the central moment estimator could be used instead, and so equivalently 62 =n~! S (Yi— ﬁ)z

"Note that 1, the mean, is generally denoted with the subscript suppressed as L.
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2.1.4.2 Method of Moments Estimation of the Range of a Uniform

Consider a set of realization of a random variable with a uniform density over [0, 6], and so ¥; ~
U(0,0). The expectation of ¥; is E[Y;] = 6 /2, and so the method of moments estimator for the upper
bound is

n
6 =2n" ZY,-.
i=1

2.1.5 Classical Minimum Distance

The third type of M-estimator is the classical minimum distance (CMD) estimator, which is also
known as minimum 2 . CMD differs from MLE and the method of moments in that it is an estimator
that uses parameter estimates produced by another estimator rather than on the data directly. CMD
is most common when a simple MLE or moment-based estimator can estimate a modified version
of the model of interest. This model may be missing some economically or statistically motivated
constraints on the parameters. This initial estimator, { is then used to estimate the parameters of the
model, 6, by minimizing a quadratic function of the form

0 =arggin(tﬁ—g(@))’wwf—gw)) (2.14)

where W is a positive definite weighting matrix and g () is a function that related the model param-
eters to . When W is chosen as the covariance of {, the CMD estimator becomes the minimum-y?
estimator since outer products of standardized normals are y? random variables.

2.2 Convergence and Limits for Random Variables

Before turning to estimators’ properties, it is useful to discuss some common measures of convergence
for sequences. First, recall the definition of a limit of a non-stochastic sequence.

Definition 2.3 (Limit). Let {x,} be a non-stochastic sequence. If there exists N such that for every
n> N, |x, —x| < € Ve > 0, then x is called the limit of x,,. When this occurs, x,, — x or lim,,_, o X, = x.

A limit is a point that a sequence approaches, and eventually, always remains near. While the limit
does not need to be attained, x, is always be less than € away from its limit for any choice of € > 0
for n sufficiently large.

Limits of random variables come in many forms. The first the type of convergence is both the
weakest and most abstract.

Definition 2.4 (Convergence in Distribution). Let {Y,} be a sequence of random variables and let
{F,} be the associated sequence of cdfs. If there exists a cdf F where F;, (y) — F (y) for all y where
F is continuous, then F is the limiting cdf of {Y,}. Let Y be a random variable with cdf F, then Y,

converges in distributionto Y ~ F, Y, 4y~ F , or simply Y, 4R

Convergence in distribution means that the limiting cdf of a sequence of random variables is the
same as the convergent random variable. This is a very weak form of convergence since all it requires
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Figure 2.1: This figure shows a sequence of cdfs {F;} that converge to the cdf of a standard normal.

is that the distributions are the same. For example, suppose {X,} is an i.i.d.sequence of standard
normal random variables, and Y is a standard normal random variable. X, trivially converges to

distribution to Y (X, 4y ) even through Y is completely independent of {X,} — the limiting cdf of
X, is merely the same as the cdf of Y. Despite the weakness of convergence in distribution, it is an
essential notion of convergence that is used to perform inference on estimated parameters.

Figure 2.1 shows an example of a sequence of random variables that converge in distribution. The

sequence is
1 n
n Ei:l Yi—1 4

where ¥; are i.i.d. x7 random variables and Z ~ N (0,1). This is a studentized average since the
variance of the average is 2/n and the mean is 1. By the time n = 128 the distribution of X, is nearly
indistinguishable from that of a standard normal.

Convergence in distribution is preserved through functions.

Theorem 2.1 (Continuous Mapping Theorem). Ler X, % X and let the random variable g(X) be
defined by a function g (X) that is continuous everywhere except possibly on a set with zero probability.

Then g(X,) 4 g (X).

The continuous mapping theorem is useful since it facilitates the study of functions of sequences
of random variables. For example, in hypothesis testing, it is common to use quadratic forms of nor-
mals, and when appropriately standardized, quadratic forms of normally distributed random variables
follow a x? distribution.

The next form of convergence is stronger than convergence in distribution since the limit is to a
specific value, not just a cdf.

Definition 2.5 (Convergence in Probability). The sequence of random variables {X, } converges in
probability to X if and only if

lim Pr(|X;, —X;| <€) =1Ve>0,Vi.

n—oo

When this holds, X,, %> X or equivalently plimX,, = X (or plimX,, — X = 0) where plim is probability
limit.
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Note that X can be either a random variable or a constant (degenerate random variable). For ex-
ample, if X, = n~! 4+ Z where Z is a normally distributed random variable, then X,, 47 Convergence
in probability requires virtually all of the probability mass of X,, to lie near X. This is a very weak
form of convergence since it is possible that a small amount of probability can be arbitrarily far away
from X. Suppose a scalar random sequence {X,} takes the value O with probability 1 — 1/n and n

with probability 1/n. Then {X,} % 0 although E[X,] = 1 for all n.

Convergence in probability, however, is strong enough that it is suitable for studying the limiting
behavior of functions of random variables.
Theorem 2.2. Let X, 2 X and let the random variable g(X) be defined by a function g(x) that
is continuous everywhere except possibly on a set with zero probability. Then g(X,) 5 g(X) (or
equivalently plimg (X,) = g (X))

This theorem has several useful forms. Suppose the k-dimensional vector X, 2 X, the con-
formable vector Y, EN Y, and C is a conformable constant matrix, then

* plim CX, = CX

* plim Zle Xin = Z;‘:l plimX;, = ZLIX,- — the plim of the sum is the sum of the plims

plim Hf;l Xin= Hf;l plimX;, = Hf:] X; — the plim of the product is the product of the plims
e plimY, X, =YX

* When Y, is a square matrix and Y is nonsingular, then Y, I' 2 y=1 _ the inverse function is
continuous and so plim of the inverse is the inverse of the plim

» When Y, is a square matrix and Y is nonsingular, then Y, ' X, 2 y-1x.

The plim operator has important differences from the expectations operator. In particular, the plim
operator passes through most functions. The feature allows for broad application. For example,

1 1
El|— -
HEE
whenever X is a non-degenerate random variable. However, if X, Ax = 0, then
1 1
plim— = -
X, plimX;,
1
- 5

Alternative definitions of convergence strengthen convergence in probability. In particular, conver-
gence in mean square requires that the expected squared deviation must be zero. This requires that
lim,,_, 0 E[X,] = X and lim,,_,, V [X,,] = 0.

Definition 2.6 (Convergence in Mean Square). The sequence of random variables {X,,} converges in
mean square to X if and only if

lim E [(X,-vn —X,-)z} — 0, Vi.

n—oo

When this holds, X,, = X.
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Mean square convergence is strong enough to ensure that, when the limit is random X than
lim,,_,0 E[X,;] = E[X] and lim, . V [X,;] = V [X] — these relationships do not necessarily hold when

only X, 2 X.
Theorem 2.3 (Convergence in mean square implies consistency). If X,, =5 X then X, X

This result follows directly from Chebyshev’s inequality (Theorem 1.12). A final, and very strong,
measure of convergence for random variables is known as almost sure convergence.

Definition 2.7 (Almost sure convergence). The sequence of random variables {X,, } converges almost

surely to X if and only if
lim Pr (X,},, —Xl' = 0) = 1, Vi.

n—oo

When this holds, X,, 3 X.

Almost sure convergence requires all probability to be on the limit point. This is a stronger
condition than either convergence in probability or convergence in mean square, both of which allow
for some probability to be (relatively) far from the limit point.

Theorem 2.4 (Almost sure convergence implications). If' X, 2% X then X, X and X, ES'¢

Random variables that converge almost surely to a limit are asymptotically degenerate on that
limit.
The Slutsky theorem combines convergence in distribution with convergence in probability to show
how the joint limit of functions behaves.

Theorem 2.5 (Slutsky Theorem). Let X, X and let Y B C, a constant, then for conformable X
and C,

X, +Y, 5 X+C
Y, X, % CX
Y, 'X, 41X as long as C is non-singular.

This theorem is at the core of hypothesis testing. Estimated parameters are often asymptotically
normally distributed. The estimated parameters are then standardized by scaling by an estimated pa-
rameter covariance that converges in probability to the true covariance. Slutsky’s theorem establishes
that using the estimated parameter covariance matrix is asymptotically equivalent to using the true
parameter covariance matrix.

2.3 Properties of Estimators

The first step in assessing the performance of an economic model is the estimation of the parameters.
There are several desirable properties estimators may possess.
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2.3.1 Bias and Consistency

A natural question to ask about an estimator is whether, on average, it is equal to the population value
of the parameter estimated. Any discrepancy between the expected value of an estimator and the
population parameter is known as bias.

Definition 2.8 (Bias). The bias of an estimator, @, is defined
B[6] =E[0] — 6y (2.15)
where 0 is used to denote the population (or “true”) value of the parameter.

When an estimator has a bias of 0 it is said to be unbiased. Consistency is a closely related concept
that measures whether a parameter is far from the population value in large samples.

Definition 2.9 (Consistency). An estimator 8, is said to be consistent if plim8, = 6. The explicit

dependence of the estimator on the sample size is used to clarify that these form a sequence, {é n }:il

Consistency requires an estimator to exhibit two features as the sample size becomes large. First,
any bias must be shrinking. Second, the distribution of 8 around 6 must be shrinking in such a way
that virtually all of the probability mass is arbitrarily close to 6.

Behind consistency is a set of theorems known as laws of large numbers that provide conditions
where an average converges to its expectation. The simplest is the Kolmogorov Strong Law of Large
numbers and is applicable to i.i.d.data.?

Theorem 2.6 (Kolmogorov Strong Law of Large Numbers). Let {Y;} by a sequence of i.i.d. random
variables with . = E[Y;] and define Y, =n='Y"""_| ;. Then

7, “u (2.16)
if and only if E[|Y;]] < oc.

In the case of i.i.d.data the only requirement for consistency is that the expectation exists, and
so a law of large numbers applies to an average of i.i.d.data whenever its expectation exists. For
example, Monte Carlo integration uses 1.1.d. draws and so the Kolmogorov LLN is sufficient to ensure
that Monte Carlo integrals converge to their expected values.

. . : . - N A2
The variance of an estimator is the same as any other variance, V [6] = E [(9 —E[6]) ] although
it is worth noting that the variance is defined as the variation around its expectation, E[é], not the

population value of the parameters, 0. Mean square error measures this alternative form of variation
around the population value of the parameter.

Definition 2.10 (Mean Square Error). The mean square error of an estimator @, denoted MSE (é), 18
defined )
MSE (8) =E | (6 - 60)| . 2.17)

It can be equivalently expressed as the bias squared plus the variance, MSE (é) =B [9}2 +V [@}
When the bias and variance of an estimator both converge to zero, then 8, = 6.

8 A law of large numbers is strong if the convergence is almost sure. It is weak if convergence is in probability.
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2.3.1.1 Bias and Consistency of the Method of Moment Estimators

The method of moments estimators of the mean and variance are defined as

= ,1ZY
62:n—lZ(Yl
i—1

When the data are i.i.d. with finite mean p and variance 02, the mean estimator is unbiased while
the variance is biased by an amount that becomes small as the sample size increases. The mean is
unbiased since

e
:n*ZE[Y,]
i=1
= nil i‘u
i=1
:n_lnu

=u

The variance estimator is biased since

L i=1

_E|n! (an_n[ﬂ)

(ZE | —nE [ ])
: (;u2+az—n(u2+%2>)

=n! (nu2 +no? — nuz - 62)

2

_ (0
=n ! I’le—l’l—
n

n—1
= o2,
n
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The key step in the derivation is to show that the sample mean is equal to the population mean plus
an error that is decreasing in n,

n 2
a* = <u+n‘1zei>
l:1n n 2
=’ +2un”'D> g+ (”_128i>
i=1

i=1

and so its square has the expected value

2.3.2 Asymptotic Normality

While unbiasedness and consistency are highly desirable properties of any estimator, alone these do
not provide a method to perform inference. The primary tool in econometrics for inference is the
central limit theorem (CLT). CLTs exist for a wide range of possible data characteristics that include
1.1.d., heterogeneous and dependent cases. The Lindberg-Lévy CLT, which is applicable to i.i.d. data,
is the simplest.

Theorem 2.7 (Llndberg Lévy). Let {Y;} be a sequence of i.i.d. random scalars with u = E[Y;| and
62 =VIY] <oco. If6? >0, then

G ”;“ 4 N(0,1) (2.18)

= _ _ 2
where Y, =n='Y1 | Y and 6, = c

Lindberg-Lévy states that as long as i.i.d.data have 2 moments — a finite mean and variance —
the sample mean is asymptotically normally distributed. It can further be seen to show that other
moments of i.i.d.random variables, such as the variance, are asymptotically normally distributed as
long as two times the power of the moment exists. In other words, an estimator of the ™ moment is
asymptotically normally distributed as long as the 2r'™ moment exists — at least in i.i.d. data.

Figure 2.2 contains density plots of the sample average of n independent X]Z random variables for
n=13, 10, 50 and 100.° The top panel contains the density of the unscaled estimates. The bottom panel

9The mean and variance of a x\% are v and 2V, respectively.
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Consistency and Central Limits
Unscaled Estimator Distribution
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Figure 2.2: These two panels illustrate the difference between consistency and the correctly scaled
estimators. The sample mean was computed 1,000 times using 5, 10, 50 and 100 i.i.d. x> data points.
The top panel contains a kernel density plot of the estimates of the mean. The density when n = 100
is much tighter than when n = 5 or n = 10 since the estimates are not scaled. The bottom panel
plots \/n(ft — 1)//2, the standardized version for which a CLT applies. All scaled densities have
similar dispersion although it is clear that the asymptotic approximation of the CLT is not particularly
accurate when n = 5 or n = 10 due to the right skew in the X12 data.

contains the density plot of the correctly scaled terms as they appear in the CLT, y/n(f1—1)/ V2 where
(1 is the sample average. The densities are collapsing in the top panel. This is evidence of consistency
since [l is collapsing to 1, its expected value. The bottom panel demonstrates the operation of a CLT
since the appropriately standardized means all have similar dispersion and are increasingly normally
distributed.

Central limit theorems exist for a wide variety of other data generating process including processes
which are independent but not identically distributed (i.n.i.d) or processes which are dependent, such
as time-series data. As the data become more heterogeneous, whether through dependence or by
having different variance or distributions, more restrictions are needed on certain characteristics of
the data to ensure that averages are asymptotically normally distributed. The Lindberg-Feller CLT
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allows for heteroskedasticity (different variances) and/or different marginal distributions.

Theorem 2.8 (Lindberg-Feller). Let {Y;} be a sequence of independent random scalars with p; =
E[Y;] and 0 < 6? = VY] < oo where y; ~ F, i =1,2,.... Then

Y _ —
B A o)1) (2.19)
Gn
and
o2
lim max n= =5 =0 (2.20)
n—o0 1<i<n Oy
if and only if, for every € > 0,
n
lim 62n~! / (z— ) dFi(z) =0 (2.21)
e 12—; (z—tn)>>eNG? R

where f =n~ 13" W and 5> =n~'3" | o7,

The Lindberg-Feller CLT relaxes the requirement that the marginal distributions are identical at
the cost of a technical condition. The final condition, known as a Lindberg condition, states that
none of the random variables are so heavy-tailed as to dominate the distribution when averaged. In
practice, this can be a concern when the variables have a wide range of variances (612). For example,
many macroeconomic data series exhibit a large decrease in the variance of their shocks after 1984, a
phenomenon is referred to as the great moderation. The statistical consequence of this decrease is that
averages that use data both before and after 1984 not be well approximated by a CLT and so caution is
warranted when using asymptotic approximations. This phenomena is also present in equity returns
where some periods — for example the technology “bubble” from 1997-2002 — have substantially
higher volatility than periods before or after. These large persistent changes in the characteristics of
the data have negative consequences on the quality of CLT approximations and large data samples are
often needed.

2.3.2.1 What good is a CLT?

Central limit theorems are the basis of most inference in econometrics, although their formal jus-
tification is only asymptotic and hence only guaranteed to be valid for an arbitrarily large data set.
Reconciling these two statements is an essential step in the evolution of an econometrician.

Central limit theorems should be seen as approximations, and as an approximation, they can be
accurate or arbitrarily poor. For example, when a series of random variables are i.i.d., thin-tailed,
and not skewed, the distribution of the sample mean computed using as few as ten observations may
be very well approximated using a central limit theorem. On the other hand, the approximation of a
central limit theorem for the estimate of the autoregressive parameter, p, in

Yi=pYii+& (2.22)

may be poor even for hundreds of data points when p is close to one (but smaller). Figure 2.3
contains kernel density plots of the sample means computed from a set of 10 i.i.d.draws from a
Poisson distribution with A = 5 in the top panel and the estimated autoregressive parameter from
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Central Limit Approximations
Accurate CLT Approximation
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Figure 2.3: These two plots illustrate how a CLT can provide a good approximation, even in small
samples (top panel), or a bad approximation even for moderately large samples (bottom panel). The
top panel contains a kernel density plot of the standardized sample mean of n = 10 Poisson random
variables (A = 5) over 10,000 Monte Carlo simulations. Here the finite sample distribution and the
asymptotic distribution overlay one another. The bottom panel contains the conditional ML estimates
of p from the AR(1) ¥; = pY;_1 + & where §&; is i.i.d. standard normal using 100 data points and 10,000
replications. While p is asymptotically normal, the quality of the approximation when n = 100 is poor.

the autoregression in eq. (2.22) with p = .95 in the bottom. Each figure also contains the pdf of
an appropriately scaled normal random variable. The CLT for the sample means of ten the Poisson
random variables is virtually indistinguishable from the actual distribution. The CLT approximation
for p is very poor despite being based on 100 data points — 10x more than in the i.i.d.uniform
example. The difference arises because the data in the AR(1) example are not independent. With
p = 0.95, data are highly dependent, and more data is required for averages to be well behaved so
that the CLT approximation is accurate.

There are no hard and fast rules as to when a CLT provides a good approximation to the finite-
sample distribution. In general, the more dependent and the more heterogeneous a series, the worse
the approximation for a fixed number of observations. Simulations (Monte Carlo experiments) are a



2.4 Distribution Theory

77

useful tool to investigate the validity of a CLT since they allow the finite sample distribution to be
tabulated and compared to the asymptotic distribution.

2.3.3 Efficiency

A final concept, efficiency, is useful for ranking consistent asymptotically normal (CAN) estimators
that have the same rate of convergence.'”

Definition 2.11 (Relative Efficiency). Let 8, and 6, be two \/n-consistent asymptotically normal
estimators for 0. If the asymptotic variance of 6,,, written avar (én) is less than the asymptotic
variance of én, and so

avar (6,,) < avar (8,) (2.23)

then én is said to be relatively efficient to 0,11

Note that when 6 is a vector, avar ( 6 n) is a covariance matrix. Inequality for matrices A and B is
interpreted to mean that if A < B then B — A is positive semi-definite, and so all of the variances of
the inefficient estimator must be (weakly) larger than those of the efficient estimator.

Definition 2.12 (Asymptotically Efficient Estimator). Let 8, and 8,, be two \/n-consistent asymptot-
ically normal estimators for 0. If
avar (8,,) < avar (8,) (2.24)

for any choice of 8, then 8, is said to be the efficient estimator of 6.

One of the important features of efficiency comparisons is that they are only meaningful if both
estimators are asymptotically normal, and hence consistent, at the same rate — y/n in the usual case.
It is trivial to produce an estimator that has a smaller variance but is inconsistent. For example, if an
estimator for a scalar unknown is § = 7 then it has no variance: it is always 7. However, unless 68y =7,
the estimator is also biased. Mean square error is a more appropriate method to compare estimators
where one or more may be biased since it accounts for the total variation, not just the variance.'?

2.4 Distribution Theory

Most distributional theory follows from a central limit theorem applied to the moment conditions or
the score of the log-likelihood. While the moment conditions or scores are not usually the objects
of interest — O is — a simple expansion can be used to establish the asymptotic distribution of the
estimated parameters.

10Tn any consistent estimator the asymptotic distribution of 6 — 0y is degenerate. In order to perform inference on an
unknown quantity, the difference between the estimate and the population parameters must be scaled by a function of the
number of data points. For most estimators this rate is \/n, and so v/n (9 — 90) is asymptotically normally distributed. In

the general case, the scaled difference can be written as n® (é — 90) where 79 is known as the rate.
HThe asymptotic variance of a y/n-consistent estimator, written avar (Gn) is defined as lim,,_,oo V [\/71 (9,, — 90)} .

12Some consistent asymptotically normal estimators have an asymptotic bias and so /7 (6, — 6) <4 N(B,X). Asymp-
totic MSE defined as E [n (én — 00) (én — 90)/} = BB’ + X provides a method to compare estimators using their asymp-
totic properties.
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2.4.1 Method of Moments

Distribution theory for the classical method of moments estimators is the most straightforward. Fur-
ther, Maximum Likelihood can be considered as a special case and so the method of moments is a
natural starting point.'> The method of moments estimator is defined as

Q :nlixi
i=1

po=n"">"(Xi—p)?
i=1

fe=n"">(Xi—p)f
i=1

To understand the distribution theory for the method of moments estimator, begin by reformulating
the estimator as the solution of a set of k equations evaluated using the population values of u, U, ...

n! iXi —u=0
i=1

'y (Xi—u) - =0
i=1

n

n_IZ(Xi—H)k—IJk =0
i=1

Define gi; =X; —p and gj; = (X; — u)j —Wj, j=2,...,k, and the vector g; as

81i
g = g?i . (2.25)

8ki

Using this definition, the method of moments estimator can be seen as the solution to

g, (8) =n"" Zn:gi (6) =o0.

3While the class of method of moments estimators and maximum likelihood estimators contains a substantial overlap,
method of moments estimators exist that cannot be replicated as a score condition of any likelihood since the likelihood
is required to integrate to 1.
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Consistency of the method of moments estimator relies on a law of large numbers holding for

n 'S Xpandn ' SO (X — w) for j=2,... k. If X;is an i.i.d. sequence and as long as B [|Xn — ,u|j]

exists, then n~! S (X — u)j LN i} j.14 An alternative, and more restrictive approach is to assume
that E [(Xn — ‘u)zf} = Uy exists, and so

E n’IZ(Xi—u)j = U (2.26)

v nli(xi—mf_ =n! (E (= )] —E[(Xl-—m’}z) (2.27)
L i=1 |
=n"! (sz'—u,z),

andson 1 >°7  (X; ,u) "3 u; which implies consistency.
The asymptotic normality of parameters estimated using the method of moments follows from the
asymptotic normality of

'Y gi(00) | =n""> gi(60), (2.28)
i=1 i=1

an assumption. This requires the elements of g, to be sufficiently well behaved so that averages are
asymptotically normally distributed. For example, when x; is i.i.d., the Lindberg-Lévy CLT would
require x; to have 2k moments when estimating k parameters. When estimating the mean, 2 moments
are required (i.e., the variance is finite). To estimate the mean and the variance using i.i.d.data, 4
moments are required for the estimators to follow a CLT. As long as the moment conditions are
differentiable in the actual parameters of interest 8 — for example, the mean and the variance — a
mean value expansion can be used to establish the asymptotic normality of these parameters. '

n A n g, R
Y gi(8)=n""Y gi(80)+ ‘12 39, (6-60) (2.30)
i=1 i=1 6=0
=n! Zgi(eo) + Gy, (é) (é — 90)
i=1

4Technically, n~! Z:-':l (xi — /J,)j “Du ; by the Kolmogorov law of large numbers, but since a.s. convergence implies
convergence in probability, the original statement is also true.
5The mean value expansion is defined in the following theorem.

Theorem 2.9 (Mean Value Theorem). Let s : RX — R be defined on a convex set ® C R¥. Further, let s be continuously
differentiable on ® with k by 1 gradient
ds(0)

Vs (@) 50 o .

(2.29)

Then for any points 6 and 0y there exists 0 lying on the segment between 0 and 0 such that s(0) = s(6¢) +
Vs (8)' (6 —60).
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where 8 is a vector that lies between 6 and 6, element-by-element. Note that n~! S gi(é) =0
by construction and so

i=1

Vi (8- 00) = G, (8) " v/ng(80)

where g,(60) =n" 'Y, 8i(00) is the average of the moment conditions. Thus the normalized
difference between the estimated and the population values of the parameters, \/n (9 — 90) is equal

to a scaled (—Gn (é)_1> random variable (1/ng,(600)) that has an asymptotic normal distribution.
By assumption +/ng,(6o) 4 N(0,X) and so

Vit (0-60) SN (0.67'2(6) ") 2.31)
where G, (é) has been replaced with its limit as n — oo, G.

G = plim

nmso0 ~ 557 (2.32)

. AL . . A p - p . .. ~ .
Since 6 is a consistent estimator, 8 — 6 and so 8 — 6 since it is between 0 and 6. This form of
asymptotic covariance is known as a “sandwich” covariance estimator.

2.4.1.1 Inference on the Mean and Variance

To estimate the mean and variance by the method of moments, two moment conditions are needed,

n! zn:Xi =0
i=1

n
'y (Xi—p)*=6°
i=1
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To derive the asymptotic distribution, begin by forming g;,

[ X
T - -0
Note that g; is mean 0 and a function of a single x; so that g; is also i.i.d.. The covariance of g; is given
by

L=E|gg]| =E { (X; _X;L_)zu_ 52 } [Xi—li (X;— )’ — o2 H (2.33)
L (X~ p)’ IR
| - (K- -0?)  (i-n?-o?)
N N i (Xi—1)* = 0% (X — )
| Xi-n) -0t () (- ) - 202 (X - )+ o

[ o]
U3 H4—G4

and the Jacobian is

n
G =plim,_, n1 Z ogi(6)

- 1 0
i -1 -
=plim,_, n E [ 2Xi—p) 1 }
Since plim,,_, . ,n~ ' >°7 | (X; — 1) = plim,,_, . %, — p =0,

S

Thus, the asymptotic distribution of the method of moments estimator of 0 = ( u, 62)/ is

alle Lo ) o] [0 wa])

/

since G = —L, andso G™'2(G™!) = -LX(-L) =X.

2.4.2 Maximum Likelihood

The steps to deriving the asymptotic distribution of an MLE are similar to those for a method of mo-
ments estimator. The key difference is that the score of the likelihood replaces the moment conditions.
The maximum likelihood estimator is defined as the maximum of the log-likelihood of the data with
respect to the parameters,
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0= argmax/(60;y). (2.34)
0

When the data are i.i.d., the log-likelihood can be factored into n log-likelihoods, one for each obser-
vation'®,

0;y) = > 1i(6:). (2.35)
i=1

It is useful to work with the average log-likelihood directly, and so define

L(0:y) =n"' > 1i(6:y1). (2.36)
=1

The intuition behind the asymptotic distribution follows from the use of the average. Under some
regularity conditions, ,(0;y) converges uniformly in 6 to E[I(8;y;)]. However, since the average
log-likelihood is becoming a good approximation for the expectation of the log-likelihood, the value
of O that maximizes the log-likelihood of the data and its expectation are very close for n sufficiently
large. As aresult,whenever the log-likelihood is differentiable and the range of y; does not depend on
any of the parameters in 0,

al—n(e’yl)

El =50

] =0 (2.37)
0=0,

where 0 are the parameters of the data generating process. This result follows since

(91_(6 ) af(yeo)
n\v0,Y 6=0,

— :00) — T Pos(y; 2.38
L GE, reaa= [ —etrwena @.38)
- af(y’e())

o
d
=55 f(y,) dy
0=0,
0
=20
-0

where Sy denotes the support of y. The scores of the average log-likelihood are

16Even when the data are not i.i.d., the log-likelihood can be factored into n log-likelihoods using conditional distribu-
tions for y;,...,y; and the marginal distribution of yy,

N
1(0:y) =Y _Li(0:yilyie1, 31+ (8:31).
n=2
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ol ( Gy, 128[ 3Vi) (2.39)

and when Y; is i.i.d. then the scores are i.i.d., and the average scores follow a law of large numbers for
6 close to 0.

ali( Gyl s 21(0;Y;)
Z { T } (2.40)

As a result, the population value of 9, 90, also solves the first-order condition (asymptotically). The
average scores are also the basis of the asymptotic normality of maximum likelihood estimators.
Under some further regularity conditions, the average scores follow a central limit theorem, and so

ViVl (80) = (_1231 9y’>

Taking a mean value expansion around 8y,

L N(0,7). (2.41)

0=0

where
2 ‘.
Vool () =n! ZM (2.42)

and where 0 is a vector whose elements lie between 6 and 6p. Since 0 is a consistent estimator of
0, 0 LN 6 and so functions of 6 converge to their value at 8, and the asymptotic distribution of the
maximum likelihood estimator is

Vi (B—60) SN (0,27 g7 (2.43)
where
T—_E M (2.44)
B 0000 |g_, '
and
21(6;y;) d1(6;y;)
—E 2.4
J [ 90 90" |oq, (2.43)

The asymptotic covariance matrix can be further simplified using the information matrix equality,
which states that Z — 7 - 0 and so
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Vi (6—00) 5N (0,77 (2.46)

or equivalently

Vi (6—00) SN (0,77 (2.47)

The information matrix equality follows from taking the derivative of the expected score,

’1(60:y) _ 1 9f(yi60) 1 9f(y:60) 9f(y:60)
0000"  f(y;0) 060060  f(y:0)2 06 00’
9%1(0¢;y) 81(90;y)8l(90;y): 1 9%f(y;00)
26006’ 20 06 f(y;0) 9606

(2.48)

and so, when the model is correctly specified,

2 . 2
B TR Sl BT
2
A
aeae / f(y:60)d
:aeae’l

=0.

and

B lazl(Go;y)} _ g {91(90;)’) 1(60;y)
2006’ 200 90’

A related concept, and one which applies to ML estimators when the information matrix equality
holds, at least asymptotically, is the Cramér-Rao lower bound.

Theorem 2.10 (Cramér-Rao Inequality). Let f(y;0) be the joint density of y where 0 is a k dimen-
sional parameter vector. Let 0 be a consistent estimator of 0 with finite covariance. Under some
regularity condition on f(+)

avar (8) >77'(0) (2.49)

where
2In f(¥;:6)
1(6)=-E [ 9006’

] : (2.50)
0=0,
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The important implication of the Cramér-Rao theorem is that maximum likelihood estimators,

which are generally consistent, are asymptotically efficient.!” This guarantee makes a strong case for

using the maximum likelihood when available.

2.4.2.1 Inference in a Poisson MLE

Recall that the log-likelihood in a Poisson MLE is

I(A:y) = —nA+In(A)> Y- zl:ln(i)
i=1 i=1

and that the first-order condition is

31(7L Y) 1
5 —n+A- ZY

The MLE was previously shown to be A=n! >, vi. To compute the variance, take the expectation
of the negative of the second derivative,

UAY) .,
oaz 4T
and so
%A Y) _
I:—E{ VP ]——E[—A 2Y;]
= [ATE[¥]]
=22
A
T a2
— 2!

and so \/ﬁ(i —).0> iN(O,/’L) since 77! = A.

Alternatively the covariance of the scores could be used to compute the parameter covariance,

¥\ 2
J =V (_1+%>

= 5V
= a2 n

"The Cramér-Rao bound also applied in finite samples when 6 is unbiased. While most maximum likelihood esti-
mators are biased in finite samples, there are important cases where estimators are unbiased for any sample size and so
the Cramér-Rao theorem applies in finite samples. Linear regression is an important case where the Cramér-Rao theorem
applies in finite samples (under some strong assumptions).
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7 = J and so the IME holds when the data are Poisson distributed. If the data were not Poisson
distributed, then it would not normally be the case that E[Y;] = V[Y;] = A, and so Z and J would not

(generally) be equal.

2.4.2.2 Inference in the Normal (Gaussian) MLE

Recall that the MLE estimators of the mean and variance are

n
p=n"') Y
i=1
n
& =3 (4~ 1)
i=1
and that the log-likelihood is

noo N2
1(0;y) = —gln(Zﬂ) — gln(cz) - 12%
i=1

. . . . /
Taking the derivative with respect to the parameter vector, 6 = ( u, 62) ,

u — o2
MOy n 1N~ (H-p)’
do? 202 2 P o4
The second derivatives are
9%1(6y) "1

ouou __21?

*(0:y) < (Yi—u)
oudo? __Z

PUOY) _ n 23 (%)’

do2doc? 204 2 = ol

The first does not depend on data and so no expectation is needed. The other two have expectations,
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and

dc20d0? 2064 2 o°

[ E|0-w)?]
T 204 o®
1 o2
204 o©of
R
- 204 of
_ 1

204

Putting these together, the expected Hessian can be formed,

2(6:y)] [—2& O
E{ 06006’ 1_{ 0 —Ll

and so the asymptotic covariance is

_ 200:y)] " 4 0
1 _ s i .
=8 S| <15 ]
204
[o? 0
|1 0 20*

The asymptotic distribution is then

all e Lo ]) (][5 0 ))

Note that this is different from the asymptotic variance for the method of moments estimator of the
mean and the variance. This is because the data have been assumed to come from a normal distribution
and so the MLE is correctly specified. As aresult (i3 = 0 (the normal is symmetric) and the IME holds.
In general the IME does not hold and so the asymptotic covariance may take a different form which
depends on the moments of the data as in eq. (2.33).
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2.4.3 Quasi Maximum Likelihood

While maximum likelihood is an appealing estimation approach, it has one important drawback:
knowledge of f (y;0). In practice the density assumed in maximum likelihood estimation, f (y; 6), is
misspecified for the actual density of y, g (y). This case has been widely studied, and estimators where
the distribution is misspecified are known as quasi-maximum likelihood (QML) estimators. QML
estimators generally lose all of the features that make maximum likelihood estimators so appealing:
they are generally inconsistent for the parameters of interest; the information matrix equality does not
hold; and they do not achieve the Cramér-Rao lower bound.
First, consider the expected score from a QML estimator,

dl(60;y) B dl(00y)
E, [T] = /Sy Tg(y)dy (2.51)

:/ d1(00:y) f(y:60)
Sy S
f

58 v Qo)g(Y)dy

:/ 91(60:y) g(y)
s, 06 60)

(y;
_ dl(00y) .,
—/Syh()’) Tf(y,eo)dy

f(y;60)dy

which shows that the QML estimator can be seen as a weighted average with respect to the density
assumed. These weights depend on the data, and so it is no longer be the case that the expectation of
the score at 8 is necessarily be 0. Instead QML estimators generally converge to another value of 6,
0™, that depends on both f (-) and g (-) and is known as the pseudo-true value of 6.

The other important consideration when using QML to estimate parameters is that the Information
Matrix Equality (IME) no longer holds, and so “sandwich” covariance estimators must be used, and
likelihood ratio statistics do not have standard 2 distributions. An alternative interpretation of a QML
estimator is that of a method of moments estimator where the scores of / (0;y) are used to choose the
moments. With this interpretation, the distribution theory of the method of moments estimator applies
as long as the scores, evaluated at the pseudo-true parameters, follow a CLT.

2.4.3.1 The Effect of the Data Distribution on Estimated Parameters

Figure 2.4 contains three distributions (left column) and the asymptotic covariance of the mean and
the variance estimators, illustrated through joint confidence ellipses containing 80, 95, and 99% prob-
ability that the true value is within their bounds (right column).'® The ellipses were all derived from
the asymptotic covariance of {l and 6% where the data are i.i.d. and distributed according to a mixture
of normals distribution where

Y — Ui +o1Z; with probability p
"\ Up+0rZ; withprobability 1 — p

8The ellipses are centered at (0,0) since the population value of the parameters has been subtracted. Also, note that
even though the confidence ellipse for 62 extended into the negative space, these must be divided by \/ and re-centered
at the estimated value when used.



2.4 Distribution Theory

89

P M O W O5
Standard Normal 1 0 1 0 1

Contaminated Normal 95 0 8 0 4.8
Right Skewed Mixture .05 2 5 -1 8

Table 2.1: Parameter values used in the mixtures of normals illustrated in figure 2.4.

where z is a standard normal. A mixture of normals is constructed from mixing draws from a finite
set of normals with possibly different means and variances and can take a wide variety of shapes. All
of the variables were constructed so that E[V;] = 0 and V [Y;] = 1. This restriction requires

pui+(1—=p)up =0

and

p(ui+of)+(1—p) (L +03) = 1.

The values used to produce the figures are listed in table 2.1. The first set is simply a standard normal
since p = 1. The second is known as a contaminated normal and is composed of a frequently occurring
(95% of the time) mean-zero normal with variance slightly smaller than 1 (.8), contaminated by a rare
but high variance (4.8) mean-zero normal. This mixture produces heavy tails but does not result
in a skewed distribution. The final example uses different means and variance to produce a right
(positively) skewed distribution.

The confidence ellipses illustrated in figure 2.4 are all derived from estimators produced assuming
that the data are normally distributed, but using the “sandwich” version of the covariance, Z~' 7Z 1.
The top panel illustrates the correctly specified maximum likelihood estimator. Here the confidence
ellipse is symmetric about its center. This shape occurs when the parameters are uncorrelated — and
hence independent since they are asymptotically normal — but have different variances. The middle
panel has a similar shape but is elongated on the variance axis (x). This example illustrates that
the asymptotic variance of &2 is affected by the heavy tails of the data (large 4™ moment) of the
contaminated normal. The final confidence ellipse is rotated, reflecting that the mean and variance
estimators are no longer asymptotically independent. These final two cases are examples of QML;
the estimator is derived assuming a normal distribution, but the data are not. In these examples, the
estimators are still consistent but have different covariances.'’

2.4.4 The Delta Method

Some theories make predictions about functions of parameters rather than on the parameters directly.
One typical example in finance is the Sharpe ratio, S, defined

19While these examples are consistent for the parameter of interest, it is not generally the case that the parameters
estimated using a misspecified likelihood (QML) are consistent for the quantities of interest.
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Data Generating Process and Asymptotic Covariance of Estimators

Standard Normal Standard Normal CI
0.57
2_
0.41
0.3' Nb 0
0.2
0.1 —2]
0.0 : : : 2 0 p)
2 0 2 u
Contaminated Normal Contaminated Normal CI
0.57
2_
0.41
0.31 L o
0.2
0.1 —2]
0.0 : : . 2 0 2
-2 0 2 u
Mixture of Normals Mixture of Normals CI
0.57
2_
0.41
0.3' Nb 0
0.2
0.1 —21
0.0 : : : 22 0 3
: 2 0 2 u

Figure 2.4: The six subplots illustrate how the data generating process, not the assumed model, de-
termine the asymptotic covariance of parameter estimates. In each row of panels, the left shows the
distribution of the data from a mixture of normals, y; = | + 01z; with probability p and y; = Uy + 0z;
with probability 1 — p. The right depicts the asymptotic covariance of fI and 62. The parameters were
chosen so that E [y;] = 0 and V [y;] = 1. Different parameter configurations produce a standard normal
(top), a heavy tailed distribution known as a contaminated normal (middle) and a skewed distribution
(bottom).
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E[R—Ry]
V[R—Ry]

S= (2.52)

where r is the return on a risky asset and r is the risk-free rate — and so r — r is the excess return on
the risky asset. While the quantities in both the numerator and the denominator are standard statistics,
the mean and the standard deviation, the ratio is not.

The delta method can be used to compute the covariance of functions of asymptotically normal
parameter estimates.

Definition 2.13 (Delta method). Let /(8 —00) % N (0, G 'y (G’)*l) where X is a positive definite

covariance matrix. Further, suppose that d(0) is a m by 1 continuously differentiable vector function
of 6 from R¥ — R™, Then,

Vn(d(8) —d(60)) % N (o,n(eo) :G—lz(G')‘l} D(eo)’)

where
D(6p) = —— . (2.53)

2.4.4.1 Variance of the Sharpe Ratio

The Sharpe ratio is estimated by “plugging in” the usual estimators of the mean and the variance,

=

5=
62

In this case d (6y) is a scalar function of two parameters, and so

d(eo>=%

and
1 —
D(eo>=[5 %}

Recall that the asymptotic distribution of the estimated mean and variance is

alla e ) oGl wte])

The asymptotic distribution of the Sharpe ratio can be constructed by combining the asymptotic dis-
tribution of & = (&1, 62)" with the D (8), and so

s w(ofs 2[5 wie ] )

which can be simplified to
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406

200 4
ﬁ(ﬁ-s)izv(o,l—“oﬁ3+“(“4 G)>.

The asymptotic variance can be rearranged to provide some insight into the sources of uncertainty,

R 1
Vn(S—35) iN(o,l—stkJrzsz(x—l)),

where sk is the skewness and K is the kurtosis. This derivation shows that the variance of the Sharpe
ratio is higher when the data are negatively skewed or have a large kurtosis (heavy tails). These two
characteristics are both empirical regularities of asset pricing data. If asset returns were normally
distributed, and so sk = 0 and k = 3, the expression of the asymptotic variance simplifies to
. s

V[vn(S-S5)] =1+ (2.54)
which is an expression commonly used as the variance of the Sharpe ratio. As this example illustrates,
the expression in Eq. (2.54) is only correct if the skewness is 0 and returns have a kurtosis of 3 —
something that would only be expected if returns are normally distributed.

2.4.5 Estimating Covariances

The presentation of the asymptotic theory in this chapter does not provide a method to implement
hypothesis tests. The limiting distribution depends on the covariance of the scores and the expected
second derivative (or Jacobian) in the method of moments. Feasible testing requires estimates of
these. The usual method to estimate the covariance uses “plug-in” estimators. Recall that in the
notation of the method of moments,

¥ = avar (ni Y (90)> (2.55)

i=1
or in the notation of maximum likelihood,

d1(6:Y;) d1(6;Y;)
. 2.
26 20" |g_g, (2-56)

When the data are 1.i.d., the scores or moment conditions should be i.i.d., so the variance of the
average is the average of the variances. The “plug-in” estimator for X uses the moment conditions
evaluated at 6, and so the covariance estimator in method of moments applications with i.i.d.data is

jEE[

S=nY g (0)g(8) (2.57)

which is simply the average outer-product of the moment condition. The estimator of X in the maxi-
mum likelihood is identical replacing g; (6) with d1(0;y;) /96 evaluated at 6,

P 21(6:Y;) 91(6;Y;)
d20 80’

(2.58)
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The “plug-in” estimator for the second derivative of the log-likelihood or the Jacobian of the
moment conditions is similarly defined,

= Z ael X (2.59)
0=0
or for maximum likelihood estimators
- %I 9%1(6;Y)
7 -1
_ ) 2.60

2.4.6 Estimating Covariances with Dependent Data

The estimators in eq. (2.57) and eq. (2.58) are only appropriate when the moment conditions or scores
are not correlated across .29 If the moment conditions or scores are correlated across observations, the
covariance estimator (but not the Jacobian estimator) must be changed to account for the dependence.
Since X is defined as the variance of a sum, the estimator must account for both the sum of the
variances plus all of the covariances.

n
Y = avar n_%Zgi(Go) (2.61)
i=1

= lim n~ ZE g (00)gi (60) +Z Z (27 (60)g,-i(80) +2-i(60)g;(60)]

n—o00
i=1 j=i+1

This expression depends on both the usual covariance of the moment conditions and the covariance
between the scores. When using i.i.d.data, the second term vanishes since the moment conditions
must be uncorrelated, and so cross-products must have expectation 0.

If the moment conditions are correlated across i, then the covariance estimator must be adjusted to
account for this. The obvious solution is to estimate the expectations of the cross terms in eq. (2.57)
with their sample analogs, which would result in the covariance estimator

igi(é) g ( +Z Z (gj gj— ,(é)/—kgj,,-(é) g (é)/> ) (2.62)

i=1 j=i+1

This estimator is always zero since S, = n~! (X e) Oon, g,-)/and S g =0, and so Ly
cannot be used in practice.>! One solution is to truncate the maximum lag to be something less than

20Since i.i.d.implies no correlation, the i.i.d.case is trivially covered.
2I'The scalar version of £pgp may be easier to understand. If g; is a scalar, then

GDEP_n Zgz é +2Z Z gj é g/ l(é)

i=1 \Jj=i+l

The first term is the usual variance estimator and the second term is the sum of the (n — 1) covariance estimators. The
more complicated expression in eq. (2.62) arises since order matters when multiplying vectors.
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n— 1 (usually much less than n — 1), although the truncated estimator is not guaranteed to be positive
definite. A better solution is to combine truncation with a weighting function (known as a kernel)
to construct an estimator that consistently estimates the covariance and is guaranteed to be positive
definite. The most common covariance estimator of this type is the Newey and West (1987) covariance
estimator. Covariance estimators for dependent data are examined in more detail in chapters 4 and 5.

2.5 Hypothesis Testing

Econometrics models are estimated to test hypotheses, for example, whether a financial theory is sup-
ported by data or to determine if a model with estimated parameters can outperform a naiveforecast.
Formal hypothesis testing begins by specifying the null hypothesis.

Definition 2.14 (Null Hypothesis). The null hypothesis, denoted Hy, is a statement about the popu-
lation values of some parameters to be tested. The null hypothesis is also known as the maintained
hypothesis.

The null defines the conditions on the population parameters that are tested. A null can be either
simple, for example, Hy : 4 = 0, or complicated, which allows for simultaneously testing multiple hy-
potheses. For example, it is common to test whether data exhibit any predictability using a regression
model

yi = 01+ 6x2; + 03x3 ; + &, (2.63)

and a composite null, Hy : 6, = 0N 63 = 0, often abbreviated Hy : 8 = 63 = 0.22

Null hypotheses cannot be accepted; the data can either lead to rejection of the null or a failure to
reject the null. Neither option is “accepting the null”. The inability to accept the null arises since there
are important cases where the data are not consistent with either the null or its testing complement,
the alternative hypothesis.

Definition 2.15 (Alternative Hypothesis). The alternative hypothesis, denoted H, is a complementary
hypothesis to the null and determines the range of values of the population parameter that should lead
to rejection of the null.

The alternative hypothesis specifies the population values of parameters for which the null should be
rejected. In most situations, the alternative is the natural complement to the null, and so the null and
alternative are exclusive of each other but inclusive of the range of the population parameter. For
example, when testing whether a random variable has mean 0, the null is Hp : 4 = 0, and the usual
alternative is Hy : u # 0.

In certain circumstances, usually motivated by theoretical considerations, one-sided alternatives
are desirable. One-sided alternatives only reject population parameter values on one side of zero,
and so tests using one-sided alternatives may not reject even if both the null and alternative are false.
Noting that a risk premium must be positive (if it exists), the null hypothesis of Hy : it = 0 should be
tested against the alternative Hy : u > 0. This alternative indicates the null should only be rejected
if there is compelling evidence that the mean is positive. These hypotheses further specify that data

22, the intersection operator, is used since the null requires both statements to be true.
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consistent with large negative values of u should not lead to rejection. Directionally focusing the al-
ternative often leads to an increased probability of rejecting a false null since less evidence is required
to be convinced that the null is not valid.

Like null hypotheses, alternatives can be composite. The usual alternative to the null Hy : 6, =
0N6;=0is H; : 6, #0U B3 # 0 and so the null should be rejected whenever any of the statements in
the null are false in other words if either or both 8, = 0 or 65 # 0. Alternatives can also be formulated
as lists of exclusive outcomes.”> When examining the relative precision of forecasting models, it
is common to test the null that the forecast performance is equal against a composite alternative.
The alternative contains separate cases superior forecasting from model A or from model B. If § is
defined as the average forecast performance difference, then the null is Hy : 6 = 0 and the composite
alternatives are H‘fl :0>0and H f} : 0 < 0. These alternatives indicate superior performance of models
A and B, respectively.

Once the null and the alternative have been formulated, a hypothesis test is used to determine
whether the data support the alternative.

Definition 2.16 (Hypothesis Test). A hypothesis test is a rule that specifies which values to reject Hy
in favor of H;.

Hypothesis testing requires a test statistic, for example, an appropriately standardized mean, and
a critical value. The null is rejected when the test statistic is larger than the critical value.

Definition 2.17 (Critical Value). The critical value for a a-sized test, denoted C, is the value where
a test statistic, 7', indicates rejection of the null hypothesis when the null is true.

The region where the test statistic is outside of the critical value is known as the rejection region.
Definition 2.18 (Rejection Region). The rejection region is the region where 7 > Cy,.

An important event occurs when the null is correct but the hypothesis is rejected. This is known
as a Type I error.

Definition 2.19 (Type I Error). A Type I error is the event that the null is rejected when the null is
true.

A closely related concept is the size of the test. The size controls how often Type I errors should
occur.

Definition 2.20 (Size). The size or level of a test, denoted «, is the probability of rejecting the null
when the null is true. The size is also the probability of a Type I error.

Typical sizes include 1%, 5%, and 10%, although ideally, the selected size should reflect the decision
makers preferences over incorrectly rejecting the null. When the opposite occurs, the null is not
rejected when the alternative is true, a Type II error is made.

Definition 2.21 (Type II Error). A Type II error is the event that the null is not rejected when the
alternative is true.

Type II errors are closely related to the power of a test.

Definition 2.22 (Power). The power of the test is the probability of rejecting the null when the alter-
native is true. The power is equivalently defined as 1 minus the probability of a Type II error.
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Decision
Do not reject Hy ~ Reject Hy

Hy Correct Type I Error
= .
= (Size)
=

H, Type II Error Correct

(Power)

Table 2.2: Outcome matrix for a hypothesis test. The diagonal elements are both correct decisions.
The off diagonal elements represent Type I error, when the null is rejected but is valid, and Type II
error, when the null is not rejected and the alternative is true.

The two error types, size, and power, are summarized in table 2.2.

A perfect test would have unit power against any alternative. In other words, whenever the alterna-
tive 1s valid, it would reject immediately. A test’s power depends on the sample size and the distance
between the population value of a parameter and its value under the null. A test is said to be consistent
if the test’s power goes to 1 as n — oo whenever the population value lies in the area defined by the
alternative hypothesis. Consistency is an essential characteristic of a test, but it is usually considered
more important to have the correct size than to have high power. Power can always be increased by
distorting the size, and so it is more useful to consider a related measure known as the size-adjusted
power. The size-adjusted power examines the power of a test above the size of the test. Since a test
should reject at size even when the null is true, it is useful to examine the probability the test rejects
in excess of the probability it should reject when the null is true.

One useful summary of a test statistic is its p-value.

Definition 2.23 (p-value). The p-value is the probability of observing a value as large as the observed
test statistic given the null is true. The p-value is also:

* the largest size (o) where the null hypothesis cannot be rejected; and
* the smallest size where the null hypothesis can be rejected.

The primary advantage of a p-value is that it immediately demonstrates which test sizes would lead
to rejection: anything above the p-value. Reporting a p-value also improves the common practice of
reporting the test statistic alone; p-values can be interpreted without knowledge of the test statistic’s
distribution or critical value. However, since it incorporates information about a specific test statistic
and its associated distribution, the formula used to compute the p-value is problem specific.

A related representation is the confidence interval for a parameter.

Definition 2.24 (Confidence Interval). A confidence interval for a scalar parameter is the range of
values, 6y € (C a,ax) where the null Hy : 6 = 8y cannot be rejected for a size of «.

The formal definition of a confidence interval is not usually sufficient to uniquely identify the con-

fidence interval. Suppose that a \/n(6 — 6p) 4N (0,62). The common 95% confidence interval is

23The U symbol indicates the union of the two alternatives.
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(é —1.960,6 + 1.960). This set is known as the symmetric confidence interval and is formally de-
fined as points (C,,Cq) where Pr(6p) € (Cy,,Cq) =1—0and C,,— 0 = 8 —Cy) . An alternative, but
still valid, confidence interval can be defined as (—o0, @ +1.645672). This would also contain the true
value with probability 95%. In general, symmetric confidence intervals should be used, especially
for asymptotically normal parameter estimates. In rare cases where symmetric confidence intervals
are not appropriate, other options for defining a confidence interval include shortest interval, so that
the confidence interval is defined as values (C,,Cy) where Pr(6y) € (C,,Cq) = 1 — o subject to
Cq — C,, chosen to be as small as possible, or symmetric in probability, so that the confidence interval
satisfies Pr(6p) € (C,,0) =Pr(6p) € (8,Cq) = 1/2 — /2. When constructing confidence internals
for parameters that are asymptotically normal, these three definitions coincide.

2.5.1 Size and Power of a Test of the Mean with Normal Data

Suppose 7 i.i.d.normal random variables have unknown mean p but known variance ¢ and so the
sample mean, § =n"1 Y, y;, is then distributed N(ut,0%/N). When testing a null that Hy : g = o
against an alternative Hj : U # U, the size of the test is the probability that the null is rejected
when it is true. Since the distribution under the null is N(uo,c2/N) and the size can be set to o
by selecting points where Pr (ﬁ € (Q a,fa) lu= u()) = 1 — a. Since the distribution is normal, one
natural choice is to select the points symmetrically so that C,, = o + \/iﬁq)_l (oe/2) and Co = o +

\/iﬁdfl (1 —a/2) where @ (-) is the cdf of a standard normal.

The power of the test is defined as the probability the null is rejected when the alternative is
true. This probability depends on the population mean, i, the sample size, the test size and mean
specified by the null hypothesis. When testing using an -sized test, rejection occurs when I <

Ho + \/iﬁcb_l (a/2) or ft > o+ \/LNCID_1 (1— a/2). Since under the alternative i is N (111, 02), these

probabilities are
o H1
q)(,u(ﬁ—\/—ﬁd) (a/z)_ul):q)(Qa_.ul)

o O
VN VN
and |
o+ 2 (1 - at/2) — o _
1—c1>< YA _ (et
VN VN

The total probability that the null is rejected is known as the power function,

VN VN

A graphical illustration of the power is presented in figure 2.5. The null hypothesis is Hy : 4t =0
and the alternative distribution was drawn at (; = .25. The variance 02 =1, n =75, and the size was
set to 5%. The highlighted regions indicate the power: the area under the alternative distribution, and
hence the probability, which is outside of the critical values. The bottom panel illustrates the power
curve for the same parameters allowing n to range from 5 to 1,000. When 7 is small, the power is low
even for alternatives far from the null. As n grows, the power increases. When n = 1,000, the power
of the test is close to unity for alternatives greater than 0.1.
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Power
Rejection Region and Power
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Figure 2.5: The top panel illustrates the power. The distribution of the mean under the null and
alternative hypotheses were derived under that assumption that the data are i.i.d. normal with means
Uo = 0 and u; = .25, variance 6> = 1, n =5 and & = .05. The bottom panel illustrates the power
function, in terms of the alternative mean, for the same parameters when n =5, 10, 100 and 1,000.

2.5.2 Statistical and Economic Significance

While testing can reject hypotheses and provide meaningful p-values, statistical significance is differ-
ent from economic significance. Economic significance requires a more detailed look at the data than
a simple hypothesis test. Establishing the statistical significance of a parameter is the first and easy
step. The more difficult step is to determine whether the effect is economically important. Consider a
simple regression model

yi= 01+ 6x2;+ 03x3,; + & (2.64)

and suppose that the estimates of both 6, and 65 are statistically different from zero. This can happen
for various reasons, including having an economically small impact accompanied by a substantial
sample. Other statistics, such as the percentage of the variation that can be explained by either variable
alone or the variability of the X values, should be considered when assessing relative contributions.
Another critical aspect of assessing economic significance is that rejection of a hypothesis, while
formally as a “yes” or “no” question, should be treated more continuously. The p-value of a test
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statistic is a useful tool that can provide a more in-depth insight into the strength of the rejection. A
p-value of .00001 is not the same as a p-value of .09999 even though a 10% test would reject for
either.

2.5.3 Specifying Hypotheses

Formalized in terms of 0, a null hypothesis is

Hy:R(6)=0 (2.65)

where R(+) is a function from R¥ to R™, m < k, where m represents the number of hypotheses in a
composite null. While this specification of hypotheses is very flexible, testing non-linear hypothe-
ses raises some subtle but important technicalities, and further discussion is reserved for chapter 6.
Initially, the exposition focuses on a subset of all hypotheses in the linear equality restriction (LER)
class. Hypotheses in the LER class

Hyp:RO—r=0 (2.66)

where R is a m by k matrix and r is a m by 1 vector. All hypotheses in the LER class can be written
as weighted sums of model parameters,

R1161+R126,...+R16, =n

R»101 +R»6,...+ R2k9k' =1 (2.67)

R0 +Rup6r...+Ruy6r =r.

Each linear hypothesis is represented as a row in the above set of equations. Linear equality con-
straints can be used to test parameter restrictions on 6 = (0, 6,, 65, 94)/ such as

0,=0 (2.68)
30, +6;=1

4
Ze,:o
j=1

6 =0,=06;=0.

For example, the hypotheses in eq. (2.68) can be described in terms of R and r as
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[1pt]Hy R r

6=0 [1 00 0] 0

3 +6;=1 [0 3 1 0] 1

YK 6=0 [1 11 1] 0
1000

6=6=6,=0 |01 00| [000]
0010

[1pt]

When using linear equality constraints, alternatives are generally formulated as H; : RO —r #
0. Once both the null the alternative hypotheses have been postulated, it is necessary to determine
whether the data are consistent with the null hypothesis using one of the many tests.

2.5.4 The Classical Tests

Three classes of test statistics are commonly used to test hypotheses: Wald, Lagrange Multiplier,
and Likelihood Ratio. Wald tests are perhaps the most intuitive: they directly test whether RO —r,
the value under the null, is close to zero by exploiting the asymptotic normality of the estimated
parameters. Lagrange Multiplier tests incorporate the constraint into the estimation problem using
a Lagrangian. If the constraint has a small effect on the objective function’s value, the Lagrange
multipliers, often described as the shadow price of a constraint in an economic application, should
be close to zero. The magnitude of the scores forms the basis of the LM test statistic. Finally,
likelihood ratios test whether the data are less likely under the null than under the alternative. If these
restrictions are not statistically meaningful, this ratio should be close to one since the difference in
the log-likelihoods should be small.

2.5.5 Wald Tests

Wald test statistics are possibly the most natural method to test a hypothesis and are often the sim-
plest to compute since only the unrestricted model must be estimated. Wald tests directly exploit the
asymptotic normality of the estimated parameters to form test statistics with asymptotic x,%l distribu-
tions. Recall that a 2 random variable is defined to be the sum of v independent standard normals
squared, Zlyzl ziz where z; <~ N(0,1). Recall that if z is a m-dimension normal vector with mean p
and covariance X,

z~N(u,X) (2.69)
then the standardized version of z can be constructed as

272 (z— ) ~N(0,1). (2.70)
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Defining w = Z_%(z — ) ~ N(0,I), it is easy to see that w'w = Z%:] w2, ~ x2. In the usual

case, the method of moments estimator, which nests ML and QML estimators as special cases, is
asymptotically normal

Vit(6-60) SN (0.67'2(67")"). 2.71)
If null hypothesis, Hy : RO =r is true, it follows directly that
V(RO -r) 4N (0,RGT'Z(67)'R). 2.72)

This allows a test statistic to be formed

W=n(RO—r) (RG_lz(G_l)/R’>1 (RO —r) (2.73)

which is the sum of the squares of m random variables, each asymptotically uncorrelated standard
normal and so W is asymptotically x?2 distributed. A hypothesis test with size o can be conducted
by comparing W against C = F ! (1 — &) where F (-) is the cdf of a 2. If W > C,, then the null is
rejected.

There is one problem with the definition of W in eq. (2.73): it is infeasible since it depends on G
and ¥ which are unknown. The usual practice is to replace the unknown elements of the covariance
matrix with consistent estimates to compute a feasible Wald statistic,

W:n(Ré—r)’<R(;12((;1)'R’)_1 (RO ). (2.74)

which has the same asymptotic distribution as the infeasible Wald test statistic.

2.5.5.1 t-tests

A t-test is a special case of a Wald that can only be applied in tests involving a single hypothesis.
Suppose the null is

H() :RO—r=0
where R is 1 by k, and so
Vi (RO—r) L NORG'E(G!)'R).

The studentized version can be formed by subtracting the mean and dividing by the standard devia-
tion,

t: Vi (RO —r)
\/RG—IE(G—I)’R/

4 N, 1). (2.75)

and the test statistic can be compared to the critical values from a standard normal to conduct a
hypothesis test. ¢-tests have an important advantage over the broader class of Wald tests — they can
be used to test one-sided null hypotheses. A one-sided hypothesis takes the form Hy : RO > r or Hy :
RO < r which are contrasted with one-sided alternatives of H; : RO < r or H; : RO > r, respectively.
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When using a one-sided test, rejection occurs when R — r is statistically different from zero and when
RO < ror RO > r as specified by the alternative.

t-tests are also used in commonly encountered test statistic, the 7-stat, a test of the null that a
parameter is 0 against an alternative that it is not. The ¢-stat is popular because most models are
written in such a way that if a parameter 6 = 0 then it has no impact.

Definition 2.25 (z-stat). The ¢-stat of a parameter 6; is the ¢-test value of the null H : 8; = 0 against
a two-sided alternative H; : 6; # 0.

A

8.
t-stat = —L (2.76)
Oy
where
e.G (G e
GA:\/ / (G e (2.77)
n

and where e; is a vector of Os with 1 in the M position.

Note that the 7-stat is identical to the expression in eq. (2.75) when R =¢; and r = 0. R = ¢;
corresponds to a hypothesis test involving only element j of 6 and r = 0 indicates that the null is
0; =0.

A closely related measure is the standard error of a parameter. Standard errors are essentially
standard deviations — square-roots of variance — except that the expression ‘“standard error” is ap-
plied when describing the estimation error of a parameter while “standard deviation” is used when
describing the variation in the data or population.

Definition 2.26 (Standard Error). The standard error of a parameter 0 is the square root of the param-
eter’s variance,

A\ 2
s.c. (6) =4/0; (2.78)
where | I\
e G 'X(G ') e
op = ’S )€ (2.79)

and where e; is a vector of Os with 1 in the i position.

2.5.6 Likelihood Ratio Tests

Likelihood ratio tests examine how “likely” the data are under the null and the alternative. If the
hypothesis is valid, then the data should be (approximately) equally likely under each. The LR test
statistic is defined as

LR=-2 (l (é;y) —1 (é,y)) (2.80)
where 0 is defined
6 =argmax(6;y) (2.81)
0

subjectto RO —r =0
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and 0O is the unconstrained estimator,

6 =argmax[(6;y). (2.82)
0

Under the null Hy : RO —r =0, the LR LA x2. The intuition behind the asymptotic distribution of the
LR can be seen in a second order Taylor expansion around parameters estimated under the null, 6.

1 dl(y;6)
20

/182l(y;é)

I(y:0)=1(y:0)+ (8- 9) n 9000

Vn(6-8)+R (2.83)

+3va(6-0)

where R? is a remainder term that is vanishing as n — co. Since  is an unconstrained estimator of
6o,

ol(y;0)
6 =0
and
21(v- O
—2(I(y;8) —1(y;0)) ~ n (6 — 8)' (—%%) Vn(6-9) (2.84)

Under some mild regularity conditions, when the MLE is correctly specified

10%1(y;6) p. . [9%(y;60)
_L10MYY) b g 9N 00) ) g
n 0000 { 0606’ } !

and

NACE (Nt
Thus,

2 .0
6—b ’lw\/ﬁ(é—é)i;@i (2.85)

and so 2 (! (y;0)—1 (y;@)) 4 x2. The only difficultly remaining is that the distribution of this
quadratic form is a )2 an not a x,f since k is the dimension of the parameter vector. While for-
mally establishing this is tedious, the intuition follows from the number of restrictions. If 0 were
unrestricted then it must be the case that & = 6 since 0 is defined as the unrestricted estimators. Ap-
plying a single restriction leave k — 1 free parameters in 6 and thus it should be close to 8 except for
this one restriction.

When models are correctly specified LR tests are very powerful against point alternatives (e.g.,
Hp : 0 = 0¢ against Hy : 6 = 01). Another important advantage of the LR is that the parameters’
covariance does not need to be estimated. In many problems, accurate parameter covariances may
be difficult to estimate, and imprecise covariance estimators produce adverse consequences for test
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statistics, such as size distortions so that a test with a desired size of 5% reject substantially more
often than 5% when the null is true.

It is also important to note that the likelihood ratio does not have an asymptotic y2 when the
assumed likelihood f(y;0) is misspecified. When this occurs, the information matrix equality fails
to hold, and the LR’s asymptotic distribution is a mixture of x> distribution. In practice, the assumed
error distribution is often misspecified, and so the distributional assumptions used to estimate 8 must
be verified before using a likelihood ratio test.

Likelihood ratio tests are not available for method of moments estimators since no distribution
function is assumed.?*

2.5.7 Lagrange Multiplier, Score and Rao Tests

Lagrange Multiplier (LM), Score, and Rao test are all the same statistic. While the Lagrange Multi-
plier test may be the most appropriate description, its alternative moniker score test directly illustrates
the test’s construction. Score tests exploit the first-order condition to test whether a null hypothesis is
compatible with the data. Using the unconstrained estimator of 6, @, the scores must be zero,

dL(6:y)
96 lo—p

The score test examines whether the scores are “close” to zero — in a statistically meaningful way
— when evaluated using the parameters estimated subject to the null restriction, 6. Define

=0. (2.86)

~ d1; (6:y;)
(9) = A0 2.87
si (0) 30 |, (2.87)
as the i" score, evaluated at the restricted estimator. If the null hypothesis is correct, then
n
Va[n 'Y s (8) | S N0,5). (2.88)
i=1

241t is possible to construct a likelihood ratio-type statistic for method of moments estimators. Define
n
g.(0)=n""> 2(6)
i=1

to be the average moment conditions evaluated at a parameter 6. The likelihood ratio-type statistic for method of moments
estimators is defined as

LM =ng), (6)2™'g, (8) —ng, (8)2 'z, (0)
=ng, (8)% '8, (0)

where the simplification is possible since g, (@) = 0 and where
S = I’li1 Zgi (é) g; (é)/
i=1

is the sample covariance of the moment conditions evaluated at the unrestricted parameter estimates. This test statistic
only differs from the LM test statistic in eq. (2.90) via the choice of the covariance estimator, and it should be similar in
performance to the adjusted LM test statistic in eq. (2.92).
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This limiting distribution forms the basis of the score test, which is computed as

LM =n5(8)'=7'5(8) (2.89)

where §(6) =n~'Y"" ;s; (0). While this version is not feasible since it depends on £, the standard
practice is to replace ¥ with a consistent estimator and to compute the feasible score test,

LM =n5(8)'$"'5 () (2.90)

where the estimator of ¥ depends on the assumptions made about the scores. In the case where the
scores are 1.1.d. (usually because the data are i.i.d.),

S=n""Y s (8)s:(8) (2.91)
i=1

is a consistent estimator since E [s; ()] = 0 if the null is true. In practice, a more powerful version
of the LM test can be formed by subtracting the mean from the covariance estimator and using

f=n"! Z (s:(8) —5(8)) (s: (8) —5(8))’ (2.92)

which must be smaller (in the matrix sense) than ¥, although asymptotically, if the null is true, these
two estimators converges to the same limit. Like the Wald and the LR, the LM follows an asymptotic
x2 distribution, and an LM test statistic is rejected if LM > Cy where Cy, is the 1 — « quantile of a
x2 distribution.

Scores test can be used with method of moments estimators by simply replacing the score of the
likelihood with the moment conditions evaluated at the restricted parameter,

si(0) =2 (6),
and then evaluating eq. (2.90) or (2.92).

2.5.8 Comparing and Choosing the Tests

All three of the classic tests, the Wald, likelihood ratio, and Lagrange multiplier, have the same
limiting asymptotic distribution. In addition to all being asymptotically distributed as a x?2, they are
all asymptotically equivalent, and so they all have an identical asymptotic distribution, and if one test
rejects, the others also reject, at least in large samples. As a result, there is no asymptotic argument
that one should be favored over the other.

The simplest justifications for choosing one over the others are practical considerations. Wald
requires estimation under the alternative — the unrestricted model — and require an estimate of the
asymptotic covariance of the parameters. LM tests require estimation under the null — the restricted
model — and require an estimate of the asymptotic covariance of the scores evaluated at the restricted
parameters. LR tests require both forms to be estimated but do not require any covariance estimates.
On the other hand, Wald and LM tests can easily be made robust to many forms of misspecifica-

. . . . . / .
tion by using the “sandwich” covariance estimator, G~ X (G_l) for moment-based estimators or
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Z' 77! for QML estimators. LR tests cannot be easily corrected and instead follow a non-standard
distribution known as a mixture of y2.

Models that are substantially easier to estimate under the null or alternative lead to a natural choice
of test statistic. An LM test is a good choice when a model is easy to estimate in its restricted form
but not in its unrestricted form. If estimation under the alternative is simpler than under the null, then
Wald tests are reasonable. If they are equally simple to estimate, and the distributional assumptions
used in ML estimation are plausible, LR tests are likely the best choice. Empirically a relationship
exists where W ~ LR > LM. LM is often smaller and hence less likely to reject the null since it
estimates the covariance of the scores under the null. When the null may be restrictive, the scores
have larger variances when evaluated using the restricted parameters. The larger variances lower the
value of LM since the score covariance is inverted in the statistic. A simple method to correct this is
to use the adjusted LM computed using the modified covariance estimator in eq. (2.92).

2.6 The Bootstrap and Monte Carlo

The bootstrap is an alternative technique for estimating parameter covariances and conducting infer-
ence. The name bootstrap is derived from the expression “to pick oneself up by one’s bootstraps”
— a seemingly impossible task. When initially proposed, the bootstrap was treated as an equally
impossible feat, although it is now widely used. In some estimators, the bootstrap also is the pre-
ferred method for covariance estimation. At its core, the bootstrap is a simulation technique and so
is similar to Monte Carlo. However, unlike Monte Carlo, which requires a complete data-generating
process, the bootstrap uses the observed data to simulate the data — hence the similarity to the original
turn-of-phrase.

Monte Carlo is an integration technique that uses simulation to approximate the underlying dis-
tribution of a known function of random variables. Suppose ¥; ~ F (6) where F is some distribution,
and that interest is in the E[g(Y)]. Further suppose it is possible to simulate from F (0) so that a
sample {y;} can be constructed. Then

n 'y g(Y) HE[g(Y)]
i—1

as long as this expectation exists since the simulated data are i.i.d. by construction. The convergence
of the Monte Carlo expectation to the population value follows from Kolmogorov’s Strong Law of
Large numbers.

The observed data can be used to compute the empirical cdf.

Definition 2.27 (Empirical cdf). The empirical cdf is defined

A

F(c)= n! Zl[yz‘@}'
i=1

The empirical cdf can be used to simulate random variables, and if F is close to F then the
simulated data from the empirical cdf should have similar statistical properties (e.g., moments and
quantiles) to data simulated from the population cdf. The empirical cdf is a coarse step function, and
so only values which have been observed can be simulated. Simulating from the empirical cdf of
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Standard Normal cdf and Empirical cdfs for » = 20 and 1,000

1.04
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0.84 n = 1000
Normal CDF
0.6
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0.0 = ; ; ; v .
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Figure 2.6: These three lines represent the population cdf of a standard normal, and two empirical
cdfs constructed form simulated data. The very coarse empirical cdf is based on 20 observations and
clearly highlights the step-nature of empirical cdfs. The other empirical cdf, which is based on 1,000
observations, appear smoother but is still a step function.

the data is identical to resampling the original data, and so the observed data can be directly used to
simulate the from the underlying (unknown) cdf. The relationship between the emprical cdf and the
population cdf is the basis of the bootstrap.

Figure 2.6 shows the population cdf for a standard normal and two empirical cdfs, one estimated
using n = 20 observations and the other using n = 1,000. The coarse empirical cdf highlights the
step-like features of an empirical cdf. This structure restricts the random numbers generated from the
empirical cdf to coincide with the values used to compute the empirical cdf.

The bootstrap can be used for a variety of purposes. The most common application of the bootstrap
is to estimate parameter covariance matrices. This procedure is an alternative to the usual plug-in type
estimator and is simple to implement when the parameter estimator has a closed form.

Algorithm 2.1 (i.i.d. Nonparametric Bootstrap Covariance).
1. Repeat a total of B times.

(a) Generate a set of n i.i.d. uniform integers {j;};_, on [1,2,...,n].
(b) Construct a simulated sample {y i }

(c) Estimate the parameters of interest using {y j;}’ and denote the estimate 0,

2. Estimate the variance of 6 using

or alternatively
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where 8 = B~ Zle 0.

The variance estimator that comes from the bootstrap is directly compared comparable to the
asymptotic covariance estimator. The bootstrap covariance is converging to 0 as the sample size
increases since the resampled data is more like the original data when # is large. If

Vi (6—00) 4N (0,%),

then the bootstrap covariance estimator is comparable to 3 /n. Or equivalently, rescaling the bootstrap
covariance estimate by /z should produce an estimate similar to £. Note that when using a condi-
tional model, the data [y; x/]" should be jointly bootstrapped. Aside from this small modification to
step 2, the remainder of the procedure remains valid.

The nonparametric bootstrap is closely related to the residual bootstrap, at least when it is possible
to appropriately define a residual. For example, when Y;|X; ~ N (ﬁ/xi, 62) , the residual can be defined

& =yi— 3lxi. Alternatively if ¥;|X; ~ Scaled — x2 (exp (B'x,-)), then & = y;/\/ B/x . The residual
bootstrap can be used whenever it is possible to express y; = g (6, &;,X;) for some known function g.

Algorithm 2.2 (i.i.d. Residual Bootstrap Covariance).
1. Repeat a total of B times.

(a) Generate a set of n uniform integers {j;};_, on [1,2,...,n].

(b) Construct a simulated sample {éji?xji} and define y; = g (é,é,',f(,-) where & = &;, and
3 25
X; = Xj[.

(c) Estimate the parameters of interest using {¥;,%;}, and denote the estimate 0y,

2. Estimate the variance of 6 using

or alternatively
B
A~ A ~ ~ ~ ~ /
Vo] =B"> j(e,,—e) (9,,—9) .
b=1

It is important to emphasize that the bootstrap is not, generally, a better estimator of parameter
covariance than standard plug-in estimators.”® Asymptotically both are consistent and can be used
equivalently to perform hypothesis tests or construct confidence intervals. Additionally, i.i.d. bootstraps
can only be applied to (conditionally) i.i.d.data. When data have dependence it is necessary to use
an alternative bootstrap scheme. Using an inappropriate bootstrap that doesn’t capture important
dependence in the data produces an inconsistent covariance estimator.

23In some models, it is possible to use independent indices on & and x, such as in a linear regression when the data are
conditionally homoskedastic (See chapter 3). In general it is not possible to explicitly break the link between g and x;,
and so these should usually be resampled using the same indices.

26There are some problem-dependent bootstraps that are more accurate than plug-in estimators in an asymptotic sense.
These are rarely encountered in financial economic applications.
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When the interest lies in confidence intervals, an alternative procedure that directly uses the em-
pirical quantiles of the bootstrap parameter estimates can be constructed (known as the percentile
method).

Algorithm 2.3 (i.i.d. Nonparametric Bootstrap Confidence Interval).
1. Repeat a total of B times:
(a) Generate a set of n uniform integers { ji};_, on [1,2,...,n].
(b) Construct a simulated sample {y i }

(c) Estimate the parameters of interest using {y ji}’ and denote the estimate 0,

2. Estimate the 1 — & confidence interval of O, using

[9a/2({6c}) d1-as2 ({6c})]

where qq, ({ék}) is the empirical o quantile of the bootstrap estimates. 1-sided lower confi-
dence intervals can be constructed as

[R(—elg);ql—a ({ék})}

and 1-sided upper confidence intervals can be constructed as

e ({80}) R (80)

where R (6) and R (6y) are the lower and upper extremes of the range of 6y (possibly +00).

The percentile method can also be used directly to compute p-values of test statistics. This requires
enforcing the null hypothesis on the data and so is somewhat more involved. For example suppose
the null hypothesis is E[Y;] = 0. This can be enforced by replacing the original data with ¥; = Y; — ¥
in step 2 of the algorithm.

Algorithm 2.4 (i.i.d. Nonparametric Bootstrap p-value).

1. Repeat a total of B times.

(a) Generate a set of n uniform integers {ji}:_, on [1,2,...,n].
(b) Construct a simulated sample using data where the null hypothesis is true, { y j[.}.

(c) Compute the test statistic of interest using {)7 ji}’ and denote the statistic T (éb).

2. Compute the bootstrap p-value using

/\ -1
P—val = ZI[T 0)<T(8y)]

for 1-sided tests where the rejection region is for large values (e.g., a Wald test). When using
2-sided tests, compute the bootstrap p-value using

P—val = 1ZI|T 0

<|T Gb H
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The test statistic may depend on a covariance matrix. When this is the case, the covariance matrix
is usually estimated from the bootstrapped data using a plug-in method. Alternatively, it is possible
to use any other consistent estimator (when the null is true) of the asymptotic covariance, such as one
based on an initial (separate) bootstrap.

When models are maximum likelihood based, so that a complete model for the data is specified, it
is possible to use a parametric form of the bootstrap to estimate covariance matrices. This procedure
is virtually identical to standard Monte Carlo except that the initial estimate 6 based on the observed
data is used in the simulation.

Algorithm 2.5 (i.i.d. Parametric Bootstrap Covariance (Monte Carlo)).
1. Repeat a total of B times:

(a) Simulate a set of n i.i.d.draws {§;} from F (é)

(b) Estimate the parameters of interest using {3}, and denote the estimates 0,

2. Estimate the variance of 0 using

or alternatively

When models use conditional maximum likelihood, it is possible to use parametric bootstrap as
part of a two-step procedure. First, apply a nonparametric bootstrap to the conditioning data{x;}, and
then, using the bootstrapped conditioning data, simulate ¥; ~ F (9]&). This is closely related to the
residual bootstrap, only the assumed parametric distribution F is used in place of the data-derived
residuals.

2.7 Inference on Financial Data

Inference is covered in greater detail in conjunction with specific estimators and models, such as
linear regression or ARCH models. These examples examine simple hypotheses to illustrate the steps
needed to test a hypothesis.

2.7.1 Testing the Market Premium

Testing the market premium is a cottage industry. While current research is more interested in pre-
dicting the market premium, testing whether the market premium is significantly different from zero
is a natural application of the tools introduced in this chapter. Let A denote the market premium and
let 62 be the variance of the return. Since the market is a traded asset, it must be the case that the
premium for holding market risk is the same as the mean of the market return. Monthly data for the
Value Weighted Market (V W M) and the risk-free rate (R f) was available between January 1927 and
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October 2020. Data for the VW M was drawn from CRSP, and data for the risk-free rate was available
from Ken French’s data library. Excess returns on the market are defined as the return to holding the
market minus the risk-free rate, VW M7 =V W M; — R f;. The excess returns and a kernel density plot
are presented in figure 2.7. Excess returns are both negatively skewed and heavy-tailed — October
1987 is 5 standard deviations from the mean.

The mean and variance can be computed using the method of moments as detailed in section 2.1.4,
and the covariance of the mean and the variance can be computed using the estimators described in
section 2.4.1. The estimates were calculated according to

j) 3T VWM
= AN\ 2
{ 52 ] S (VvMe -2

and, defining & = VWM¢ — A, the covariance of the moment conditions was estimated by

—— Z?:lé'z Z?:léi(éiz_ﬁzz ‘
i &8 -6%) XL, (8 -6%)

Since the plim of the Jacobian is —I,, the parameter covariance is also . Combining these two
results with a Central Limit Theorem (assumed to hold), the asymptotic distribution is

Vn[6—6] 4 N(0,%)

where 6 = (l, 62)/. These produce the results in the first two rows of table 2.3.

These estimates can also be used to make inference on the standard deviation, ¢ = V62 and
the Sharpe ratio, S = A/c. The derivation of the asymptotic distribution of the Sharpe ratio was
presented in 2.4.4.1 and the asymptotic distribution of the standard deviation can be determined in a
similar manner where d (8) = V62 and so

D(Q):%: {0 2\/1?}

Combining this expression with the asymptotic distribution for the estimated mean and variance, the
asymptotic distribution of the standard deviation estimate is

\/ﬁ(a—c)iN(o,M).

4072

which was computed by dividing the [2,2] element of the parameter covariance by 467.

2.7.1.1 Bootstrap Implementation

The bootstrap can be used to estimate parameter covariance, construct confidence intervals — either
used the estimated covariance or the percentile method, and to tabulate the p-value of a test statistic.
Estimating the parameter covariance is simple — the data is resampled to create a simulated sample
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with n observations and the mean and variance are estimated. This is repeated 10,000 times and the
parameter covariance is estimated using

oo ([B]-[R])(5]-[2])

The percentile method can be used to construct confidence intervals for the parameters as esti-
mated and for functions of parameters such as the Sharpe ratio. Constructing the confidence intervals
for a function of the parameters requires constructing the function of the estimated parameters using
each simulated sample and then computing the confidence interval using the empirical quantile of
these estimates. Finally, the test p-value for the statistic for the null Hy : A = 0 can be computed
directly by transforming the returns so that they have mean O using #; = r; — 7;. The p-value can be
tabulated using

B
5 o -1
P_val=B Zl[f <]
b=1

where 7, is the average from bootstrap replication b. 7<) is one whenever the sample average return

is less than the average return from the bootstrap sample average created from demeaned returns. If
this rarely happens, then the mean is unlikely to be zero, and the p-value is small. Table 2.4 contains
the bootstrap standard errors, confidence intervals based on the percentile method and the bootstrap
p-value for testing whether the mean return is 0. The standard errors are virtually identical to those
estimated using the plug-in method, and the confidence intervals are similar to 6+ 1.96s.e. (6;). The
null that the average return is 0O is also strongly rejected.

The bootstrap can also be used to directly estimate the covariance of parameters and their transfor-
mations. Table 2.4 also contains bootstrap standard errors and confidence intervals for the variance,
the standard deviation and the Sharpe ratio. The covariance of these three statistics (and the mean)
can be computed using the bootstrap

/

5 Ay il iy i}

o | o7 62 o7 62
Y = B~ § - —| 4 ~ —| 4
Oy o Oy (o3

b=1 . - e o

fiv/ 5, i/ fip/ 5, /6

where 6, = V62 and &), = 4/ 613. This direct calculation is an alternative to computing the covariance

of just the mean and variance and then using the delta method to estimate the standard error of the
transformations.?’

2T These estimates all use the i.i.d. bootstrap. This bootstrap is not appropriate for bootstrapping the variance of finan-
cial returns since the variance is correlated across time. There are alternative bootstrap methods that can account for
dependence in data. A more reasonable approach uses a bootstrap known as the Circular Block Bootstrap. This bootstrap
resamples contiguous blocks of observations when building the bootstrap sample. The block size is a parameter of the
bootstrap. The table below uses the CBB with a window size of Lnl/ %]. The standard error of the mean (risk premium) is
virtually unchanged, while the standard errors of the variance, the standard deviation, and to a lesser degree, the Sharpe
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Parameter Estimate Std. Error ¢-stat

8.086 1.909 4.236
2 343.0 31.67 10.83
18.52 0.855 10.83
0.437 0.104 4.200

al*Qq q >

Table 2.3: Parameter estimates and standard errors for the market premium (A4), the variance of the
excess return (62), the standard deviation of the excess return (o) and the Sharpe ratio (%). Estimates
and variances were computed using the method of moments. The standard errors for o and % were
computed using the delta method.

Bootstrap Confidence Interval

Parameter Estimate Std. Error Lower Upper
A 8.086 1.905 4.339 11.85
o’ 343.0 31.87 2843 407.8
c 18.52 0.858 16.86 20.19
% 0.437 0.104 0.234 0.642
H() A=0

p-value 2.198 x 107>

Table 2.4: Parameter estimates, bootstrap standard errors and confidence intervals (based on the per-
centile method) for the market premium (1), the variance of the excess return (6?), the standard
deviation of the excess return (o) and the Sharpe ratio (%). Estimates were computed using the
method of moments. The standard errors for o and % were computed using the delta method using
the bootstrap covariance estimator.

2.7.2 Is the NASDAQ Riskier than the S&P 100?

A second application examines the riskiness of the NASDAQ and the S&P 100. Both of these indices
are value-weighted and contain 100 companies. The NASDAQ 100 contains only companies that
trade on the NASDAQ, while the S&P 100 contains large companies that trade on either the NYSE or
the NASDAQ.

The null hypothesis is that the variances are the same, H : Ggp = GJ%D, and the alternative is that

ratio, are larger.

Standard Error
Parameter Estimate Circular Block IID Bootstrap
A 8.086 1.925 1.905
o? 343.0 77.82 31.87
o 18.52 2.065 0.858
4 0.437 0.127 0.104
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CRSP Value Weighted Market (VWM) Excess Returns
CRSP VWM Excess Returns
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Figure 2.7: These two plots contain the returns on the VWM (top panel) in excess of the risk free rate
and a kernel estimate of the density (bottom panel). While the mode of the density (highest peak)
appears to be clearly positive, excess returns exhibit strong negative skew and are heavy tailed.

the variance of the NASDAQ is larger, H : GI%D > G§P.28 The null and alternative can be reformulated
as a test that § = G]%,D — Ggp is equal to zero against an alternative that it is greater than zero. The
estimation of the parameters can be formulated as a method of moments problem,

Asp ISP
) n ~ 2
Osp | — ! Z (rspi— fisp)
UND — IND,i
A 2 1= 1 ~ 2
OnND (rnp,i — AND)

Inference can be performed by forming the moment vector using the estimated parameters, g;,

281t may also be interesting to test against a two-sided alternative that the variances are unequal, H : GK,D =+ qu.
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Daily Data
Estimate Std. Error/Correlation
Usp 10.11 3.162 -0.162 0.825 -0.037
Ogp 18.76 -0.162 0476 -0.088 0.666
UnD 16.90 0.825 -0.088 4.440 0.025
OND 26.34 -0.037 0.666 0.025 0.447
Test Statistic
o) 1.36 65 0.07 t-stat 19.33
Monthly Data
Estimate Std. Error/Correlation
Usp 9.52 2.583 -0.337 0.843 -0.246
Osp 15.32 -0.337  0.729 -0.278 0.681
UND 16.33 0.843 -0.278 4.034 -0.192
OND 23.92 -0.246 0.681 -0.192 1.127
Test Statistic
o 28.14 65 3.50 t-stat 8.04

Table 2.5: Estimates, standard errors and correlation matrices for the S&P 100 and NASDAQ 100.
The top panel uses daily return data between January 3, 1983, and December 31, 2007 (6,307 days)
to estimate the parameter values in the left-most column. The rightmost 4 columns contain the pa-
rameter standard errors (diagonal elements) and the parameter correlations (off-diagonal elements).
The bottom panel contains estimates, standard errors, and correlations from monthly data between
January 1983 and December 2007 (300 months). Parameter and covariance estimates have been
annualized. The test statistics (and related quantities) were performed and reported on the original

(non-annualized) values.

rspi — Usp

(FSP,i - .USP)2 - Ggp

ND,i — UND

2
(rnp,i — UND)” — ORp

and recalling that the asymptotic distribution is given by

Via(6-6) 4N (0.67'(6) 7).

Using the set of moment conditions,



116 Estimation, Inference, and Hypothesis Testing

—1 0 0 0

n
o 1 —2(rspi—usp) —1 0 0
G= phmn%oo n 2; 0 0 —1 0
- 0 0 -2 (rND,i_,uND) —1

=—14.

¥ can be estimated using the moment conditions evaluated at the estimated parameters, g; (@),

n
S=n""> g(6)g ().
i=1

Noting that the (2,2) element of X is the variance of 6§P, the (4,4) element of X is the variance of 6]%@
and the (2,4) element is the covariance of the two, the variance of 5= 61%10 - 6'§P can be computed as
the sum of the variances minus two times the covariance, X 5) + X4 4) — 2X[ 4. Finally a one-sided
t-test can be performed to test the null.

Data was taken from Yahoo! finance between January 2010 and December 2019 at both the daily
and monthly frequencies. Parameter estimates are presented in table 2.5. The table also contains the
parameter standard errors — the square-root of the asymptotic covariance divided by the number of

observations (4 /Xj; ;/n) — along the diagonal and the parameter correlations — X; 71/ /Zj; 1Z;,j — in
the off-diagonal positions. The top panel contains results for daily data, while the bottom contains
results for monthly data. Returns scaled by 100 were used in both panels.

All parameter estimates are reported in annualized form, which requires multiplying daily (monthly)
mean estimates by 252 (12), and daily (monthly) volatility estimated by V252 (x/ﬁ) . Additionally,

the delta method was used to adjust the standard errors on the volatility estimates since the actual
parameter estimates were the means and variances. Thus, the reported parameter variance covariance
matrix has the form

252 0 0 0 220 0 0
A 0 ¥ 0 0 || 0 ¥ 0 o0
— 'SP Osp
D(6)=D (9) 0 0 252 0 || 0 0 252 0
252 252
0 0 0 ¥ 0 0 0 ¥

In both cases 9 is positive with a 7-stat greater than 6, indicating a strong rejection of the null in favor
of the alternative. Since this was a one-sided test, the 95% critical value would be 1.645 (® (.95)).

This test could also have been implemented using an LM test, which requires estimating the two
mean parameters but restricting the variances to be equal. One 0 is estimated, the LM test statistic is
computed as

LM =ng, ()5 'g, (8)

where

& (®)=1"> e (0)

and where fisp = flsp, fivp = fvp (unchanged) and 63, = 63, = (63 + 67p) /2.
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Daily Data
Estimate Bootstrap Std. Error/Correlation

Hsp 10.11 3.161 -0.163 0.828 -0.027
Osp 18.76 -0.163  0.476 -0.080 0.664
HMND 16.90 0.828 -0.080 4.498 0.039
OND 26.34 -0.027  0.664 0.039 0.445

Monthly Data
Estimate Bootstrap Std. Error/Correlation
Usp 9.52 2.579 -0335 0.845 -0.237

Osp 15.32 -0.335  0.729 -0.285 0.677
UND 16.33 0.845 -0.285 3.992 -0.186
OND 23.92 -0.237  0.677 -0.186 1.137

Table 2.6: Estimates and bootstrap standard errors and correlation matrices for the S&P 100 and
NASDAQ 100. The top panel uses daily return data between January 3, 1983, and December 31,
2007 (6,307 days) to estimate the parameter values in the left-most column. The rightmost 4 columns
contain the bootstrap standard errors (diagonal elements) and the correlations (off-diagonal elements).
The bottom panel contains estimates, bootstrap standard errors and correlations from monthly data
between January 1983 and December 2007 (300 months). All parameter and covariance estimates
have been annualized.

2.7.2.1 Bootstrap Covariance Estimation

The bootstrap is an alternative to the plug-in covariance estimators. The bootstrap was implemented
using 10,000 resamples where the data were assumed to be 1.1.d.. In each bootstrap resample, the full 4
by 1 vector of parameters was computed. These were combined to estimate the parameter covariance
using

Table 2.6 contains the bootstrap standard errors and correlations. The parameter estimates and co-
variance are annualized, and volatility rather than variance is reported. The bootstrap covariance
estimates are virtually indistinguishable from those computed using the plug-in estimator. This simi-
larity highlights that the bootstrap is not (generally) a better estimator but is merely an alternative.>

2.7.3 Testing Factor Exposure

Suppose excess returns were conditionally normal with mean y; = B’x; and constant variance 62.
This type of model is commonly used to explain cross-sectional variation in returns, and when the
conditioning variables include only the market variable, the model is known as the Capital Asset

21n this particular application, as the bootstrap and the plug-in estimators are identical as B — oo for fixed n. This
identity is not generally the case.
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Pricing Model (CAP-M, Sharpe (1964) and Lintner (1965)). Multi-factor models allow for additional
conditioning variables such as the size and value factors (Ross, 1976; Fama and French, 1992; Fama
and French, 1993). The size factor is the return on a portfolio, which is long small-cap stocks and
short large-cap stocks. The value factor is the return on a portfolio that is long high book-to-market
stocks (value) and short low book-to-market stocks (growth).

This example estimates a 3 factor model where the conditional mean of excess returns on individ-
ual assets is modeled as a linear function of the excess return to the market, the size factor and the
value factor. This leads to a model of the form

ri— ",f = Bo+pBi (i’m,i - ’{) + Borsi+ B3rvi+ €
o= B'xite
where rlf is the risk-free rate (short term government rate), r,,; is the return to the market portfolio,
rs; 1s the return to the size portfolio and r,; is the return to the value portfolio. &; is a residual which

is assumed to have a N (O, 62) distribution.
Factor models can be formulated as a conditional maximum likelihood problem,

n

1 \2
[(r[X;0) = —%Z {ln(27t)+1n (0?) +M}

: o?
i=1

where 0 = [ﬁ ! 62] /. The MLE can be found using the first order conditions, which are

ol (r;
zgﬁe) - A2§:X’< b'xi) =0
:>[§ = <ZXX> Zx,r,

n 2
a1 (r;0) 1§:1, —ﬁ&)

do? 2 4 - 62 64
=

n N
:>62 = l’l_IZ(I‘i—ﬁ Xl')
i=1

7

~

=0

The vector of scores is

a1 (ri|x; 0) ;gxa
ollrixi:0) o
06

1
L0 Xi; Xi€;
— 62 1¢1 — 1¢1
[ 0 2<1;4}[62_8i21 S{Gz_eiz]

where & = r; — B'x;. The second form is used to simplify estimating the parameters covariance. The
Hessian is

20'2 + 264

921 (ri|xi;0) —Lxix] —dxg
20000" ’
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and the information matrix is

7z

The covariance of the scores is
i 2./ 2
E7XiX; O°X;&;

J E|S

o’xle; —xe?
P
E [g7xix(]

(0% —¢;

BlElerX ]
o%E [x;x)]

| E[E[o’xje; —xj¢][X]]
0 4}

O°X.€ —
The estimators of the covariance matrices are

v
St
—1xn—1§:-_%xix'

O 1
n
—1 xn_lz
i=
n
—1xn! Z
i=
x&3

Note that the off-diagonal term in J, 62x/&; — x[&?,
tionally skewed. Combined, the QMLE parameter cova
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where the identical scaling terms have been canceled. Additionally, when returns are conditionally
normal,

n a2 / A2 A N
plim.J plimn_lz é 0 & XiX; 62x8 — X8} % 0
B A2 /A . A2 a2
. 0 217 62xjg —x&  (62—¢&7) 0 -L

i
#O szix§0 #O
0 L 0 20* 0 !
1

and
n lX
limZ = plimn~ 'y | &
plim plimn 2 { 0
P

B [ éxixg 0 }

= L
0 5

and so the IME, plimj — 7= 0, holds when returns are conditionally normal. Moreover, when

returns are not normal, all of the terms in J typically differ from the limits above, and the IME does

not hold.

2.7.3.1 Data and Implementation

Three assets are used to illustrate hypothesis testing: Exxon Mobil (XOM), Alphabet Inc. (GOOG),
and the SPDR Gold Trust ETF (GLD). The data used to construct the individual equity returns were
downloaded from Yahoo! Finance and span from January 2010 to December 2019. The market
portfolio is the CRSP value-weighted market, a composite based on all listed US equities. The size
and value factors were constructed using portfolio sorts and are made available by Ken French. All
returns were scaled by 100.

2.7.3.2 Wald tests

Wald tests make use of the parameters and estimated covariance to assess the evidence against the null.
When testing whether the size and value factor are relevant for an asset, the null is Hy : B, = 83 = 0.
This problem can be set up as a Wald test using

0010 0
R:{o 0 0 1}”:[0}

W=n(RO-r) [RI'IT'R] " (RO-1).

The Wald test has an asymptotic x22 distribution since the null imposes 2 restrictions.
t-stats can similarly be computed for individual parameters

and

fj=\/ﬁﬁ—/j\

P
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where V [ﬁ,} is the j'" diagonal element of the estimated parameter covariance matrix. Table 2.7

contains the parameter estimates from the models, ¢-stats for the coefficients and the Wald test statis-
tics for the null Hy : B, = B3 = 0. The t-stats and the Wald tests were implemented using both the
sandwich covariance estimator (QMLE) and the maximum likelihood covariance estimator. The two
sets of test statistics differ in magnitude since the assumption of normality is violated in the data, and
so only the QMLE-based test statistics should be considered reliable.

2.7.3.3 Likelihood Ratio tests

Likelihood ratio tests are simple to implement when parameters are estimated using MLE. The likeli-
hood ratio test statistic is

LR =2 (1 (r[X:8) — 1 (r[X;8))

where 0 is the null-restricted estimator of the parameters. The likelihood ratio has an asymptotic )(22
distribution since there are two restrictions. Table 2.7 contains the likelihood ratio test statistics for
the null Hy : B, = B3 = 0. Caution is needed when interpreting likelihood ratio test statistics since the
asymptotic distribution is only valid when the model is correctly specified — in this case, when returns
are conditionally normal, which is not plausible.

2.7.3.4 Lagrange Multiplier tests

Lagrange Multiplier tests are somewhat more involved in this problem. The key to computing the LM
test statistic is to estimate the score using the restricted parameters,

1 ~
. o2 Xi€i
Si = =2

L&
362 T a5

~ ~/ ~ S ) ..
where & = r; — B x; and 6 = [ﬁ 62] is the vector of parameters estimated when the null is imposed.
The LM test statistic is then
LM =n3S7'5

where
n

n
S=n! § 8, andS=n" § 88,
i=1

i=1

The improved version of the LM can be computed by replacing S with a covariance estimator based
on the scores from the unrestricted estimates,

n
S = n ') 84
i=1

Table 2.7 contains the LM test statistics for the null Hy : B, = B3 = 0 using the two covariance estima-
tors. LM test statistics are naturally robust to violations of the assumed normality since S and S are
directly estimated from the scores and not based on properties of the assumed normal distribution.
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2.7.3.5 Discussion of Test Statistics

Table 2.7 contains all test statistics for the three series. The test statistics based on the MLE and
QMLE parameter covariances differ substantially in all three series, although the conclusions do not
differ. The difference between the two sets of results from an implicit rejection of the assumption that
returns are conditionally normally distributed with constant variance. The MLE-based Wald and the
LR tests have similar magnitudes for all three series. The QMLE-based Wald test statistics are larger

than the LM-based test statistics. This difference reflects the covariance’s estimation under the null
(LM) or the alternative (Wald).

Exercises
Exercise 2.1. What influences the power of a hypothesis test?

Exercise 2.2. Let Y; be i.i.d. Exponential(A) with pdf f (y;) = Aexp (—Ay;), A > 0. Derive the MLE
of A where there are n observations.

Exercise 2.3. If n observations of ¥; ~ Bernoulli (p) are observed, what is the MLE of p? The pdf of

a single Bernoulli is |
p(1—p) .

Exercise 2.4. When performing a hypothesis test, what are Type I and Type II Errors?

Exercise 2.5. The distribution of a discrete random variable X depends on a discretely valued param-
eter 0 € {1,2,3} according to

x fxl0=1) fix6=2) f(x[6=3)

[, T SR O T N I
O O A==
o ;3| 0| =N | =] =
BWG—o— © ©

Find the MLE of 6 if one value from X has been observed. Note: The MLE is a function that returns
an estimate of 6 given the data that has been observed. In the case where both the observed data and
the parameter are discrete, a “function” takes the form of a table.

Exercise 2.6. Let Xi,...,X, be an i.i.d.sample from a gamma(a,f3) distribution. The density of a
gamma(a,f3) is

. 1 a—1
[, B)= (o) B exp(—x/B)
where I'(z) is the gamma-function evaluated at z. Find the MLE of 8 assuming « is known.
Exercise 2.7. Let X1, ...,X, be an i.i.d. sample from the pdf
0 <
f<X|0) :W’ 1_)C<OO,9 > 1

1. What is the MLE of 6?
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Exxon Mobil Corporation
Parameter Estimate ¢ (MLE) ¢ (QMLE)

Bo -0.023 —1.499 —1.50 Wald (MLE) 277.75
(0.134) (0.133) (<0.001)
Bi 0.892 51.617 42.47  Wald (QMLE) 206.15
(<0.001)  (<0.001) (<0.001)
B -0.290 —9.105 —-8.09 LR 263.86
(<0.001)  (<0.001) ) (<0.001)
B3 0.405 13.021 11.33 LM (S) 161.35
(<0.001)  (<0.001) K (<0.001)
LM (S) 207.25
(<0.001)
SPDR Gold Shares
Parameter Estimate ¢ (MLE) ¢ (QMLE)
Bo 0.017 0.892 0.88 Wald (MLE) 10.15
(0.372) (0.379) (0.006)
By -0.031 —1.443 —1.01 Wald (QMLE) 7.73
(0.149) (0.314) (0.021)
B 0.104 2.616 2.29 LR 10.14
(0.009) (0.022) ) (0.006)
B3 -0.061 —1.558 —142 LM (S) 7.61
(0.119) (0.156) A (0.022)
LM (S) 7.73
(0.021)
Alphabet Inc.
Parameter Estimate ¢ (MLE) ¢ (QMLE)
Bo 0.006 0.248 0.25 Wald (MLE) 193.43
(0.804) (0.802) (<0.001)
By 1.098 43.189 41.63  Wald (QMLE) 124.95
(<0.001)  (<0.001) (<0.001)
B -0.241 —5.140 —4.87 LR 186.64
(<0.001)  (<0.001) ) (<0.001)
B3 -0.611 —13.357 —10.72 LM (S) 101.48
(<0.001)  (<0.001) K (<0.001)
LM (S) 128.25
(<0.001)

Table 2.7: Parameter estimates, t-statistics (both MLE and QMLE-based), and tests of the exclusion
restriction that the size and value factors have no effect (Hy : B, = B3 = 0) on the returns of the Exxon
Mobil, Alphabet Inc. (Google) and SPDR Gold Trust ETF.
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2. What is E[X/]?
3. How can the previous answer be used to compute a method of moments estimator of 67

Exercise 2.8. Let X1, ..., X, be an i.i.d. sample from the pdf
f(x]0) :%, 0<x<6,0>0
1. What is the MLE of 6? [This is tricky]
2. What is the method of moments Estimator of 67
3. Compute the bias and variance of each estimator.
Exercise 2.9. Let X1, ..., X, be an i.i.d.random sample from the pdf
f(xl@)=6x"1 0<x<1,0<0 <0
1. What is the MLE of 6?
2. What is the variance of the MLE?
3. Show that the MLE is consistent.
Exercise 2.10. Let X1, ...,X; be an i.i.d. sample from a Bernoulli(p).
1. Show that X achieves the Cramér-Rao lower bound.

2. What do you conclude about using X to estimate p?

Exercise 2.11. Suppose you witness a coin being flipped 100 times with 56 heads and 44 tails. Is
there evidence that this coin is unfair?

Exercise 2.12. Let X;,...,X; be an i.i.d. sample with mean u and variance 62.
1. Show X = S° | w;X; is unbiased if and only if S , w; = 1.

2. Show that the variance of X is minimized if w; = 1 fori=1,2,...,n.

Exercise 2.13. Suppose {X;} in i.i.d. sequence of normal variables with unknown mean p and known
. 2
variance G°.

1. Derive the power function of a 2-sided z-test of the null Hy : g = 0 against an alternative Hj :
u # 0?7 The power function should have two arguments, the mean under the alternative, @, and
the number of observations n.

2. Sketch the power function for n = 1,4,16,64,100.

3. What does this tell you about the power as n — oo for yt # 0?
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Exercise 2.14. Let X; and X, are independent and drawn from a Uniform(0, 8 + 1) distribution with
6 unknown. Consider two test statistics for the null Hy : 6 =0,

T: : Reject if X1 > .95

and
T, : Rejectif X1 + X, > C

1. What is the size of 7T1?
2. What value must C take so that the size of 75 is equal to T}
3. Sketch the power curves of the two tests as a function of 6. Which is more powerful?

Exercise 2.15. Suppose {y;} are a set of transaction counts (trade counts) over 5-minute intervals
which are believed to be i.i.d.distributed from a Poisson with parameter A. Recall the probability
density function of a Poisson is

AVie=H

fOiA) =—

Yi:

1. What is the log-likelihood for this problem?
2. What is the MLE of A?
3. What is the variance of the MLE?

4. Suppose that A =202.4 and that the sample size was 200. Construct a 95% confidence interval
for A.

5. Use at-test to test the null Hy : A =200 against H; : A # 200 with a size of 5%
6. Use a likelihood ratio to test the same null with a size of 5%.

7. What happens if the assumption of i.i.d. data is correct but that the data does not follow a Poisson
distribution?

Upper tail probabilities

for a standard normal z
Cut-off ¢ Pr(z>c)

1.282 10%
1.645 5%
1.96 2.5%
2.32 1%

5% Upper tail cut-off for %3
Degree of Freedom g Cut-Off

1 3.84
2 5.99
199 232.9

200 234.0
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Exercise 2.16. Suppose Y;|X; = x; ~ N (Bo + Bixi,62)

1.

2.

Write down the log-likelihood for this problem.

Find the MLE of the unknown parameters.

. What is the asymptotic distribution of the parameters?
. Describe two classes tests to test the null Hy : f; = 0 against the alternative Hy : §; # 0.

. How would you test whether the errors in the model were conditionally heteroskedastic?

. Suppose X; ~ N ( Ux, G)%) and the X variables are independent of the shocks in the model. What

are the values of:

(a) E[¥]

(b E[7]

(©) VY]

(d) Cov[X;,Y]

Note: If Y ~ N (‘LL, 62) , then the pdf of ¥ is

2072

[\

S

:‘
)

2
F(m.0%) = exp(——<y‘“>>

Exercise 2.17. Suppose ¥; ~ Exponential (1), so that E[V;] = A.

1.

2.

6.

7.

Write down the log-likelihood for this problem.

Find the MLE of the unknown parameter.

. What is the asymptotic distribution of the parameter estimate?

. Suppose n =10, > y; = 19. Test the null Hy : A = 1 against a 2-sided alternative with a size of

5% test using a t-test.

. Suppose n =10, >_y; = 19. Test the null Hy : A = 1 against a 2-sided alternative with a size of

5% test using a likelihood-ratio.
When are sandwich covariance estimators needed in MLE problems?

Discuss the important considerations for building models using cross-sectional data?

Notes:

» If Y ~ Exponential (1), then the pdf of Y is

f(yA) = %GXP (—%)
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« The 5% critical value for a 7 is 3.8415, for a x3 is 5.9915 and for a 3 is 7.8147.

Exercise 2.18. Suppose y;|x; ~ Exponential (x;3) where x; > 0 and > 0. This can be equivalently
written y; ~ Exponential (4;) where A; = x;. The PDF of an exponential random variance with
parameter A is

Jr (y) = Aexp(—4y).

Assume n pairs of observations on (y;,x;) are observed
1. What is the log-likelihood of the data?

2. Compute the maximum likelihood estimator 3
3. What is the asymptotic distribution of \/n (3 — ﬁ) ?

4. Suppose the following quantities are observed

n=20
n
Zx,- =16.58
i=1
n
> yi=128.47
i=1

n
iny,- =11.23
i=1

Perform a test for the null Hy : B = 1.5 against the alternative H; : B # 1.5 using a t-test.

5. Explain how you would perform a likelihood-ratio test for the same null and alternative.

Exercise 2.19. Suppose \/n (6% — ¢?) 4N (0,4 — o*). What is the asymptotic distribution of:
1. In(6?)
2. 072

Exercise 2.20. Suppose two parameter estimators are jointly normally distributed with asymptotic

distribution R
6 sl o)l &)
What is the asymptotic distribution of
1. 6,-6,
2. 61/6,

3. In61/é, =1n6; —In 6,
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Chapter 3

Analysis of Cross-Sectional Data

Note: The primary reference text for these notes is Hayashi (2000). Other comprehensive treatments
are available in Greene (2007) and Davidson and MacKinnon (2003).

Linear regression is the foundation of modern econometrics. While the importance
of linear regression in financial econometrics has diminished in recent years, it is
still widely employed. More importantly, the theory behind least-squares estima-
tors is useful in broader contexts, and many results of this chapter are special cases
of more general estimators presented in subsequent chapters. This chapter covers
model specification, estimation, small- and large-sample inference, and model se-

lection.

Linear regression is an essential tool of any econometrician and is widely used throughout finance
and economics. Linear regression’s success is owed to two key features: the availability of simple,
closed-form estimators, and the ease and directness of interpretation. However, despite the regression
estimator’s superficial simplicity, the concepts presented in this chapter will reappear in the chapters
on time series, panel data, Generalized Method of Moments (GMM), event studies, and volatility
modeling.

3.1 Model Description

Linear regression expresses a dependent variable as a linear function of independent variables, possi-
bly random, and an error.

Yi:ﬁ1X17i+B2X2,i+---+ﬁka,i+8i7 (3.1)

where Y; is known as the regressand, dependent variable or simply the left-hand-side variable. The k
variables, X ;, ..., Xy ; are known as the regressors, independent variables or right-hand-side variables.
Bi, B2, ..., B are the regression coefficients, €; is known as the innovation, shock or error and
i=1,2,...,n index the observation. While this representation clarifies the relationship between Y;
and the X's, matrix notation will generally be used to compactly describe models:
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Y| X1 Xioo-oo Xu Bi €|
R o2
Y:n X.nl X;12 X;zk Bk 8n

y=XB+e (3.3)

where X is an n by k matrix, f is a k by 1 vector, and both y and € are n by 1 vectors.
Two vector notations will occasionally be used: row,

i = X +¢g
h = Xof +& 3.4
Yn = Xnﬁ +&

and column,

y=PBixi+Poxo+...+ Bixp + €. (3.5)

Linear regression allows coefficients to be interpreted, all things being equal. Specifically, the
effect of a change in one variable can be examined without changing the others. Regression analysis
also allows for models that contain all of the information relevant for determining Y;, whether these
quantities are of primary interest or not. This feature provides the mechanism to interpret the coef-
ficient on a regressor as the unique effect of that regressor (under certain conditions), a feature that
makes linear regression very attractive.

3.1.1 What is a model?

What constitutes a model is a difficult question to answer. One view of a model is that of the data
generating process (DGP). For instance, if a model postulates

Y, =BiXi+&

then one interpretation is that the regressand, Y;, is wholly determined by X; and some random shock.
The alternative view is that X; is the only relevant variable available to the econometrician that explains
variation in Y;. Everything else that determines Y; cannot be measured and, in the usual case, cannot
be placed into a framework that would allow the researcher to formulate a model.

Consider monthly returns on the S&P 500, a value-weighted index of 500 large firms in the United
States. Equity holdings and returns are generated by individuals based on their beliefs and prefer-
ences. If one were to take a (literal) data generating process view of the return on this index, data on
individual investors’ preferences and beliefs would need to be collected and formulated into a model
for market returns. Collecting data and building this model would be a substantial challenge.

On the other hand, a model can be built to explain the variation in the market based on observ-
able quantities (such as oil price changes or macroeconomic news announcements) without explicitly
collecting information on beliefs and preferences. In a model of this type, explanatory variables can
be viewed as inputs individuals consider when forming their beliefs and, subject to their preferences,
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taking actions that ultimately affect the price of the S&P 500. The model allows the relationships
between the regressand and regressors to be explored and is meaningful even though the model is not
plausibly the data generating process.

In the context of time-series data, models often postulate that a series’s past values are useful in
predicting future values. Consider building a model of monthly returns on the S&P 500 using past
returns to explain future returns. Treated as a DGP, this model implies that average returns in the
future are determined by returns in the immediate past. Alternatively, if treated as an approximation,
then one interpretation postulates that changes in risk aversion, beliefs, or other variables that influ-
ence holdings of assets change slowly (possibly in an unobservable manner). These slowly changing
“factors” produce predictability in returns. Of course, there are other interpretations, but these should
come from finance theory rather than data. The model as a proxy interpretation is additionally use-
ful as it allows models to be specified, which are only loosely coupled with theory but that capture
essential features of a theoretical model.

Careful consideration of what defines a model is a crucial step in the development of an econo-
metrician, and one should always consider which assumptions and beliefs are needed to justify any
specification.

3.1.2 Example: Cross-section regression of returns on factors

The concepts of linear regression will be explored in the context of a cross-section regression of
returns on a set of factors thought to capture systematic risk. Cross-sectional regressions in financial
econometrics date back at least to the Capital Asset Pricing Model (CAPM, Markowitz (1959), Sharpe
(1964) and Lintner (1965)), a model formulated as a regression of individual asset’s excess returns on
the excess return of the market. More general specifications with multiple regressors are motivated by
the Intertemporal CAPM (ICAPM, Merton (1973)) and Arbitrage Pricing Theory (APT, Ross (1976)).

The basic model postulates that excess returns are linearly related to a set of systematic risk
factors. The factors can be returns on other assets, such as the market portfolio, or any other variable
related to intertemporal hedging demands, such as interest rates, shocks to inflation, or consumption
growth.

Ri—R] =fiB+¢

or more compactly,

ri=tif+g

where RY = R; — R‘lf is the excess return on the asset and f; = [Fj ;,..., Fy ;] are returns on factors that
explain systematic variation.

Linear factors models have been used in countless studies, the most well known by Fama and
French (Fama and French (1992) and Fama and French (1993)) who use returns on specially con-
structed portfolios as factors to capture specific types of risk. The data set contains the variables listed
in table 3.1.

Monthly data from July 1963 until January 2020 is used in the examples. Except for the interest
rates, all return data are from the CRSP database. Returns are calculated as 100 times the logarithmic
price difference (R; = 100(In(P;) —In(P,_;))). Portfolios were constructed by sorting the firms into
categories based on market capitalization, Book Equity to Market Equity (BE/ME), or past returns
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Variable
VWM

SMB

HML

MOM

SL
SM
SH
BL

BM
BH
RF
DATE

Description

Returns on a value-weighted portfolio of all NYSE, AMEX and NASDAQ
stocks

Returns on the Small minus Big factor, a zero investment portfolio that
is long small market capitalization firms and short big caps.

Returns on the High minus Low factor, a zero investment portfolio that
is long high BE/ME firms and short low BE/ME firms.

Returns on a portfolio that is long winners and short losers as defined
by their performance over the past 12 months, excluding the last month.
Includes the large and small cap stocks but excludes mid-cap stocks.
Returns on a portfolio of small cap and low BE/ME firms.

Returns on a portfolio of small cap and medium BE/ME firms.

Returns on a portfolio of small cap and high BE/ME firms.

Returns on a portfolio of big cap and low BE/ME firms.

Returns on a portfolio of big cap and medium BE/ME firms.

Returns on a portfolio of big cap and high BE/ME firms.

Risk free rate (Rate on a 3 month T-bill).

Date in format YYYYMM.

Table 3.1: Variable description for the data available in the Fama-French data-set used throughout this

chapter.

over the previous year. For further details on the construction of portfolios, see Fama and French
(1993) or Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html.

A general model for the BH portfolio can be specified

BH; — RF; = B + po(VWM,; — RF;) + B3SMB; + BsHML; + BsMOM; + &;

or, in terms of the excess returns,

BHie = ﬁl + BQVWMl'e + ﬁ3SMBl' + ﬁ4HML,' + ﬁsMOM,‘ +&.

The coefficients in the model can be interpreted as the effect of a change in one variable holding
the other variables constant. For example, 3 captures the effect of a change in the SMB; risk factor
holding VWM, HML; and MOM; constant. Table 3.2 contains some descriptive statistics of the
factors and the six portfolios included in this data set.

3.2 Functional Form

A linear relationship is fairly specific and, in some cases, restrictive. It is important to distinguish
specifications that can be examined in the linear regression framework from those that cannot. Linear


http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Mean Std. Dev. Skewness Kurtosis

VWM  6.66 15.42 -0.54 491
SMB 2.17 10.52 0.43 7.83
HML 3.06 9.95 0.01 541
MOM 7.95 14.52 -1.28 13.20
SL¢ 6.54 23.55 -0.39 4.74
SM¢ 10.21 18.93 -0.54 5.81
SH¢ 11.23 19.69 -0.53 6.80
BL? 6.78 15.94 -0.34 4.84
BM* 6.47 14.87 -0.48 5.39
BH* 8.22 17.20 -0.62 6.23

Table 3.2: Descriptive statistics of the six portfolios that will be used throughout this chapter. The
data consist of monthly observations from January 1927 until June 2008 (n = 978).

regressions require two key features of any model: each term on the right-hand side must have only
one coefficient that enters multiplicatively, and the error must enter additively.! Most specifications
satisfying these two requirements can be treated using the tools of linear regression.” Other forms of
“nonlinearities” are permissible. Any regressor or the regressand can be nonlinear transformations of
the original observed data.

Double log (also known as log-log) specifications, where both the regressor and the regressands
are log transformations of the original (positive) data, are frequently used.

InY; =B+ B InX; +¢.

In the parlance of linear regression, the model is specified

Yi=P1+BXi+e

where ¥; = In(Y;) and X; = In(X;). The usefulness of the double log specification can be illustrated by
a Cobb-Douglas production function subject to a multiplicative shock

Y, = Bk 1P,

Using the production function directly, it is not obvious that, given values for output (Y;), capital (K;)
and labor (L;) of firm 7, the model is consistent with a linear regression. However, taking logs,

InY; =Inf;+ B InK;+ B3InL; +1Ing;

the model can be reformulated as a linear regression on the transformed data. Other forms, such as
semi-log (either log-lin, where the regressand is logged but the regressors are unchanged, or lin-log,
which logs only the regressor), are often useful to describe nonlinear relationships.

A third but obvious requirement is that neither ¥; nor any of the X;; may be latent (unobservable), j =1,2,...,k,
i=1,2,...,n.

There are further requirements on the data, both the regressors and the regressand, to ensure that estimators of the
unknown parameters are reasonable, but these are treated in subsequent sections.
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Linear regression does, however, rule out specifications that may be of interest. Linear regression
is not an appropriate framework to examine a model of the form V; = BIXF f + ﬁ3X2ﬁ ‘l‘ + ¢&;. Fortu-
nately, more general frameworks, such as the generalized method of moments (GMMj or maximum
likelihood estimation (MLE), topics of subsequent chapters, can be applied.

Two other transformations of the original data, dummy variables and interactions, are commonly
used to generate nonlinear (in regressors) specifications. A dummy variable is a special class of re-
gressor that takes the value O or 1. In finance, dummy variables (or dummies) are used to model
calendar effects, leverage (where the magnitude of a coefficient depends on the sign of the regressor),
or group-specific effects. Variable interactions parameterize nonlinearities into a model through prod-
ucts of regressors. Common interactions include powers of regressors (X12 l-,Xfi, ...), cross-products
of regressors (X; ;X> ;) and interactions between regressors and dummy variables. Variable transfor-
mations add significant flexibility to the linear regression models.

The use of nonlinear transformations also changes the interpretation of the regression coefficients.
If only unmodified regressors are included,

Yi=xif+¢&

then % = By. Suppose a specification includes both X; and Xl-2 as regressors,

Yi = BiX; + BoX? + €

In this specification, % = B + B2X; and the level of the variable enters its partial effect. Similarly,

in a simple double log model

InY; = Bl InX; + ¢,

and

oy, % %Ay

Br= dnX; 99X  %AX

Thus, B; corresponds to the elasticity of Y; with respect to X;. In general, the coefficient on a variable
that enters the model in in levels corresponds to the effect of a one-unit change in that variable. The
coefficient on a variable that appears logged corresponds to the effect of a one percent change in that
variable. For example, in a semi-log model where only the regressor is logged,

Y; = BiInX; +¢,

B1 will correspond to a unit change in ¥; for a % change in X;. Finally, in the case of discrete regressors,
where there is no differential interpretation of coefficients, B represents the effect of a whole unit
change, such as a dummy going from O to 1.

3.2.1 Example: Dummy variables and interactions in cross-section re-
gressions

The January and the December effects are seasonal phenomena that have been widely studied in
finance. Simply put, the December effect hypothesizes that returns in December are unusually low
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due to tax-induced portfolio rebalancing, mostly to realized losses, while the January effect stipulates
returns are abnormally high as investors return to the market. To model excess returns on a portfolio
(BHY) as a function of the excess market return (VWAMY), a constant, and the January and December
effects, a model can be specified

BH? = By 4+ BoVWME + Balyi + Balini + €

where I1; = 1 if the return was generated in January and /j5; = 1 in December. The model can be
reparameterized into three cases:

BH; = (B1+ B3) + B2VWM; + & January
BH{ = (B1 + Ba) + B2VWMS + ¢ December
BH! = B1 + BoVWM; + € Otherwise

Dummy interactions can be used to produce models that have both different intercepts and different
slopes in January and December,

BH{ = By + BVWM; + B3 + Balioi + BsliiVWM; + Bel12VWM; + &;.

If excess returns on a portfolio were nonlinearly related to returns on the market, a simple model
could be specified

BH! = By + BoVWME + B3 (VWME)? + By (VWM?)? + ¢;.

Dittmar (2002) proposed a similar model to explain the cross-sectional dispersion of expected returns.

3.3 Estimation

Linear regression is also known as ordinary least squares (OLS) or simply least squares. The least-
squares estimator minimizes the squared distance between the fit line (or plane if there are multiple
regressors) and the regressand. The parameters are estimated as the solution to

n
nﬁn(y—xmy—xm=rrgnz<n—xiﬁ>2. (3.6)
i=1
First-order conditions of this optimization problem are
n
—2X/(y—XB) = -2(X'y-X'XB) = -2 x(Yi—x;$) =0 (3.7)
i=1

and rearranging, the least-squares estimator for § can be analytically derived.
Definition 3.1 (OLS Estimator). The ordinary least-squares estimator, denoted [3’, is defined

B = (X'X)"'Xy. (3.8)
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This estimator is only reasonable if XX is invertible, which is equivalent to the condition that
rank(X) = k. This requirement states that no column of X can be exactly expressed as a combination
of the k — 1 remaining columns and that the number of observations is at least as large as the number
of regressors (n > k). This is a weak condition and is trivial to verify in most econometric software
packages: using a less than full rank matrix will generate a warning or error.

Dummy variables create one further issue worthy of special attention. Suppose dummy variables
corresponding to the four quarters of the year, /y;,...,1s;, are constructed from a quarterly data set of
portfolio returns. Consider a simple model with a constant and all four dummies

R; = Bi1+ Baolii + B3boi + Balsi + Bslai + €.

It is not possible to estimate this model with all four dummy variables and the constant because
the constant is a perfect linear combination of the dummy variables, and so the regressor matrix
would be rank deficient. The solution is to exclude either the constant or one of the dummy variables.
The choice of variable to exclude makes no difference in estimation, and only the interpretation of
the estimated coefficients changes. In the case where the constant is excluded, the coefficients on
the dummy variables are directly interpretable as quarterly average returns. If one of the dummy
variables is excluded, for example, the first quarter dummy variable, the interpretation changes. In
this parameterization,

R; = B1 + Boboi + Bsl; + Balsi + €,

Bi is the average return in Q1, while B + B; is the average return in Q.

It is also important that any regressor, other than the constant, be nonconstant. Suppose a regres-
sion that included the number of years since public floatation is fitted on a data set that contains only
assets that have been trading for exactly 10 years. Including both this regressor and a constant results
in perfect collinearity, but, more importantly, without variability in a regressor, it is impossible to
determine whether changes in the regressor (years since float) results in a change in the regressand
or whether the effect is simply constant across all assets. The role that that variability of regressors
plays in estimating model parameters will be revisited when studying the statistical properties of B

The second derivative matrix of the minimization,

2X'X,

ensures that the solution must be a minimum as long as X'X is positive definite, which is equivalent
to a condition that rank(X) = k.

Once the regression coefficients have been estimated, it is useful to define the fit values, § =
XB and sample residuals € =y —y =y — Xf)’ Rewriting the first-order condition in terms of the
explanatory variables and the residuals provides insight into the numerical properties of the residuals.
An equivalent first-order condition to eq. (3.7) is

X'e =0. (3.9)

This set of linear equations is commonly referred to as the normal equations or orthogonality con-
ditions. This set of conditions requires that € is outside the span of the columns of X. Moreover,
considering the columns of X separately, X;é =0 forall j=1,2,...,k. When a column contains a
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constant (an intercept in the model specification), 1€ =0 (Z?:l & =0), and the mean of the residuals
will be exactly 0.
The OLS estimator of the residual variance, 62, can be defined.*

Definition 3.2 (OLS Variance Estimator). The OLS residual variance estimator, denoted 62, is de-
fined

&
62 = (3.10)

Definition 3.3 (Standard Error of the Regression). The standard error of the regression is defined as
6 =Vé? (3.11)

The least-squares estimator has two final noteworthy properties. First, nonsingular transforma-
tions of X and non-zero scalar transformations of Y have deterministic effects on the estimated re-
gression coefficients. Suppose A is a k by k nonsingular matrix, and c is a non-zero scalar. The
coefficients of a regression of c¥; on x;A are

B =[(XA)'(XA)]""(XA) (cy) (3.12)
= ¢(A'’X'XA)'A'Xy
_ CA—I (X/X)—IA/—IA/X/y
= AT (X'X) "Xy
=cA™! ﬁ .
Second, as long as the model contains a constant, the regression coefficients on all terms except

the intercept are unaffected by adding an arbitrary constant to either the regressor or the regressands.
Consider transforming the standard specification,

Y =B1+BoXo i+ ...+ BiXyi + &

to

Vi=B1+BXoi+...+BiXei+&
where ¥; =Y, + cy and Xj.,i = Xji+Cx;- This model is identical to
Yi=Bi+BXoit+ ..+ BiXeit+&

where Bl =Bi+cy—Pacx, — ... — Brcx,.

31 is an n by 1 vector of 1s.
4The choice of n — k in the denominator will be made clear once the properties of this estimator have been examined.
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Constant VWM¢ SMB HML MOM 6

SL* -0.15 1.09 1.02 -0.26 -0.03 0.99
SM¢ 0.08 096 082 035 -0.00 0.77
SH¢ 0.05 1.00 0.87 0.69 -0.00 0.56
BL* 0.12 0.99 -0.15 -0.28 -0.00 0.69
BM*¢ -0.05 098 -0.13 031 -0.00 1.15
BH® -0.09 1.08 0.00 0.76 -0.04 1.06

Table 3.3: Estimated regression coefficients from the model R = By + B,VWMY + B3SMB; +
BsHML; + BsMOM,; + €;, where Rf " is the excess return on one of the six size and value sorted port-
folios. The final column contains the standard error of the regression.

3.3.1 Estimation of Cross-Section regressions of returns on factors

Table 3.3 contains the estimated regression coefficients as well as the standard error of the regression
for the six portfolios in the Fama-French data set in a specification that includes all four factors
and a constant. There has been a substantial decrease in the magnitude of the standard error of the
regression relative to the standard deviation of the original data. The next section will formalize how
this reduction is interpreted.

3.4 Assessing Fit

Once the parameters have been estimated, the next step is to determine whether the model fits the data.
The minimized sum of squared errors, the optimization’s objective, is an obvious choice to assess fit.
However, there is an important drawback to using the sum of squared errors: changes in the scale of
Y; alter the minimized sum of squared errors without changing the fit. It is necessary to distinguish
between the portions of y explained by X from those that are not to construct a scale-free metric.

The projection matrix, Px, and the annihilator matrix, My, are useful when decomposing the
regressand into the explained component and the residual.

Definition 3.4 (Projection Matrix). The projection matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the space spanned by X, denoted P, is defined

Px = X(X'X)" X/ (3.13)

Definition 3.5 (Annihilator Matrix). The annihilator matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the null space of X', denoted My, is defined

My =TI, - X(X'X)" X' (3.14)

These two matrices have some desirable properties. Both the fited value of y (y) and the estimated
errors, €, can be expressed in terms of these matrices as § = Pxy and & = Myy, respectively. These
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matrices are also idempotent: PxPx = Px and MxMx = Mx and orthogonal: PxMx = 0. The pro-
jection matrix returns the portion of y that lies in the linear space spanned by X, while the annihilator
matrix returns the portion of y in the null space of X. In essence, Mx annihilates any portion of y
explainable by X, leaving only the residuals.

Decomposing y using the projection and annihilator matrices,

y = Pxy +Mxy

which follows since Px + Mx = I,,. The squared observations can be decomposed

Yy = (Pxy +Mxy)' (Pxy + Mxy)
= y'PxPxy + y'PxMxy + y'MxPxy +y' MxMxy

=y'Pxy+0+0+yMxy
=y'Pxy +y'Mxy
noting that Px and Mx are idempotent and PxMx = 0,,. These three quantities are often referred to
5
as
n
yy= Z Yiz Uncentered Total Sum of Squares (TSSy) (3.15)
i=1
y'Pxy = Z(x,ﬁ%)z Uncentered Regression Sum of Squares (RSSy) (3.16)
i=1
n
yMxy = Z(Y’ — X,-ﬁ)2 Uncentered Sum of Squared Errors (SSEy). (3.17)
i=1
Dividing through by y'y
y'Pxy  yMxy 1
Yy Yy
or
RSSy  SSEy
TSSy TSSy

This identity expresses the scale-free total variation in y that is captured by X (y'Pxy) and that
which is not (yYMxy). The portion of the total variation explained by X is known as the uncentered
R? (RD),

SThere is no consensus about the names of these quantities. In some texts, the component capturing the fit portion
is known as the Regression Sum of Squares (RSS) while in others, it is known as the Explained Sum of Squares (ESS),
while the portion attributable to the errors is known as the Sum of Squared Errors (SSE), the Sum of Squared Residuals
(SSR), the Residual Sum of Squares (RSS) or the Error Sum of Squares (ESS). The choice to use SSE and RSS in this
text was to ensure the reader that SSE must be the component of the squared observations relating to the error variation.
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Definition 3.6 (Uncentered R?(R?)). The uncentered R?, which is used in models that do not include
an intercept, is defined

R = RSSy _1_ SSEy

TSSy TSSy

(3.18)

While R% is scale-free, it suffers from one shortcoming. Suppose a constant is added to y so that
the TSSy changes to (y +c¢)(y +c¢). The identity still holds, and so (y + ¢)’(y + ¢) must increase
(for a sufficiently large c). In turn, one of the right-hand side variables must also grow larger. In the
usual case where the model contains a constant, the increase will occur in the RSSy, (y'Pxy), and as ¢
becomes arbitrarily large, uncentered R? will asymptote to one. A centered measure computed using
deviations from the mean rather than on levels overcomes this limitation.

Lety=y—y=M,y where M, =1, —1(1/ l)_1 1’ is matrix which subtracts the mean from a vector
of data. Then

y/MlPXMly + y/MlMXMly = y/Mty
y/M1PXM1y i ylMlMXMly _

1
y'My y'Miy
or more compactly
N/P ~ ~/M ~
Y~/)~<Y +Y ~/~Xy 1
yy yy

Centered R? (R%) is defined analogously to uncentered replacing the uncentered sums of squares
with their centered counterparts.

Definition 3.7 (Centered R*(R2)). The uncentered R?, used in models that include an intercept, is
defined

€ TSS:.  TSSc

R E
2 SSc 1—SSC (3.19)

where

n
yM,y = Z(Y, — 17)2 Centered Total Sum of Squares (TSS() (3.20)
i=1

n
yM,PxM,y = Z(xiﬁ — )‘(B)z Centered Regression Sum of Squares (RSS¢) (3.21)

i=1

n
yYM,MxM,y = Z(Yl — X,~B)2 Centered Sum of Squared Errors (SSE). (3.22)
i=1

R V) )
and whereX=n""% ;| X;.

The expressions R2, SSE, RSS, and TSS should be assumed to correspond to the centered version
unless further qualified. With two versions of R? available that generally differ, which should be
used? Centered should be used if the model is centered (contains a constant), and uncentered should
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be used when it does not. Failing to select the correct R? can lead to incorrect conclusions about the
model’s fit, and mixing the definitions can lead to a nonsensical R? that falls outside of [0,1]. For
instance, computing R? using the centered version when the model does not contain a constant often
results in a negative value when

_ SSEc
TSSc

Most software will return centered R%, and caution is warranted if a model is fit without a constant.

R? does have some caveats. First, adding an additional regressor will always (weakly) increase
the R? since the sum of squared errors cannot increase by the inclusion of an additional regressor.
This renders R? useless in discriminating between two models where one is nested within the other.
One solution to this problem is to use the degree of freedom adjusted R>.

RZ=1

Definition 3.8 (Adjusted R? <R2> ). The adjusted R?, which adjusts for the number of estimated
parameters, is defined

SSE

R=1l—-———%=1———— . 323
TSS TSSn_k (3.23)
LS

R® will increase if the reduction in the SSE is large enough to compensate for a loss of one degree of
freedom, captured by the n — k term. However, if the SSE does not change, R” will decrease. R” is
preferable to R? for comparing models, although the topic of model selection will be more formally
considered at the end of this chapter. Rz, like R?, should be constructed from the appropriate versions
of the RSS, SSE, and TSS (either centered or uncentered).

Second, R? is not invariant to changes in the regressand. A frequent mistake is to use R? to
compare the fit from two models with different regressands, for instance, ¥; and In(Y;). These numbers
are incomparable, and this type of comparison must be avoided. Moreover, R? is even sensitive to
more benign transformations. Suppose a simple model is postulated,

Y, = B+ BaXi + &,

and a model logically consistent with the original model,

Yi—-Xi=Bi+(B—1)Xi+¢,

is estimated. The R?s from these models will generally differ. For example, suppose the original
coefficient on x; was 1. Subtracting x; will reduce the explanatory power of x; to O, rendering it
useless and resulting in a R? of 0 irrespective of the R? in the original model.

3.4.1 Example: R? and R’ in Cross-Sectional Factor models

To illustrate the use of RZ, consider alternative models of BH® that include one or more risk factors.
The R? values in the top half of Table 3.4 show that R? never declines as additional variables are
added. Note that the adjusted measure of fit, R2, also never declines, although it grows more slowly.
The monotonic pattern occurs since the adjustment penalty is small when the sample size n is large,
as is the case here. The table only shows the correct version of the R> — centered for models that
contain a constant and uncentered for those that do not.
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Regressand ~ Regressors R? R? R2 R2
BH* 1, VME* 0.7620 0.7616 - -

BH® 1,VME*®, SMB 0.7644 0.7637 - -

BH® 1,VME®¢, SMB, HML 0.9535 0.9533 - -

BH® 1, VME®, SMB, HML, MOM 0.9543 0.9541 - -

BH* VWM¢® - - 0.7656 0.7653
10+ BH¢ 1, VME* 0.7620 0.7616 - -

10+ BH* VME* - - 0.2275 0.2264
10 x BH¢ 1, VME* 0.7620 0.7616 - -

10 x BH¢ VME* - - 0.7656 0.7653
BH®*—-VME*¢ 1,VME* 0.0024 0.0009 - -

S, BH 1LY, VME® 0.6800 0.6743 — -

Table 3.4: Centered and uncentered R? and R* from models with regressor or regressand changes.
Only the correct version of the R? is shown — centered for models that contain a constant as indicated
by 1 in the regressor list, or uncentered for models that do not. The top rows demonstrate how R? and
its adjusted version change as additional variables are added. The bottom two rows demonstrate how
changes in the regressand — the left-hand-side variable — affect the R.

The bottom half of the table shows how R? changes when the regressand changes. The R? in
models that include a constant are invariant to constant shifts in the regressand. The R2 of the model
that regresses 10+ BH® on a constant and the excess market is identical to the same model only using
BH¢. This relationship does not hold for models that do not contain a constant and R2 changes when
10 is added to the return. Both measures are invariant to multiplicative adjustments. The penultimate
line shows that R? is not invariant to changes in the regressand that do not fundamentally alter the
interpretation of the model. In this model, the difference in returns, BH® — VMW¢, is regressed on a
constant and the excess market. The coefficient on the excess market, $», in this model

BH; —VWM* =y + hbVWM; +&;.
will be exactly 1 less than the coefficient in the model
BH} = B+ VWM +¢&;.

While these two models are conceptually identical and describe the same relationship between BH®,
the R? changes. In this example, the coefficient on VWM¢in near zero since the coefficient in the
original specification is near 1. The R? of the return difference is near 0 even though the market is
an important determinant of the the Big-High portfolio’s return. The final line shows the regression
coefficient of the annual return of BH® (>, BH) on the annual return on the market (), VWM®).
This type of aggregation also changes the R?. These final two results highlight a common form of
misuse of R?: do not compare the values of R? in models with different regressands.
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3.5 Assumptions

Thus far, all of the derivations and identities presented are purely numerical. They do not indicate
whether 3 is a reasonable way to estimate . It is necessary to make some assumptions about the
innovations and the regressors to provide a statistical interpretation of B Two broad classes of as-
sumptions can be used to analyze the behavior of [3: the classical framework (also known as the
small-sample or finite-sample framework) and asymptotic analysis (also known as the large-sample
framework).

Neither method is ideal. The small-sample framework is precise in that the exact distribution of
regressors and test statistics are known. This precision comes at the cost of many restrictive assump-
tions — assumptions not usually plausible in financial applications. On the other hand, asymptotic
analysis requires few restrictive assumptions and is broadly applicable to financial data, although the
results are only exact if the number of observations is infinite. Asymptotic analysis is still useful for
examining the behavior in finite samples when the sample size is large enough for the asymptotic
distribution to approximate the finite-sample distribution reasonably well.

This leads to the most important question of asymptotic analysis: How large does n need to be
before the approximation is reasonable? Unfortunately, the answer to this question is “it depends”. In
simple cases, where residuals are independent and identically distributed, as few as 30 observations
may be sufficient for the asymptotic distribution to be a good approximation to the finite-sample
distribution. In more complex cases, anywhere from 100 to 1,000 may be needed, while in the extreme
cases, where the data is heterogenous and highly dependent, an asymptotic approximation may be
poor with more than l,AOOO,OOO observations.

The properties of B will be examined under both sets of assumptions. While the small-sample
results are not generally applicable, it is important to understand these results as the lingua franca of
econometrics, as well as the limitations of tests based on the classical assumptions, and to be able
to detect when a test statistic may not have the intended asymptotic distribution. Six assumptions
are required to examine the finite-sample distribution of B and establish the optimality of the OLS
procedure( although many properties only require a subset).

Assumption 3.1 (Linearity). ¥; = x;8 + &

This assumption states the obvious condition necessary for least squares to be a reasonable method
to estimate the f3. It further imposes a less obvious condition, that x; must be observed and measured
without error. Many applications in financial econometrics include latent variables. Linear regression
is not applicable in these cases and a more sophisticated estimator is required. In other applications,
the true value of x; ; is not observed and a noisy proxy must be used, so that % ; = x; ; + Vi ; where vy ;
is an error uncorrelated with x; ;. When this occurs, ordinary least-squares estimators are misleading
and a modified procedure (two-stage least squares (2SLS) or instrumental variable regression (IV))
must be used.

Assumption 3.2 (Conditional Mean). E[g|X] =0, i=1,2,...,n

This assumption states that the mean of each &; is zero given any X; ;, any function of any X ;
or combinations of these. It is stronger than the assumption used in the asymptotic analysis and is
not valid in many applications (e.g., time-series data). When the regressand and regressor consist of
time-series data, this assumption may be violated and E[¢;|x; ;] 7 O for some j. This assumption also
implies that the correct form of X ; enters the regression, that E[¢;] = 0 (through a simple application
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of the law of iterated expectations), and that the innovations are uncorrelated with the regressors, so
thatE[e,-/ij] = O,i/ =1,2,...,n,i=1,2,....n, j=1,2,... k.

Assumption 3.3 (Rank). The rank of X is k with probability 1.

This assumption is needed to ensure that B is identified and can be estimated. In practice, it
requires that the no regressor is perfectly co-linear with the others, that the number of observations
is at least as large as the number of regressors (n > k) and that variables other than a constant have
non-zero variance.

Assumption 3.4 (Conditional Homoskedasticity). V[g;]|X] = o2

Homoskedasticity is rooted in homo (same) and skedannumi (scattering) and in modern English
means that the residuals have identical variances. This assumption is required to establish the opti-
mality of the OLS estimator and it specifically rules out the case where the variance of an innovation
is a function of a regressor.

Assumption 3.5 (Conditional Correlation). E[g;¢;|X] =0,i=1,2,...,n, j=i+1,...,n

Assuming the residuals are conditionally uncorrelated is convenient when coupled with the ho-
moskedasticity assumption, and the residuals covariance is 6°1,,. Like homoskedasticity, this assump-
tion is needed for establishing the optimality of the least-squares estimator.

Assumption 3.6 (Conditional Normality). €|X ~ N(0,X)

Assuming a specific distribution is very restrictive — results based on this assumption will only be
correct is the errors are actually normal — but this assumption allows for precise statements about the
finite-sample distribution of 8 and test statistics. This assumption, when combined with assumptions

3.4 and 3.5, provides a simple distribution for the innovations: &|X 4N (0,02).

3.6 Small-Sample Properties of OLS estimators
Using these assumptions, many useful properties of 3 can be derived. Recall that = (X'X)~!X'y.
Theorem 3.1 (Bias of ). Under assumptions 3.1 - 3.3

E[B|X] =B. (3.24)

While unbiasedness is a desirable property, it is not particularly meaningful without further quali-
fication. For instance, an estimator which is unbiased, but does not increase in precision as the sample

size increases is generally not desirable. Fortunately, 8 is not only unbiased, it has a variance that
goes to zero.

Theorem 3.2 (Variance of B). Under assumptions 3.1 - 3.5

V[BIX] = o*(X'X)"". (3.25)
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Under the conditions necessary for unbiasedness for 3, plus assumptions about homoskedasticity
and the conditional correlation of the residuals, the form of the variance is simple. Consistency
follows since

n

n N
(X'X)~1 = @li) (3.26)

1 _
~ ZE [xﬁx,} !
will be declining as the sample size increases.

However, B has an even stronger property under the same assumptions. It is BLUE: Best Linear
Unbiased Estimator. Best, in this context, means that it has the lowest variance among all other linear
unbiased estimators. While this is a strong result, a few words of caution are needed to properly
interpret this result. The class of Linear Unbiased Estimators (LUEs) is small in the universe of all
unbiased estimators. Saying OLS is the “best” is akin to a one-armed boxer claiming to be the best
one-arm boxer. While possibly true, she probably would not stand a chance against a two-armed
opponent.

Theorem 3.3 (Gauss-Markov Theorem). Under assumptions 3.1 -3.5,AB is the minimum variance
estimator among all linear unbiased estimators. That is V[B|X] - V[B|X] is positive semi-definite

where B = Cy, E[B] = B and C # (X'X) ' X..

Letting B be any other linear, unbiased estimator of 3, it must have a larger covariance. However,
many estimators, including most maximum likelihood estimators, are nonlinear and so are not neces-
sarily less efficient. Finally, making use of the normality assumption, it is possible to determine the
conditional distribution of [3

Theorem 3.4 (Distribution of B). Under assumptions 3.1 — 3.6,

BIX ~N(B,0%(X'X)" 1) (3.27)

Theorem 3.4 should not be surprising. B is a linear combination of (jointly) normally distributed
random variables and thus is also normally distributed. Normality is also useful for establishing the
relationship between the estimated residuals € and the estimated parameters f3.

Theorem 3.5 (Conditional Independence of & and B). Under assumptions 3.1 - 3.6, & is independent
of B, conditional on X.

One implication of this theorem is that Cov/(§;, [%\X) =0i=1,2,...,n,j=1,2,...,k. Asaresult,
functions of & will be independent of functions of f3, a property useful in deriving distributions of test
statistics that depend on both. Finally, in the small-sample setup, the exact distribution of the sample
error variance estimator, 62 = &'& /(n—k), can be derived.

Theorem 3.6 (Distribution of 62).
)
o 2
(n—k) o2 ™ Xnk

Since §&; is a normal random variable, once it is standardized and squared, it should be a X12 The
change in the divisor from n to n — k reflects the loss in degrees of freedom due to the k estimated
parameters.
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3.7 Maximum Likelihood

Once the assumption that the innovations are conditionally normal has been made, conditional max-
imum likelihood is an obvious method to estimate the unknown parameters (8, 52). Conditioning
on X, and assuming the innovations are normal, homoskedastic, and conditionally uncorrelated, the
likelihood is given by

f(yX;B,0°%) = (216%) S exp (— - XP 2)6(3 —XP )> (3.28)
and, taking logs, the log likelihood
R n 2 (y—=XB)'(y—XB)
I(B,o%y|X) = 3 log(2m) 5 log(o?) 552 : (3.29)

Recall that the logarithm is a monotonic, strictly increasing transformation, and the extremum points
of the log-likelihood and the likelihood will occur at the same parameters. Maximizing the likelihood
with respect to the unknown parameters, there are k + 1 first-order conditions

21(B,0%y[X) _ X'(y—Xp)

75 =0 (3.30)
dl(B.o%:yX) n  (y-XB)(y—XB)
T =+ e —0. 3.31)

The first set of conditions is identical to the first-order conditions of the least-squares estimator ignor-
ing the scaling by 62, assumed to be greater than 0. The solution is

MLE

B =(x'X)"'Xy (3.32)
GME — I (y—XB) (y—XB) =n"'¢&. (3.33)

The regression coefficients are identical under maximum likelihood and OLS, although the divisor in
62 and 62ME differ.

It is important to note that the derivation of the OLS estimator does not require an assumption of
normality. Moreover, the unbiasedness, variance, and BLUE properties do not rely on the conditional
normality of residuals. However, if the innovations are homoskedastic, uncorrelated and normal, the
results of the Gauss-Markov theorem can be strengthened using the Cramer-Rao lower bound.

Theorem 3.7 (Cramer-Rao Inequality). Let f(z; 0) be the joint density of z where 0 is a k dimensional
parameter vector Let 0 be an unbiased estimator of 0 with finite covariance. Under some regularity
condition on f(+)

V[0] >Z7'(6y)

where
d%In f(z;0)

I=-E
0006’

] (3.34)
0=0,
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and
dInf(z;0)dInf(z;0)
0 26’

J=E

] (3.35)
0=0,

and, under some additional regularity conditions,

Z(6p) = T (0y).

The last part of this theorem is the information matrix equality (IME) and when a model is correctly
specified in its entirety, the expected covariance of the scores is equal to negative of the expected
hessian.® The IME will be revisited in later chapters. The second order conditions,

2%1(B,0%;y|X) X'X

N _ 22 (3.36)
dpap Y
%1(B,o%yX) X'(y—XpB)
dBdc2 ot G:37)
%(B,0%yX)  n  (y—XB)(y—Xp)
12 =55 _ s (3.38)

are needed to find the lower bound for the covariance of the estimators of 8 and 6. Taking expecta-
tions of the second derivatives,

) 2. 7 /

o[@ z(gl,;gﬁ,/ym :_?;( (3.39)
1921 ,62; X)]

. (5[3862)” ) _o (3.40)
(B, 0%yX)] n

R o

and so the lower bound for the variance of § = 3 s 62 (X’X)~!. Theorem 3.2 show that 2 (X'X) !
is also the variance of the OLS estimator 3 and so the Gauss-Markov theorem can be strengthened in
the case of conditionally homoskedastic, uncorrelated normal residuals.

Theorem 3.8 (Best Unbiased Estimator). Under assumptions 3.1 - 3.6, 3 = [A3 """ is the best unbiased
estimator of B.

The difference between this theorem and the Gauss-Markov theorem is subtle but important. The
class of estimators is no longer restricted to include only linear estimators and so this result is both
broad and powerful: MLE (or OLS) is an ideal estimator under these assumptions (in the sense that
no other unbiased estimator, linear or not, has a lower variance). This results does not extend to the
variance estimator since E[62MF] = ﬁaz +# 62, and so the optimality of 62MF cannot be established
using the Cramer-Rao theorem.

There are quite a few regularity conditions for the IME to hold, but discussion of these is beyond the scope of this
course. Interested readers should see White (1996) for a thorough discussion.
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3.8 Small-Sample Hypothesis Testing

Most regressions are estimated to test implications of economic or finance theory. Hypothesis testing
is the mechanism used to determine whether data and theory are congruent. Formalized in terms of
B, the null hypothesis (also known as the maintained hypothesis) is formulated as

Ho:R(B)—r=0 (3.42)

where R(-) is a function from R¥ to R, m < k and r is an m by 1 vector. Initially, a subset of all
hypotheses, those in the linear equality hypotheses class, formulated

Hy:RB—r=0 (3.43)

will be examined where R is a m by k matrix. In subsequent chapters, more general test specifications
including nonlinear restrictions on the parameters will be considered. All hypotheses in this class can
be written as weighted sums of the regression coefficients,

RiBi+Ri2Br...+Rupx =n
RouBi+Rupr...+Rufr =nr

R B1+Rm2Pa -+ RuPr = ri
Each constraint is represented as a row in the above set of equations. Linear equality constraints can
be used to test parameter restrictions such as

Bi=0 (3.44)
3P+ =1
k
> Bi=0
=1
Bi=pr=p3=0.

For instance, if the unrestricted model is

Yi =B+ BoXoi+ B3Xz i+ PaXa i+ BsXs i+ &
the hypotheses in eq. (3.44) can be described in terms of R and r as
H() R r

Bi=0 [1 000 0] 0
3Brt+Ps=1 [03 10 0] 1
SEB=0 [0 1 11 1] 0

10000 0
Bi=PB=B=0 [0 1000 0
00100 0
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When using linear equality constraints, alternatives are specified as H; : RB —r # 0. Once both
the null and the alternative hypotheses have been postulated, it is necessary to discern whether the
data are consistent with the null hypothesis. Three classes of statistics will be described to test these
hypotheses: Wald, Lagrange Multiplier and Likelihood Ratio. Wald tests are perhaps the most intu-
itive: they directly test whether Rf —r is close to zero. Lagrange Multiplier tests incorporate the
constraint into the least-squares problem using a Lagrangian. If the constraint has a small effect on
the minimized sum of squares, the Lagrange multipliers, often described as the shadow price of the
constraint in economic applications, should be close to zero. The magnitude of these forms the basis
of the LM test statistic. Finally, likelihood ratios test whether the data are less likely under the null
than they are under the alternative. If the null hypothesis is not restrictive this ratio should be close to
one and the difference in the log-likelihoods should be small.

3.8.1 t-tests

T-tests can be used to test a single hypothesis involving one or more coefficients,

Hb:]lﬁ =r
where Ris a 1 by k vector and r is a scalar. Recall from theorem 3.4, B — 8 ~ N(0,62(X’X)~!). Under
the null, R(8 — B) = R — RB = RP — r and applying the properties of normal random variables,

R —r ~N(0,0°R(X'X)"'R/).
A simple test can be constructed
Rfi —r
= )
VOIR(X'X)~ IR

where z ~ N(0,1). To perform a test with size a, the value of z can be compared to the critical values
of the standard normal and rejected if |z| > Cy where Cy is the 1 — o quantile of a standard normal.
However, z is an infeasible statistic since it depends on an unknown quantity, 62. The natural solution

(3.45)

is to replace the unknown parameter with an estimate. Dividing z by 4/ ;—22 and simplifying,

(3.46)

RBfr

JOR(X'X) 'R
52
Vo?
B Rﬁ —r
VSR(XX) TR

. 2 . .
Note that the denominator (n — k)# ~ 3_ 4> and so 7 is the ratio of a standard normal to the square

root of a x2 normalized by it standard deviation. As long as the standard normal in the numerator and
the xvz are independent, this ratio will have a Student’s ¢ distribution.
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Definition 3.9 (Student’s ¢ distribution). Let z ~ N(0, 1) (standard normal) and let w ~ x\% where z
and w are independent. Then

Z
RIS (3.47)

v

The independence of B and s> — which is only a function of & — follows from 3.5, and so  has a
Student’s ¢ distribution.

Theorem 3.9 (¢-test). Under assumptions 3.1 - 3.6,

RB—r

~ byt (3.48)
JPRXX)-R "

As v — oo, the Student’s ¢ distribution converges to a standard normal. As a practical matter,
when v > 30, the T distribution is close to a normal. While any single linear restriction can be tested
with a z-test , the expression z-stat has become synonymous with a specific null hypothesis.

Definition 3.10 (z-stat). The z-stat of a coefficient, B, is the ¢-test value of a test of the null Hy : B, =0
against the alternative H; : B # 0, and is computed

B

s2(X'X)

(3.49)

where (X'X) [_kli} is the k™ diagonal element of (X'X)~!.

The previous examples were all two-sided; the null would be rejected if the parameters differed
in either direction from the null hypothesis. The T-test is also unique among these three main classes
of test statistics in that it can easily be applied against both one-sided alternatives and two-sided
alternatives.’

However, there is often a good argument to test a one-sided alternative. For instance, in tests of the
market premium, theory indicates that it must be positive to induce investment. Thus, when testing
the null hypothesis that a risk premium is zero, a two-sided alternative could reject in cases which are
not theoretically interesting. More importantly, a one-sided alternative, when appropriate, will have
more power than a two-sided alternative since the direction information in the null hypothesis can
be used to tighten confidence intervals. The two types of tests involving a one-sided hypothesis are
upper tail tests which test nulls of the form Hy : R < r against alternatives of the form H; : R > r,
and lower tail tests which test Hy : RB > r against H; : R < r.

Figure 3.1 contains the rejection regions of a #1¢ distribution. The dark gray region corresponds
to the rejection region of a two-sided alternative to the null that Hy : 3 = 9 for a 10% test. The
light gray region, combined with the upper dark gray region corresponds to the rejection region of
a one-sided upper tail test, and so test statistic between 1.372 and 1.812 would be rejected using a
one-sided alternative but not with a two-sided one.

Algorithm 3.1 (z-test).

7Wald, LM, and LR tests can be implemented against one-sided alternatives with considerably more effort.
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Rejection regions of a 71
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Figure 3.1: Rejection region for a t-test of the nulls Hy : B = B (two-sided) and Hy : B < B°. The two-
sided rejection region is indicated by dark gray while the one-sided (upper) rejection region includes
both the light and dark gray areas in the right tail.

1. Estimate 3 using least squares.
2. Compute s* = (n—k)~' 3" 82 and s*(X'X) .

3. Construct the restriction matrix, R, and the value of the restriction, r from the null hypothesis.

RB—r

4. Compute t = ———e—=—.
P 2R(X'X)~ R/

5. Compare t to the critical value, Cqy, of the t,,_; distribution for a test size with «. In the case of
a two tailed test, reject the null hypothesis if |t| > F,, (1 — a/2) where F;, (-) is the CDF of a ty-
distributed random variable. In the case of a one-sided upper-tail test, reject ift > F;, (1 — @)
or in the case of a one-sided lower-tail test, reject ift < F;, ().

3.8.2 Wald Tests

Wald test directly examines the distance between R and r. Intuitively, if the null hypothesis is true,
then R —r =~ 0. In the small-sample framework, the distribution of Rf3 —r follows directly from the
properties of normal random variables. Specifically,
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RB —r~N(0,6°R(X’X)"'R)

Thus, to test the null Hy : RB — r = 0 against the alternative Hy : R —r # 0, a test statistic can be
based on

(RB 1) [R(X'X)"'R] "' (RB )

aneasib]e -
o2

(3.50)

8

which has a x,%l distribution.® However, this statistic depends on an unknown quantity, 62, and to
2

operationalize W, 6> must be replaced with an estimate, s°.

(RB—r) RX'X)"'R] ' (RB—r)/mc® (RB—1) [R(X'X)"'R] ' (RB—r1)/m
o2 sz 52

W =
(3.51)

The replacement of o> with s has an effect on the distribution of the estimator which follows
from the definition of an F distribution.

Definition 3.11 (F distribution). Let z; ~ %\%1 and let zp ~ )(32 where z; and z, are independent. Then

z1
Vi

=
\%]

~ thVZ (352)

The conclusion that W has a F,, ,,_ distribution follows from the independence of B and €, which
in turn implies the independence of ﬁ and s°.

Theorem 3.10 (Wald test). Under assumptions 3.1 - 3.6,

! N —1pr] L
(RB —r)' [R(X X)S;R} (RB—r)/m ok (3.53)

Analogous to the 7, distribution, an Fy, y, distribution converges to a scaled x? in large samples
()(3] / Vi as v, — 00). Figure 3.2 contains failure to reject (FTR) regions for some hypothetical Wald
tests. The shape of the region depends crucially on the correlation between the hypotheses being
tested. For instance, panel (a) corresponds to testing a joint hypothesis where the tests are independent
and have the same variance. In this case, the FTR region is a circle. Panel (d) shows the FTR region
for highly correlated tests where one restriction has a larger variance.

Once W has been computed, the test statistic should be compared to the critical value of an F,, ,,_
and rejected if the test statistic is larger. Figure 3.3 contains the pdf of an F5 3¢ distribution. Any
W > 2.049 would lead to rejection of the null hypothesis using a 10% test.

The Wald test has a more common expression in terms of the SSE from both the restricted and
unrestricted models. Specifically,

I, 0
0 0
root makes use of a generalized inverse. A more complete discussion of reduced rank normals and generalized inverses is
beyond the scope of this course.

_1
8The distribution can be derived noting that [R(X'X)"'R’] "2 (RB—r) ~N <O, where the matrix square
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Bivariate F distributions
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Figure 3.2: Bivariate plot of an F distribution. The four panels contain the failure-to-reject regions
corresponding to 20, 10 and 1% tests. Panel (a) contains the region for uncorrelated tests. Panel (b)
contains the region for tests with the same variance but a correlation of 0.5. Panel (c) contains the
region for tests with a correlation of -.8 and panel (d) contains the region for tests with a correlation
of 0.5 but with variances of 2 and 0.5 (The test with a variance of 2 is along the x-axis).

SSERr —SSEy SSERr —SSEy

_ m _ m

W= i —=—5—. (3.54)
n—k

where SSEg is the sum of squared errors of the restricted model.” The restricted model is the original
model with the null hypothesis imposed. For example, to test the null Hy : B, = 3 = 0 against an
alternative that Hy : B, # 0 or B3 # 0 in a bivariate regression,

Y; = Bi + BaX1i+ BsXoi+ & (3.55)

9The SSE should be the result of minimizing the squared errors. The centered should be used if a constant is included
and the uncentered versions if no constant is included.
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the restricted model imposes the null,

Y, =B1+0X1,;+0Xs; +&
=i +&.

The restricted SSE, SSEy is computed using the residuals from this model while the unrestricted
SSE, SSEy, is computed from the general model that includes both X variables (eq. (3.55)). While
Wald tests usually only require the unrestricted model to be estimated, the difference of the SSEs is
useful because it can be computed from the output of any standard regression package. Moreover, any
linear regression subject to linear restrictions can be estimated using OLS on a modified specification
where the constraint is directly imposed. Consider the set of restrictions, R, in an augmented matrix
with r

R ]

By transforming this matrix into row-echelon form,

L, R f§
a set of m restrictions can be derived. This also provides a direct method to check whether a set of

constraints is logically consistent and feasible or if it contains any redundant restrictions.

Theorem 3.11 (Restriction Consistency and Redundancy). If [I, R | is [R 1] in reduced ech-
elon form, then a set of restrictions is logically consistent if rank(R) = rank( [Im R f'] ). Addition-
ally, if rank(R) = rank( [Im R f‘]) = m, then there are no redundant restrictions.

1. Estimate the unrestricted model Y; = X + €;, and the restricted model, Y = X;B+é&.

2. Compute SSEg = Z?:l f-:lz where & = Y; — iiB are the residuals from the restricted regression,
and SSE, =31, é‘lz where & =Y; —x;3 are the residuals from the unrestricted regression.
SSBR —SSEy

p— m
3. Compute W = —SSEkU
=

4. Compare W to the critical value, Cqy, of the F,, ,_ distribution at size . Reject the null
hypothesis if W > Cy,.

Finally, in the same sense that the z-stat is a test of the null Hy : B = 0 against the alternative
H; : B # 0, the F-stat of a regression tests whether all coefficients are zero (except the intercept)
against an alternative that at least one is non-zero.

Definition 3.12 (F-stat of a Regression). The F-stat of a regression is the value of a Wald test that
all coefficients are zero except the coefficient on the constant (if one is included). Specifically, if the
unrestricted model is

Y; = B1+BoXoi+ ... BiX,i + &,
the F-stat is the value of a Wald test of the null Hy : B, = B3 = ... = B; = 0 against the alternative
Hy:B; #0,for j=2,... .k and corresponds to a test based on the restricted regression

Y; =B +é&.
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Rejection region of a F5 3 distribution

I Rejection Region

Figure 3.3: Rejection region for a F5 3 distribution when using a test with a size of 10%. If the null
hypothesis is true, the test statistic should be relatively small (would be O if exactly true). Large test
statistics lead to rejection of the null hypothesis. In this example, a test statistic with a value greater
than 2.049 would lead to a rejection of the null at the 10% level.

3.8.3 Example: T and Wald Tests in Cross-Sectional Factor models
Returning to the factor regression example, the z-stats in the 4-factor model can be computed
Bi

2(%IX) -1
SXX)
For example, consider a regression of BH¢ on the set of four factors and a constant,
BHie = ﬁ] + BzVWMie + ﬁ3SMBi + [34HML1' + ﬁSMOMi + &

The fit coefficients, #-stats and p-values are contained in table 3.5.

Definition 3.13 (P-value ). The p-value is the smallest test size (o) where the null hypothesis may be
rejected. The p-value can be equivalently defined as the largest size where the null hypothesis cannot
be rejected.
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P-values have the advantage that they are independent of the distribution of the test statistic. For
example, when using a 2-sided 7-test, the p-value of a test statistic ¢ is 2(1 — F;, (|¢|)) where F, (] -]|)
is the CDF of a ¢-distribution with v degrees of freedom. In a Wald test, the p-value is 1 — Fy, (W)
where Fy, , (-) is the CDF of an fy, v, distribution.

The critical value, Cy, for a 2-sided 10% t-test with 973 degrees of freedom (n — 5) is 1.645, and
so if |t| > C¢, the null hypothesis should be rejected, and the results indicate that the null hypothesis
that the coefficients on the constant and SM B are zero cannot be rejected the 10% level. The p-values
indicate the null that the constant was 0 could be rejected at a & of 14% but not one of 13%.

Table 3.5 also contains the Wald test statistics and p-values for a variety of hypotheses, some
economically interesting, such as the set of restrictions that the four factor model reduces to the
CAPM, B; =0, j=1,3,...,5. Only one regression, the completely unrestricted regression, was
needed to compute all of the test statistics using Wald tests,

(RB 1) [R(X'X)"'R] " (RB 1)
2

W =
S

where R and r depend on the null being tested. For example, to test whether a strict CAPM was
consistent with the observed data,

andr =

(=i e i)
o = O O

0
0
0
1

[l eloll S
oo~ O
(el e il el en]

All of the null hypotheses save one are strongly rejected with p-values of O to three decimal places.
The sole exception is Hy : 1 = B3 = 0, which produced a Wald test statistic of 2.05. The 5% critical
value of an F3 ¢73 is 3.005, and so the null hypothesis would be not rejected at the 5% level. The
p-value indicates that the test would be rejected at the 13% level but not at the 12% level. One further
peculiarity appears in the table. The Wald test statistic for the null Hy : 5 = 0 is exactly the square of
the ¢-test statistic for the same null. This should not be surprising since W = t> when testing a single
linear hypothesis. Moreover, if z ~ t,, then 7> ~ Fyy. This can be seen by inspecting the square of a
tv and applying the definition of an Fj y-distribution.

3.8.4 Likelihood Ratio Tests

Likelihood Ratio (LR) test are based on the relative probability of observing the data if the null is
valid to the probability of observing the data under the alternative. The test statistic is defined

max X; ,62 subjectto Rf =r
LR:—21n< po>/(YIX:p.07) subj P > (3.56)

maxg 2 f(y|X; B,0?)

Letting B z denote the constrained estimate of 3, this test statistic can be reformulated
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t-Tests
ﬁ s.e. (3) t-stat  p-value

Constant -0.086 0.042 -2.04 0.042
VWM¢ 1.080 0.010 108.7 0.000
SMB 0.002 0.014 0.13 0.893
HML 0.764 0.015 50.8 0.000
MoOM -0.035 0.010 -3.50  0.000

Wald Tests
Null Alternative W M p-value
Bi=0,j=2,....,5 Bj#0,j=2,....,5 35588 4  0.000
Bj—O,j:3,4,5 Bj #0, ]—3 45 956.5 3 0.000
Bi=0,j=1,5 Bi#0,j=1,5 10.1 2 0.000
Bi=0,j=1,3 Bi#0,j=13 208 2 0.126
Bs=0 Bs #0 123 1 0.000

Table 3.5: The upper panel contains z-stats and p-values for the regression of Big-High excess returns
on the four factors and a constant. The lower panel contains test statistics and p-values for Wald tests
of the reported null hypothesis. Both sets of tests were computed using the small-sample assumptions
and may be misleading since the residuals are both non-normal and heteroskedastic.

LR = —2In (MX—BRG’%)> (3.57)
(yIX;B,62)
= _2[1(3]?5

)—1(13 67 y/X)]
:2[1(37 )_l(ﬁRa )]

In the case of the normal log likelihood, LR can be further simplified to'°

LR o <f<y|x;3AR,6,%>)
f(y[X: B, 6?)

(27561%)_% exp(_
(2762) =5 exp(— VXLV G=XP))

262
= —2In <<AI%)
(62)"

2
Og
= —2In (62>

0Note that 61% and 62 use 7 rather than a degree-of-freedom adjustment since they are MLE estimators.

(y_XﬁR)/(y_XﬁR) )
263

=—2In

[\S]
~—
NS/ [NSTR) I ST
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= n[In(63) — In(6?)]
= n|[In(SSEg) — In(SSEy)]

Finally, the distribution of the LR statistic can be determined by noting that

SSEx 62
LR =nl = N1 3.58
”“(ssa) <o) (39)
and that
—k LR
n [exp (-) - 1} —W. (3.59)
m n

The transformation between W and LR is monotonic so the transformed statistic has the same distri-
butionas W, a Fy, .

Algorithm 3.2 (Small-Sample Wald Test).
1. Estimate the unrestricted model Y; = x;3 + €;, and the restricted model, V= XiB+ €.

2. Compute SSER = Zf‘: | E‘l2 where & =Y; — iiB are the residuals from the restricted regression,
and SSEy; = >, é‘lz where & =Y; — x;3 are the residuals from the unrestricted regression.

3. Compute LR = nln (§§E§>

4. Compute W = ”T_k [exp (%) — 1}.

5. Compare W to the critical value, Cq, of the F,, ,_i distribution at size ®. Reject the null
hypothesis if W > Cg.

3.8.5 Example: LR Tests in Cross-Sectional Factor models

LR tests require estimating the model under both the null and the alternative. In all examples here,
the alternative is the unrestricted model with four factors while the restricted models (where the null
is imposed) vary. The simplest restricted model corresponds to the most restrictive null, Hy : 8; = 0,
Jj=1,...,5, and is specified

Yi=g¢.

To compute the likelihood ratio, the conditional mean and variance must be estimated. In this
simple specification, the conditional mean is ¥z = 0 (since there are no parameters) and the conditional
variance is estimated using the MLE with the mean, 61% =y'y/n (the sum of squared regressands). The

. - A 5 . . . . A 2 N )
mean under the alternative is § = x/8 and the variance is estimated using 6;; = (y—x.8)'(y —x!B) /n.
Once these quantities have been computed, the LR test statistic is calculated

62
LR =nln (—’;) (3.60)
Oy
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LR Tests
Null Alternative LR M p-value
Bi=0,j=2,....5 Bj#0,j=2,....,5 35588 4 0.000
Bi=0,j=3,45 B;j#0,j=3,4,5 956.5 3 0.000
Bi=0,j=1,5 Bi#0,j=1,5 10.1 2 0.000
Bi=0,j=1,3 Bi#0,j=13 208 2 0.126
Bs =0 Bs #0 123 1 0.000

LM Tests
Null Alternative LM M p-value
Bi=0,j=2,....,5 Bj#0,j=2,....,5 1634 4 0.000
Bi=0,j=3,45 Bj#0,j=3,4,5 1843 3 0.000
Bi=0,j=1,5 Bi#0,j=1,5 985 2 0.000
Bi=0,j=1,3 Bi#0,j=1,3 207 2 0.127
Bs =0 Bs #0 121 1 0.001

Table 3.6: The upper panel contains test statistics and p-values using LR tests for using a regression
of excess returns on the big-high portfolio on the four factors and a constant. In all cases the null was
tested against the alternative listed. The lower panel contains test statistics and p-values for LM tests
of same tests. Note that the LM test statistics are uniformly smaller than the LR test statistics which
reflects that the variance in a LM test is computed from the model estimated under the null, a value
that must be larger than the estimate of the variance under the alternative which is used in both the
Wald and LR tests. Both sets of tests were computed using the small-sample assumptions and may be
misleading since the residuals are non-normal and heteroskedastic.

<2
where the identity % = Sg—gﬁ has been applied. Finally, LR is transformed by %‘ [exp (%) — 1] to

produce the test statistic, which is numerically identical to W. This can be seen by comparing the
values in table 3.6 to those in table 3.5.

3.8.6 Lagrange Multiplier Tests

Consider minimizing the sum of squared errors subject to a linear hypothesis.
rrgn (y—XB)'(y — XB) subject to R —r = 0.

This problem can be formulated in terms of a Lagrangian,

L(B,A)=(y—XB)'(y—XB)+(RB—r)'A

and the problem is

mfx{nbinﬁ(ﬁ,?t)}
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The first-order conditions correspond to a saddle point,

L , A
L
o1 ~Rp-r=0

pre-multiplying the top FOC by R(X’X)~! (which does not change the value, since it is 0),

2R(X'X)H(X'X)B —2R(X'X) X'y + R(X'X)"'R'A =0
= 2RB—2RB+R(X'X)"'RA =0

where B is the usual OLS estimator. Solving,

1 =2[RX'X)"'R] " (RB 1) (3.61)
B=p—(XX)"'R[RXX)'R] " (RE—r) (3.62)

These two solutions provide some insight into the statistical properties of the estimators. B, the
constrained regression estimator, is a function of the OLS estimator, ﬁ, and a step in the direction
of the constraint. The size of the change is influenced by the distance between the unconstrained
estimates and the constraint (Rf —r). If the unconstrained estimator happened to exactly satisfy the
constraint, there would be no step.ll

The Lagrange multipliers, A, are weighted functions of the unconstrained estimates, ﬁ, and will be
near zero if the constraint is nearly satisfied (Rﬁ —r ~ 0). In microeconomics, Lagrange multipliers
are known as shadow prices since they measure the magnitude of the change in the objective function
would if the constraint was relaxed a small amount. Note that § is the only source of randomness
in 1 (like B ), and so A is a linear combination of normal random variables and will also follow a
normal distribution. These two properties combine to provide a mechanism for testing whether the
restrictions imposed by the null are consistent with the data. The distribution of A can be directly
computed and a test statistic can be formed.

There is another method to derive the LM test statistic that is motivated by the alternative name of
LM tests: Score tests. Returning to the first-order conditions and plugging in the parameters,

R'A =2X'(y — XB)
R'A =2X'g

where ﬁ is the constrained estimate of 8 and € are the corresponding estimated errors (€ =y — XB).
Thus R’A has the same distribution as 2X’€. However, under the small-sample assumptions, & are
linear combinations of normal random variables and so are also normal,

2X'E ~ N(0,406%X'X)

"Even if the constraint is valid, the constraint will never be exactly satisfied.
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and

X' ~ N(0,0°X'X). (3.63)
A test statistic that the scores are zero can be constructed in the same manner as a Wald test:
FX(X'X)"!1X'g
c? '

However, like a Wald test this statistic is not feasible since ¢
substitution, the LM test statistic is given by

07— (3 64)

2 is unknown. Using the same

FX(X'X)"'X'g
2

LM = (3.65)

and has a Fy, , k4, distribution where §2 is the estimated error variance from the constrained re-
gression. This is a different estimator than was used in constructing a Wald test statistic, where the
variance was computed from the unconstrained model. Both estimates are consistent under the null.
However, since SSEx > SSEy, § is likely to be larger than s2.!> LM tests are usually implemented
using a more convenient — but equivalent — form,

SSEg —SSEy
n—k-+m

To use the Lagrange Multiplier principle to conduct a test:

Algorithm 3.3 (Small-Sample LM Test).

1. Estimate the unrestricted model Y; = x; 3 + €;, and the restricted model, Y, = XiB+¢&.

2. Compute SSEx =Y, é‘lz where & = y; — f(iﬁ are the residuals from the restricted regression,
and SSE, = Z?:l é‘lz where & =Y; — x;3 are the residuals from the unrestricted regression.
SSER —SSEy

3. Compute LM = —g—.

n—k-+m

4. Compare LM to the critical value, Cq, of the Fy, .y, distribution at size . Reject the null
hypothesis if LM > Cg.

Alternatively, the scores can be directly tested.
Algorithm 3.4 (Alternative Small-Sample LM Test).

1. Estimate the restricted model, Y; = XiB+ €.

#x(x'x)~x’e
2. Compute LM = ——2%—— where X is n by k the matrix of regressors from the unconstrained
2 _ i 512
model and s* = pr oy

3. Compare LM to the critical value, Cq, of the Fy, i distribution at size o. Reject the null
hypothesis if LM > Cg.

12Note that since the degree-of-freedom adjustment in the two estimators is different, the magnitude estimated variance
is not directly proportional to SSEg and SSEy.
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3.8.7 Example: LM Tests in Cross-Sectional Factor models

Table 3.6 also contains values from LM tests. LM tests have a slightly different distributions than
the Wald and LR and do not produce numerically identical results. While the Wald and LR tests
require estimation of the unrestricted model (estimation under the alternative), LM tests only require
estimation of the restricted model (estimation under the null). For example, in testing the null Hy :
B1 = Bs = 0 (that the MOM factor has no explanatory power and that the intercept is 0), the restricted
model is estimated from

The two conditions, that f; = 0 and that S5 = 0 are imposed by excluding these regressors. Once the
restricted regression is fit, the residuals estimated under the null, § =Y; — x; [3 are computed and the
LM test is calculated from

FX(X'X)"'X'g

LM =
§2

where X is the set of explanatory variables from the unrestricted regression (in the case, x; = [1
VWM SMB; HML; M OM;]). Examining table 3.6, the LM test statistics are considerably smaller
than the Wald test statistics. This difference arises since the variance used in computing the LM
test statistic, 62, is estimated under the null. For instance, in the most restricted case (Hy=p =0,
j=1,...,k), the variance is estimated by y'y/N (since k = 0 in this model) which is very different
from the variance estimated under the alternative (which is used by both the Wald and LR). Despite
the differences in the test statistics, the p-values in the table would result in the same inference. For
the one hypothesis that is not completely rejected, the p-value of the LM test is slightly larger than
that of the LR (or W). However, .130 and .129 should never make a qualitative difference (nor should
.101 and .099, even when using a 10% test). These results highlight a general feature of LM tests:
test statistics based on the LM-principle are smaller than Likelihood Ratios and Wald tests, and so
less likely to reject.

3.8.8 Comparing the Wald, LR, and LM Tests

With three tests available to test the same hypothesis, which is the correct one? In the small-sample
framework, the Wald is the obvious choice because W ~ LR and W is larger than LM. However, the
LM has a slightly different distribution, so it is impossible to make an absolute statement. The choice
among these three tests reduces to user preference and ease of computation. Since computing SSEy
and SSEg is simple, the Wald test is likely the simplest to implement.

These results are no longer true when nonlinear restrictions and/or nonlinear models are estimated.
Further discussion of the factors affecting the choice between the Wald, LR, and LM tests will be
reserved until then. Figure 3.4 contains a graphical representation of the three test statistics in the
context of a simple regression, ¥; = BX; 1 & 13 The Wald test measures the magnitude of the constraint
RpB — r at the unconstrained estimator [3 The LR test measures how much of the sum of squared
errors has changed between /3 and [3 Finally, the LM test measures the magnitude of the gradient,
X'(y —Xp) at the constrained estimator 3.

13Magnitudes of the lines is not to scale, so the magnitude of the test statistics cannot be determined from the picture.
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Location of the three test statistics

/

SSE= (y — XB) (v — XB)

2X'(y — XB)

Figure 3.4: Graphical representation of the three major classes of tests. The Wald test measures
the magnitude of the constraint, R — r, at the OLS parameter estimate, B The LM test measures
the magnitude of the score at the restricted estimator ( [3) while the LR test measures the difference
between the SSE at the restricted estimator and the SSET at the unrestricted estimator. Note: Only
the location of the test statistic, not their relative magnitudes, can be determined from this illustration.

3.9 Large-Sample Assumption

While the small-sample assumptions allow the exact distribution of the OLS estimator and test statis-
tics to be derived, these assumptions are not realistic in applications using financial data. Asset returns
are non-normal (both skewed and leptokurtic), heteroskedastic, and correlated. The large-sample
framework allows for inference on B without making strong assumptions about the distribution or
error covariance structure. However, the generality of the large-sample framework comes at the loss
of the ability to say anything exact about the estimates in finite samples.

Four new assumptions are needed to analyze the asymptotic behavior of the OLS estimators.

Assumption 3.7 (Stationary Ergodicity). {(x;,&)} is a strictly stationary and ergodic sequence.

This is a technical assumption needed for consistency and asymptotic normality. It implies two
properties about the joint density of {(x;,&)}: the joint distribution of {(x;,&)} and {(Xi};,&+;)}
depends on the time between observations (j) and not the observation index (i) and that averages will
converge to their expected value (as long as they exist). There are a number of alternative assumptions
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that could be used in place of this assumption, although this assumption is broad enough to allow for
1.1.d., 1.d.n.d (independent not identically distributed, including heteroskedasticity), and some n.i.n.i.d.
data, although it does rule out some important cases. Specifically, the regressors cannot be trending
or otherwise depend on the observation index, an important property of some economic time series
such as the level of a market index or aggregate consumption. Stationarity will be considered more
carefully in the time-series chapters.

Assumption 3.8 (Rank). E[x/x;] = Exx is nonsingular and finite.
This assumption, like assumption 3.3, is needed to ensure identification.

Assumption 3.9 (Martingale Difference). {x'&;, F;} is a martingale difference sequence,
E [(Xj,,-e,-)Z] <o, =12, ki=172...

and S = V[n*%X’E] is finite and non singular.

A martingale difference sequence has the property that its mean is unpredictable using the information
contained in the information set (F; ).

Definition 3.14 (Martingale Difference Sequence). Let {Z;} be a vector stochastic process and F; be
the information set corresponding to observation i containing all information available when observa-
tion i was collected except Z;. {Z;, F;} is a martingale difference sequence if

E[Z;|F]=0

In the context of the linear regression model, it states that the current score is not predictable by
any of the previous scores, that the mean of the scores is zero (E[X!g;] = 0), and there is no other
variable in J; which can predict the scores. This assumption is sufficient to ensure that n~ 12X’ e will
follow a Central Limit Theorem, and it plays a role in consistency of the estimator. A m.d.s. is a fairly
general construct and does not exclude using time-series regressors as long as they are predetermined,
meaning that they do not depend on the process generating &;. For instance, in the CAPM, the return
on the market portfolio can be thought of as being determined independently of the idiosyncratic
shock affecting individual assets.

Assumption 3.10 (Moment Existence). E[X;{i] <o0,i=1,2,..., j=1,2,....kand E[e?] = 62 < 0,
i=1.2,...

This final assumption requires that the fourth moment of any regressor exists and the variance
of the errors is finite. This assumption is needed to derive a consistent estimator of the parameter
covariance.

3.10 Large-Sample Properties

These assumptions lead to two theorems that describe the asymptotic behavior of B: it is consistent
and asymptotically normally distributed. First, some new notation is needed. Let

/ -1 /
B, = (XX) (&) (3.67)
n n

be the regression coefficient using n realizations from the stochastic process {x;, €}
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Theorem 3.12 (Consistency of 3). Under assumptions 3.1 and 3.7 - 3.9
B, B

Consistency is a weak property of the OLS estimator, but it is important. This result relies crucially

on the implication of assumption 3.9 that n~'X'e 2,0, and under the same assumptions, the OLS
estimator is also asymptotically normally distributed.

Theorem 3.13 (Asymptotic Normality of 3). Under assumptions 3.1 and 3.7 - 3.9
A d — _
VB, —B) = N(0, Iy SExx ) (3.68)
where Yxx = E[x!x;] and S = V[n~1/?X'g]

Asymptotic normality provides the basis for hypothesis tests on 3. However, using only theorem
3.13, tests are not feasible since Xxx and S are unknown, and so must be estimated.

Theorem 3.14 (Consistency of OLS Parameter Covariance Estimator). Under assumptions 3.1 and
3.7 -3.10,

ixx :I’le/X A ZXX

n
S=n"! E erx/x; 2s
i=1

=n""! (X'EX)
and ' .
a—lae—1 P v—lgy—1
ZXX SZXX - z"XX SEXX
where E = diag(é‘lz, ..., &2) is a matrix with the estimated residuals squared along its diagonal.

Combining these theorems, the OLS estimator is consistent, asymptotically normal, and the asymp-
totic variance can be consistently estimated. These three properties provide the tools necessary to
conduct hypothesis tests in the asymptotic framework. The usual estimator of the residual variance is
also consistent for the variance of the innovations under the same conditions.

Theorem 3.15 (Consistency of OLS Variance Estimator). Under assumptions 3.1 and 3.7 - 3.10,

RPNy
62=n"'¢2 5 o>

Further, if homoskedasticity is assumed, then the parameter covariance estimator can be simpli-
fied.

Theorem 3.16 (Homoskedastic Errors). Under assumptions 3.1, 3.4, 3.5 and 3.7 - 3.10,

Va(B, - B) % N(0,6%55))

Combining the result of this theorem with that of theorems 3.14 and 3.15, a consistent estimator
. Ara—1
of 62X, is given by 625 .
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3.11 Large-Sample Hypothesis Testing

All three test types, Wald, LR, and LM, have large-sample equivalents that exploit the estimated
parameters’ asymptotic normality. While these tests are only asymptotically exact, the use of the
asymptotic distribution is justified as an approximation to the finite-sample distribution, although the
quality of the CLT approximation depends on how well behaved the data are.

3.11.1 Wald Tests
Recall from Theorem 3.13,

VB, —B) % N0, Z5lSTG)). (3.69)

Applying the properties of a normal random variable, if z ~ N(u,X), ¢’z ~ N(¢'u,¢’Ec) and that

2
if w ~ N(u,0?) then @ ~ x?. Using these two properties, a test of the null
B v i g prop

H()ZRﬁ—l':O

against the alternative

H]ZRﬁ-l‘;ﬁO

can be constructed.
Following from Theorem 3.13, if Hy : RB —r = 0 is true, then

Vi(RB, —1) % N0, RELISIIR/ (3.70)
n XX XX

and

I2v/n(RB, — 1) % N(0,1) (3.71)
where I' = REGSEL/R’. Under the null that Hy : RB —r = 0,

n(RB, — 1) [REGISTGIR] ™ (RB, — 1) % 42 (3.72)

where m is the rank(R). This estimator is not feasible since I is not known and must be estimated.
Fortunately, I" can be consistently estimated by applying the results of Theorem 3.14

XX — n_IX/X

n
S=n"! 5 eXxlx;
i=1

and so

The feasible Wald statistic is defined
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- a—laa—1_,1"1 o d
W =n(RB, —r) [RZXXSZXXR’ (RB, —1) % 22. (3.73)

Test statistic values can be compared to the critical value Cy, from a y2 at the a-significance level
and the null is rejected if W is greater than Cy. The asymptotic ¢-test (which has a normal distribution)
is defined analogously,

RB —
(= kP L4 N0, 1), (3.74)
RIR'

where R is a 1 by k vector. Typically R is a vector with 1 in its j element, producing statistic

t=1/n Biw 4 N(0,1)

V5
where [[];; is the j™ diagonal element of I.
The n term in the Wald statistic (or y/n in the ¢-test) may appear strange at first, although these
terms are also present in the classical tests. Recall that the ¢-stat (null Hy : B; = 0) from the classical
framework with homoskedastic data is given by

B
VEHXX) T

=

The ¢-stat in the asymptotic framework is

iN
12 - \/ﬁﬁ+_]
\/ 62 [Zxx]jj

If #; is multiplied and divided by +/n, then

n

B B Bi
=n =n =Vn =1,
A2 / —17.. A XN\ nra—1
VaVEIXRT e XX 628
and these two statistics have the same value since X’X differs from ixx by a factor of n.

Algorithm 3.5 (Large-Sample Wald Test).

1. Estimate the unrestricted model Y; = X;f3 + &;.

. . e P
2. Estimate the parameter covariance using Yy SXy Where

n n
Sxx=n"" E xx;, S=n"" E E7x/x;
i=1 i=1

3. Construct the restriction matrix, R, and the value of the restriction, r, from the null hypothesis.

A~ AT A -1 A~
4. Compute W =n(Rf,, —r)’ [szxl Szxxl Rl} (RB, —r).

5. Reject the null if W > Cq where Cy is the critical value from a )72, using a size of .
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3.11.2 Lagrange Multiplier Tests

Recall that the first-order conditions of the constrained estimation problem require

R'A =2X'¢

where € are the residuals estimated under the null H : RB —r =0. The LM test examines whether
A is close to zero. In the large-sample framework, ., like B is asymptotically normal and R’ A will
only be close to 0 if A ~0. The asymptotic version of the LM test can be compactly expressed if § is
defined as the average score of the restricted estimator, § = n~1X’&. In this notation,

LM =n§S™'5 % 2. (3.75)

If the model is correctly specified, n~ ' X'&, which is a k by 1 vector with j" element n~! S xj &

should be a mean-zero vector with asymptotic variance S by assumption 3.7. Thus, \/n(n~'X'g) LA
N(0,S) implies

\/ﬁs—isizv(o, { Ig gD (3.76)
and so n§'S~1§ % x2. This version is infeasible and the feasible version of the LM test must be used,

LM =ns§ 5% 2. (3.77)

where S = n~1 Y"1 | 2x/x; is the estimator of the asymptotic variance computed under the null. This
means that S is computed using the residuals from the restricted regression, &, and that it will differ
from the usual estimator S which is computed using residuals from the unrestricted regression, €. Un-
der the null, both S and S are consistent estimators for § and using one or the other has no asymptotic
effect.

If the residuals are homoskedastic, the LM test can also be expressed in terms of the R? of the
unrestricted model when testing a null that the coefficients on all explanatory variables except the
intercept are zero. Suppose the regression fit was

Y; = Bo+BiX1,i+ BXoi+ ...+ BiXin-
To test the Hy : B1 = B2 = ... = Br = 0 (where the excluded B; corresponds to a constant),

LM =nR> % 52 (3.78)

is equivalent to the test statistic in eq. (3.77). This expression is useful as a simple tool to test whether
the explanatory variables in a regression appear to explain any variation in the dependent variable. If
the residuals are heteroskedastic, the nR? form of the LM test does not have standard distribution and
should not be used.

Algorithm 3.6 (Large-Sample LM Test).
1. Form the unrestricted model, Y; = X;3 + €.

2. Impose the null on the unrestricted model and estimate the restricted model, Y; = X; 8 + €;.
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3. Compute the residuals from the restricted regression, & = Y; — iiﬁ.

4. Construct the score using the residuals from the restricted regression from both models, S; = X;&;
where X; are the regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,
n n
s=n"'>"8 S=n"'> g8 (3.79)
i=1 i=1

6. Compute the LM test statistic as LM = n§S™'§.

7. Reject the null if LM > Cy where Cq is the critical value from a X,% using a size of o.

3.11.3 Likelihood Ratio Tests

A critical distinction between small-sample and large-sample hypothesis testing is the omission of
assumption 3.6. Without this assumption, the distribution of the errors is left unspecified. Based on
the ease of implementing the Wald and LM tests their asymptotic framework, it may be tempting to
think the likelihood ratio is asymptotically valid. It is not. The technical details are complicated,
and the validity of the asymptotic distribution of the LR relies crucially on the Information Matrix
Equality holding. If the shocks are heteroskedastic, then the IME will generally not hold, and the
distribution of LR tests will be nonstandard.'*

There is, however, a feasible likelihood-ratio like test available. The motivation for this test will
be clarified in the GMM chapter. For now, the functional form will be given with only minimal
explanation,

sa—1~ d
LR=n§'S715 5 x2, (3.80)
where § = n~ !X’ is the average score vector when the estimator is computed under the null. This

statistic is similar to the LM test statistic, although there are two differences. First, one term has been
left out of this expression, and the formal definition of the asymptotic LR is

LR=n§'S 58S 8% 2 (3.81)
where § = n~ !X’ are the average scores from the unrestricted estimator. Recall from the first-order
conditions of OLS (eq. (3.7)) that § = 0 and the second term in the general expression of the LR will
always be zero. The second difference between LR and LM exists only in the feasible versions. The
feasible version of the LR is given by

LR=n¥S 15 % 2. (3.82)

where S is estimated using the scores of the unrestricted model (under the alternative),

. | —
S!1= ZZ@?x;xi. (3.83)
i=1

14In this case, the LR will converge to a weighted mixture of m independent 112 random variables where the weights
are not 1. The resulting distribution is not a x,zn
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The feasible LM, n§'S™'5, uses a covariance estimator (S)based on the scores from the restricted
model, §.

In models with heteroskedasticity, it is impossible to determine a priori whether the LM or the LR
test statistic will be larger, although folk wisdom states that LR test statistics are larger than LM test
statistics (and hence the LR will be more powerful). If the data are homoskedastic, and homoskedastic
estimators of S and § are used (6%(X'X/n)~! and 62(X’X/n)~!, respectively), then it must be the
case that LM < LR. This ordering of the two test statistic occurs since 62 must be smaller than &2
because OLS minimizes the squared residuals. The LR is guaranteed to have more power in this case.

Algorithm 3.7 (Large-Sample LR Test).
1. Estimate the unrestricted model Y; = X;f3 + &;.
2. Impose the null on the unrestricted model and estimate the restricted model, ¥; = Xiﬁ + &.

3. Compute the residuals from the restricted regression, & = Y; — f(iB, and from the unrestricted
regression, & =Y; —x; .

4. Construct the score from both models, §; = x;&; and §; = X;€;, where in both cases X; are the
regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,
n n
s=n"'> "8, S=n"> &8 (3.84)
i=1 i=1

6. Compute the LR test statistic as LR = n§S™'§'.

7. Reject the null if LR > Cy where Cy, is the critical value from a Xi using a size of .

3.11.4 Revisiting the Wald, LM, and LR tests

The previous tests can now be revisited while allowing for heteroskedasticity in the data. Tables
3.7 and 3.8 contain 7-tests, Wald tests, LM tests, and LR tests that compare large-sample versions
of these test statistics to their small-sample framework equivalents. There is a clear direction in
the difference between the small-sample and large-sample test statistics: the large-sample statistics
are smaller than the small-sample statistics, often sgbstantially. Examining table 3.7, 4 out of 5 of
the ¢-stats have decreased. Since the estimator of 3 is the same in both the small-sample and the
large-sample frameworks, all of the difference is attributable to changes in the standard errors, which
typically increased by 50%. When z-stats differ dramatically under the two covariance estimators, the
likely cause is heteroskedasticity.

Table 3.8 shows that the Wald, LR, and LM test statistics also changed by large amounts.'> The
heteroskedasticity-robust Wald statistics decreased by up to a factor of 2, and the robust LM test
statistics decreased by up to 5 times. The LR test statistic values were generally larger than those

I5The statistics based on the small-sample assumptions have Smi—k OF fiu:—k+m distributions while the statistics based
on the large-sample assumptions have y2 distributions, and so the values of the small-sample statistics must be multiplied
by m to be compared to the large-sample statistics.
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Homoskedasticity Heteroskedasticity

A A

B s.e.(B) t-stat p-value s.e.(B)  t-stat p-value

Constant  -0.086 0.042 -2.04 0.042 0.043 -1.991 0.046
VWM 1.080 0.010 108.7 0.000 0.012 93.514  0.000
SMB 0.002 0.014 0.13 0.893 0.017 0.110 0912
HML 0.764 0.015 50.8 0.000 0.021 36.380  0.000
MOM -0.035 0.010 -3.50  0.000 0.013 -2.631 0.009

Table 3.7: Comparing small and large-sample #-stats. The small-sample statistics in the left panel of
the table overstate the precision of the estimates. The heteroskedasticity robust standard errors are
larger for 4 out of 5 parameters, and one variable which was significant at the 15% level is insignifi-
cant.

of the corresponding Wald or LR test statistics. The relationship between the robust versions of the
Wald and LR statistics is not clear, and for models that are grossly misspecified, the Wald and LR
test statistics are substantially larger than their LM counterparts. However, when the value of the test
statistics is smaller, the three are virtually identical, and the decision taken using any of these three
tests is the same. All nulls except Hy : B; = B3 = 0 are rejected using standard sizes (5-10%).

These changes should serve as a warning to conducting inference using covariance estimates based
on homoskedasticity. In most applications to financial time-series, heteroskedasticity robust covari-
ance estimators (and often HAC (Heteroskedasticity and Autocorrelation Consistent), which will be
defined in the time-series chapter) are automatically applied without testing for heteroskedasticity.

3.12 Violations of the Large-Sample Assumptions

The large-sample assumptions are just that: assumptions. While this set of assumptions is far more
general than the finite-sample setup, they may be violated in a number of ways. This section examines
the consequences of certain violations of the large-sample assumptions.

3.12.1 Omitted and Extraneous Variables

Suppose that the model is linear but misspecified, and a subset of the relevant regressors are excluded.
The model can be specified

Y =B X1, +B,X0,+ ¢ (3.85)

where X ; is 1 by k1 vector of included regressors and X5 ; is a 1 by k; vector of excluded but relevant
regressors. Omitting X; ; from the fit model, the least-squares estimator is

. XX\ X
B1n=( ' 1) sty (3.86)

n n

This misspecified estimator is biased, and the bias depends on the magnitude of the coefficients on
the omitted variables and the correlation between the omitted and excluded regressors.
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Wald Tests

Small Sample Large Sample
Null Alternative M W p-value W p-value
Bi=0,j=2,....5 Bj#0,j=2,....,5 4 35588 0.000 2661.2  0.000
Bi=0,j=3,45 Bj#0,j=3,4,5 3 9565 0.000 583.2  0.000
Bi=0,j=1,5 Bi#0,j=1,5 2 10.1 0.000 7.35 0.001
Bi=0,j=13 Bi#0,j=1,3 2 2.08 0.126 204 0.131
Bs =0 Bs #0 1 12.3 0.000 6.92  0.009

LR Tests

Small Sample Large Sample
Null Alternative M LR p-value LR p-value
Bi=0,j=2,....5 B;j#0,j=2,...,5 4 35588 0.000 2696.4  0.000
Bi=0,j=3,45 Bj#0,j=3,4,5 3 9565 0.000 589.3 0.000
Bi=0,j=1,5 Bi#0,j=1,5 2 10.1 0.000 8.11 0.000
Bi=0,j=1,3 Bi#0,j=1,3 2 2.08 0.126 2.13 0.119
Bs=0 Bs #0 1 12.3 0.000 7.40  0.007

LM Tests

Small Sample Large Sample
Null Alternative M LM  p-value LM  p-value
Bi=0,j=2,....,5 Bj#0,j=2,....,5 4 1634  0.000 34.8 0.000
Bi=0,j=3,45 Bj#0,j=3,4,5 3 1843 0.000 31.9  0.000
Bi=0,j=1,5 Bi#0,j=1,5 2 9.85 0.000 7.82  0.000
Bi=0,j=13 Bi#0,j=1,3 2 2.07 0.127 2.11 0.121
Bs=0 Bs #0 1 12.1 0.001 6.50  0.011

Table 3.8: Comparing large- and small-sample Wald, LM, and LR test statistics. The large-sample
test statistics are smaller than their small-sample counterparts due to the the heteroskedasticity present
in the data. While the decisions of these tests are unaffected by the choice of covariance estimator,

this will not always be the case.

Theorem 3.17 (Misspecified Regression). Under assumptions 3.1 and 3.7 - 3.9 through , if X can be
partitioned [X| Xj] where X| correspond to included variables while X, correspond to excluded

variables with non-zero coefficients, then
A p 1
Bin = B1+Xxx,Ex,x, B2
A D
Bi—B1+6B,

Yax = { EXIXI Z“"1"2 }

/
ZX] X5 ZXZ Xy

where

(3.87)
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The bias term, 6 3, is composed of two elements. The first, 0, is a matrix of regression coefficients
where the j column is the probability limit of the least-squares estimator in the regression

XQj==X46j%—V,

where X is the j™ column of X,. The second component of the bias term is the original regression
coefficients. As should be expected, larger coefficients on omitted variables lead to larger bias.

Bln RN B under one of three conditions:
1.6, 50

2. B,=0

3. The product Snﬁz 0.

B, has been assumed to be non-zero (if $, = 0 the model is correctly specified). &, 2, 0 only if the
regression coefficients of X, on X are zero, which requires that the omitted and included regressors to
be uncorrelated (X3 lies in the null space of X;). This assumption should be considered implausible in
most applications and Bln is biased and inconsistent, in general. Note that certain classes of regressors
that are mutually orthogonal by design and can be safely omitted.'® Finally, if both § and B, are non-
zero, the product could be zero, although, without a very peculiar specification and a careful selection
of regressors, this possibility should be considered unlikely.

Alternatively, consider the case where some irrelevant variables are included. The correct model
specification is

Y, =Xi:B,+¢

and the model estimated is

Y, =X, +X2.iB,+ &

As long as the assumptions of the asymptotic framework are satisfied, the least-squares estimator is

consistent under theorem 3.12 and
~ o | By | _| By
Bt =10 ]

If the errors are homoskedastic, the variance of \/n(f, — B) is 6254 where X = [X; Xj]. The
variance of f3, is the upper left k; by k; block of GZZ;XI. Using the partitioned inverse,

-1 -1 / —1 -1
Zyyx; T Ixpx, Zx o Mi 2y x, Z Xy x, Zx M

Z;xl = !
-1 —1 —1 yv/ —1

16Safely in terms of consistency of estimated parameters. Omitting variables will cause the estimated variance to be
inconsistent.
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where
X/ Mx, X
M, = lim =2 X122
n—o0 n
X' Mx, X
M, = lim S1%2
n—o0 n

and so the upper left block of the variance, Z;IIXI “‘ZgllleXleMlZ;lsz;llxla must be larger than

Z;IIXI because the second term is a quadratic form and M is positive semi-definite.!” Noting that 62
is consistent under both the correct specification and the expanded specification, the cost of including
extraneous regressors is an increase in the asymptotic variance.

In finite samples, there is a bias-variance trade-off. Fewer regressors included in a model leads
to more precise estimates. Models containing more variables tend to produce coefficient estimated
with less bias. Additionally, if relevant variables are omitted then &7 is larger than it would be if all
relevant variables are included, and so the estimated parameter variance, 6%(X’X)~! is also larger.
Asymptotically, only the bias remains as it is of a higher order than variance (scaling B . — B by V/n,
the bias is exploding while the variance is constant), and so when the sample size is large and estimates
are precise, a larger model should be preferred to a smaller model. In cases where the sample size
is small, there is a justification for omitting a variable to enhance the precision of those remaining,
particularly when the effect of the omitted variable is not of interest or when the excluded variable is
highly correlated with one or more included variables.

3.12.2 Errors Correlated with Regressors

Bias can arise from sources other than omitted variables. Consider the case where X is measured with
noise and define X; = X; + n; where X;isa noisy proxy for X;, the “true” (unobserved) regressor, and
7N, is an 1.i.d. mean 0 noise process which is independent of X and € with finite second moments Xyy,.
The OLS estimator,

V/V !/
B, = (XX) Xy (3.88)
n n
/ -1 /
_ ((X+n) (X+n)> (X+n)y (3.89)
n n
! ! / / 1 !
:(XX X'n n'X nn) (X+n)y (3.90)
n n n n n
X'X X X / —1 X/ /
:( X +nn) (_.uﬂ) (3.91)
n n n n n n

will be biased downward. To understand the source of the bias, consider the behavior, under the
asymptotic assumptions, of

1TBoth M and M are covariance matrices of the residuals of regressions of X, on X; and X; on Xp respectively.
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If Xy # 0, then f)’ " A B and the estimator is inconsistent.

The OLS estimator is also biased in the case where n~ X' % 0, which arises in situations with
endogeneity. In these cases, X; and &; are simultaneously determined and correlated. This correlation
results in a biased estimator since 3n EN B+ Z;QI(ZXS where Xx¢ is the limit of n~'X’e. The classic
example of endogeneity is simultaneous equation models although many situations exist where the
innovation may be correlated with one or more regressors; omitted variables can be considered a
special case of endogeneity by reformulating the model.

The solution to this problem is to find an instrument, z;, which is correlated with the endogenous
variable, Xx;, but uncorrelated with g&;. Intuitively, the endogenous portions of x; can be annihilated by
regressing X; on z; and using the fit values. This procedure is known as instrumental variable (IV)
regression in the case where the number of z; variables is the same as the number of x; variables and
two-stage least squares (2SLS) when the size of z; is larger than k.

Define z; as a vector of exogenous variables where z; may contain any of the variables in x;
which are exogenous. However, all endogenous variables — those correlated with the error — must be
excluded.

First, a few assumptions must be reformulated.

Assumption 3.11 (IV Stationary Ergodicity). {(Z;, X, &)} is a strictly stationary and ergodic se-
quence.

Assumption 3.12 (IV Rank). E[Z/X;] = Xzx is nonsingular and finite.

Assumption 3.13 (IV Martingale Difference). {Z.¢;, F;} is a martingale difference sequence,
E [(z],is,-)z] <oo, =12, ki=172...

and S = V[n_%Z’e] is finite and non singular.
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Assumption 3.14 (IV Moment Existence). E[X]‘-‘l-] < oo and E[Z;‘i] <oo, j=1,2,....ki=1,2,...
andE[e}] = 0% <00, i=1,2,....

These four assumptions are nearly identical to the four used to establish the asymptotic normality
of the OLS estimator. The IV estimator is defined

/ =1
mv:(zx) Ly (3.92)

n n

where the n term is present to describe the number of observations used in the IV estimator. The
asymptotic properties are easy to establish and are virtually identical to those of the OLS estimator.

Theorem 3.18 (Consistency of the IV Estimator). Under assumptions 3.1 and 3.11-3.13, the 1V esti-

mator is consistent,
ATV p

B, =B

and asymptotically normal
A1V

Va(B, —B) 5 N(0,585,) (3.93)
where L,x = E[x/z;] and S = V[n_l/zZ’e].

Additionally, consistent estimators are available for the components of the asymptotic variance.

Theorem 3.19 (Asymptotic Normality of the IV Estimator). Under assumptions 3.1 and 3.11 - 3.14,

Sax=nZ7XLy,. (3.94)
g Zs 2z; 5 (3.95)

and
DI M St 1 Yok (3.96)

The asymptotic variance can be easily computed from

$,088,0 =N (ZX) (Z ) - (3.97)

—N (zX) "' (2'8Z) (X'Z)”

where E = diag(8?,...,22) is a matrix with the estimated residuals squared along its diagonal.

IV estimators have one further complication beyond those of OLS. Assumption 3.8 requires the
rank of Z'X to be full (k), and so z; must be correlated with x;. Moreover, since the asymptotic
variance depends on ZZ_XI , even variables with non-zero correlation may produce imprecise estimates,
especially if the correlation is low. Instruments must be carefully chosen, although substantially
deeper treatment is beyond the scope of this course. Fortunately, IV estimators are infrequently
needed in financial econometrics.
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3.12.3 Monte Carlo: The effect of instrument correlation

While IV estimators are not often needed with financial data'®, the problem of endogeneity is severe
and it is important to be aware of the consequences and pitfalls of using IV estimators.!” To under-
stand this problem, consider a simple Monte Carlo. The regressor (X;), the instrument (Z;) and the
error are all drawn from a multivariate normal with the covariance matrix,

Xi 1 Pxz  Pxe
Zi ~ N 07 pr 1 O
& Paxe 0 1

Throughout the experiment, pye = 0.4 and py; is varied from O to .9. 200 data points were generated
from

Y =PiXi+¢&

where B; = 1. It is straightforward to show that E[ﬁ] = 1+ pye and that 3,‘} L, 1 as long as py, # 0.
10,000 replications were generated and the IV estimators were computed

B = (Z2'X) " (Zy).

Figure 3.5 contains kernel density plots of the instrumental variable estimator for p,, of .2, .4,
.6 and .8. When the correlation between the instrument and X is low, the distribution is dispersed
(exhibiting a large variance). As the correlation increases, the variance decreases and the distribution
become increasingly normal. This experiment highlights two fundamental problems with IV estima-
tors: they have large variance when no “good instruments” — highly correlated with x; by uncorrelated
with & — are available and the finite-sample distribution of IV estimators may be poorly approximated
a normal.

3.12.4 Heteroskedasticity

Assumption 3.7 does not require data to be homoskedastic, which is useful since heteroskedasticity
is the rule rather than the exception in financial data. If the data are homoskedastic, the asymptotic
covariance of 3 can be consistently estimated by

. xX'x\ !
S=62
()

Heteroskedastic errors require the use of a more complicated covariance estimator, and the asymptotic
variance can be consistently estimated using

18TV estimators are most common in corporate finance when examining executive compensation and company perfor-
mance.
19The intuition behind IV estimators is generally applicable to 2SLS.
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Effect of correlation on the variance of fiw
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Figure 3.5: Kernel density of the instrumental variable estimator [§,£V with varying degrees of corre-
lation between the endogenous variable and the instrument. Increasing the correlation between the
instrument and the endogenous variable leads to a large decrease in the variance of the estimated
parameter (8 = 1). When the correlation is small (.2), the distribution has a large variance and is not
well approximated by a normal random variable.

NP XX\ /S a2k /XX !
zxxlszx,j:( ) (Zl—lnlxl"‘)< ) (3.98)

S

where E = diag(é‘lz, ..., &2) is a matrix with the estimated residuals squared along its diagonal.

Faced with two covariance estimators, one which is consistent under minimal assumptions and one
which requires an additional, often implausible assumption, it may be tempting use rely exclusively on
the robust estimator. This covariance estimator is known as the White heteroskedasticity consistent
covariance estimator and standard errors computed using eq. (3.98) are called heteroskedasticity
robust standard errors or White standard errors (White, 1980). Using a heteroskedasticity-consistent
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estimator when not needed (homoskedastic data) results in test statistics that have worse small-sample
properties. In small samples, hypothesis tests are more likely to have size distortions and so using 5%
critical values may lead to rejection of the null 10% or more of the time when the null is true. On the
other hand, using an inconsistent estimator of the parameter covariance — assuming homoskedasticity
when the data are not — produces tests with size distortions, even asymptotically.

White (1980)also provides a test to determine if a heteroskedasticity robust covariance estimator
is required. Each term in the heteroskedasticity-consistent estimator takes the form

2.2 2 2
81 XLl Sl )C]’lxzﬂ . o 81 x]7lxkn
2 2.2 2
2 81 XLI.XZJ el X2’l coe 81 ij,x;m
gi X;X; = . 9
2 2 2.2
€ X1,iXkn & X2,iXkn .- € X,

2

and so, if E[€7x jx;,] = E[€?]E[xjux1,], for all j and /, then the heteroskedasticity robust and the stan-

dard estimator will both consistently estimate the asymptotic variance of B White’s test is formulated
as a regression of squared estimated residuals on all unique squares and cross products of x;. Suppose
the original regression specification is

Y; =B+ BoXi1 i+ B3Xo,i + &

White’s test uses an auxiliary regression of é‘lz on the squares and cross-produces of all regressors,
2 w2 )
{ 1 s Xl ,i’ X27i9 X] ,l" X27l" X] .lXZ,l} .

&7 =81+ & X1+ 53Xz, + 84XT; + 85X5 ; + 86 X1, X, + M- (3.99)

The null hypothesis tested is Hy : 6j =0, j > 1, and the test statistic can be computed using nR?
where the centered R? is from the model in eq. (3.99). Recall that nR? is an LM test of the null
that all coefficients except the intercept are zero and has an asymptotic x‘% where Vv is the number of

restrictions — the same as the number of regressors excluding the constant. If the null is rejected, a
heteroskedasticity robust covariance estimator is required.

Algorithm 3.8 (White’s Test).
1. Fit the model Y; = X;B + €
2. Construct the fit residuals & = Y; — XiB

3. Construct the auxiliary regressors L; where the k(k+ 1) /2 elements of z; are computed from
XioXipforo=12,... .k, p=o0,0+1,... k.

4. Estimate the auxiliary regression é‘lz =Z;y+n;

5. Compute White’s Test statistic as nR*> where the R? is from the auxiliary regression and compare
.. , 2
to the critical value at size & from a Xict1) /2—1°
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3.12.5 Example: White’s test on the FF data

White’s heteroskedasticity test is implemented using the estimated residuals, & = ¥; — x| ﬁ , by regress-
ing the estimated residuals squared on all unique cross products of the regressors. The primary model
fitis

= Bl + ﬁzVWMie + ﬁ3SMBl' + ﬁ4HML,' + ﬁ5MOM,‘ + &;.

and the auxiliary model is specified

& = 81+ VWM + 5:SMB; + 04,HML; + 8sMOM, + & (VWMf)2 + &, VWM;SMB;
+ VWMEHML; + 86VWM{MOM; + 8,0SMB? + 8 1SMB;HML;
+ 81oSMB;MOM; + 8;3HML? + 8 sHML,MOM; + §;sMOM? +1;
Estimating this regression produces an R? of 10.9% and nR> = 74.8, which has an asymptotic x124

distribution (14 regressors, excluding the constant). The p-value of this test statistic is 0.000, and the
null of homoskedasticity is strongly rejected.

3.12.6 Generalized Least Squares

An alternative to modeling heteroskedastic data is to transform the data so that it is homoskedastic
using generalized least squares (GLS). GLS extends OLS to allow for arbitrary weighting matrices.
The GLS estimator of 3 is defined

A GLS

B =XWIX)"IX'wly, (3.100)

for some positive definite matrix W. Without any further assumptions or restrictions on W, ﬁ
unbiased under the same conditions as [5 and the variance of [3 can be easily shown to be

X'WIX)(X'WlvwIX) (X'wIX) !

where V is the n by n covariance matrix of €.
The full value of GLS is only realized when W is wisely chosen. Suppose that the data are
heteroskedastic but not serial correlated,?’ and so

y=XB+e (3.101)

where V[g|X] = 61-2 and therefore heteroskedastic. Further, assume Gl-z is known. Returning to the
small-sample assumptions, choosing W o V(£|X)?!, the GLS estimator will be efficient.

Assumption 3.15 (Error Covariance). V = V[¢|X]

Setting W =V, the GLS estimator is BLUE.

20Serial correlation is ruled out by assumption 3.9.
2l is the mathematical symbol for “proportional to”.
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Theorem 3.20 (Variance of BGLS). Under assumptions 3.1 - 3.3 and 3.15,
VBT X = (x'VIX)"!
and V[ﬁGLS|X] < V[B|X] where B = Cy is any other linear unbiased estimator with E[B] = B

To understand the intuition behind this result, note that the GLS estimator can be expressed as an

OLS estimator using transformed data. Returning to the model in eq. (3.101), and pre-multiplying by
1

W2,

1 1 1
W 2y=W 22X +W 2¢
y=XB+&
and so
p=(XX)Xy

In the original model, W = V[g|X], and so V[W_%&‘]X] = W 2WW~2 =I,. & is homoskedastic
and uncorrelated and the transformed model satisfies the assumption of the Gauss-Markov theorem
(theorem 3.3).

This result is only directly applicable under the small-sample assumptions and then only if V[¢|X]
is known a priori. In practice, neither is true: data are not congruent with the small-sample as-
sumptions and V[g|X] is never known. The feasible GLS (FGLS) estimator solves these two issues,
although the efficiency gains of FGLS have only asymptotic justification. Suppose that V[e|X] =
) + X1+ ...+ W1 Xk, Where @; are unknown. The FGLS procedure provides a method to esti-
mate these parameters and implement a feasible GLS estimator.

The FGLS procedure is described in the following algorithm.

Algorithm 3.9 (Feasible GLS Estimation).
1. Estimate B using OLS.

2. Using the estimated residuals, € =y — Xﬁ estimate an auxiliary model by regressing the
squared residual on the variables of the variance model.

3. Using the estimated variance model parameters ®, produce a fit variance matrix, V.

4. Compute § = ‘A/_%y and X = V12X compute B o using the OLS estimator on the transformed
regressors and regressand.
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. . AFGLS . .
Hypothesis testing can be performed on f3 using the standard test statistics with the FGLS
variance estimator,
< Solvn—1 22 (e ]
X'V IX)"! = 6% (X'X)

where 672 is the sample variance of the FGLS regression errors (€ = § — XBFGLS).

While FGLS is only formally asymptotically justified, FGLS estimates are often much more pre-
cise in finite samples, especially if the data is very heteroskedastic. Estimator accuracy improves the
most when some observations have a vastly larger variance than others. The OLS estimator gives these
observations too much weight, inefficiently exploiting the information in the remaining observations.
FGLS, even when estimated with a diagonal weighting matrix that may be slightly misspecified, can
produce substantially more precise estimates.>

3.12.6.1 Monte Carlo: A simple GLS

A simple Monte Carlo was designed to demonstrate the gains of GLS. The observed data are generated
according to

Yi =X+ X¢

where X; is 1.i.d. U(0,1) and &; is standard normal. o takes the values of 0.8, 1.6, 2.8 and 4. When
« is low the data are approximately homoskedastic. As « increases the data are increasingly het-
eroskedastic and the probability of producing a few residuals with small variances increases. The
OLS and (infeasible) GLS estimators were fit to the data and figure 3.6 contains kernel density plots
of 3 and 3GLS .

When « is small, the OLS and GLS parameter estimates have similar variances, indicated by the
similarity in distribution. As o increases, the GLS estimator becomes very precise which is due to
GLS’s reweighing of the data by the inverse of its variance. In effect, observations with the smallest
errors become very influential in determining 3 This is the general principle behind GLS: let the data
points which are most precise about the unknown parameters have the most influence.

3.12.7 Example: GLS in the Factor model

Even if it is unreasonable to assume that the entire covariance structure of the residuals can be cor-
rectly specified in the auxiliary regression, GLS estimates are often much more precise than OLS
estimates. Consider the regression of BH¢ on the four factors and a constant. The OLS estimates are
identical to those previously presented and the GLS estimates will be computed using the estimated
variances from White’s test. Define

V = diag (61,63,...,6;)
where 61’2 is the fit value from the auxiliary regression in White’s test that included only the squares
of the explanatory variables. Coefficients were estimated by regressing § on X where

izV*%y

221f the model for the conditional variance of g is misspecified in an application of FGLS, the resulting estimator is not
asymptotically efficient and a heteroskedasticity robust covariance estimator is required.
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Gains of using GLS

3_

.
.t

Figure 3.6: The four plots show the gains to using the GLS estimator on heteroskedastic data. The
data were generated according to ¥; = X; +Xi°‘8,- where X; is 1.i.d. uniform and &; is standard normal.
For large o, the GLS estimator is substantially more efficient than the OLS estimator. However, the
intuition behind the result is not that high variance residuals have been down-weighted, but that low
variance residuals, some with very low variances, have been up-weighted to produce an accurate fit.

X=V:X
~GLS o 1S ~GLS
and B~ = (X'’X)"IXYy. goLs — y —XB  are computed from the original data using the GLS
estimate of 3, and the variance of the GLS estimator can be computed using

(X'X) " (XEX) T (XX).

= . . . . . R 2
where E is a diagonal matrix with the estimated residuals squared, (siGLS ) , from the GLS procedure
along its diagonal. Table 3.9 contains the estimated parameters, z-stats and p-values using both the
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OLS GLS
B se(B) t-stat p-values BOLS  se.(BOLS) t-stats  p-values
Constant  -0.09 0.04 -1.99 0.05 -0.09 0.04 -2.26 0.02
VWM¢ 1.08 0.01 935 0.00 1.08 0.01 101.6 0.00
SMB 0.00 0.02 0.11 0.91 -0.00 0.02 -0.19 0.85
HML 0.76 0.02 364 0.00 0.73 0.02 393 0.00
MOM -0.04 0.01 -2.63 0.01 -0.04 0.01 -3.06 0.00

Table 3.9: OLS and GLS parameter estimates and 7-stats. z-stats indicate that the GLS parameter
estimates are more precise.

OLS and the GLS estimates. The GLS estimation procedure appears to provide more precise estimates
and inference. The difference in precision is particularly large for SMB.

3.13 Model Selection and Specification Checking

Econometric problems often begin with a variable whose dynamics are of interest and a relatively
large set of candidate explanatory variables. The process by which the set of regressors is reduced is
known as model selection or building.

Model building inevitably reduces to balancing two competing considerations: congruence and
parsimony. A congruent model is one that captures all of the variation in the data explained by
the regressors. Obviously, including all of the regressors and all functions of the regressors should
produce a congruent model. However, this is also an infeasible procedure since there are infinitely
many functions of even a single regressor. Parsimony dictates that the model should be as simple
as possible and so models with fewer regressors are favored. The ideal model is the parsimonious
congruent model that contains all variables necessary to explain the variation in the regressand and
nothing else.

Model selection is as much a black art as science and some lessons can only be taught through
experience. One principle that should be universally applied when selecting a model is to rely on
economic theory and, failing that, common sense. The simplest method to select a poorly performing
model is to try any and all variables, a process known as data snooping that is capable of producing
a model with an arbitrarily high R? even if there is no relationship between the regressand and the
regressors.

There are a few variable selection methods which can be examined for their properties. These
include:

* General to Specific modeling (GtS)
* Specific to General modeling (StG)
¢ Information criteria (IC)

¢ Cross-validation
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3.13.1 Model Building
3.13.1.1 General to Specific

General to specific (GtS) model building begins by estimating the largest model that can be justified
by economic theory (and common sense). This model is then pared down to produce the smallest
model that remains congruent with the data. The simplest version of GtS begins with the complete
model. If any coefficients have individual p-values less than some significance level o (usually 5 or
10%), the least significant regressor is dropped from the regression. The procedure is repeated using
the remaining included regressors until all coefficients are statistically significant. In each step, the
least significant regressor is removed from the model.

One drawback to this simple procedure is that variables that are correlated but relevant are often
dropped. This is due to a problem known as multicollinearity and individual ¢-stats will be small but
joint significance tests that all coefficients are simultaneously zero will strongly reject. This suggests
using joint hypothesis tests to pare the general model down to the specific one. While theoretically
attractive, the scope the of possible joint hypothesis tests is vast even in a small model, and so using
joint test is impractical.

GtS suffers from two additional issues. First, it will include an irrelevant variable with positive
probability (asymptotically) but will never exclude a relevant variable. Second, test statistics do not
have standard distributions when they are used sequentially (as is the case with any sequential model
building procedure). The only viable solution to the second problem is to fit a single model, make
variable inclusions and exclusion choices, and live with the result. This practice is not typically
followed and most econometricians use an iterative procedure despite the problems of sequential
testing.

3.13.1.2 Specific to General

Specific to General (StG) model building begins by estimating the smallest model, usually including
only a constant. Variables are then added sequentially based on maximum #-stat until there is no
excluded variable with a significant ¢-stat at some predetermined ¢ (again, usually 5 or 10%). StG
suffers from the same issues as GtS. First it will asymptotically include all relevant variables and
some irrelevant ones and second, tests implemented sequentially do not have correct size. Choosing
between StG and GtS is mainly user preference, although they rarely select the same model. One
argument in favor of using a GtS approach is that the variance is consistently estimated in the first
step of the general specification while the variance estimated in the first step of the an StG selection
is too large. The leads StG processes to have t-stats that are smaller than GtS ¢-stats and so StG
generally selects a smaller model than GtS.

3.13.1.3 Information Criteria

The third method of model selection uses Information Criteria (IC). Information Criteria reward the
model for producing smaller SSE while punishing it for the inclusion of additional regressors. The two
most frequently used are the Akaike Information Criterion (AIC) and Schwarz Information Criterion
(SIC) or Bayesian Information Criterion (BIC).23 Most Information Criteria are of the form

23The BIC and SIC are the same. BIC is probably the most common name but SIC or S/BIC are also frequently
encountered.
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—2l+P
where [ is the log-likelihood value at the parameter estimates and P is a penalty term. In the case of
least squares, where the log-likelihood is not known (or needed), IC’s take the form

In6>+P
where the penalty term is divided by n.

Definition 3.15 (Akaike Information Criterion (AIC)). For likelihood-based models the AIC is de-
fined

AIC = -21+2k (3.102)
and in its least squares application,
2k
AIC=1né6>+ = (3.103)
n

Definition 3.16 (Schwarz/Bayesian Information Criterion (S/BIC)). For likelihood-based models the
BIC (SIC) is defined
BIC = -2l +kInn (3.104)

and in its least squares applications
1
BIC =1n 62+ k— (3.105)
n

The obvious difference between these two IC is that the AIC has a constant penalty term while
the BIC has a penalty term that increases with the number of observations. The effect of the sharper
penalty in the S/BIC is that for larger data sizes, the marginal increase in the likelihood (or decrease
in the variance) must be greater. This distinction is subtle but important: using the BIC to select from
a finite set of regressors leads to the correct model being chosen while the AIC asymptotically selects
a model that includes irrelevant regressors.

Using an IC to select a model is similar to either a GtS or StG search. For example, to use
an StG selection method, begin with the smallest model (usually a constant) and compute the IC
for this model. Next, consider all possible univariate regressions. If any reduce the IC, extend the
specification to include the variable that produced the smallest IC. Now, beginning from the selected
univariate regression, estimate all bivariate regressions. Again, if any decrease the IC, choose the one
which produces the smallest value. Repeat this procedure until the marginal contribution to the IC of
adding any additional variable is positive (i.e., when comparing an L and L+ 1 variable regression,
including and additional variables increase the IC).

As an alternative, if the number of regressors is sufficiently small (less than 20) it is possible to
try every possible combination and choose the smallest IC. This requires 2 regressions where L is
the number of available regressors (220 is about 1,000,000).

3.13.1.4 Cross-validation

Cross-validation uses pseudo-out-of-sample prediction performance to assess model specification. It
is most commonly used to select a preferred model from a set of candidate models, for example, the
collection of models visited as part of a GtS or StG model selection process. Variables with robust
predictive power should be useful both in- and out-of-sample. Cross-validation estimates parameters
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using a random subset of the data and then computes the pseudo-out-of-sample SSE on the obser-
vations that were not used in estimation. This criterion rewards models include variables with good
predictive power and exclude models that incorporate variables with small coefficients that do not
improve out-of-sample prediction.

The mutually exclusive and exhaustive subsets used for estimation and evaluation are randomly
chosen. This randomization selection is then repeatedly applied to assess the out-of-sample fit of all
data points. The most common form of cross-validation used in cross-sectional analysis is as k-fold
cross-validation. This method splits the data into k-equal-sized blocks where block assignment is
random. Model parameters are then estimated using the data in kK — 1 blocks, and the predictive power
is evaluated on the excluded block. This leave-one-block-out strategy is then repeated for each of the
remaining k — 1 blocks. The overall cross-validated SSE is computed from the SSE values calculated
on each block held out of the estimation.

Algorithm 3.10 (k-fold Cross-validation).
1. Split the data randomly into k-equal-sized bins
2. For each modelm = 1,...,M under consideration
(a) Fori=1,...k

i. Estimate model parameters excluding the the observations in block i,

n
A

B smin 3 (1))

J=1,j¢B;

where X, . are the regressors included in model m and B, is the set of observation
indices in block i.

N 2
ii. Compute the block i SSE as SSE,, ; = ZjeB,- (Yj — Xm,jﬁm,i) )
(b) Compute the overall cross-validated SSE as SSE,, cy = Zf{: 1 SSE, ..

3. Select the model that produces the smallest cross-validates SSE.

3.13.2 Specification Checking

Once a model has been selected, the final step is to examine the specification, where a number of
issues may arise. For example, a model may have neglected some nonlinear features in the data, a few
outliers may be determining the parameter estimates, or the data may be heteroskedastic. Residuals
for the basis of most specification checks, although the first step in assessing model fit is always to
plot the residuals. A simple residual plot often reveals problems with a model, such as large (and
generally influential) residuals or correlation among the residuals in time-series applications.

Residual Plots and Nonlinearity Plot, plot, plot. Plots of both data and residuals, while not
perfect, are effective methods to detect specification problems. Most data analysis should include a
plot of the initial unfiltered data where large observation or missing data are easily detected. Once
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Data and Fit Line

[ |

6 : -

" 5

41 I. [ ] [ ™ -..

2-

0+ . Data

Sl T Fitted Line
-2 L} u | |
3 2 Y 0 1 2 3
Error plot (sorted by x;)
[ ]
[ ] [ J

4+ °

[ J
.. ® o0
2 ¢ s
° ¢ ° ° o’ .0 0..
o oo8 o @ <
oA e o . i o.h Ve '. - e 0o
® o0 % o Oe ®e ®
© 9o, 009,
-2 @ °7 oy L)
o ¢ o ® e  Error
[ ]
-3 -2 —1 0 1 2 3

Figure 3.7: The top panel contains data generated according to Y; = X; +Xi2 + & and a fit from a
model Y; = By + B, X; + €. The nonlinearity should be obvious, but is even clearer in the ordered (by
X;) residual plot where a distinct “U” shape can be seen (bottom panel).

a model has been estimated the residuals should be plotted, usually by sorting them against the or-
dered regressors when using cross-sectional data or against time (the observation index) in time-series
applications.

To see the benefits of plotting residuals, suppose the data were generated by Y; = X; +Xl-2 + &; where
X; and g; are i.i.d.standard normal, but an affine specification, ¥; = B; + B X; + & was fit. Figure 3.7
contains plots of the data and fit lines (top panel) and errors (bottom panel). It is obvious from the
data and fit line that the model is misspecified and the residual plot makes this clear. Residuals should
have no discernible pattern in their mean when plotted against any variable (or function of variables)
in the data set.

One statistical test for detecting neglected nonlinearity is Ramsey’s RESET test. Suppose the
model

Yi=Xif+¢&

is fit and one desires to test whether there is a neglected nonlinearity present. The RESET test uses
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powers of the fit data, ¥; as additional regressors to test whether there is evidence of nonlinearity in
the data.

Definition 3.17 (Ramsey’s RESET Test). The RESET test is a test of the null the null Hy : y1 = ... =
Y& = 0 in an auxiliary regression,

Yi=XiB+nt?+pl?+.. +wtf e

where ¥; are the fit values of ¥; generated in the initial regression. The test statistic has an asymptotic
%1% distribution.

R is typically 1 or 2 since higher powers may produce numerical problems, imprecise estimates,
and size distortions. The biggest difficulty of using a RESET test is that rejection of the null is not
informative about the changes needed to the original specification.

3.13.2.1 Parameter Stability

Parameter instability is a common problem in actual data. For example, recent evidence suggests that
the market 8 in a CAPM may be differ across up and down markets Ang, Chen, and Xing (2006). A
model fit assuming the strict CAPM would be misspecified since the parameters are not constant.
There is a simple procedure to test for parameter stability if the point where the parameters
changes is known. The test is specified by including a dummy for any parameter that may change and
testing the coefficient on the dummy variables for constancy.
Returning to the CAPM example, the standard specification is

M
R =Pi+Br(RY —R]) +
where Rﬁy’ is the return on the market, Rl.f is the return on the risk free asset and RY is the excess return

on the dependent asset. To test whether the slope is different when (Rf” — R{ ) < 0, define a dummy
I = I[ (RM_R!) <] and perform a standard test of the null Hy : 3 = 0 in the regression

RS = Bi+ Ba(RY — D)+ Bali(RY — R]) + &.

If the breakpoint is not known a priori, it is necessary to test whether there is a break in the pa-
rameter at any point in the sample. This test can be implemented by testing at every point and then
examining the largest test statistic. While this is a valid procedure, the distribution of the largest test
statistic is no longer x2 and so inference based on standard tests (and their corresponding distribu-
tions) will be misleading. This type of problem is known as a nuisance parameter problem. If the
null hypothesis (that there is no break) is correct, then the value of regression coefficients after the
break is not well defined. In the example above, if there is no break, then 33 is not identified (and
is a nuisance). Treatment of the issues surrounding nuisance parameters is beyond the scope of this
course, but interested readers should start see Andrews and Ploberger (1994).

3.13.2.2 Rolling and Recursive Parameter Estimates

Rolling and recursive parameter estimates are useful tools for detecting parameter instability in cross-
section regression of time-series data (e.g., asset returns). Rolling regression estimates use a fixed-
length sample of data to estimate 3 and then “roll” the sampling window to produce a sequence of
estimates.
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Definition 3.18 (m-sample Rolling Regression Estimates). The m-sample rolling regression estimates
are defined as the sequence
-1

Bi=| > xxi| x (3.106)

for j=1,2,....n—m+1.

The rolling window length should be large enough so that parameter estimates in each window are rea-
sonably well approximated by a CLT but not so long as to smooth out any variation in 3. 60-months is
a common window length in applications using monthly asset price data and window lengths ranging
between 3-months and 2-year are common when using daily data. The rolling regression coefficients
can be visually inspected for evidence of instability, and approximate confidence intervals (based on
an assumption of parameter stability) can be constructed by estimating the parameter covariance on
the full sample of n observations and then scaling by n/m so that the estimated covariance is appro-
priate for a sample of m observations. The parameter covariance can alternatively be estimated by

. . . . R PP
averaging the n —m + 1 covariance estimates corresponding to each sample, Xxy ;S Xxx j, where

j+m—1
Sxxj=m"" > xix; (3.107)
i=J
and
jt+m—1
Si=m™" > & xxi (3.108)
=J

where & ; =Y; — X;B j» and if the parameters are stable these methods for estimating the parameter
covariance should produce similar confidence intervals.

60-month rolling regressions of the BH portfolio in the 4-factor model are presented in figure
3.8 where approximate confidence intervals were computed using the re-scaled full-sample parameter
covariance estimate. While these confidence intervals cannot directly be used to test for parameter
instability, the estimate of the loadings on the market, SMB and HML vary more than their intervals
indicate these parameters should were they stable.

An alternative to rolling regressions is to recursively estimate parameters which uses an expanding
window of observations to estimate B .

Definition 3.19 (Recursive Regression Estimates). Recursive regression estimates are defined as the

sequence
-1

J
B;= (Z x;x,) x}Y; (3.109)
i=1

for j=1,2,...,n where [ > k is the smallest window used.

Approximate confidence intervals can be computed either by re-scaling the full-sample parameter
covariance or by directly estimating the parameter covariance in each recursive sample. Documenting
evidence of parameter instability using recursive estimates is often more difficult than with rolling, as
demonstrated in figure 3.9



3.13 Model Selection and Specification Checking 191

Rolling Parameter Estimates in the 4-Factor Model
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Figure 3.8: 60-month rolling parameter estimates from the model BHY = B + B,VWMY + B3SMB; +
BsHML; + BsMOM,; + €;. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. These rolling estimates indicate that the market loading of the Big-High
portfolio varied substantially at the beginning of the samplefixed-length sample and that the loadings
on both SMB and HML may be time-varying.
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Recursive Parameter Estimates in the 4-Factor Model
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Figure 3.9: Recursive parameter estimates from the model BHf = B + Bo,VWM? + B3SMB; +
BsHML; + BsMOM,; + €;. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. While less compelling than the rolling window estimates, these recursive
estimates indicate that the loading on the market and on HML may not be constant throughout the
sample.
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3.13.2.3 Normality

Normality may be a concern if the validity of the small-sample assumptions is important. The standard
method to test for normality of estimated residuals is the Jarque-Bera (JB) test which is based on two
higher order moments (skewness and kurtosis) and tests whether they are consistent with those of a
normal distribution. In the normal, the skewness is O (it is symmetric) and the kurtosis is 3. Let & be
the estimated residuals. Skewness and kurtosis are defined

- 23

g g
(62)3

k= n_l Z?:l z/:314
(62)?

The JB test is computed

_n 2 l 22
JB_6<k+4(1< 3))

and is distributed )(22 If sk =~ 0 and x = 3, then the JB should be small and normality should not be
rejected. To use the JB test, compute JB and compare it to Cy where Cy, is the critical value from a
x22 If JB > Cy, reject the null of normality.

3.13.2.4 Heteroskedasticity

Heteroskedasticity is a problem if neglected. See section 3.12.4.

3.13.2.5 Influential Observations

Influential observations are those which have a large effect on the estimated parameters. Data, partic-
ularly data other than asset price data, often contain errors.>* These errors, whether a measurement
problem or a typo, tend to make 3 unreliable. One method to assess whether any observation has an
undue effect on the sample is to compute the vector of “hat” matrices,

hi = x;(X'X) "%/,

This vector (which is the diagonal of Px) summarizes the influence of each observation on the es-
timated parameters and is known as the influence function. Ideally, these should be similar and no
observation should dominate.

Consider a simple specification where Y; = X; + & where X; and &; are i.i.d. standard normal. In
this case the influence function is well behaved. Now suppose one x; is erroneously increased by 100.
In this case, the influence function shows that the contaminated observation (assume it is Xj,) has a
large impact on the parameter estimates. Figure 3.10 contains four panels. The two left panels show
the original data (top) and the data with the error (bottom) while the two right panels contain the
influence functions. The influence function for the non-contaminated data is well behaved and each
observation has less than 10% influence. In the contaminated data, one observation (the big outlier),
has an influence greater than 98%.

24 And even some asset price data, such as TAQ prices.
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Influential Observations

Actual Data Influence Function
1.0+
0.8+
0.6+
0.4
0.2
—4 . . . , 0,0W&M.“.‘-F;_‘.‘M
—4 -2 0 2 4 0 20 40 60 80 100
Actual Data Influence Function
1.0+
0.8+
©
0.6
0]
0.4
0.2
—4 T T T 0.0+ 2 S o, ) o
0 5 10 0 20 40 60 80 100

Figure 3.10: The two left panels contain realizations from the data generating process Y; = X; +
& where a single X; has been contaminated (bottom left panel). The two right panels contain the
influence functions of the X;. If all data points were uniformly influential, the distribution of the
influence function should be close to uniform (as is the case in the top left panel). In the bottom right

panel, it is clear that the entire fit is being driven by a single X; which has an influence greater than
.98.

Plotting the data would have picked up this problem immediately. However, it may be difficult to
determine whether an observation is influential when using multiple regressors because the regressors
for an observation may be “large” in many dimensions.

3.13.3 Improving estimation in the presence of outliers

Data may contain outliers for many reasons: someone entered an incorrect price on an electronic
exchange, a computer glitch multiplied all data by some large constant or a CEO provided an answer
out-of-line with other answers due to misunderstanding a survey question. The standard least-squares
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estimator is non-robust in the sense that large observations can have a potentially unbounded effect
on the estimated parameters. A number of techniques have been developed to produce “robust”
regression estimates that use weighted least squares to restrict the influence of any observation.

For clarity of exposition, consider the problem of estimating the mean using data that may be
contaminated with a small number of large errors. The usual estimator will be heavily influenced
by these outliers, and if outliers occur with any regularity in the data (suppose, for example, 1% of
data is contaminated), the effect of outliers can result in an estimator that is biased and in some cases
inconsistent. The simplest method to robustly estimate the mean is to use an a-trimmed mean where
o represents a quantile of the empirical distribution of the data.

Definition 3.20 (o-Trimmed Mean). The a-quantile trimmed mean is

" Yilie <y
1y — 2i=1 Yilic,<vi<cy) (3.110)

n*

where n* =n(l—a) =", I|_c<y,<c) is the number of observations used in the trimmed mean.?
Usually « is chosen to be between .90 and .99. To use an a-trimmed mean estimator, first compute C,
the o/2-quantile and Cy the 1 — a/2-quantile of the of y. Using these values, compute the trimmed
mean as

A closely related estimator to the trimmed mean is the Winsorized mean. The sole difference
between an o-trimmed mean and a Winsorized mean is the method for addressing the outliers. Rather
than dropping extreme observations below Cy and Cy, a Winsorized mean truncates the data at these
points.

Definition 3.21 (Winsorized mean). Let Y;* denote a transformed version of ¥,
Y = max(min(Y;,Cy),Cr)
where C, and Cy are the a/2 and 1 — /2 quantiles of Y. The Winsorized mean is defined

oy
fw = L (3.111)
n

While the o-trimmed mean and the Winsorized mean are “robust” to outliers, they are not robust to
other assumptions about the data. For example, both mean estimators are biased unless the distribution
is symmetric, although “robust” estimators are often employed as an ad-hoc test that results based on
the standard mean estimator are not being driven by outliers.

Both of these estimators are in the family of linear estimators (L-estimators). Members of this
family can always be written as

n
pr = Z w;Y;
i=1

for some set of weights w; where the data, Y;, are ordered such that Y;_; <Y; for j =2,3,...,N.
This class of estimators obviously includes the sample mean by setting w; = % for all 7, and it also
includes the median by setting w; = 0 for all i except w;, = 1 where m = (n+1)/2 (n is odd) or
W = Wpp1 = 1/2 where m = n/2 (n is even). The trimmed mean estimator can be constructed by

25 This assumes that na is an integer. If this is not the case, the second expression is still valid.
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settingw; =0ifn <sori>n—sand w; = ﬁ otherwise where s = no is assumed to be an integer.
The Winsorized mean sets w; = 0if n <sorn >N —s, w; = % ifn=s+1lorn=n—s—1and
w; = % otherwise. Examining the weights between the ¢-trimmed mean and the Winsorized mean,
the primary difference is on the weights wy,; and w,_;_1. In the trimmed mean, the weights on
these observation are the same as the weights on the data between these points. In the Winsorized
mean estimator, the weights on these observations are % reflecting the censoring that occurs at these
observations.

3.13.3.1 Robust regression-based estimators

Like the mean estimator, the least-squares estimator is not “robust” to outliers. To understand the
relationship between L-estimators and linear regression, consider decomposing each observation into
its mean and an additive error,

= iini
i;l
= Zwi (1 +¢)
i=1

n n
= Z will + Z Wi E;
i=1 i=1

A number of properties can be discerned from this decomposition. First, in order for yt* to be unbiased
it must be the case that > _; ;w; =1 and > 7 | E[w;g] = 0. All of the linear estimators satisfy the
first condition although the second will depend crucially on the distribution of the errors. If the
distribution of the errors is symmetric then the Winsorized mean, the o-trimmed mean or even median
are unbiased estimators of the mean. However, if the error distribution is not symmetric, then these
estimators are likely to be biased. Unlike the usual case where E[w;€;| = w;E[g], the weights are
functions of the errors and the expectation of the product of the expectations is not the expectation of
the product. Second, weights on the observations (Y;) are the same as weights on the errors, &;. This
relationship follows from noticing that if ¥; < Y; 1, then it must be the case that €; < €;;.

Robust estimators in linear regression models require a two-step or iterative procedure. The dif-
ference between robust mean estimators and robust regression arises since if ¥; has a relationship to a
set of explanatory variables x;, then orderings based on Y; will not be the same as orderings based on
the residuals, g;. For example, consider the simple regression

Y, = BX;+¢&.

Assuming 8 > 0, the largest ¥; are those which correspond either the largest X; or €. Simple trimming
estimators will not only trim large errors but will also trim Y; that have large values of X;. The left
panels of figure 3.11 illustrate the effects of Windsorization and trimming on the raw data. In both
cases, the regression coefficient is asymptotically biased (as indicated by the dotted line) since trim-
ming the raw data results in an error that is correlated with the regressor. For example, observations
with the largest X; values and with positive € more likely to be trimmed. Similarly, observations for
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the smallest X; values and with negative & are more likely to be trimmed. The result of the trimming
is that the remaining &; are negatively correlated with the remaining X;.

To avoid this issue, a two-step or iterative procedure is needed. The first step is used to produce
a preliminary estimate of B . OLS is commonly used in this step although some other weighted least-
squares estimator may be used instead. Estimated residuals can be constructed from the preliminary
estimate of B (§ =Y;—x; B), and the trimming or Windsorizing is done on these preliminary residuals.
In the case of a-trimming, observations with the largest errors (in absolute value) are dropped, and
the a-trimmed regression is estimated using only the observations with C;, < & < Cy.

Winsorized regression also uses the first step regression to estimate &, but, rather than dropping
observations, errors larger than Cy are set to &y and errors smaller than Cy, are set to €. Using these
modified errors,

&" = max(min(&;,Cy),Cr)

a transformed set of dependent variables is created, Y;* = xiB + &*. The Winsorized regression co-
efficients are then estimated by regressing Y;* on x;. The correct application of a-trimming and
Windsorization are illustrated in the bottom two panels of figure 3.11. In the a-trimming exam-
ples, observations marked with an x were trimmed, and in the Windsorization example, observations
marked with a e were reduced from their original value to either Cy or Cy. It should be noted that
while both of these estimators are unbiased, this result relies crucially on the symmetry of the errors.

In addition to the two-step procedure illustrated above, an iterative estimator can be defined by

. . . . A ~(1 . . . .
starting with some initial estimate of 3 denoted f3 M and then trimming (or Windsorization) the data
. . ~(2 . ~ (2 . . .
to estimate a second set of coefficients, ﬁ( ). Using B( ) and the original data, a different set of

. . " A2 . . . .
estimated residuals can be computed & =Y; — X,-ﬁ( ) and trimmed (or Winsorized). Using the new

set of trimmed observations, a new set of coefficients, ( ), can be estimated. This procedure can be
o NOBF
repeated until it converges — max ‘ B( )_ B =1
Both a-trimmed and Winsorized regression are special cases of a broader class of “robust” regres-
sion estimators. Many of these robust regression estimators can be implemented using an iterative
procedure known as Iteratively Re-weighted Least Squares (IRWLS) and, unlike trimmed or Win-
sorized least squares, are guaranteed to converge. For more on these estimators, see Huber (2004) or
Rousseeuw and Leroy (2003).

26

3.13.3.2 Ad-hoc “Robust” Estimators

It is not uncommon to see papers that use Windsorization (or trimming) in the academic finance
literature as a check that the findings are not being driven by a small fraction of outlying data. This
is usually done by directly Windsorizing the dependent variable and the regressors. While there is no
theoretical basis for these ad-hoc estimators, they are a useful tool to ensure that results and parameter
estimates are valid for “typical” observations as well as for the full sample. However, if this is the goal,
other methods, such as visuals inspections of residuals or residuals sorted by explanatory variables,
are equally valid and often more useful in detecting problems in a regression.

. . .o oal
20These iterative procedures may not converge due to cycles in { ﬁ< )}.
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Correct and incorrect use of “robust” estimators
Incorrect Trimming Incorrect Windsorization

Correct Windsorization

—— Fitted Line

Figure 3.11: These four panels illustrate correct and incorrect a-trimming (left) and Windsorization
(right). In both cases, the DGP was Y; = X; + & where X; and & were independent standard normal
random variables. The top panels show incorrect trimming based on the unmodified data, and the
bottom panels show correct trimming based on an initial estimate of the slope.

3.13.3.3 Inference on “Robust” Estimators

It may be tempting to use OLS or White heteroskedasticity robust standard errors in “robust” regres-
sions. These regressions (and most L-estimators) appear similar to standard least-squares estimators.
However, there is an additional term in the asymptotic covariance of the estimated regression coef-
ficients since the trimming or Windsorization point must be estimated. This term is related to the
precision of the trimming point and is closely related to the uncertainty affecting the estimation of a
quantile. Fortunately, bootstrapping can be used (under some mild conditions) to estimate the covari-
ance of the regressors.
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3.14 Machine Learning

Machine learning approaches to regression, also known as supervised learning, address two key chal-
lenges:

* Variable selection when the number of candidate variables is large. In machine learning, vari-
ables are often called features, and the collection of all features is called the feature space. Most
machine learning algorithms are capable of modeling data sets where the number of variables
exceeds the number of observations available.

* Optimizing model parameters to perform well in out-of-sample prediction. In most applica-
tions, this optimization makes an explicit trade-off between bias and variance, and most ML
approaches to regression use biased estimators that have lower parameter variance than vanilla
OLS. This reduction in variance, especially for parameters that have a small effect relative to
their uncertainty, improves out-of-sample prediction at the cost of some bias.

ML approaches achieve these goals using cross-validation to select models and parameter values that
perform well both in- and out-of-sample. These alternative approaches generally provide methods to
jointly select relevant variables and estimate parameters. Some methods make use of bootstrapping to
improve the reliability of the models in out-of-sample data. Ultimately these approaches all produce
a standard linear regression model where the coefficients are not usually estimated using standard
OLS. The most useful strategies tend to introduce a limited amount of bias by shrinking regression
coefficients toward O to mitigate the cost of parameter uncertainty.

3.14.1 Best Subset Regression

Best Subset Regression is the simplest method to construct a model given a set of predictors. Sup-
pose you have p candidate variables Xj ;,...,X), ;. Best Subset Regression finds the combination of
variables in this set that optimizes the model’s fit according to some criteria, for example, the cross-
validated SSE or BIC. Best Subset Regression begins by finding the model that produces the smallest
in-sample SSE, or equivalently the largest R?, using k of the p variables. Let this model be denoted

4
k

value of k = 1,2,..., p. The initial inputs are a set of p + 1 distinct models Mo, My,..., M, where
My is a model that contains no predictors. The Best Subset Regression is chosen by comparing the
performance of these p + 1 models using some criterion, for example, the cross-validated SSE, and
selecting the model that performs the best. There are two important issues with Best Subset Regres-
sion. First, it can only be used when the set of candidate predictors p is moderate (< 30) since there
are 2”7 — 1 distinct models that must be estimated. Second, the coefficients of the best model are es-
timated by OLS. OLS estimates always overfit the sample used to estimate the parameters, and the
in-sample overfitting reduces the out-of-sample performance of the models.

M. This step involves fitting distinct models. The best model is selected for each possible

Algorithm 3.11 (Best Subset Regression).

p
k

the model that produces the smallest SSE as M, j=0,...,p.

1. Forke{0,1,...,p} estimate each of the distinct models containing k variables, saving
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2. Select the Best Subset Regression as the model from the set { My, My,..., M} that minimizes
some criterion such as the cross-validated SSE.

3.14.2 Forward, Backward, and Hybrid Stepwise Regression

Best Subset Regression cannot be used when p is large. Stepwise model building is an alternative
the builds the models Mg, Mj,..., M, sequentially. Forward stepwise regression begins with no
variables selected. Each of the excluded variables, p in total, are tried one at a time, and the regressor
that produces the best fit is retained in M. The second model, M3, is then selected by adding each
of the p — 1 variables that were not included in M and is defined as the model that produces the best
in-sample fit. This process is repeated so that M ;| adds one of the p — j variables to M that were
not included in M ;. The output of the first step is a set of p+ 1 models M, My, ... M, where larger
models always nest smaller models. The final model is selected from the set of candidate models by
optimizing some criterion such as the cross-validated SSE.

Algorithm 3.12 (Forward Stepwise Regression).
1. Begin with the empty model, M.

2. For j€{0,...,p—1}, construct model M as the model the minimizes the SSE by adding
each of the p — j variables to the variables included in model M ;.

3. Select the Forward Stepwise Regression as the model from the set {Mo, My,...,M,} that
minimizes some criterion such as the cross-validated SSE.

Backward stepwise regression operates in the opposite direction. Begin with the model that con-
tains all variables M. The next smaller model, M, _; is defined as the model that minimizes the
SSE considering each of the p models that drops a single variable from M ,. This process continues
where M is defined as the model that maximizes the in-sample fit using j of the j+ 1 variables
included in M ;. Like forward stepwise regression, backward stepwise regression produces a set of
p+1 models My, My,... M,. The best model is then selected from this set of candidate models by
optimizing some criterion function.

Algorithm 3.13 (Backward Stepwise Regression).
1. Begin with the complete model, M.

2. For je{p—1,p—2,...,0}, construct model M as the model the minimizes the SSE by re-
moving each of the j variables, one at a time, of the variables included in model M.

3. Select the Backward Stepwise Regression as the model from the set { My, M,..., M} that
minimizes some criterion such as the cross-validated SSE.

Hybrid approaches combine the two. For example, suppose forward stepwise regression is used to
select M, where k < p. Backward stepwise regression can be used on the k included regressors in M,
to produce a new sequence of models ./\/l’j‘ for j=k—1,k—2,...1. This sequence may be distinct from
what forward or backward stepwise regression would arrive at alone. The hybrid approach generally
produces a larger set of candidate models while remaining computationally tractable as long as the
number of direction switches is small. This larger set of candidate models has an increased chance
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of including the Best Subset Regression than either forward or backward stepwise regression alone.
The primary challenge of the hybrid approach is determining the number of direction reversals to use,
although, in practice, this is often dictated by the computational time available. Like both forward and
backward stepwise regression, the final model is selected from the enlarged pool of candidate models
by optimizing some criteria.

3.14.3 Ridge Regression

Ridge regression differs from best subset and stepwise regression in two ways: it does not select
variables, and coefficients are not estimated using standard OLS.

Definition 3.22 (Ridge Regression).
The ridge regression estimator with tuning parameter @ is defined as the solution to

k
argmin (y — XB)' (y — Xp8) subjectto » 7 < o. (3.112)
B =1

This constrained problem is equivalent to the unconstrained problem

k

arggnin (y—Xﬁ)'(y—Xﬁ)—{—lZBl2 (3.113)
j=1

where @ and A take different values and have an inverse relationship (i.e., large values of @ corre-

spond to small values of A). The solution to this optimization problem is

A~ Ridge

B

where k is the number of regressors included in the model.

Recall that the OLS estimator is B =X X)_1 X'y. The effect of the ridge penalty is simple to
deduce from eq. (3.114) since A > 0. The term X'X + AI; must always be larger, in a matrix sense,
than X'X since Al is a diagonal matrix with positive values along its diagonal. It must then be the
case that (X’ X—|— /II/()_l is smaller than X'X, again in a matrix sense, and so the ridge coefficient

= (X'X+AL) ' Xy (3.114)

estimates 3Rldge are always closer to 0 than the OLS estimates B Ridge regression is known as a
shrinkage estimator since the parameter estimates pull the parameters towards the shrinkage target of
0. In practice shrinkage introduces some bias in the coefficient but reduces their variance, and ridge
regression often outperforms OLS in out-of-sample applications.

Ridge regression depends on a single tuning parameter, A, which controls how bias and variance
are traded off. The optimal value is determined by trying several different values and selecting the
value A* that produces the smallest cross-validated SSE. Note that ridge regression does not provide
any guidance as to which variables to include in the model, and so some form of model selection is
usually needed. The optimal choice of A depends on the number of regressors included in the model,
and so it must be re-optimized in each distinct model. There are many variants of ridge regression
that change the penalty structure. For example, one variant allows the shrinkage to be applied to
only a subset of the included variables. This penalization structure can be useful if some variables
are strong predictors, while others are less useful. This penalty structure can be further generalized to
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apply different amounts of shrinkage to distinct groups of regressors or even to impose Cross-regressor
shrinkage where the total magnitude of a set of the regressors in the model is affected.?’

3.14.4 LASSO, Forward Stagewise Regression, and LARS

LASSO (least absolute shrinkage and selection operator), Forward Stagewise Regression, and LARS
(Least Angle Regression) are relatively new methods the embed both variable selection and shrinkage
into a unified approach (Tibshirani, 1996; Efron, Hastie, Johnstone, and Tibshirani, 2004). LASSO is
similar to ridge regression and can be written as a constrained least square problem.

Definition 3.23 (LASSO). The LASSO estimator with tuning parameter @ is defined as the solution
to

k

argmin (y — XB)' (y — XB) subject to Z ]B]] <o (3.115)
B =1

The key difference is that the constraint is on the sum of the absolute value of the coefficients and
not their squared values. The LASSO estimator adds an additional constraint to the least-squares
problem that limits the magnitude of regression coefficients that produces an interpretable model.
Regressors that have little explanatory power will have coefficients exactly equal to O (and hence are
excluded). This means that LASSO both estimates parameters and selects variables — any variable
with a coefficient that is exactly 0 is effectively removed from the model.

The LASSO constrained minimization problem is dual to a penalized least-squares problem,

k
arggnin (y—XB) (y—XB)+21 > _|Bj] (3.116)

j=1

where @ and A have an inverse relationship. While LASSO has a closed form solution for any value
of A,the estimator is not simple to describe in a single equation.

Forward Stagewise Regression is closely related to LASSO and illustrates the fundamental prin-
ciple used in variable selection. Estimation begins with a model that contains no regressors. The
algorithm then uses an iterative method to build the regression in small steps by expanding the regres-
sion coefficients (small enough that the coefficient expansions should be virtually continuous).

2’The complete formulation of a ridge regression is

arggnin (y —XB) (y —XB) + (B —Bo) A(B—Bo)

where 3, is the shrinkage target and A is a positive definite matrix that controls the amount of shrinkage. This form
nests the classic specification when A = Al and B, = 0. If A is not diagonal, then the estimator will apply cross-variable
penalties. The solution to the general problem is

~Ridge 1
B =(XX+A) (X'y+AB).

~Rid
This shows that the OLS solution is recovered when A = 0. If A is very large, then 3 O~ A_lAﬁO = B, and the
estimate depends only on the shrinkage target f3,.
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Algorithm 3.14 (Forward Stagewise Regression). The Forward Stagewise Regression (FSR) estima-
tor is defined as the sample paths of B defined by

A (0
1. Begin with ﬁ( ) =0, and errors €©) = y
2. Compute the correlations of the residual at iteration i with the regressors, ¢)) = Corr [X, S(i)]

3. Define j to be the index of the largest element of \c(i)| (the absolute value of the correlations),
and update the coefficients where 3](l+1) = ﬁ;l) +1 -sign (cj) and 31(:+1) = 31(0 forl # jwhere

N is a small number (should be much smaller than c; ).28
(i+1) A1)
4. Compute € =y—Xp

5. Repeat steps 2 — 4 until all correlations are 0 (if e\) = 0 than all correlations are 0 by defini-
tion).

The coefficients of FSR are determined by taking a small step in the direction of the highest
correlation between the regressors and the current error, and so the algorithm will always take a step
in the direction of the regressor that has the most (local) explanatory power over the regressand. The
final stage FSR coefficients will be equal to the OLS estimates as long as the number of regressors
under consideration is smaller than the number of observations. The LASSO estimate is usually
computed using the LARS algorithm, which simplifies FSR by finding the exact step size needed
before the next variable enters the regression.

Algorithm 3.15 (Least Angle Regression). The Least Angle Regression (LARS) estimator is defined
as the sample paths of B defined by:

~ (0
1. Begin with [3( ) 0, and errors €0 = § where
g=¥ (3.117)
Oy
and
%= M (3.118)
Ox

are studentized versions of the original data.*

2. Compute the correlations of the residual at state i with the regressors, c¢()) = Corr [X(‘) , S(i)} and

define j to be the index of the largest element of |c(i)| (the absolute value of the correlations).

3. Define the active set of regressors XM =g -

281 should be larger than some small value to ensure the algorithm completes in finitely many steps, but should always
be weakly smaller than |c;|.
L ARS can be implemented on non-studentized data be replacing correlation with ¢() = X gl),
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A1l A ~
4. Move B( ) = B, towards the least squares estimate of regressing £©) on X yntil the correla-

tion between V) = — XV B M and some other Xy, is equal to the correlation between eW) and
)’2 .
Jo

5. Add Xy, to the active set of regressors so X = [i s ik].

A (2 A A -
6. Move [3( ) = [B] ﬁk] towards the least squares estimate of regressing eW) on X@ yntil the

oy A (2
correlation between € = y— X(z)ﬁ( ) and some other X; is equal to the correlation between

@ and X,

7. Repeat steps 5 — 6 by adding regressors to the active set until all regressors have been added or
n steps have been taken, whichever occurs first.

The algorithm of LARS describes the statistical justification for the procedure — variables are
added as soon as they have the largest correlation. Once the active set contains two or more regres-
sors, the maximum correlation between the error and all regressors will be the same since regression
coefficients are expanded in a manner that keeps the correlation identical between the error and any
regressors in the active set. Efron, Hastie, et al. (2004) proposes a new algorithm that allows the
entire path of LASSO, FSR, and LARS estimates to be quickly computed in models that contain a
large number of candidate regressors. LASSO differs from LARS in one technical aspect, although
they are very similar in practice.

These models are deeply related as shown Efron, Hastie, et al. (2004) and Hastie et al. (2007). All
three can be used for model selection once a stopping rule (FSR, LARS) or the penalty (1, LASSO)
has been selected. k-fold cross-validation is commonly used to choose these values. Note that the
usual standard OLS errors and ¢-stats are no longer correct since these estimators are constrained
versions of least squares. Tibshirani (1996) proposes a bootstrap method that can be used to compute
standard errors and make inference on LASSO estimators.>”

Figure 3.12 illustrates how ridge regression and LASSO estimate parameters. Both show the
OLS estimate [3’ surrounded by ellipsoids the trace iso-SSE curves — that is, values of 8, and 3, that
produce the same regression fit. The estimators are defined as the point where the smallest SSE is
just tangent to the constraint. The ridge regression shrinks the estimate towards zero in a non-uniform
way. This happens since the regressors are correlated. Ridge regression produces an estimate where
both coefficients are non-zero. LASSO, on the other hand, estimates [3; to be exactly. This happens
since non-zero PBiprovides a larger reduction in the SSE than f,, at least near the point (0,0). In
general, ridge regression will never estimate any coefficients to be exactly 0 except when the OLS
coefficient is exactly 0. LASSO frequently estimates coefficients to be zero since the cost of adding a
small amount of a coefficient near zero is linear in 8 while the gain in terms of the SSE is quadratic
in B (i.e., x B?).

Figure 3.13 shows that paths of both the ridge regression and LASSO estimators are the restriction
parameter ® is reduced. The model estimated regresses the return on the Big-High portfolio on the
four factors, VWM®, SMB, HML, and MOM. The paths begin with @ = 0. As the constraint is
relaxed, the parameters converge towards the OLS estimates, which limit cases as @ increases. There

30The standard errors subsequent to a selection procedure using GtS, StG, or IC are also not correct since tests have
been repeated. In this regard, the bootstrap procedure should be more accurate since it accounts for the variation due to
the selection, something not usually done in traditional model selection procedures.
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Ridge Regression LASSO

44 B2

i\_A:/ é -4 -2

AD)),
C

-21 fpRidge 21 fAsso

Iso SSE

——Ridge Penalty Iso SSE ——LASSO Penalty

Figure 3.12: The left panel shows the ridge regression restriction for a specific value of @ along with
three lines that trace combinations of 8; and 3, that produce the same model SSE. The ridge estimate
is defined as the point where the SSE is just tangent to a restriction. The right shows the LASSO
constraint along with the iso-SSE curves for the same data generating process.

is one clear distinction between the two paths. The paths from ridge regression evolve smoothly as @
increases. All coefficients except SMB are different from zero once @ > 1/8. The LASSO paths have
a distinct kinked shape. These kinks are points where the correlation between one excluded regressor
and the included regressor(s) equalize so that the active set of regressors increases. The market is the
strongest predictor, followed by the value factor. Momentum enters the model for small values of the
penalty parameter, and size has a non-zero coefficient only at the OLS estimate (and then very small).
The dashed line in each plot indicates that optimal choice @™ selected using 5-fold cross-validation.
The cross-validated penalty parameter suggests that little shrinkage is needed. This occurs since the
sample size is large enough that parameters, even small values, are precisely estimated.

3.14.5 Regression Trees and their Refinements

Regression Trees build models using only dummy variables. Constructing a regression tree begins by
splitting the data into two groups using the values in regressors as possible split values. The model is
constructed by splitting the observations into two groups using on all possible values of each regressor.
The split that minimizes the SSE is retained, and the two groups are called leaves. The algorithm is
then rerun on each leaf again, splitting on all possible values in each of the variables included in the
model. This process of splitting into two leaves continues until either the homogeneity in the group
as measures by the within-group MSE is sufficiently low, or the number of observations in a leaf falls
below some prespecified value.

Figure 3.14 shows the first three levels of a model for the returns on the Big-High portfolio on
the four factor portfolios. Splitting the data first on the market produced the largest gains, and the
optimal split value was very near zero. The two leaves were then split according to the market into
four groups corresponding to very low market returns (< —7.17), negative market returns (—7.17 <
VMW < —0.81), positive market returns (—0.81 < VMW < 3.78), and very high market returns
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Figure 3.13: The top panel shows the path of the ridge regression estimates from the four factor model
BH® = By + VWM + B3SMB; + BsHML; + BsMOM,; + €;. The penalty parameter @ is increased
from zero to the value that produces the OLS estimate. The bottom panel contains the path of the
LASSO estimates as the restriction is decreased. The kinks indicate points where a parameter switches
from being exactly zero to a non-zero value.
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VWME® <=-0.81
mse = 24.61
samples = 686

VWME® <=-7.17 VWM <=3.78
mse = 17.09 mse = 11.22
samples = 240 samples = 446

VWM <=-12.82 VWM <=-2.27 HML<=1.12 VWM?*® <=8.07
mse = 34.75 mse = 5.96 mse =5.12 mse = 10.86
samples = 36 samples = 204 samples = 294 samples = 152

Figure 3.14: A regression tree where the left-hand-side variable is the return on the Big-High portfolio
and the model is built using the four factors: VWM¢, SMB, HML, and MOM. The first and second
splits used the market portfolio to bin the returns into four regions ranging from very low to very high.
The final level splits used different variables so that the terminal leaves depend on both the market
and the size factor.

(> 3.78%). If the tree was stopped at this node, the regression selected would be

BH® = BII[VWM;§—7.17] + ﬁZI[—7.17<VWMf§—0.81] + ﬁ31[—0.81<VWMf§3.78] + [34I[VWM€>3~78} +&

The estimates of the parameters are simply the within-group means. The final level further splits
the data into eight leaves (not shown). Three of the final level splits used the market return to split
the negative returns further and to define an extreme positive return leaf. The other split preferred
to use value. This final regression model would have eight terms constructed using combinations of
restrictions on the return on the market factor and the return of the value factor.

Regression trees have step-function like behavior and frequently are not well suited to analyz-
ing continuous-valued variables using continuously values regressors. While plain regression threes
should usually be avoided, four refinements, pruning, Random Forests, bagging, and boosting all pro-
duce improvements in regression-tree models. Figure 3.15 compares a 2-level tree with OLS when
modeling the return of the Big-High portfolio using the excess market return. The tree approximates
the regression line as a step function. While this fit is not a terrible description of the data near O,
there are obvious deficiencies in the tails.

3.14.5.1 Improving Regression Trees

Three techniques are commonly used to improve regression trees: pruning, bagging, boosting, and
Random Forests. Pruning a tree removes nodes that make a negligible improvement to the in-sample
fit and often decrease out-of-sample fit. Pruning is implemented by optimizing the modified objective
function
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Figure 3.15: The regression tree implied by the first two splits and the OLS fit of the excess returns
on the Big-High portfolio on the market.

n

3 (Y- Fx) +alT]

i=1

where £ (x;) is the predicted value for a given tree and |T'|is the number of terminal nodes in the tree.
Pruning starts with a large tree with Tpnodes that is only terminated when either the number of nodes
hits some threshold, the maximum number of levels is reached, or a SSE-based stopping criterion is
met. For values of o on a grid of plausible values {Oq <p<...< Ocq} the tree that minimizes the
modified objective function is selected. The preferred value of & is chosen from this grid using k-fold
cross-validation. Finally, the pruned tree is estimated by minimizing the modified objective function
using & on the original sample.

Bagging makes use of B bootstrap samples to the parameters of multiple trees. Each tree can
then be used to generate predictions for any value of the regressor x. These predictions are then be
averaged to produce the bagged forecast. Note that each tree may have both a different structure and
parameter values. While the forecasts will tend to be similar, they are not perfectly correlated, and
the average forecast has a lower variance than any of the individual forecasts.

Algorithm 3.16 (Bagging Regression Trees). A bagged prediction from a regression tree is con-
structed following:

1. For i =1,2,...,B generate a bootstrap sample from (Y;,x;) and fit a regression tree to the
bootstrapped sample.

2. Using the B trees, construct the forecast as
B
Fx)=18)_ fi(x)
i=1

where f;(X) is the prediction from the tree estimated using bootstrap sample i.

Random Forests make use of randomization by selecting a subset of the available regressors when
estimating a tree. When the number of regressors p is large, most trees will tend to have a very
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similar structure even when fit to bootstrapped samples. This structure arises since strong predictors
will always be selected in the first levels of the tree. The Random Forest solution is to estimate a tree
using a bootstrap sample that also random selects = /p regressors. This fitting of trees to random
subsamples of the data is repeated many times, and the Random Forecast forecast is the average of
forecasts of these models. The distinct trees tend to have low correlation, which translates into large
gains from averaging.

Algorithm 3.17 (Random Forests). A Random Forest of regression trees is constructed following:

1. Fori=1,2,...,B generate a bootstrap sample of the data with a random subset of k ~ \/p
regressors and fit a regression tree using the selected subset of the regressors.

2. Using the B trees, construct the forecast as
B
Fx)=18)_ fi(x)
i=1

where f; is the prediction using random regressor subset i.

Note that a Random Forest is identical to a bagged regression tree when k = p regressors are used
to build each tree.

Boosting also fits multiple trees, only sequentially to the same data. A boosted tree begins by
fitting a small tree with d nodes to the data and computing the residuals. It then fits a new tree to the
residuals. This is repeated many times. The trees are then combined using a tuning parameter A as

B
Fx)=18) Afi(x)
i=1

where fjis the tree fit to the original data and fJ, J = 2 is the prediction from the tree estimated using
the residuals of the form

&j=&j1—Afj-1(x)

where & =Y.

Algorithm 3.18 (Bagging Regression Trees). Begin with & o = Y; where Y, is the standardized version
of Y. For j=1,...,B:

1. Fit a regression tree using (Ei,j—l,xi) with d splits and generate & j = & j_1 — A f;(xi) where
fjis the tree fit in iteration j.

2. Produce the boosted forecast as
B
Fx)=18Y Afi(X).
i=1

Boosting makes uses of three tuning parameters, A, d, and B. A is usually set to some small
value in the range (0.001,0.10). Small values of A slow the learning since much of the forecast is
down-weighted. d, the number of terminal nodes in a tree, is also set to some small number, often
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1. d determines the maximum number of interactions allowed between the regressors when building
the dummy-variable representation of a regression tree. Finally, B is usually set to some large value,
often in the range of 1,000 — 10,000. These three parameters all interact and are substitutes — increases
in one should usually be matched by decreases in the others when building optimal predictions. All
three can be selected using a grid of values and k-fold cross-validation.

3.15 Projection

Least squares has one further justification: it is the best linear predictor of a dependent variable where
best is interpreted to mean that it minimizes the mean square error (MSE). Suppose f(x) is a function
of only x and not Y. Mean squared error is defined

E[(Y - f(x))’].

Assuming that it is permissible to differentiate under the expectations operator, the solution is

E[Y — f(x)] =0,

and, using the law of iterated expectations,

f(x) =E[ylx].

If f(x) is restricted to include only linear functions of x then the problem simplifies to choosing f to
minimize the MSE,

E[(Y —xB)’]

and differentiating under the expectations (again, when possible),
EX' (Y —xB)] =0

and § = E[x'’x] " 'E[x'y]. In the case where X contains a constant, this allows the best linear predictor
to be expressed in terms of the covariance matrix of y and X where the“indicates the constant has been
excluded (i.e., x = [1X]), and so

B = Z;XI ZXy

where the covariance matrix of [Y X] can be partitioned
yx X
Cov([Y X]) = [ x X }

Iy Ly

Recall from assumptions 3.7 that {x;, &} is a stationary and ergodic sequence and from assumption
3.8 that it has finite second moments and is of full rank. These two assumptions are sufficient to justify
the OLS estimator as the best linear predictor of Y. Further, the OLS estimator can be used to make
predictions for out of sample data. Suppose Y, was an out-of-sample data point. Using the OLS
procedure, the best predictor of ¥, (again, in the MSE sense), denoted f/n+1 is x,11.
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Weights of an S&P 500 tracking portfolio
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Figure 3.16: Plot of the optimal tracking portfolio weights. The optimal tracking portfolio is long all
asset and no weight is greater than 25%.

3.15.1 Tracking Error Minimization

Consider the problem of setting up a portfolio that would generate returns as close as possible to the
return on some index, for example, the FT'SE 100. One option would be to buy the entire portfolio
and perfectly replicate the portfolio. For other indices, such as the Wilshire 5000, which consists of
many small and illiquid stocks, complete replication is impossible, and a tracking portfolio consisting
of many fewer stocks must be created. One method to create the tracking portfolios is to find the best
linear predictor of the index using a set of individual shares.

Let x; be the returns on a set of assets and let ¥; be the return on the index. The tracking error
problem is to minimize the

E[(Y; — X;w)]

where w is a vector of portfolio weights. Portfolio tracking has the same structure as the best linear
predictor and the optimal weights are W = (X'X)~'Xy.

Data between January 5, 2010, and December 31, 2019, was used, a total of 2,515 trading days.
The regression specification is simple: the return on the S&P is regressed on the returns on the sector
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ETF returns,
30

R.iS‘PSOO _ Z wiR;; +&
j=1
where the portfolios are ordered alphabetically (not that this matters). The portfolio weights (which
need not sum to 1) are presented in figure 3.16. All funds have positive weights, and the maximum
just under 25%. More importantly, this portfolio has a correlation of 99.5% with the return on the
S&P 500. Its return tracks the return of the S&P to within 1.4% per year. The tracking error variance
i1s much smaller than the 14.7% annualized volatility of the S&P over this period.

While the regression estimates provide the solution to the unconditional tracking error problem,
this estimator ignores two important considerations: how should stocks be selected, and how condi-
tioning information (such as time-varying covariance) can be used. The first issue, which stocks to
choose, is difficult and is typically motivated by the cost of trading and liquidity. The second issue
will be re-examined using Multivariate GARCH and related models in a later chapter.

3.A Selected Proofs

Theorem 3.1.
E[BIX| =E|(x'%) ' X'y)X]
—E|(XX) "' X'XB + (X'X) ' Xe[X]
—B+E[(XX) "' Xe[X|

— B+ (X'X) ' XE[¢|X]
=P

Theorem 3.2.
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Theorem 3.3. Without loss of generality C = (X'X) ' X + D’ where D’ must satisfy D’X = 0 and
E [D'e|X] = 0 since

E |BX| =E[Cy/X]
—E [((X’X)_l X' +D’) (XB+e¢) \X}
=B +D'XB+E[D'eX]
and by assumption Cy is unbiased and so E [Cy|X] = B.

v[BIX] =E[(XX)"'X'+ D) ee’ (D+X (X'X) ') X|

—E|(XX) "' X'ee'X (X'X) ' [X| +E [D'ee'DX] + E [ D'eeX (X'X) '

X| +E|(XX) "' XzeD|x]
— 6% (X'X) '+ DD+ DX (X'X) ' [X+ 062 (X'X) ' X'D
=V [3|X} +0’D'D+0+0
=V |BIX] +o’D'D
and so the variance of B is equal to the variance of [3 plus a positive semi-definite matrix, and so
% [Byx} Y [ﬁ\x} —6’D'D >0
where the inequality is strict whenever D # 0. 0

Theorem 3.4. A ]
p=pB+(XX) Xe

and so [§ is a linear function of normal random variables €, and so it must be normal. Applying the
results of Theorems 3.1 and 3.2 completes the proof. U

Theorem 3.5. [
B—pB=(XX)"Xeand & =y —X(X'X) ' X'y = Mxy = Mx¢, and so

E[(B-B)#IX] =E[(XX) ™ Xee'Mx[X]
— (X'X) "' XE [e¢/|X] Mx
— o2 (X'X) ' X'Mx
=62 (X'X) " (MxX)
=2 (X'X) "0
—0

since MxX = 0 by construction. B and € are jointly normally distributed since both are linear func-
tions of &, and since they are uncorrelated they are independent.3!

317ero correlation is, in general, insufficient to establish that two random variables are independent. However, when
two random variables are jointly normally distribution, they are independent if and only if they are uncorrelated.
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Theorem 3.6. 6% = £ andso (n—k) 62 = &'¢. &£ =Mxe, so (n— k) 6% = £’ Mx'Mxe and (n—k)f,—§=

/
/ .
£ I;/[zxg = % ng = z’ MXZ since My is idempotent (and hence symmetric) where z is a n by 1 mul-

tivariate normal vector with covariance I,,. Finally, applying the result in Lemma 3.1, ZMxz ~
Sy 7L,-x127i where {A;},i=1,2,...,n are the eigenvalues of Mx and 951271-, i=1,2,...,n are indepen-

dent xlz random variables. Finally, note that Mx is a rank n — k idempotent matrix, so it must have
n — k eigenvalues equal to 1, ; = 1 for i = 1,2,...,n — k and k eigenvalues equal to 0, A; = 0 for
i=n—k+1,...,n, and so the distribution is a x,f_k. O]

Lemma 3.1 (Quadratic Forms of Multivariate Normals). Suppose z ~ N (0,X) where ¥ is a n by n
positive semi-definite matrix, and let W be a n by n positive semi-definite matrix, then

ZWz ~ N> (0,2; W) = ZM“

where A; are the eigenvalues of TIWE? and N; (+) is known as a type-2 normal..

This lemma is a special case of Baldessari (1967) as presented in White (Lemma 8.2, 1996).

Theorem 3.8. The OLS estimator is the BUE estimator since it is unbiased by Theorem 3.1 and it
achieves the Cramer-Rao lower bound (Theorem 3.7). ]

Theorem 3.9. Follows directly from the definition of a Student’s ¢ by applying Theorems 3.4, 3.5, and
3.2. O]

Theorem 3.10. Follows directly from the definition of a Fy, v, by applying Theorems 3.4, 3.5, and
3.2. [

Theorem 3.12.

Since E[xx;] is positive definite by Assumption 3.8, and {x;} is stationary and ergodic by Assump-
tion 3.7, then Z'Z‘X"X" will be positive definite for n sufficiently large and so [3 exists. Apply-
xlg a.s.

ing the Ergodic Theorem (Theorem 3.21), LXK lx 5 4% Yux and LiiXE — 0 and by the Continu-
ous Mapping Theorem (Theorem 3.22) comblned with the continuity of the matrix inverse function,

X -1 a.s. «——
(—Z’—,; L ’) = ZXXI, and so
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Finally, almost sure convergence implies convergence in probability and so 3 .—B 20 or 3 " TN
B. [

Theorem 3.21 (Ergodic Theorem). If {z,} is ergodic and its r'* moment, p, is finite, then

Theorem 3.22 (Continuous Mapping Theorem). Given g : R¥ — R/, and any sequence of random k
by I vectors {z,} such that 2, “> z where z.is k by 1, if g is continuous at z, then g (z,) = g(z).

Theorem 3.13. See White (Theorem 5.25, 2000). ]
Theorem 3.15.

) 6+X<ﬁ—ﬁn>>/<8+X<ﬁ—ﬁn>>
Cwe (BB Xe (8B Xx(p-5,)

By the Ergodic Theorem and the existence of E[€?] (Assumption 3.10), the first term converged to
o2. The second term

(p=h) xe Bn"> i (8-8.) —Z"—; Xe 2 00=0

since B, is consistent and E[x;€;] = 0 combined with the Ergodic Theorem. The final term

O] oy XX o
5 0'Zxx0 =0

and so the variance estimator is consistent. O]
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Theorem 3.17.

B, — (X/le)lX’ly
In — -

n n
X/ X\ 7' X (X +Xo +g) _ (XX XX, N X/ X\ ' XX, N X/ X\ ' Xe
n n n n n n n n
P —1 —1
— ﬁl +EX1XIZX1X2B2 +ZX1X10
—1
- ﬁl +EX1XIZX1X2B2
/ —1 /
where <¥ EiN Z;]IXI and % EiN Yx,x, by the Ergodic and Continuous Mapping Theorems

(Theorems 3.21 and 3.22). Finally note that

XX\ 7 XXy XX\ 7
( 1 l) 1 :( 1 ) [X1X271X1X2,2~-'X1X27k2]

n n n
XX\ ! XX\ ! XX\ !
— ( 1 1) X1X2,1 ( 1 ) X1X272 ( 1 ) X1X27k2
n n n

= [Sln 82n cee 8k2n:|
where & is the regression coefficient in x, ; = X0+ 1;. [
Theorem 3.18. See White (Theorem 6.3, 2000). ]
Theorem 3.19. See White (Theorem 6.4, 2000). ]
Theorem 3.20. By Assumption 3.15,

1 1 1
V2y=V 22X +V 2¢

and V [V’%S} = 621, uncorrelated and homoskedastic, and so Theorem 3.3 can be applied. O]

Shorter Problems

Problem 3.1. Derive the OLS estimator for the model ¥; = @ + €.
Problem 3.2. Derive the OLS estimator for the model Y¥; = BX; + €.
Problem 3.3. What are information criteria and how are they used?

Problem 3.4. Outline the steps to compute the bootstrap variance estimator for a regression when the
data are heteroskedastic.

Problem 3.5. Discuss White’s covariance estimator, and in particular when should White’s covari-
ance estimator be used? What are the consequences to using White’s covariance estimator when it is
not needed? How can one determine if White’s covariance estimator is needed?

Problem 3.6. Suppose Z; = a + bX;, and two models are estimated using OLS: Y; = By + B1X; + &
and Y; = Y + 71Z;i + ni, What the relationship between y and 8 and between &; and 7);?

Problem 3.7. Describe the steps to implement k-fold cross-validation in a regression to select a model.
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Longer Exercises

Exercise 3.1. Imagine you have been given the task of evaluating the relationship between the return
on a mutual fund and the number of years its manager has been a professional. You have a panel data
set which covers all of the mutual funds returns in the year 1970-2005. Consider the regression

Ri; = a+ Pexper;, + &

where r;; is the return on fund i in year ¢ and exper;, is the number of years the fund manager has held
her job in year z. The initial estimates of S and o are computed by stacking all of the observations
into a vector and running a single OLS regression (across all funds and all time periods).

1. What test statistic would you use to determine whether experience has a positive effect?
2. What are the null and alternative hypotheses for the above test?

3. What does it mean to make a type I error in the above test? What does it mean to make a type
IT error in the above test?

4. Suppose that experience has no effect on returns but that unlucky managers get fired and thus
do not gain experience. Is this a problem for the above test? If so, can you comment on its
likely effect?

5. Could the estimated [§ ever be valid if mutual funds had different risk exposures? If so, why?
If not, why not?

6. If mutual funds do have different risk exposures, could you write down a model which may be
better suited to testing the effect of managerial experience than the initial simple specification?
If it makes your life easier, you can assume there are only 2 mutual funds and 1 risk factor to
control for.

Exercise 3.2. Consider the linear regression
Y, =BX;+¢&

1. Derive the least-squares estimator. What assumptions are you making in the derivation of the
estimator?

2. Under the classical assumptions, derive the variance of the estimator 3

3. Suppose the errors & have an AR(1) structure where & = p&_1 + 1, where 1, i N(0,1) and
|p| < 1. What is the variance of 3 now?

4. Now suppose that the errors have the same AR(1) structure but the x; variables are i.i.d.. What
is the variance of 8 now?

5. Finally, suppose the linear regression is now
Y[ = + BX[ + 8[

where & has an AR(1) structure and that x; is i.i.d.. What is the covariance of [¢¢ B]'?
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Exercise 3.3. Consider the simple regression model Y; = BX ; + & where the random error terms are
i.i.d. with mean zero and variance 62 and are uncorrelated with the Xi .

1. Show that the OLS estimator of 3 is consistent.

2. Is the previously derived OLS estimator of f still consistent if ¥; = & + X ; + &? Show why
or why not.

3. Now suppose the data generating process is
Y, = BiX1,i+BoXo i+ &
Derive the OLS estimators of B; and ;.

4. Derive the asymptotic covariance of this estimator using the method of moments approach.

(a) What are the moment conditions?

(b) What is the Jacobian?

(c) What does the Jacobian limit to? What does this require?

(d) What is the covariance of the moment conditions. Be as general as possible.

In all of the above, clearly state any additional assumptions needed.

Exercise 3.4. Let S be the sample covariance matrix of z= [y X|, where X does not include a constant

S=n'Y (zi—2)(zi - 2)
i=1

A N
S: [ Syy §xy :|

Sxy Sxx

and suppose n, the sample size, is known (S is the sample covariance estimator). Under the small-
sample assumptions (including homoskedasticity and normality if needed), describe one method, us-
ing only S, X (the 1 by k — 1 sample mean of the matrix X, column-by-column), ¥ and #, to

1. Estimate 31 yeees [3’k from a model
Vi =B+ BoXo i+ ...+ BiXyi+ &
2. Estimate s, the standard error of the regression
3. TestHy: B;=0,j=2,...,k
Exercise 3.5. Consider the regression model
Yi =i+ BaXi+ &

where the random error terms are i.i.d. with mean zero and variance 6% and are uncorrelated with the
x;. Also assume that x; is i.i.d. with mean p, and variance 6x2, both finite.
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1. Using scalar notation, derive the OLS estimators of 3; and ;.

2. Show these estimators are consistent. Are any further assumptions needed?

3. Show that the matrix expression for the estimator of the regression parameters, ﬁ = (X'X) “Ix y,
is identical to the estimators derived using scalar notation.

Exercise 3.6. Let x,,3 be the best linear projection of Y,,,. Let &,, be the prediction error.

1. What is the variance of a projected Y?

2. What is the variance if the s are estimated using regressors that do not include observation m
(and hence not x,, or &,)? Hint: You can use any assumptions in the notes, just be clear what
you are assuming.

Exercise 3.7. Are Wald tests of linear restrictions in a linear regression invariant to linear reparame-

terizations? Hint: Let F be an invertible matrix. Parameterize W in the case where Hy : RB —r =0
and Hy : F(RB —r) =FRB —Fr=0.

1. Are they the same?

2. Show that n-R? has an asymptotic )(,f_] distribution under the classical assumptions when the
model estimated is

Vi =B1+BoXo i+ ...+ BiXyi+ &

Hint: What is the does the distribution of ¢/v converge to as v — oo when ¢ ~ x2.

Exercise 3.8. Suppose an unrestricted model is
Y; = B1 + BaX1,i+ BaXoi+ PaXz i+ &

1. Sketch the steps required to test a null Hy : B, = B3 = 0 in the large-sample framework using a
Wald test and an LM test.

2. Sketch the steps required to test a null Hy : B> + B3 + B4 = 1 in the small-sample framework
using a Wald test, a z-test, an LR test, and an LM test.

In the above questions be clear what the null and alternative are, which regressions must be estimated,
how to compute any numbers that are needed and the distribution of the test statistic.

Exercise 3.9. Let ¥; and X; conform to the small-sample assumptions and let ¥; = B + B X; + €.
Define another estimator _ B

5 Yg—YL

S
where Xy is the average value of X; given X; > median (x), and Yy is the average value of Y; for n
such that X; > median (x). Xy is the average value of X; given X; < median (x), and ¥, is the average
value of ¥; for n such that X; < median (x) (both X and Y depend on the order of X;, and not Y;). For

example, suppose the X; were ordered such that X; < X, < X3 < ... < Xj and n is even. Then,

_ 2
XL:Z;Xi
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and

o

1. Is B, unbiased, conditional on X?

2. Is B2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

3. What is the variance of [§2, conditional on X?

Exercise 3.10. Suppose
Yi=Pi+Poxi+e&
and that variable Z; is available where V[Z;] = 62 > 0, Corr (X;,Z;) =p # 0 and E[g|z] =0, n =
1,...,N. Further suppose the other assumptions of the small-sample framework hold. Rather than the
usual OLS estimator, B
Y1 (Zi—=2)Y,

b=z X

is used.
1. Is 3, a reasonable estimator for f3,?
2. What is the variance of /32 conditional on x and z?
3. What does the variance limit to (i.e., not conditioning on x and z)?

4. How is this estimator related to OLS, and what happens to its variance when OLS is used (Hint:
What is Corr (X;,X;)?)

Exercise 3.11. Let {Y;}7_, and {X;}} , conform to the small-sample assumptions and let ¥; = f; +
B2X; + €. Define the estimator . .

s Yu—YL

XX
where Xy is the average value of X; given X; > median (x), and Yy is the average value of Y; for i
such that X; > median (x). Xy, is the average value of X; given X; < median (x), and Y, is the average
value of ¥; for i such that X; < median (x) (both X and ¥ depend on the order of X;, and not ¥;). For
example, suppose the X; were ordered such that X1 < X < X3 < ... < X, and n is even. Then,

_ 2
XL:;;Xi

and

2 n
Xy == Z X;
i=n/2+1

1. Is [;2 unbiased, conditional on X?
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6.

v

. Is B, consistent? Are any additional assumptions needed beyond those of the small-sample

framework?

‘What is the variance of BZ’ conditional on X?

Next consider the estimator

>l =<

B =

where Y and X are sample averages of {Y¥;} and {X;}, respectively.

. Is ﬁz unbiased, conditional on X?

. Is Bz consistent? Are any additional assumptions needed beyond those of the small-sample

framework?

What is the variance of [32, conditional on X?

Exercise 3.12. Suppose an unrestricted model is

Y; = B1+ BoX1,i+ B3 X2+ BaXz i+ &

. Discuss which features of estimators each of the three major tests, Wald, Likelihood Ratio, and

Lagrange Multiplier, utilize in testing.

. Sketch the steps required to test a null Hy : B, = B3 = 0 in the large-sample framework using

Wald, LM, and LR tests.

. What are type I & II errors?

‘What is the size of a test?

. What is the power of a test?
. What influences the power of a test?

. What is the most you can say about the relative power of a Wald, LM, and LR test of the same

null?

Exercise 3.13. Consider the regression model

Y; = 1+ BoXi+ &

where the random error terms are i.i.d. with mean zero and variance 6% and are uncorrelated with the
X;. Also assume that X; is i.i.d. with mean p, and variance ze, both finite.

1.

2.

3.

Using scalar notation, derive the OLS estimators of ; and f3,.

Why are these estimators are consistent? Are any further assumptions needed?

Show that the matrix expression for the estimator of the regression parameters, B = (X'X) ¢ y,
is identical to the estimators derived using scalar notation.
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. Suppose instead

Yi=n+pX—-X)+s

was fit to the data. How are the estimates of the s related to the 3s?

What can you say about the relationship between the ¢-statistics of the ys and the Ss?

. How would you test for heteroskedasticity in the regression?

Since the errors are i.i.d. there is no need to use White’s covariance estimator for this regression.
What are the consequences of using White’s covariance estimator if it is not needed?

Exercise 3.14. Suppose ¥; = a + BX; + & where E [&;|X] =0 and V [g;] = 62 for all i .

1.

2.

5.

Derive the OLS estimators of ¢ and f3.

Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, 622);)]( , and White’s parameter covariance estimator, Z;)](SZ;)](?

Describe a procedure to formally test whether White’s covariance estimator is required.

. Suppose the true model is as above, but instead the model ¥; = y+ &; is fit. What is the most

you can say about the the OLS estimate of §?

What is Windsorization in the context of a regression, and how is it useful?

Exercise 3.15. Consider the APT regression

Rte =0+ ﬁmR;,l + ﬁsRsmb,t + Bthml,t +&

where Ry, , is the excess return on the market, Ry, is the return on the size factor, Rp,,; ; is the return
on value factor and R{ is an excess return on a portfolio of assets. Using the information provided in
the tables below below, answer the following questions:

1.

2.

Is there evidence that this portfolio is market neutral?

Are the size and value factors needed in this portfolio to adequately capture the cross-sectional
dynamics?

Is there evidence of conditional heteroskedasticity in this model?

. What are the trade-offs for choosing a covariance estimator for making inference on this model?

Define the size and power of a statistical test.

What factors affect the power of a statistical test?

. Outline the steps to implement the correct bootstrap covariance estimator for these parameters.

Justify the method you chose using the information provided.
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Notes: All models were estimated on n = 100 data points. Models 1 and 2 correspond to the
specification above. In model 1 Ry,,;, and Ry, have been excluded. Model 3, 4 and 5 are all
version of

. 2
87 =10+ MR, + VR + VRumie + ¥a (R,) ™+ V5RSy : Romb
+ YoRp (Riumi s + '}’7R§mb,t + V3Rsmp 1 Rimi ¢+ + 79R%m17t + N

& was computed using Model 1 for the results under Model 3, and using model 2 for the results
under Models 4 and 5. R? is the R-squared and n is the number of observations.



224

Analysis of Cross-Sectional Data

Parameter Estimates

Model 1 Model 2 Model 3 Model 4 Model 5

a 0.128 0.089 v 0.984 0.957 0.931
B 1.123 0.852 7 -0.779 -0.498
Bsmb 0.600 » -0.046
Bt 0224 7 0.124

Ya 0.497 0.042 0.295
Y 0.049
Yo 0.684

¥ 0.036 -0.149
03 -0.362

Yo -0.005 0.128

R? 0.406 0.527 0.134 0.126 0.037
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Parameter Covariance Estimates

The estimated covariance matrices from the asymptotic distribution
5 5\ d
\/;l ﬁ _BO _>N(O7C)
o al A2¢—1 191
are below where C is either 6°Xyy or Xy SXy+.

CAP-M

2¢—1
X
a B

o 1.365475 0.030483
Bn 0.030483 1.843262

6

a 1341225 -0.695235
By -0.695235 2.747142

Fama-French Model

6°Exx
a Brn B Brmi
o 1.100680 0.103611 -0.088259 -0.063529
B 0.103611 1.982761 -0.619139 -0.341118
Bsmp  -0.088259 -0.619139 1.417318 -0.578388
ﬁhml -0.063529 -0.341118 -0.578388  1.686200
£xxSExx
104 ﬁm Bsmb mal
o 1.073227 -0.361618 -0.072784 0.045732
Bn  -0.361618 2276080 -0.684809 0.187441
Bsmp -0.072784 -0.684809  1.544745 -1.074895
By 0.045732  0.187441 -1.074895 1.947117
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x> critical values

Critical value for a 5% test when the test statistic has a y2 distribution.
m 1 2 3 4 8 9 10
Crit Val.  3.84 5.99 7.81 9.48 15.50 1691 18.30

m 90 91 98 99 100
Crit Val. 113.14 114.26 122.10 123.22 124.34

Matrix Inverse

The inverse of a 2 by 2 matrix

Exercise 3.16. Suppose Y; = a + BX; + & where E [&;]X] = 0 and V [¢;] = 62 for all i.

1. Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, 622};)1( , and White’s parameter covariance estimator, Z)?}(SZ;}(?

2. Describe a procedure to formally test whether White’s covariance estimator is required.

3. Suppose the true model is as above, but instead the model ¥; = Y+ ¢&; is fit. What is the most
you can say about the the OLS estimate of §?

4. Define the size and power of a statistical test.
5. What factors affect the power of a statistical test?

6. What is Windsorization in the context of a regression, and how is it useful?



Chapter 4

Analysis of a Single Time Series

Note: The primary reference for these notes is Enders (2004). An alternative and more technical
treatment can be found in Hamilton (1994).

Most data used in financial econometrics occur sequentially through time. Interest
rates, asset returns, and foreign exchange rates are all examples of time series. This
chapter introduces time-series econometrics and focuses primarily on linear mod-
els, although some common non-linear models are described in the final section.
The analysis of time-series data begins by defining two key concepts in the analysis
of time series: stationarity and ergodicity. The chapter next turns to Autoregres-
sive Moving Average models (ARMA) and covers the structure of these models,
stationarity conditions, model selection, estimation, inference, and forecasting. Fi-

nally, The chapter concludes by examining nonstationary time series.

4.1 Stochastic Processes

A stochastic process is an arbitrary sequence of random data and is denoted

{x:} 4.1

where {-} is used to indicate that the ys form a sequence. The simplest non-trivial stochastic process
specifies that ¥, < D for some distribution D, for example, normal. Another simple stochastic process

is the random walk,

=Y 1+¢&

where & is an i.i.d. process.

4.2 Stationarity, Ergodicity, and the Information Set

Stationarity is a probabilistically meaningful measure of regularity. This regularity can be exploited
to estimate unknown parameters and characterize the dependence between observations across time.
If the data generating process frequently changed, then constructing a meaningful model would be
difficult or impossible.
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Stationarity exists in two forms, strict stationarity, and covariance (also known as weak) station-
arity. Covariance stationarity is important when modeling the mean of a process, although strict
stationarity is useful in more complicated settings, such as non-linear models.

Definition 4.1 (Strict Stationarity). A stochastic process {Y;} is strictly stationary if the joint distri-
bution of {Y;,Y,11,...,Y;1,} only depends only on 4 and not on .

Strict stationarity requires that the joint distribution of a stochastic process does not depend on
time and so the only factor affecting the relationship between two observations is the gap between
them. Strict stationarity is weaker than 1.1.d.since the process may be dependent, but it is a strong
assumption and implausible for many time series, including both financial and macroeconomic data.

Covariance stationarity, on the other hand, only imposes restrictions on the first two moments of
a stochastic process.

Definition 4.2 (Covariance Stationarity). A stochastic process {Y;} is covariance stationary if

ElY,|=pn fort=1,2,... 4.2)
V[Y]=0*<o00 fort=1,2,...
B[, — ) Ys—p)] =y fort=12,..s=12,. . t—1.

Covariance stationarity requires that both the unconditional mean and unconditional variance are
finite and do not change with time. Note that covariance stationarity only applies to unconditional
moments and not conditional moments, and so a covariance process may have a varying conditional
mean (i.e. be predictable).

These two types of stationarity are related, although neither nests the other. If a process is strictly
stationary and has finite second moments, then it is covariance stationary. If a process is covariance
stationary and the joint distribution of the studentized residuals (demeaned and standardized by their
standard deviation) does not depend on time, then the process is strictly stationary. However, one
type can occur without the other, both can occur, or neither may apply to a particular time series. For
example, if a process has higher-order moments which depend on time (e.g., time-varying kurtosis),
it may be covariance stationary but not strictly stationary. Alternatively, a sequence of i.i.d. Student’s
t random variables with 2 degrees of freedom is strictly stationary but not covariance stationary since
the variance of a t, is infinite.

¥s = E[(Y; — ) (Y;—s — 1)] is the covariance of ¥; with itself at a different point in time, known as
the s autocovariance. 7} is the lag-0 autocovariance, the same quantity as the long-run variance of
Y, Ge. o= VI¥].!

Definition 4.3 (Autocovariance). The autocovariance of a covariance stationary scalar process {Y; }
is defined

Y =B[(Y — ) (Yis — )] (4.3)
where u = E[Y;]. Note that 1o = E[(Y; — u)(Y; — u)] = V[¥;].

Ergodicity is another important concept in the analysis of time series and is one form of asymptotic
independence.

!'The use of long-run variance is used to distinguish V[¥;] from the innovation variance, V[g], also known as the
short-run variance.
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Definition 4.4 (Ergodicity). Let {Y;} be a stationary sequence. {Y;} is ergodic if for any two bounded
functions f : R s Rg:R! - R
i [E[f (oY) 8 (Ve Yo (4.4)

= [BLf G Yol [ [ (Voo Yrr )] |

In essence, if an ergodic stochastic process is sampled at two points far apart in time, these samples
will be independent. The ergodic theorem provides a practical application of ergodicity.

Theorem 4.1 (Ergodic Theorem). If {Y;} is ergodic and its r'" moment y, is finite, then T~ Zthl AN
Hr.

The ergodic theorem states that averages will converge to their expectation provided the expecta-
tion exists. The intuition for this results follows from the definition of ergodicity since samples far
apart in time are (effectively) independent, and so errors average across time.

Not all series are ergodic. Let ¥; = 1 + & where 1 ~ N(0,1), & ~ N(0,1) and 1 and & are
independent for any 7. Note that 1 is drawn only once (not every 7). Clearly, E[Y;] = 0. However,
7! ZIT: Y LN N # 0, and so even though the average converges it does not converge to E[Y;] since
the effect of the initial draw of 1) is present in every observation of {¥;}.

The third important building block of time-series models is white noise. White noise generalizes
i.i.d.noise and allows for dependence in a series as long as three conditions are satisfied: the series is
mean zero, uncorrelated and has finite second moments.

Definition 4.5 (White Noise). A process {&} is known as white noise if

Elg]=0 forr=1,2,... (4.5)
Vig]=0*<oco fort=1,2,...
E[g€_j] =Cov(g,g_;) =0 fort=1,2,...,j#0.

An i.i.d.series with finite second moments is trivially white noise, but other important processes,
such as residuals following an ARCH (Autoregressive Conditional Heteroskedasticity) process, may
also be white noise although not independent since white noise only requires linear independence.”
A white noise process is also covariance stationary since it satisfies all three conditions: the mean,
variance, and autocovariances are all finite and do not depend on time.

The final important concepts are conditional expectation and the information set. The information
set at time ¢ is denoted J; and contains all time ¢ measurable events®, and so the information set
includes realization of all variables which have occurred on or before ¢. For example, the information
set for January 3, 2020 contains all stock returns up to an including those which occurred on January
3. It also includes everything else known at this time such as interest rates, foreign exchange rates
or the scores of recent football games. Many expectations will often be made conditional on the
time-# information set, expressed E[Y; ;| F;], or in abbreviated form as E, [¥;,;]. The conditioning
information set matters when taking expectations and E[Y,,;], E,[Y;1;] and E,j, [Y;.,] are not the
same. Conditional variance is similarly defined, V [Y, 4| F] = V; [Yi14] = E; [(Yin — E; [Yisn])?].

Residuals generated from an ARCH process have dependence in conditional variances but not mean.

3 A measurable event is any event that can have probability assigned to it at time 7. In general this includes any observed
variable but can also include time ¢ beliefs about latent (unobserved) variables such as volatility or the final revision of the
current quarter’s GDP.
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4.3 ARMA Models

Autoregressive moving average (ARMA) processes form the core of time-series analysis. The ARMA
class can be decomposed into two smaller classes, autoregressive (AR) processes and moving average
(MA) processes.

4.3.1 Moving Average Processes

The 1%'order moving average, written MA(1), is the simplest non-degenerate time-series process,

Y =¢o+01&_1+&

where ¢p and 0, are parameters and & a white noise series. This process stipulates that the current
value of ¥; depends on both a new shock and the previous shock. For example, if 0 is negative, the
current realization will “bounce back” from the previous shock.

Definition 4.6 (First Order Moving Average Process). A first order Moving Average process (MA(1))
has dynamics which follow

=0+ 015 1+& (4.6)

where & is a white noise process with the additional property that E;_; [¢;] = 0.

It is simple to derive both the conditional and unconditional means in this process. The conditional
mean is

E,_1[Y] =E—1[¢o+ 0161+ &] 4.7)
=@+ 601E;_1[& 1] +E1[&]
=¢o+01&1+0
=¢o+ 6185

where E,_; [&] = 0 follows by assumption that the shock is unpredictable using the time-z — 1 infor-
mation set, and since &_ is in the time-# — 1 information set (&_; € F;_1), it passes through the
time-f — 1 conditional expectation. The unconditional mean is

E[Y;]=E[¢o+ 011+ &] (4.8)
=¢o+ 6,E [8,_1] +E [8;]
=¢o+6,0+0
g (po .
Comparing these two results, the unconditional mean of ¥;, E[Y;], is ¢y while the conditional mean

E,_1 Y] = ¢o + 01&—1. This difference reflects the persistence of the previous shock in the current
period. The variances can be similarly derived,
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VY] =E|(o+61& 1 +&—E[p+ 0161 +&])° (4.9)
(60+O1&1 +&— o)’

=E (Glet,l-l-st)z}

=0{E[e’ || +E[e}] +20,E[e_1¢]

=0%674+02+0

=0 (1+6})

=E

where E [&_&] follows from the white noise assumption. The conditional variance is

Vit %] =B | (90+ 0161 +& —Ei 9o+ 0161 + &)’ (4.10)
=E [((Po + 0181 +8&— ¢ — 91&71)2]
=Ei1[g]]
= Glz

where Gtz is the conditional variance of &. White noise does not have to be homoskedastic, although
if & is homoskedastic then V,_; [Y;] = E [Gﬂ — o2. Like the mean, the unconditional variance and
the conditional variance are different. The unconditional variance is unambiguously larger than the
average conditional variance which reflects the extra variability introduced by the moving average
term.

Finally, the autocovariance can be derived

E((%— E[]) (1 — E[fa])] = E[(do+ Orér1 & — o) (do+ Bréat &1 —60)]  (@.11)
=E [918;2_1 + 0168 2+ &8 1+ 9128t—18t—2]
=0\E[&’ || +0\E[&:&_2] +E[&&_1] + O7E[&_1&_2)]
=60,6°+0+0+0
=6,06°

E((% —E[%]) (% 2~ E[¥, 2])] = E[(6+ 0181+ — 60) (do+ 018 3+8 2— )] (4.12)

=E[(01&-1+&)(01&-3+€&_2)]
=E [91 &-1&-2+601& 38+ && 2+ 91231—1&}—3}
= 0iE[g_162] + 01E[g_3&] + El&& o] + O{E[&,_16_3]
—04+0+0+0
=0

By inspection of eq. (4.12) it follows that y; = E[(Y; —E[Y;]) (Y;—s —E[Y;—])] = 0 for s > 2.

The MA(1) can be generalized into the class of MA(Q) processes by including additional lagged
erTors.
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Definition 4.7 (Moving Average Process of Order Q). A Moving Average process of order Q, abbre-
viated MA(Q), has dynamics which follow

0
Y=o+ 0,6 4+& (4.13)
q=1

where & is white noise series with the additional property that E,_; [&] = 0.
The following properties hold in higher order moving averages:

* E[Vi]=¢o

VIH =1+, 62)0?

B[(Y;, —E[X])(Y—s—E[Y,_J])] = 62 3.2 6,6, for s < Q where 6y = 1.

« E[(Y, —~E[X]) (%, ~E[Yi—])] = 0 fors > ©

4.3.2 Autoregressive Processes

The other subclass of ARMA processes is the autoregressive process.

Definition 4.8 (First Order Autoregressive Process). A first order autoregressive process, abbreviated
AR(1), has dynamics which follow

Yi=¢o+¢Y—1+& (4.14)
where & is a white noise process with the additional property that E,_; [&] = 0.

Unlike the MA(1) process, y appears on both sides of the equation. However, this is only a
convenience and the process can be recursively substituted to provide an expression that depends
only on the errors, & and an initial condition.

=0+ Y1+ &

Yi=¢+¢1 (po+ Y 2+&_1)+&

Y = o+ @100+ 1Yo+ &+ P16

Y, =00+ @100+ 07 (do+ 1Y +& 2)+&+ 1&g
Y = @0+ G190+ 07 0o+ O Y3+ & + d1&—1 + dE 2

t—1

t—1
Y= 0io+ > ole i+ oY

i=0 i=0

Using backward substitution, an AR(1) can be expressed as an MA(t). In many cases, the initial
condition is unimportant, and the AR process can be assumed to have begun long ago in the past.
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As long as |¢] < 1, lim;_, ¢'Yy — 0 and the effect of an initial condition will be small. Using the
“infinite history” version of an AR(1), and assuming |¢;| < 1, the solution simplifies to

=0+ 01Yi—1+&
o0 ) o ]
Y=Y ioo+) olei
i=0 i=0
y — % o 4.15
= 1_¢1+Z¢1gt—i (4.15)
i=0

where the identity > ooy ¢i = (1 —¢;)~! is used in the final solution. This expression of an AR
process is known as an MA(oo) representation and it is useful for deriving standard properties.
The unconditional mean of an AR(1) is

oo
O .
E[Yt]zElli"’qj1 +Z¢ieﬂ] (4.16)
i=0
¢o
1—¢
$o = i
= +Y 9i0
1—¢1
The unconditional mean can be alternatively derived noting that, as long as {Y¥;} is covariance
stationary, that E[Y;] = E[Y;—;] = i, and so

+Y ¢{E[e-]
=0

E[Y,]=E[go+¢1¥, 1 +& 1] (4.17)
E[Y,] = ¢o+ 0 E[Y; 1] +E[& 1]
p=¢o+op1u+0
H— 1= o
p(l—¢1)=¢o
$o
Bl =1 1

The F;_1-conditional expectation is

E; 1 (Y] =Ei—1 [0+ 01Yi_1 +&] (4.18)
= o+ 1B 1 [Y, 1] +E1[&]
=@+ 01Y-1+0
=0+ 01—
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since Y; | € F;_1. The unconditional and conditional variances are

VY] =E [ —E[1])’]

- )
=E (Z ¢1i3t—i>
i—0

i=0 j=0,i%]

[ oo
20
=E Z‘Pl St i
Li=0

2
_ Po — i
=k (1—¢1+§¢18H 1—¢1>

(4.19)

-OO ) &¢] o o

:E Z¢1218t271+2 Z (pll—i_]g[fl’gtfj
i=0

Z Z (P] gt i&— J

i= 0] 0,i#j

(0. 9]
I ICHED S DR AT
i=0

i= OJ 0,i#j

33 el

z:O i=0 j=0,i#j
62
o 2
1 —¢;

Mg

where the expression for the unconditional variance uses the identity that Y 7, ¢12i =1 e and

E[&_;&_;] = 0 follows from the white noise assumption. Again, assuming covariance statlonanty

and so V]Y;] = V[Y;_1], the variance can be directly computed,

V] =Vdo+ 1Y+ &
VY]
VY] =0+¢3V[V,_1]+0>+2-0
VY] =¢{V[¥]+0’

VY] -¢iV[r] =0’

V[r](1-97) =0’
02

VY] = =g

(4.20)

=VI]go]|+VI[o1Y,—1]+V[e]+2Cov [P Y1, &]

where Cov [Y;_1, &| = 0 follows from the white noise assumption since ¥;_ is a function of &_1,&_»,.. ..

The conditional variance is
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Vo1 ] =E— [(¢1Yt4 +& _¢1Yt71)2] (4.21)
e
= Gtz

Again, the unconditional variance is uniformly larger than the average conditional variance (E [Gﬂ =
62) and the variance explodes as |¢;| approaches 1 or -1. Finally, the autocovariances can be derived,

o0

E[(Y, —E[%])(%_, —E[%, )] =E [( b, > dle-i- %) (422)

1—¢;

¢o i %
X <1_¢1 +> ole 1_¢1>] (4.23)

+ 91 (Z ¢{'et_s_,-> (Z o1 et_s_l)] (4.24)
i=0

i=0

E |9} (Z ¢{e;_s_,-> (Z ¢i’et_s_i>] (4.25)
i=0 i=0

=0+ d)ls (Z (M gt—s—i) (Z (p{gt—s—i) ]
i=0 i=0
=0+ ¢1SV [Yt—s]
2
=—05 —¢2

An alternative approach to deriving the autocovariance is to note that ¥; — u = Zf;é ¢{ &_i+
0°(Y;—s — u) where u = E[Y;| = E[Y;_]. Using this identify, the autocovariance can be derived



236 Analysis of a Single Time Series

B(0— BV O~ Bl =B | { X dfei+ (0, —u)) (Ys - u)] (4.26)
i=0
=E i‘f’fefi) Vs =)+ (° (Vs — ) (Vs — u))]
i=0

=E Z‘Pligt—i) (Yi—s—n)
i=0

— 0 O°E[(Ys— 1) (s — 1)
= (PSV [ths]
02

1—¢?

FE[(9° (Vs — 1) (Vs — 11))]

=07

where the white noise assumption is used to ensure that E[&_, (Y, — t)] = 0 when u > s.
The AR(1) can be extended to the AR(P) class by including additional lags of Y.

Definition 4.9 (Autoregressive Process of Order P). An Autoregressive process of order P (AR(P))
has dynamics which follow

P
=00+ &Y p+e& (4.27)
p=1

where & is white noise series with the additional property that E,_; [&] = 0.

Some of the more useful properties of general AR process are:

« E[Y)] = —1_5’,9 -~
-
s V[Y] = E—2 where p, is the p™ autocorrelation.
1=3 =1 ®Pp P

* V[¥}] is infinite if 37, ¢ > 1

E[(Y; —E[Y}])(Y;—s — E[Y;—s])] # O for any s (in general, although certain parameterizations may
produce some 0 autocovariances).

These four properties point to some important regularities of AR processes. First, the mean is only
finite if ZII;] ¢p < 1. Second, the autocovariances are (generally) not zero, unlike those of an MA
processes (s = 0 for |s| > Q). This difference in the behavior of the autocovariances plays an impor-
tant role in model building. Explicit expressions for the variance and autocovariance of higher order
AR processes can be found in appendix 4.A.
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4.3.3 Autoregressive-Moving Average Processes
Putting these two processes together yields the complete class of ARMA processes.

Definition 4.10 (Autoregressive-Moving Average Process). An Autoregressive Moving Average pro-
cess with orders P and Q (ARMA(P, Q)) has dynamics which follow

P 0
=00+ OpYipt+ Y 08 g+& (4.28)
p=1 q=1

where & is a white noise process with the additional property that E;_; [¢;] = 0.

Again, consider the simplest ARMA(1,1) process that includes a constant term,

=00+ Y1 +01&_1+&

To derive the properties of this model it is useful to convert the ARMA(1,1) into its infinite lag
representation using recursive substitution,

Yi=¢+¢Y—1+01&1+& (4.29)
Yi=¢o+ 1 (go+ Y2+ 016 2+ &_1)+01&_1+&

Y, =0+ 190+ Yo+ 010162+ dr1&_1 + 0161 + &

Y, =00+ @190+ O (o + OY—3+ 0163+ &) + 010162+ $16_1 + 0161 + &

Yo =G0+ G100+ 9700+ SV 3+ 07016 3+ 076 2+ 01016 2+ 181+ 0161+ &

oo (0.)
Y=Y dido+e+d 0l (91+61) &
i=0 i=0

o0
Y, = 1?04)1 +EI+Z¢{ (¢1+061)&—i1.
i=0

Using the infinite lag representation, the unconditional and conditional means can be computed,

oo
1—¢
oo

= 1 +Ela] +> 0{(91+61)E[g_i1]
i=0

0430l (0r+ )0
— —
_ %

1—¢

E[Y)]=E

+e+ ) 0 (01+6) g i (4.30)
i=0
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and

E 1 [Y]=E1[po+ Y1 + 6161 +&] (4.31)
=0+ 1B 1 [Y, 1]+ 601E 1 [& 1] +E1[&]
=¢o+¢1Y—1+61& 1+0
=@+ ¢1Y—1+61&

Since Y;_ and &_ are in the time-f — 1 information set, these variables pass through the condi-
tional expectation. The unconditional variance can be tediously derived (see appendix 4.A.2 for the
complete derivation)

(4.32)

1+2¢,6; + 6}
1-¢7

The conditional variance is identical to that in the AR(1) or MA(1), V;_; [¥;] = 612, and, if & is
homoskedastic, V;_1 [Y;] = 62.

The unconditional mean of an ARMA is the same as an AR since the moving average terms, which
are all mean zero, do not contribute to the mean. The variance of an ARMA is more complicated than
that of an AR, and it may be larger or smaller than an AR(1) with the same autoregressive parameter
(¢1). The variance will only be smaller if ¢; and 8; have opposite signs and 2¢;0; < 912. Deriving
the autocovariance is straightforward but tedious and is presented in appendix 4.A.

vm:&(

4.4 Difference Equations

Before turning to the analysis of the stationarity conditions for ARMA processes, it is useful to de-
velop an understanding of the stability conditions in a setting without random shocks.

Definition 4.11 (Linear Difference Equation). An equation of the form
Yi=¢o+ Y1 +®Y 2+...+¢0pY p+X. (4.33)

is known as a P™ order linear difference equation where the series {X;} is known as the driving
process.

Linear difference equation nest ARMA processes which can be seen by setting X; equal to the shock
plus the moving average component of the ARMA process,

X =01&_1+60& 2+ ...+60p&_o+&.

Stability conditions depend crucially on the solution to the linear difference equation.

Definition 4.12 (Solution). A solution to a linear difference equation expresses the linear difference
equation
Yi=¢+¢Y1+¢pY, o+...+¢pYp+X. (4.34)

as a function of only {X,};Zl, a constant and, when Y; has finite history, an initial value Y.
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Consider a first order linear difference equation

Yi=¢o+¢1Y—1+X.

Starting from an initial value Y,

Y1 = o+ ¢1 Yo+ X

Yo =00+ ¢ (do+ ¢1Yo+X1)+Xo
= g0+ ¢190 + 07 Yo + Xo + 91 X,

Y3 =¢0+ ¢ 12+X;
= o+ 01 (do + 0100 + 07 Yo + 01 X1 +X2) + Xo
= Po+ ¢190 + O7 do + 97 Y0 + X3 + 1 Xo + P X

Continuing these iterations, a pattern emerges:

t—1 t—1
Y= {Yo+> dido+ Y X (4.35)
i=0 i=0

This is a solution since it expresses Y; as a function of only {X;}, ¥y and constants. When no initial
condition is given (or the series is assumed to be infinite), the solution can be found by solving
backward

Yi=¢o+¢Y 1 +X

Yii=¢+¢Y, 2+X 1=
Yi=¢o+¢1(po+01Y: 2+X 1)+ X
= o+ 9100+ 07V 2+ X+ 91X,
Yio=¢o+¢Y, 3+X 2=
Y, = @0+ @100+ 97 (P + 913+ Xi—2) + X + 91X,
= P+ $190 + 7o+ Y3 + X, + ¢ X1 + O X2

which leads to the approximate solution

s—1 s—1
Y=Y 0i0+ > 0iXi i+ 9iYi .
i=0

i=0

To understand the behavior of this solution, it is necessary to take limits. If |@;| < 1, lims_o0 7Y
goes to zero (as long as Y;_g is bounded) and the solution simplifies to
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o0 oo
Yi=¢0) 0{+) 90X (4.36)
i=0 i=0
Noting that, as long as [¢;| < 1, >0 ¢l =1/(1—¢1),
(P o
O .
O D DU (4.37)
i=0

is the solution to this problem with an infinite history. The solution concept is important because it
clarifies the relationship between observations in the distant past and the current observation, and if
lim,_, ., ¢;'Y;—; does not converge to zero then observations arbitrarily far in the past have an influence
on the value of y today.

When |¢;| > 1 then this system is said to be nonconvergent since ¢! diverges as ¢ grows large and
values in the past are not only important, they will dominate when determining the current value. In
the particular case where ¢; =1,

o
Y=ot + Y Xii,
i=0

which is a random walk when {X;} is a white noise process, and the influence of a single X; never
diminishes. Direct substitution can be used to find the solution of higher-order linear difference
equations at the cost of more tedium. A simpler alternative focuses on the core component of a linear
difference equation, the linear homogeneous equation.

4.4.1 Homogeneous Difference Equations

When the number of lags grows large (3 or greater), solving linear difference equations by substitution
is tedious. The key to understanding linear difference equations is the study of the homogeneous
portion of the equation. In the general linear difference equation,

Yi=¢+0Yi 1+ o+...+0pY, p+ X

the homogenous portion is defined as the terms involving only y,

Y, = 0¥ 1+ Yo+ + OpYip. (4.38)

The intuition behind studying this portion of the system is that given the sequence of {X;}, all of the
dynamics and the stability of the system are determined by the relationship between contemporaneous
Y; and its lagged values. This relationship then allows the parameter values to be determined where
the system is stable. Again, consider the homogeneous portions of the simple 15'order system,

Yi=¢Y1+X

which has the homogeneous portion

Yi=¢1Y1.
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To find solutions to this equation, one can try trial and error: one obvious solution is 0 since 0 = ¢ - 0.
It is easy to show that

Y, = 9Yo

is also a solution by examining the solution to the linear difference equation in eq. (4.35). Any
solution of the form c¢!{ for an arbitrary constant c since

Y, =c;
Y1 =co| !
and
Yi=¢1Y
Putting these two together shows that
Yi =01Y,
o= 1Y
—1
i = dicd;
chi = coj

and there are many solutions. However, from these, it is possible to discern when the solution will
converge to zero and when it will explode:

 If |¢1] < 1 the system converges to 0. If ¢; is also negative, the solution oscillates, while if ¢;
is greater than 0, the solution decays exponentially.

 If |¢| > 1 the system diverges, again oscillating if negative and growing exponentially if posi-
tive.

* If ¢; = 1, the system is stable and all values are solutions. For example 1 =1-1,2 =12, etc.

e If ¢; = —1, the system is metastable. The values, in absolute terms, are unchanged, but it
oscillates between + and -.

These categories will play important roles in examining the dynamics of larger equations since they
determine how past shocks will affect current values of ¥;. When the order is greater than 1, there is
an easier approach to examining the system’s stability. Consider the second-order linear difference
system,

Yi=¢+Y—1+¢Yir+X

and again focus on the homogeneous portion,

Y, =01Yi_1 + Y.
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This equation can be rewritten

=011 — Y, =0

so any solution of the form

2

o —¢rc? = grc2=0 (4.39)
(P —dz—¢) =0
will solve this equation.* Dividing through by cz'~2, this is equivalent to
2 —pz—$r=0 (4.40)

and he solutions to this quadratic polynomial are given by the quadratic formula,

+./02 +4
¢1 ¢1 ¢2 (4‘41)

2

C1,C =

The roots of the equation, ¢ and c;, play the same role as ¢ in the 1%'order case.) If le1] < 1
and |cp| < 1, the system is convergent. With two roots both smaller than 1 there are three interesting
cases:

Case 1: Both roots are real and positive. In this case, the system will exponentially dampen and
not oscillate.

Case 2: Both roots are imaginary (of the form ¢ + di where i = /—1) and distinct, or real and
at least one negative. In this case, the absolute value of the roots (also called the modulus, defined
as v/c% +d? for an imaginary number ¢ + di) is less than 1, and so the system will be convergent but
oscillate.

Case 3: Real but the same. This occurs when (])12 +4¢, = 0. Since there is only one root, the
system is convergent if it is less than 1 in absolute value, which require that |@;| < 2.

If either root is greater than 1 in absolute terms, the system is divergent.

4.4.2 Lag Operators

Before proceeding to higher order models, it is necessary to define the lag operator. Lag operations
are a particularly useful tool in the analysis of time series and are nearly self-descriptive.®

Definition 4.13 (Lag Operator). The lag operator is denoted L and is defined as the operator that has

“The solution can only be defined up to a constant, ¢, since the right hand side is 0. Thus, multiplying both by a
constant, the solution will still be valid.

3In the first order case, Y; = ¢01Y;_1,s0Y; —¢1Y;_; = 0. The solution has the property that 7' — ¢1z”1 =0soz—¢; =0,
which has the single solution ¢ = ¢;.

%In some texts, the lag operator is known as the backshift operator, and L is replaced with B.
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the following properties:

LY, =Y 4
LY, =Y,
LY, =Y,

L(L(Y,)) = L(Y;—1) =Y,_o = L?Y,
(1—L—L2Y, =Y, —LY,—L*Y, =Y, —Y,_ 1 —Y,_,

The last equation above is particularly useful when studying autoregressive processes. One additional
property of the lag operator is that the lag of a constant is just the constant, i.e. Lc = c.

4.4.3 Higher Order Linear Homogenous Equations

Stability analysis can be applied to higher order systems by forming the characteristic equation and
finding the characteristic roots.

Definition 4.14 (Characteristic Equation). Let ¥; follow a P" order linear difference equation

Yi=¢0+0 Y1 +0Y 2+...+0pY_p+ X (4.42)
which can be rewritten as
=011 — Y o—...—0pY;_p= ¢+ X; (4.43)
(1—¢1L—¢oL> — ... — ¢ppLP)Y, = g+ X,

The characteristic equation of this process is
= = —piz—9p=0 (4.44)

The characteristic roots are the solutions to this equation and most econometric packages will
return the roots of the characteristic polynomial when an ARMA model is estimated.

Definition 4.15 (Characteristic Root). Let

L= = —p iz =0 (4.45)
be the characteristic polynomial associated with a P order linear difference equation. The P charac-
teristic roots, c1,c3,...,cp are defined as the solution to this polynomial

(z—c1)(z—c¢2)...(z—cp)=0 (4.46)

The conditions for stability are the same for higher order systems as they were for first and second
order systems: all roots ¢,, p = 1,2,..., P must satisfy |c,| < 1 (again, if complex, |- | means modu-
lus). If any |c,| > 1 the system is divergent. If one of more |c,| = 1 and none are larger, the system
will exhibit unit root (random walk) behavior.

These results are the key to understanding important properties of linear time-series models which
turn out to be stationary if the corresponding linear homogeneous system is convergent, i.e. |cp| < 1,
p=12... P
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Dynamics of linear difference equations
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Figure 4.1: These six plots correspond to the dynamics of the six linear homogeneous systems de-
scribed in the text. All processes received a unit shock at t = 1 (X; = 1) and no other shocks
(X; =0, j # 1). Pay close attention to the roots of the characteristic polynomial and the behavior
of the system (exponential decay, oscillation and/or explosion).

4.4.4 Example: Characteristic Roots and Stability

Consider 6 linear difference equations, their characteristic equation, and the roots:

* V=091 +X

— Characteristic Equation: z-0.9=0

— Characteristic Root: z=0.9
¢ Y, =-05Y, 1+X

— Characteristic Equation: z+0.5=0

— Characteristic Root: z=-0.5

e Y, =0.5Y_14+04Y, »+X;

— Characteristic Equation: z2 —0.5z—0.4 =0
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— Characteristic Roots: z = 0.93, —.43
* ¥, =0.64Y;,_1 —0.1024Y, > + X;

— Characteristic Equation: zZ —0.64z+0.1024 =0
— Characteristic Roots: z=10.32,0.32 (identical)

e Y, =-05Y,_1-04Y, »+X

— Characteristic Equation: zZ +0.5z4+0.4 =0
— Characteristic Roots (Modulus): z = —0.25 4 0.58i(0.63), —0.25 — 0.58i(0.63)

e Y, =1.6Y,_1-05Y_2+X

— Characteristic Equation: zZ — 1.6z4+0.5=0
— Characteristic Roots: z=1.17,0.42

The plots in figure 4.1 show the effect of a unit (1) shock at # = 1 to the 6 linear difference systems
above (all other shocks are 0). The value of the root makes a dramatic difference in the observed
behavior of the series.

4.4.5 Stationarity of ARMA models

Stationarity conditions for ARMA processes can be determined using the results for the convergence
of linear difference equations. First, note that any ARMA process can be written using a lag polyno-
mial

=0+ ¢ Y 1+...+0pY; p+ 015 1+...+0p&_o+&
=011 —...—0pY, p=@Q0+01&_1+...+0p&_o+&
(1 —(])1L—¢2L2—...—¢PLP)Yt = (])0—|—(1 + 0L+ 92L2—|—...—|—9QLQ)8t

This is a linear difference equation, and the stability conditions depend on the roots of the character-
istic polynomial

ZP - (P]ZP_I - (PZZP_Z — ... (])P_lz— (])P

An ARMA process driven by a white noise shock will be covariance stationary as long as the
characteristic roots are less than one in modulus. In the simple AR(1) case, this corresponds to
|z1] < 1. In the AR(2) case, the region is triangular with a curved bottom and corresponds to the
points (z1,z2) = (—=2,—1),(1,0),(2,—2) (see figure 4.2). For higher-order models, stability must be
checked by numerically solving the characteristic equation.

All MA processes driven by covariance stationary shocks are stationary: the homogeneous por-
tions of an MA process have no roots and so cannot diverge.
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Stationarity of an AR(2)

B Real Roots
24 W Imaginary Roots

Figure 4.2: The triangular region corresponds to the values of the parameters in the AR(2) V; =
01Yi_1 4+ ¢2Y;_» + &. The dark region corresponds to real roots and the light region corresponds to
imaginary roots.

4.5 Data and Initial Estimates

Two series will be used throughout the stationary time-series analysis section: returns on the value-
weighted market and the spread between the average interest rates on portfolios of Aaa-rated and
Baa-rated corporate bonds, commonly known as the default spread or default premium. The VWM
returns were taken from CRSP and are available from July 2963 through October 2020, and the bond
yields are available from Moody’s via FRED II and are available from January 1919 until October
2020 . Both series are monthly.

Figure 4.3 contains plots of the two series. Table 4.1 contains parameter estimates for a model
with only a constant mean (ARMA(0,0)), an AR(1), an MA(1) and an ARMA(1,1) for each series.
The default spread exhibits a large autoregressive coefficient (.97) that is highly significant, but it also
contains a significant moving average term, and in an ARMA(1,1), both parameters are significant.
The market portfolio exhibits some predictability, although it is much less persistent than the default
spread.’

7For information on estimating an ARMA in MATLAB, see the MATLAB supplement to this course.
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Figure 4.3: Plots of the returns on the VWM and the default spread, the spread between the yield of

a portfolio of Baa-rated bonds and the yield of a portfolio of Aaa-rated bonds.

VWM Default

do 01 01 c? oo )] 0, o2
0.929 19.644 1.178 0.480
(0.000) (0.000)
0.825 0.058 19.577 0.001 0.976 0.022
(0.000)  (0.073) (0.005)  (0.000)
0.930 0.064 19.570 1.178 0.899 0.150
(0.000) (0.053) (0.000) (0.000)
3.570 —0.960 0.998 19.283 0.001 0.966 0.241 0.021
(0.000)  (0.000)  (0.000) (0.001)  (0.000)  (0.000)

Table 4.1: Parameter estimates and p-values from an a constant mean model (ARMA(0,0)), AR(1),
MA(1) and ARMAC(1,1) for the VWM and Baa-Aaa spread.
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4.6 Autocorrelations and Partial Autocorrelations

Autoregressive processes, moving average processes, and ARMA processes all exhibit differences in
the patterns of their autocorrelations and partial autocorrelations. These differences can be exploited
to select a parsimonious model from the general class of ARMA processes.

4.6.1 Autocorrelations and the Autocorrelation Function

Autocorrelations are to autocovariances as correlations are to covariances. That is, the st autocor-
relation is the s autocovariance divided by the product of the variance of ¥; and Y;_;, and when a
processes is covariance stationary, V[¥;] = V[¥;—,], and so \/V[\;]V[Y;_s] = V[V;].

Definition 4.16 (Autocorrelation). The autocorrelation of a covariance stationary scalar process is
defined
% _ E[(% — E[R) (s — El%—)]

4.47
" Vit @40

Ps
where 7 is the s autocovariance.

The autocorrelation function (ACF) relates the lag length (s) and the parameters of the model to
the autocorrelation.

Definition 4.17 (Autocorrelation Function). The autocorrelation function (ACF), p(s), is a function
of the population parameters that defines the relationship between the autocorrelations of a process
and lag length.

The variance of a covariance stationary AR(1) is ¢2(1 — ¢12)—1 and the s autocovariance is
¢°0%(1—¢2)~!, and so the ACF is

B ¢s62(1 o ¢2)—1 B

p) =gy T = 9" (4.48)

Deriving ACFs of ARMA processes is a straightforward, albeit tedious, task. Further details on the
derivation of the ACF of stationary ARMA processes are presented in appendix 4.A.

4.6.2 Partial Autocorrelations and the Partial Autocorrelation Function

Partial autocorrelations are similar to autocorrelations with one important difference: the s partial
autocorrelation still relates Y; and Y;_ but it eliminates the effects of Y;_, Y;_», ..., Y,_(s_l).

Definition 4.18 (Partial Autocorrelation). The st partial autocorrelation (@) is defined as the popu-
lation value of the regression coefficient on ¢ in

i=¢+0Y+@Yiot+.. . +o1Y 1)+ ¢Y—st+&.

Like the autocorrelation function, the partial autocorrelation function (PACF) relates the partial
autocorrelation to population parameters and lag length.
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Definition 4.19 (Partial Autocorrelation Function). The partial autocorrelation function (PACF), ¢(s),
defines the relationship between the partial autocorrelations of a process and lag length. The PACF is
denoted.

The partial autocorrelations are directly interpretable as population regression coefficients. The

s partial autocorrelations can be computed using s+ 1 autocorrelations. Recall that the population
values of @1, ¢y, ..., @ in

Vi=¢+0Yi1+¢Y, o+ +o 1Y )+ oY s+&

can be defined in terms of the covariance between Y;, Y;_1, Y;_», ..., Y;_s. Let I" denote this covariance
matrix,
[ )] n 72 Y - V-1 s ]
h Y n 22 (R R (|
r— 2-n W N Y3 K2
Ys—1 Ys—2 %3 Ys—4 - W h
s Y-1 ¥B—2 %3 .- N (O

The matrix I' is known as a Toeplitz matrix which reflects the special symmetry it exhibits which
follows from stationarity, and so E[(Y; — ) (Yi—s — )] = % = Y—s = E[(¥; — 1) (Y45 — 1t)]. T can be
decomposed in terms of ¥ (the long-run variance) and the matrix of autocorrelations,

L pr p2 p3 . Ps—1 Ps
P1 L p1 p2 . Ps—2 Ps-i
P2 p1 1 Pt ... Ps—3 Ps—2
F:YO . . . . . .
Ps—1 Ps—2 Ps—3 Ps—1 --- 1 P1
Ps  Ps—1 Ps—2 Ps—3 --- P1 ]

directly by applying the definition of an autocorrelation. The population regression parameters can be
computed by partitioning I into four blocks, ¥, the long-run variance of ¥, ['p; = '}, the vector of

covariances between Y; and ¥, _{,Y;_»,...,Y;_, and I'y1, the covariance matrix of ¥;_1,Y; »,..., Y, ;.
o To I Ro
F = =
[ Iio ' } 1 [ Rio Ry

where R are vectors or matrices of autocorrelations. Using this formulation, the population regression
parameters ¢ = (@1, 92, ..., ¢s]’ are defined as

¢ =T 'T0 =7 "R, wR10 = R/ Ryo. (4.49)

The s™ partial autocorrelation () is the s element in ¢ (when I is s by s), egRl_llRlo where € is a
s by 1 vector of zeros with one in the s™ position.
For example, in a stationary AR(1) model, ¥; = ¢;Y;_| + &, the PACF is
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o) =9  s=0,1,-1
=0 otherwise

That @y = ¢° = 1 is obvious: the correlation of a variable with itself is 1. The first partial autocor-
relation is defined as the population parameter of @; in the regression Y; = @9+ ¢1Y;—1 + &. Since
the data generating process is an AR(1), ¢; = ¢y, the autoregressive parameter. The second partial
autocorrelation is defined as the population value of ¢, in the regression

i=0+ @Y1+ ¢Yi 2+ 6.

Since the DGP is an AR(1), once Y;_1 is included, ¥;_» has no effect on Y; and the population value
of both ¢, and the second partial autocorrelation, ¢, is 0. This argument holds for any higher order
partial autocorrelation.

Note that the first partial autocorrelation and the first autocorrelation are both ¢; in

Yl :¢0+¢1Yl‘*l+gt7

and at the second (and higher) lag these differ. The autocorrelation at s = 2 is the population value of
¢, in the regression

i=¢+ ¢t o+¢€

while the second partial autocorrelation is the population value of from ¢, in the regression

Yi=¢+¢Y1+¢pYorte.
If the DGP were an AR(1), the second autocorrelation would be p; = (])12 while the second partial

autocorrelation would be ¢, = 0.
4.6.2.1 Examples of ACFs and PACFs

The key to understanding the value of ACFs and PACFs lies in the distinct behavior the autocorrela-
tions and partial autocorrelations of AR and MA processes exhibit.

* AR(P)
— ACF dies exponentially (may oscillate, referred to as sinusoidally)
— PACEF is zero beyond P

* MA(Q)

— ACF is zero beyond Q

— PACEF dies exponentially (may oscillate, referred to as sinusoidally)

Table 4.2 provides a summary of the ACF and PACF behavior of ARMA models and this difference
forms the basis of the Box-Jenkins model selection strategy.
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Process ACF PACF
White Noise All 0 All O
AR(1) ps=¢° 0 beyond lag 2
AR(P) Decays toward zero exponentially Non-zero through lag P, O thereafter
MA(1) p;1 #0,ps=0,s>1 Decays toward zero exponentially
MA(Q) Non-zero through lag Q, 0O thereafter Decays toward zero exponentially
ARMA(P,Q) Exponential Decay Exponential Decay

Table 4.2: Behavior that the ACF and PACF for various members of the ARMA family.

4.6.3 Sample Autocorrelations and Partial Autocorrelations

Sample autocorrelations are computed using sample analogues of the population moments in the
definition of an autocorrelation. Define ¥,* =Y, — y to be the demeaned series where y = T ~! Z,TZI Y.
The s™ sample autocorrelation is defined

T * V7 *
A Zt=s+1Yt Yt—s

Py = (4.50)
DY A%
although the small-sample corrected versions
ZZW:A‘-Q—] YI*YI*—.S
A T T=5
pS = ZTTI (Y*)z (451)
=T
or ,
Zt=s+l Yl*Yt*—s (452)

ps = .
T 2T~ 2
VI (0P 5 ()
may be more accurate.

Definition 4.20 (Sample Autocorrelogram). A plot of the sample autocorrelations against the lag
index in known as a sample autocorrelogram.

Inference on estimated autocorrelation coefficients depends on the null hypothesis tested and
whether the data are homoskedastic. The most common assumptions are that the data are homoskedas-
tic and that all of the autocorrelations are zero. In other words, ¥; — E [¥;] is white noise process. Under
the null Hy : ps = 0, s # 0, inference can be made noting that V [ps] = 7! using a standard ¢-test,

p_h
VVIp] VT
A alternative null hypothesis is that the autocorrelations on lags s and above are zero but that the

autocorrelations on lags 1,2,...,s — 1 are unrestricted, Hy : p; = 0, j > s. Under this null, and again
assuming homoskedasticity,

=T2p, % N(0,1). (4.53)
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Autocorrelation and Partial Autocorrelation function

ACF PACF
White Noise
1 1
0 0
19573 41 5 6 7 8 9 10 11 12 1953 41 5 6 7 8 9 1011 12

AR(1), ¢, = 0.9

Fllllll.m.

1 2 3 4 5 6 7 10 11 12 6 7 8 9 10 11 12

AR(1), ¢ = —0.9

b R h

i 5 6 7 8 9 1011 12 6 7 8 9 10 11 12
MA(1), 6; =0.8

1 1

0 0 —

1953 41 5 6 7 8 9 10 11 12 1953 41 5 6 7 8 9 1011 12

Figure 4.4: Autocorrelation function and partial autocorrelation function for 4 processes. Note the
difference between how the ACF and PACF respond in AR and MA models.

Vg =T"" fors =1 (4.54)
s—1
:T_l(l—l-ZZﬁjz) fors > 1
j=1

If the null is Hy : py = 0 with no further restrictions on the other autocorrelations, the variance of the
th autocorrelation is (assuming homoskedasticity)
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Autocorrelation and Partial Autocorrelation function

ACF PACF
MA(1), 6; = —0.8
1 1
0 0
19573 41 5 6 7 8 9 10 11 12 1953 41 5 6 7 8 9 1011 12

ARMA(L1), ¢; = 0.9, 6; = 0.8

Pllllm.

i 2 3 4 5 7 10 11 12 7 8 9 10 11 12
Random Walk
A 5 6 10 11 12 6 7 8 9 10 11 12

Figure 4.5: Autocorrelation function and partial autocorrelation function for 3 processes, an MA(1),
and ARMAC(1,1) and a random walk. Note the difference between how the ACF and PACF respond
in AR and MA models.

VI =T7"(1+2 > p7) (4.55)
=1,

which is infeasible. The usual practice is to truncate the variance estimator at some finite lag L where
L is a function of the sample size, often assumed that L T3 (if L is not an integer, rounding to the
nearest one).

Once the assumption of homoskedasticity is relaxed, inference becomes more complicated. First
consider the most restrictive null Hy : p; = 0, s # 0. If {¥;} is a heteroskedastic white noise pro-
cess (plus possibly a non-zero mean), inference can be made using White’s heteroskedasticity robust
covariance estimator (see chapter 3) so that

. 1. . . 1. . . S
8The choice of L o< T'3 is motivated by asymptotic theory where T'3 is the optimal rate in the sense that it minimizes
the asymptotic mean square error of the variance estimator.



254 Analysis of a Single Time Series

-1 —1

T T T

VA Al N At B IV A Y A ANl I IV Aan W9 At (4.56)
t=1 t=1 =1

— ZtT:s—l—l YI*ZYttzs

T Y*Z 2
Et:erl t—s

This covariance estimator is identical to White’s covariance estimator for the regression

Yt - psths + &

since under the null that p;, =0, ¥; = &.

To test one of the more complicated null hypotheses a Heteroskedasticity-Autocorrelation Con-
sistent (HAC) covariance estimator is required, the most common of which is the Newey-West co-
variance estimator.

Definition 4.21 (Newey-West Variance Estimator). Let z; be a series that may be autocorrelated and
define z} =z, —Z where 7 =T~ Zthl 7. The L-lag Newey-West variance estimator for the variance
of Z1s

T L T
61%7W =71 ZZ?Z—FZZW[Til Z Z;kZ;k_l 4.57)
=1 =1 t=I+1
L
=f+2> wi
=1
A ] T * _k _ L+1-1
where =773, g and wy = S5

The Newey-West estimator has two important properties. First, it is always greater than 0. This
is a desirable property of any variance estimator. Second, as long as L — oo, the 6]%,W L VY.
The only remaining choice is which value to choose for L. Unfortunately this is problem dependent
and it is important to use as small a value for L as the data will permit. Newey-West estimators
tend to perform poorly in small samples and are worse, often substantially, than simpler estimators
such as White’s heteroskedasticity-consistent covariance estimator. This said, they also work in sit-
uations where White’s estimator fails: when a sequence is autocorrelated White’s estimator is not
consistent.” Long-run variance estimators are covered in more detail in the Multivariate Time Series
chapter (chapter 5).

When used in a regression, the Newey-West estimator extends White’s covariance estimator to

allow {Y;_,&} to be both heteroskedastic and autocorrelated, setting 7 = Y,*Y,* ,

9The Newey-West estimator nests White’s covariance estimator as a special case by choosing L = 0.
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T —1
V[ps| =T (T—l > Y,*_i) (4.58)

t=s+1

T L T
<A\ T NI 2y wi T Y v ()
t=s+1 Jj=1 t=s+j+1

T —1

t=s+1
T *2v %2 L . T * {7k * *
Zt=s+1 Yt Yt—s + 2Zj=1 Wj Zt:erjJrl Yt Yt—s (Yt—th—s—j)

T *2 2
(Zt:s—b—l Yt—s)

Note that only the center term has been changed and that L must diverge for this estimator to be

. . . . 1
consistent — even if {¥;} follows an MA process, and the efficient choice sets L o< T'3.

Tests that multiple autocorrelations are simultaneously zero can also be conducted. The standard
method to test that s autocorrelations are zero, Hy = p; = p2 = ... = ps = 0, is the Ljung-Box Q
statistic.

Definition 4.22 (Ljung-Box Q statistic). The Ljung-Box Q statistic, or simply Q statistic, tests the
null that the first s autocorrelations are all zero against an alternative that at least one is non-zero:
Hy:pr=0fork=1,2,... s versus Hy : pp # 0 for k=1,2,...,s. The test statistic is defined

s A2
0=T(T+2)

(4.59)

and Q has a standard st distribution.

The Q statistic is only valid under an assumption of homoskedasticity so caution is warranted when
using it with financial data. A heteroskedasticity robust version of the Q-stat can be formed using an
LM test.

Definition 4.23 (LM test for serial correlation). Under the null, E[Y;*Y," j] =0for1<j<s. The
LM-test for serial correlation is constructed by defining the score vector s, = Y,* [Y,* | V", ... ¥ ] g

LM =T§S§5 % 2 (4.60)
wheres=T"15"" s;andS=7"'S" 5810

Like the Ljung-Box Q statistic, this test has an asymptotic st distribution with the added advantage
of being heteroskedasticity robust.
Partial autocorrelations can be estimated using regressions,

10Refer to chapters 2 and 3 for more on LM-tests.
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i=0+0Yi1+®Yio+...+Y s+&

where @, = ¢s. To test whether a partial autocorrelation is zero, the variance of ¢, under the null and
assuming homoskedasticity, is approximately 7! for any s, and so a standard ¢-test can be used,

T2 % N(0,1). 4.61)

If homoskedasticity cannot be assumed, White’s covariance estimator can be used to control for het-
eroskedasticity.

Definition 4.24 (Sample Partial Autocorrelogram). A plot of the sample partial autocorrelations
against the lag index is known as a sample partial autocorrelogram.

4.6.3.1 Example: Autocorrelation, partial autocorrelation and Q Statistic

Figure 4.6 contains plots of the first 20 autocorrelations and partial autocorrelations of the VWM
market returns and the default spread. The market appears to have a small amount of persistence
and appears to be more consistent with a moving average than an autoregression. The default spread
is highly persistent, and an AR(1) appears to be a choice to model the series since the autocorrela-
tions decay slowly, and the partial autocorrelations drop off dramatically after one lag, although an
ARMA(1,1) cannot be ruled out.

4.6.4 Model Selection: The Box-Jenkins Methodology

The Box and Jenkins methodology is the most common approach for time-series model selection. It
consists of two stages:

* Identification: Visual inspection of the series, the autocorrelations, and the partial autocorrela-
tions.

e Estimation: By relating the sample autocorrelations and partial autocorrelations to the ACF
and PACF of ARMA models, candidate models are identified. These candidates are estimated,
and the residuals are tested for neglected dynamics using the residual autocorrelations, partial
autocorrelations, and Q statistics or LM-tests for serial correlation. If dynamics are detected in
the residuals, a new model is specified, and the procedure is repeated.

The Box-Jenkins procedure relies on two principles: parsimony and invertibility.

Definition 4.25 (Parsimony). Parsimony is a property of a model where the specification with the
fewest parameters capable of capturing the dynamics of a time series is preferred to other representa-
tions equally capable of capturing the same dynamics.

Parsimony is an intuitive principle, and using the smallest model has other benefits, particularly when
forecasting. One consequence of the parsimony principle is that parameters that are not needed are
excluded. For example, if the data generating process were an AR(1), selecting an AR(2) would
adequately describe the process. The parsimony principle indicates the AR(1) should be referred to
as an AR(2) since both are equally capable of capturing the dynamics of the data. Further, recall that
an AR(1) can be reformulated as an MA(T') where 6; = ¢;. Both the AR(1) and MA(T') are capable of
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Autocorrelations and Partial Autocorrelations
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Figure 4.6: These for pictures plot the first 20 autocorrelations (left) and partial autocorrelations
(right) of the VWM (top) and the Baa-Aaa spread (bottom). Approximate standard errors, assuming
homoskedasticity, are in parenthesis.

capturing the dynamics of the data if the DGP is an AR(1), although the number of parameters in each
is very different. The parsimony principle provides guidance on selecting the AR(1) over the MA(T)
since it contains (many) fewer parameters yet provides an equivalent description of the relationship
between current and past values of the data.

Definition 4.26 (Invertibility). A moving average is invertible if it can be written as a finite or con-
vergent autoregression. Invertibility requires the roots of

(1—61z2— 622 —...—6pz%) =0

to be greater than one in modulus (absolute value).
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Invertibility is a technical requirement stemming from the use of the autocorrelogram and partial
autocorrelogram to choose the model, and it plays an important role in achieving unique identification
of the MA component of a model. For example, the ACF and PACF of

Y, =2& 1+&

and
Y, =5 1+&

are identical. The first autocorrelation is 8y /(14 67), and so in the first specification p; = 2/(1 +
22) = .4 and in the second p; = .5/(1+.5%) = .4 while all other autocorrelations are zero. The partial
autocorrelations are similarly identical — partial correlation are functions of autocorrelations — and so
two processes are indistinguishable. Invertibility rules out the first of these two models since the root
of 1 -2z=0is § < 1.

Information criteria such as the AIC or S/BIC can also be used to choose a model. Recall the
definitions of the AIC and BIC:

Definition 4.27 (Akaike Information Criterion). The Akaike Information Criteria (AIC) is
AIC =In62 + k2T (4.62)

where 62 is the estimated variance of the regression error and k is the number of parameters in the
model.

Definition 4.28 (Schwarz/Bayesian Information Criterion). The Schwarz Information Criteria (SIC),
also known as the Bayesian Information Criterion (BIC) is

BIC =In&* +kinT/T (4.63)

where 67 is the estimated variance of the regression error and k is the number of parameters in the
model.

ICs are often applied by estimating the largest model, which is thought to correctly capture the dy-
namics and then dropping lags until the AIC or S/BIC fail to decrease. Specific-to-General (StG) and
General-to-Specific (GtS) are also applicable to time-series modeling and suffer from the same issues
as those described in chapter 3, section 3.13.

4.7 Estimation

ARMA models are typically estimated using maximum likelihood (ML) estimation assuming that
the errors are normal, using either conditional maximum likelihood, where the likelihood of ¥; given
Y;_1,Y—2,... s used, or exact maximum likelihood where the joint distribution of [Y,Y>,...,Y;_1,Y]
is used.
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4.7.1 Conditional Maximum Likelihood

Conditional maximum likelihood uses the distribution of ¥; given Y;_1,Y;_»,... to estimate the pa-
rameters of an ARMA. The data are assumed to be conditionally normal, and so the likelihood is

1 &
P10 250,0.0%) = (270) e (3 ) (.64
(Y — o= S0 0%i— X2 658 )?
— (2n62) 2 _ i j=
(2mo”) exp( 57

Since the {&} series is assumed to be a white noise process, the joint likelihood is simply the product
of the individual likelihoods,

r 2
1 £
Felyi—1,¥1-2...:9,0,0%) H (2wo?) 2 exp (——f> (4.65)

and the conditional log-likelihood is

T
1 g2
1(0,0,6%y:|yi—1,yi-2...) = = } In27+Inc>+ é (4.66)
=1

Recall that the first-order condition for the mean parameters from a normal log-likelihood does not
depend on ¢ and that given the parameters in the mean equation, the maximum likelihood estimate
of the variance is

6 - Z —Po— 91 Y1 —...— OpYi—p— 0161 —...— Op&_g)’ (4.67)
=1

This transformation allows the variance to be concentrated out of the log-likelihood so that it becomes

2
1(yilyi—1.Yi—2...:0,0,0° ——Zann—Hn 1th —— (4.69)
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Eliminating terms that do not depend on model parameters shows that maximizing the likelihood
is equivalent to minimizing the error variance,

T .
max 1(y,|yi—1,¥i—2...:0,0,6%) = —=In6>. (4.70)
$.,0,62 2

[}

where & =Y, —go— 1Y, 1 —...—¢pY,_p—01&_1 —...— Op&_¢, and so estimation using conditional
maximum likelihood is equivalent to least squares, although unlike linear regression the objective is
nonlinear due to the moving average terms and so a nonlinear maximization algorithm is required. If
the model does not include moving average terms (Q = 0), then the conditional maximum likelihood
estimates of an AR(P) are identical to least squares estimates from the regression

Yi=¢+Y 1 +®Y 2o+...+0pY, p+&. 4.71)

Conditional maximum likelihood estimation of ARMA models requires either backcast values or
truncation since some of the observations have low indices (e.g., Y1) that depend on observations not
in the sample (e.g., Yo, Y_1, €, €_1, etc.). Truncation is the most common and the likelihood is only
computed fort = P+1,...,T, and initial values of & are set to 0. When using backcasts, missing
values of y can be initialized at the long-run average, y = 71! Zthl Y;, and the initial values of &
are set to their unconditional expectation, 0. Using unconditional values works well when data are
not overly persistent and 7 is not too small. The likelihood can then be recursively computed where
estimated errors & used are using in moving average terms,

&E=Y,—¢o—01Y, 1 —...—9pY, p—01&_1 —...— Op& 0, (4.72)

where backcast values are used if any index is less than or equal to 0. The estimated residuals are then
plugged into the conditional log-likelihood (eq. (4.69)), and the log-likelihood value is computed. The
numerical maximizer will search for values of ¢ and 0 that produce the largest log-likelihood. Once
the likelihood optimizing values have been found, the maximum likelihood estimate of the variance
is computed using

T
6>=1" Z(Yz —Go— Y1 — . —pYip— 018 —...— & _p)? (4.73)
=1

or the truncated version which sums from P+ 1to 7.
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4.7.2 Exact Maximum Likelihood

Exact maximum likelihood directly utilizes the autocorrelation function of an ARMA(P,Q) to compute
the correlation matrix of all of the y data, which allows the joint likelihood to be evaluated. Define

Y= [Y17Y23"'7YT71YT]/

and let I" be the T by T covariance matrix of y. The joint likelihood of y is given by

/F_l
f(316.6,0%) = (27) Z|| "2 exp (—y . y>. (4.74)
The log-likelihood is
T T 1
1(9,0,0%y) = ~5In(27) = ZIn|l| - Eyll“*ly. (4.75)
where I is the symmetric matrix of autocovariances,
B 4! T2 B Y2 Yre1 |
4! 10 N oo Yr-3 Yr-—2
r— 12 4l Yo no ... Yr-4 -3
Yr-2 Yr-3 Yr-4 Yr-s -~ W 4l
| Yr—-1 Yr—2 Yr-3 Yr-4 ... N ]

that are determined by the model parameters (excluding the constant), ¢, 6, and 62. A nonlinear
maximization algorithm can be used to search for the vector of parameters that maximizes this log-
likelihood. The exact maximum likelihood estimator is generally believed to be more precise than
conditional maximum likelihood and does not require backcasts of data or errors.

4.8 Inference

Inference on ARMA parameters from stationary time series is a standard application of maximum
likelihood theory. Define w = [¢ 8 6]’ as the parameter vector. Recall from 2 that maximum likeli-
hood estimates are asymptotically normal,

VT (y— )5 NO,I7") (4.76)
where
_ 9%l(y; v)
t= E{ dyoy’ ]

where 9%1(y; ) /dwdy' is the second derivative matrix of the log-likelihood (or Hessian). In practice
7 is not known and it must be replaced with a consistent estimate,

T
4 *1(Y,:
12 : 1‘7
8w8w
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Wald and ¢-tests on the parameter estimates can be computed using the elements of Z, or likelihood
ratio tests can be used by imposing the null on the model and comparing the log-likelihood values of
the constrained and unconstrained estimators.

One important assumption in the above distribution theory is that the estimator is a maximum
likelihood estimator; this requires the likelihood to be correctly specified, or, in other words, for
the data to be homoskedastic and normally distributed. This assumption is generally implausible
when using financial data, and a modification of the above theory is needed. When one likelihood
is specified for the data, but they have a different distribution, the estimator is known as a Quasi
Maximum Likelihood estimator (QML). QML estimators, like ML estimators, are asymptotically
normal under mild regularity conditions on the data but with a different asymptotic covariance matrix,

VT(y—9) SN0, T 4.77)
where
J—E [9l(y; y) 9l(y; l/f)}
Yy ay’
J must also be estimated and the usual estimator is
7= Z al( Yt, ) L(Y:; )
- /
=1 Iy
where al(aYiI/ v is the score of the log-likelihood. Z— 1 7771 is known as a sandwich covariance esti-

mator, White’s covariance estimator.

A sandwich covariance estimator is needed when the model for the data is either incompletely
specified or is misspecified, and it accounts for the failure of Information Matrix Inequality to hold
(see chapters 2and 3). As was the case in linear regression, a sufficient condition for the IME to
fail in ARMA estimation is heteroskedastic residuals. Considering the prevalence of conditionally
heteroskedasticity in financial data, this is nearly a given.

4.9 Forecasting

Forecasting is a common objective of many time-series models. The objective of a forecast is to
minimize a loss function.

Definition 4.29 (Loss Function). A loss function is a function of the observed data, Y; ., and the
time-¢ constructed forecast, 17,+h|t, L(Y,, IA/,H,‘ ;), that has the three following properties:

* Property 1: The loss of any forecast is non-negative, so L(¥;y, Y, +h|,) >0.

* Property 2: There exists a point, V%, ,, known as the optimal forecast, where the loss function
takes the value 0. That is L(Y;44,Y ;) = 0.

* Property 3: The loss is non-decreasing away from Y, ,. That is if Y7 B YA > Y, then
L(Yein Y2) > LY Y ) > LY, YY) Similarly, if Y2, <Y€, < Y;;h, then LY Y2)) >
L(Yt+h7YtS_h) > L(Yl‘+h7Yt+h)'



4.9 Forecasting 263

The most common loss function is Mean Square Error (MSE) which chooses the forecast to min-
imize

EIL(Yi0, Yy y0)] = Bl(Yesn — ¥rppe)?] (4.78)

where ¥, 4| 18 the time-7 forecast of ¥, . Notice that this is just the optimal projection problem and

the optimal forecast is the conditional mean, Ytihl , = E/[Yi11] (See chapter 3). It is simple to verify

that this loss function satisfies the properties of a loss function. Property 1 holds by inspection and
property 2 occurs when Y., = IA/;; e Property 3 follows from the quadratic form. MSE is the most
common loss function, but others, such as Mean Absolute Deviation (MAD), Quad-Quad, and Linex,
are used in practice and academic literature. The MAD loss function will be revisited in chapter 6
(Value-at-Risk). The Advanced Financial Econometrics elective will study non-MSE loss functions
in more detail.

The remainder of this section will focus exclusively on forecasts that minimize the MSE loss
function. Fortunately, in this case, forecasting from ARMA models is an easy exercise. For simplicity,
consider the AR(1) process,

Yi=¢0+¢1Y; 1 +&.

Since the optimal forecast is the conditional mean, all that is needed is to compute E;[Y; ] for any A.
When h =1,

Yii1=¢0+ 1Y + &4,

so the conditional expectation is

E/[Yi 1] = E[@o + 1Y, + &41] 4.79)
= ¢o + O1E/[Y;] + E;[&11]
=¢o+¢1Y,+0
= ¢+ ¢1Y;

which follows since ¥; is in the time-# information set (F;) and E;[g 1] = 0 by assumption.11 The
optimal forecast for & = 2 is given by E,[Y; 5],

E/[Y12] = Ef[@o + 1Y 11 + &2
= o+ 1 B [V1] + By [€41]
= o+ 1 (¢ + %) +0
= o+ 910+ O7Y;

which follows by substituting in the expression derived in eq. (4.79) for E;[Y;;]. The optimal forecast
for any arbitrary & uses the recursion

E/[Yiqn] = @0+ 0B [V n1] (4.80)

"'This requires a sightly stronger assumption than & is a white noise process.
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and it is easily shown that E,[Y, ;] = ¢o Zf‘l:_ol ¢!+ oMY, If | 91| < 1, as h — oo, the forecast of ¥, and
E;[Y;p] converges to ¢/ (1 — @), the unconditional expectation of ¥;. In other words, for forecasts
in the distant future there is no information about the location of Y;; other than it will return to its
unconditional mean. This is not surprising since ¥; is covariance stationary when |¢;| < 1.

Next consider forecasts from an MA(2),

Yi = ¢o+01&_1+ 66 o+ &.

The one-step-ahead forecast is given by

E/[Yi11] =Ei[¢o + 016 + 6261 + &41]
= ¢o + 6,E;[&] + 0:E;[&_1] + E;[&41]
=00+ 01&+65_1+0

which follows since & and &_; are in the F; information set and E;[&] = 0 by assumption. In
practice the one step ahead forecast would be given by

E[Yii1] = o+ 618+ 6,8

where both the unknown parameters and the unknown residuals would be replaced with their esti-
mates.!? The 2-step ahead forecast is given by

E/[Yi12] = Ei[¢o + 01611 + 026 + & 2]
= 0o+ O1E;[& 1] + OB, [&] + B [€42]
= ¢0—|—910+928,+0
= @p + 6¢.

Longer-horizon forecasts are then ¢ since all future residuals have zero expectation, and so they do
not alter longer horizon forecasts. Like the AR(1) forecast, the MA(2) forecast is mean-reverting.
Recall the unconditional expectation of an MA(Q) process is @y. For any 4 > Q the forecast of Y;
is just this value, @.

Finally, consider the 1 to 3-step ahead forecasts from an ARMA(2,2),

i=00+01Yi—1+ @Y 2+ 01&_1+6& r+¢&.

Conditioning on the information set J;, the expectation of ¥; is

E/[Yi11] =E/[¢o+ 01V + 9Yi1 + 01& + 6261 + &41]
= E;[¢o] + E;[01Y;] + B¢ [02Y; 1] + E[01&] + E/[626_1] + E/[&11].

Noting that all of the elements are in F; except &1, which has conditional expectation 0,

12The residuals are a natural by-product of the parameter estimation stage.
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E/Yii1] = o+ 1Y+ oY1 + 016+ 026

Note that in practice, the parameters and errors will all be replaced by their estimates (i.e. ¢; and &).
The 2-step ahead forecast is given by

E/[Yi 2] = Ef[@o + 1Y 11 + 02Y; + 61641 + 026 + & 42]
=E;[¢o] +E[01Y:11] + E[@2Y;] + 01, [& 1] + 026 + Es[& 2]
= o+ O1E; [Yi 1] + 02Y: + O1E; [ 1] + 626 + B[4 2]
=0+ 01 (Po+ 1Y + Y1+ 016+ 626 _1) + 9, + 6,0+ 626 +0
= Po+ 0100+ 7Y + O192Y,_ 1 + 9101 € + 16261 + $2Y; + Oog
= Po+ 100+ (97 + $2)Y: + 9192Y,_1 + (9161 + 02) & + 916261

In this case, there are three terms which are not known at time 7. By assumption E; [, 7] = E;[€.41] =0
and E,[Y; ] has been computed above, so

E[Y,12] = ¢+ 0100+ (07 + 02)Y, + 01 02Y_ 1 + (¢161 + 62)& + 01628

In a similar manner,

Ei[Yi43] = o+ O1E [Yigo] + OB [V 1] + 01640 + 62641 + €43
E/[Yi13] = @0 + ¢1E; [Yii2] + 2B [Vi11] +0+0+0

which is easily solved by plugging in the previously computed values for E,;[Y;,| and E;[Y;1]. This
pattern can be continued by iterating forward to produce the forecast for an arbitrary A.
Two things are worth noting from this discussion:

* If there is no AR component, all forecast for 4 > Q will be ¢.

* For large h, the optimal forecast converges to the unconditional expectation given by

o

4.81
1= —r—...— 0p (4.81)

lim E[ [Yt—l-h] =
h—00

4.9.1 Forecast Evaluation

Forecast evaluation is an extensive topic, and these notes only cover two essential tests: Mincer-
Zarnowitz regressions and Diebold-Mariano tests.

4.9.1.1 Mincer-Zarnowitz Regressions

Mincer-Zarnowitz regressions (henceforth MZ) are used to test for the optimality of the forecast and
are implemented with a standard regression. If a forecast is correct, it should be the case that a
regression of the realized value on its forecast and a constant should produce coefficients of 1 and 0
respectively.
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Definition 4.30 (Mincer-Zarnowitz Regression). A Mincer-Zarnowitz (MZ) regression is a regression
of a forecast, ¥, ;, on the realized value of the predicted variable, Y, and a constant,

Yion = B+ BoYony + 11 (4.82)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with ; = 0 and

B=1.

For example, let Yt+hlt be the h-step ahead forecast of y constructed at time . Then running the
regression

Yion = Bi+BaYip +vi

should produce estimates close to 0 and 1. Testing is straightforward and can be done with any
standard test (Wald, LR or LM). An augmented MZ regression can be constructed by adding time-¢
measurable variables to the original MZ regression.

Definition 4.31 (Augmented Mincer-Zarnowitz Regression). An Augmented Mincer-Zarnowitz re-
gression is a regression of a forecast, ¥, ,;, on the realized value of the predicted variable, ¥;., a
constant and any other time- measurable variables, X, = [X1; X2 . .. Xkt

Yion = B1+ Bo¥ipy + BXis + .. 4 Br2Xki + M. (4.83)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with 81 = 3 =
:BK+2:0andB2: 1.

It is crucial that the additional variables are time- measurable and are in F;. Again, any standard
test statistic can be used to test the null Hy : B = 1N B = B3 = ... = Bg12 = 0 against the alternative
Hi:B#1UB;#0,j=1,3,4,...,K—1,K-2.

4.9.1.2 Diebold-Mariano Tests

A Diebold-Mariano test, in contrast to an MZ regression, examines the relative performance of two

forecasts. Under MSE, the loss function is given by L(Y,Jrh,f/,Jrhv) = (Yyn — IA’HM,)Z. Let A and
B index the forecasts from two models f/t/i e and f’ti Hleo respectively. The losses from each can be
defined as /4 = (ij‘h — Ii/[ﬁh‘t)z an_d 1B = (Y p— ?tﬁhh)z' If the models were equally good (or bad),
one would expect i4 ~ [B where [ is the average loss. If model A is better, meaning it has a lower
expected loss E[L(Y;, ?ti‘khh)] < E[L(Y4n, Yih‘t)] , then, on average, it should be the case that 4 < /5.

Alternatively, if model B were better it should be the case that /Z < /4. The DM test exploits this to
construct a simple 7-test of equal predictive ability.

Definition 4.32 (Diebold-Mariano Test). Define d, = [ — [B. The Diebold-Mariano test is a test of
equal predictive accuracy and is constructed as
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where M (for modeling) is the number of observations used in the model building and estimation, R
(for reserve) is the number of observations held back for model evaluation and d = R™! Zﬁg{fﬂ d;.

Under the null that E[L(Y,,,, Y4, )] = E[L(Yt+h,f/,ih|;)], and under some regularity conditions on

t+hlt

{d;}, DM 4N (0,1). V[dy] is the long-run variance of d; and must be computed using a HAC covari-
ance estimator.

If the models are equally accurate, one would expect that E[d;] = 0 which forms the null of the
DM test, Hy : E[d;] = 0. To test the null, a standard ¢-stat is used although the test has two alternatives:
HY :E[d;] < 0 and H? : E[d;] > 0 which correspond to the superiority of model A or B, respectively.
DM is asymptotically normally distributed. Large negative values (less than -2) indicate model A
produces less loss on average and hence is superior, while large positive values indicate the opposite.
Values close to zero indicate neither is statistically superior.

In Diebold-Marino tests, the variance must be estimated using a Heteroskedasticity-Autocorrelation
Consistent variance estimator.

Definition 4.33 (Heteroskedasticity Autocorrelation Consistent Covariance Estimator). Covariance
estimators which are robust to both ignored autocorrelation in residuals and heteroskedasticity are
known as Heteroskedasticity-Autocorrelation Consistent (HAC) covariance. The most common ex-
ample of a HAC estimator is the Newey-West (or Bartlett) covariance estimator.
The typical variance estimator cannot be used in DM tests, and a kernel estimator must be substituted
(e.g., Newey-West).

Despite all of these complications, implementing a DM test is very easy. The first step is to
compute the series of losses, {IA} and {18}, for both forecasts. Next compute d; = [ — [?. Finally,
regress d; on a constant and use Newey-West errors,

d=Pi+é&.
The ¢-stat on B is the DM test statistic and can be compared to a critical value from a normal distri-
bution.

4.10 Nonstationary Time Series

Nonstationary time series present some particular difficulties, and standard inference often fails when
a process depends explicitly on ¢. Nonstationarities can be classified into one of four categories:

* Seasonalities
* Deterministic Trends (also known as Time Trends)
¢ Unit Roots (also known as Stochastic Trends)

¢ Structural Breaks

Each type has a unique feature. Seasonalities are technically a form of a deterministic trend, although
their analysis is sufficiently similar to stationary time series that little is lost in treating a seasonal
time series as if it were stationary. Processes with deterministic trends have unconditional means
which depend on time, while unit-root processes have unconditional variances that grow over time.
Structural breaks are an encompassing class that may result in either the mean and variance exhibiting
time dependence.
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4.10.1 Seasonality, Diurnality, and Hebdomadality

Seasonality, diurnality, and hebdomadality are pervasive in economic time series. While many data
series have been seasonally adjusted to remove seasonalities, particularly US macroeconomic series,
there are many time-series where no seasonally adjusted version is available. Ignoring seasonalities
is detrimental to the precision of parameter estimates and forecasting. Model specifications are often
simpler when both seasonal and nonseasonal dynamics are simultaneously modeled.

Definition 4.34 (Seasonality). Data are seasonal if they exhibit a non-constant deterministic pattern
with an annual frequency.

Definition 4.35 (Hebdomadality). Data which exhibit day-of-week deterministic effects are said to
be hebdomadal.

Definition 4.36 (Diurnality). Data which exhibit intra-daily deterministic effects are said to be diur-
nal.

Seasonal data are nonstationary, although seasonally detrended data (usually referred to as desea-
sonalized data) may be stationary. Seasonality is frequently encountered when modeling macroeco-
nomic time series. Diurnality is pervasive in ultra-high frequency data (tick data), and hebdomadality
is often believed to be a feature of asset returns.

4.10.2 Deterministic Seasonality

Seasonality may be deterministic, in which case it produces in a nonstationary time series, or cyclical,
in which case the time series may be stationary. Two approaches are commonly used to model sea-
sonality. The first uses a seasonal deterministic term to express the predictable change in the model.
The seasonal deterministic terms are usually modeled using seasonal dummies, although it is com-
mon to use Fourier series to model deterministic seasonality when the seasonal length is large (e.g.,
minutes in a day, hours in a week, or days in a year). A standard ARMA model can be augmented
with seasonal dummies to capture both seasonal and cyclical behavior. For example, in a monthly

time series,
11

Y =¢o+ Z Vil mod 12=i] + $1Yi—1+ 01&—1 + &,
i=1
is a ARMA(1, 1) with seasonal dummies. The intercept in month # is ¢g + % mod 12 if # mod 12 is not
zero and just @y every twelfth month.

4.10.3 Seasonal Autoregressive Moving Average (SARMA) Models

Cyclical seasonality is modeled using a Seasonal ARMA (SARMA) which adds an additional compo-
nent that has lags that occur on the seasonal frequency. SARMA models are described using two sets
of indices, (P,Q) which describe the observation time model and (P, Qs,s) which describe the sea-
sonal time components and the length of the seasonality.!? Seasonal ARMA models are simplest to

31t is more common to describe Seasonal ARMA using the notation of Seasonal Integrated ARMA models, or
SARIMA. These models include 2 additional parameters the capture the differences used to transform a non-stationary
time series to be stationary. The full description is SARIMA(P,d, Q) x (P, ds,Qs,s) where d is the order of differencing
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describe using a lag polynomial, so that a SARMA(1,1) x (1,1,12), which is a Seasonal ARMA(I,1)
with an ARMA(1,1) seasonal component, can be expressed

(1= ¢1L) (1 — ¢L'?) Y, = g+ (1 +6:L) (1 + 6,L'?) &,.

The polynomial can be expanded to determine the specification of the model using standard ARMA
notation

(1—¢1L— oL+ L") Y, =¢o+ (1+ 6L+ 6,L"* +6,6,L1%) &
i =00+ 01 Y1+ 0¥ 12— 010Y; 13+ 0161+ O5&_12+ 010513 + &.

The expanded model is an restricted ARMA(13,13). The restrictions com in two forms: many of
the coefficients are restricted to be 0, and the coefficients appearing on lags 13 are the product of the
coefficient on the other lags. The sign of the coefficient on the lag-13 AR term is also negated. As
long as the root of the characteristic polynomial associated with 1 — ¢, L — ¢;L'> + ¢; L' are less than
1 in modulus, then the seasonal model will be stationary.

For example, consider a seasonal quarterly time series. Seasonal dynamics may occur at lags
4,8,12,16,..., while nonseasonal dynamics can occur at any lag 1,2,3,4,.... Note that multiples of
4 appear in both lists, and so the identification of the seasonal and nonseasonal dynamics may be dif-
ficult (although separate identification makes little practical difference). When working with seasonal
data, the standard practice is to conduct model selection over two sets of lags by choosing a maximum
lag to capture the seasonal dynamics and by choosing a maximum lag to capture nonseasonal ones.

4.10.3.1 Example: Seasonality

Most U.S. data series are available seasonally adjusted, which is not true for data from many areas
of the world, including the Eurozone. This example uses monthly data on U.S. housing starts, a time
series that tracks the construction of new homes.

Figure 4.10.3.1 contains a plot of housing starts, its growth rate (log differences), and the sample
autocorrelogram and sample partial autocorrelogram of the growth rate. These figures show evidence
of an annual seasonality (lags 12, 24, and 36), and applying the Box-Jenkins methodology, the sea-
sonality appears to be a seasonal AR, or possibly a seasonal ARMA. The short-run dynamics oscillate
and appear consistent with an AR since the autocorrelations are more persistent than the partial auto-
correlations. Four specifications were the process were fit to the data: a nonseasonal ARMA(1,1) and
three seasonal models. The AIC indicates that the seasonal component is required in the model.

4.10.4 Deterministic Trends

The simplest form of nonstationarity is a deterministic trend. Models with deterministic time trends
can be decomposed into three components:

Y; = deterministic + cyclic 4+ noise (4.84)

in observation time and d; is the order of differencing in seasonal time. The full specification is
(1= L—...—¢pL”) (1 — ¢y L* — ... — @ p L") AADY, = (14 61 L+ ...+ 0L?) (1 + 6, 1L +...+ 6,0, L'%) &.

The differencing terms are AY = (1 — L)d and A% (1 — L“')d’. Normally only one of d or d is non-zero.
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Housing Starts, Growth, and the ACF and PACF of the Housing Start Growth Rate
Housing Starts Housing Starts Growth
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Figure 4.7: Plot of the the number of housing starts, its growth rate (log differences), and the sample

autocorrelogram and sample partial autocorrelogram of the growth rate of housing starts growth.
There is a clear seasonal pattern at 12 months which appears consistent with a seasonal ARMA.

SARMA Order ¢0 ¢1 ¢)1271 ¢12,2 91 AIC

(1,1)x (0,0,0) 103 0.13 007  6165.7
(1.40)  (0.61) (0.33)

(1,0)x (1,0,12) 037 —0.29 0.74 5729.3
(0.83)  (—9.30) (38.60)

(1,1)x (1,0,12) 030 —0.09 0.75 —0.22 57284
(0.87) (—0.88) (38.28) (—2.12)

(1,1)x (2,0,12) 0.17 —0.02 0.46 038 —0.31 5620.1

(0.62) (—0.18) (16.33) (12.87) (—3.32)

Table 4.3: Estimated parameters, t-stats and AIC for three models with seasonalities. The AIC prefers
the largest specification.




4.10 Nonstationary Time Series 271

where {Y; } would be stationary if the trend were absent. The two most common forms of time trends
are polynomial (e.g., linear or quadratic) and exponential. Processes with polynomial-time trends can
be expressed

Y, = g0+ 811 + &t? + ...+ S5 + cyclic + noise,

and linear time trend models are the most common,

Y; = ¢ + 81t + cyclic + noise.

For example, consider a linear time trend model with an MA(1) stationary component,

=0+ 01t +01&_1+¢&

The long-run behavior of this process is dominated by the time trend, although it may still exhibit
persistent fluctuations around &;z.

Exponential trends appear as linear or polynomial trends in the log of the dependent variable; for
example,

InY; = ¢y + 6;¢ + cyclic + noise.

The trend is the permanent component of a nonstationary time series, and so all observations are
permanently affected by the trend line irrespective of the number of observations between them. The
class of deterministic trend models can be reduced to a stationary process by detrending.

Definition 4.37 (Trend Stationary). A stochastic process, {Y;} is trend stationary if there exists a
nontrivial function g(¢, ) such that {¥; — g(¢,0)} is stationary.

Detrended data may be strictly or covariance stationary (or both).

4.10.4.1 Modeling the time trend in GDP

U.S. GDP data was taken from FRED II from Q1 1947 until Q2 July 2008. To illustrate the use of a
time trend, consider two simple models for the level of GDP. The first models the level as a quadratic
function of time, while the second models the natural log of GDP in an exponential trend model.

GDP, = o+ 811 + 851> + g

and
InGDP, = ¢y + 01t + &.

Figure 4.8 presents the time series of GDP, the log of GDP, and errors from two models that
include trends. Neither time trend appears to remove the extreme persistence in GDP, and the process
likely contains a unit root.
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Time trend models of GDP
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Figure 4.8: Two time trend models are presented, one on the levels of GDP and one on the natural
log. Note that the detrended residuals are still highly persistent. This is a likely sign of a unit root.

4.10.5 Unit Roots

Unit root processes are generalizations of the classic random walk. A process is said to have a unit
root if the distributed lag polynomial can be factored so that one of the roots is exactly one.

Definition 4.38 (Unit Root). A stochastic process, {Y; }, is said to contain a unit root if
(1—1L—¢oL® —...— ¢pL")Y, = o+ (1 — O L— 61> — ... — pL9)g, (4.85)
can be factored
(1-=L)Y1 = L— gL —...—dp LT, =0+ (1 — 0L — 61> —...—0pL%¢.  (4.86)

The simplest example of a unit root process is a random walk.
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Definition 4.39 (Random Walk). A stochastic process {Y;} is known as a random walk if
Yi=Y_1+¢& (4.87)
where & is a white noise process with the additional property that E,_;[&] = 0.

The basic properties of a random walk are simple to derive. First, a random walk is a martingale
since E;[Y,,] = Y; for any .'* The variance of a random walk can be deduced from

VY] =E[(Y; - ¥)’] (4.88)
—E[(&+Y-1-Y)]
=E[(&+&_1+Y- Z—YO)]
=E[(&+&_1+...+€)%
—Elg’+&> +...+ €7
—t0?

and this relationship holds for any time index, and so V[Y;] = so. The s® autocovariance (3;) of a
unit root process is given by

V[(Y; — Y())(Yt_s — Y())] = E[(S, +& 1+...+ 8])(81—‘9 +& s—1+...+& )] (4.89)
E[(e” s+ef_s_1 +.. ]
(t—s)0”

and the s autocorrelation is then

t—s
ps = e (4.90)
which tends to 1 for large ¢ and fixed s. The autocorrelations of unit-root processes are virtually
constant at 1, with only a small decline at large lags. Building from the simple unit root, one can
define a unit root plus drift model,

Y =6+Y1+&

which can be equivalently expressed

t
Y, =804+ &+Y%
i=1
and so the random walk plus drift process consists of both a deterministic trend and a random walk.
Alternatively, a random walk model can be augmented with stationary noise so that

t
= &+
i=1

14Since the effect of an innovation never declines in a unit root process, it is not reasonable to consider the infinite past
as in a stationary AR(1).
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which leads to the general class of random walk models plus stationary noise processes

' -1
=) &+ 6mj+n
=1 =1
t
= Z&'+®(L)nt
=1

where @(L)n; = ZZ;II 0;n:—j + 1n; is a compact expression for a lag polynomial in 8. Since @(L)n;
can include any covariance stationary process, this class should be considered general. More im-
portantly, this process has two components: a permanent one, 25:1 & and a transitory one ®(L)mn;.
The permanent behaves similarly to a deterministic time trend, although unlike the deterministic trend
model, the permanent component of this specification depends on random increments. For this reason,
it is known as a stochastic trend.

Like the deterministic model, where the process can be detrended, a process with a unit root can
be stochastically detrended, or differenced, AY; = Y; —Y;_. Differencing a random walk produces a
stationary series,

t t—1
Yi—Y 1= &+0OL)N,— Y &+OL)n_
i=1 i=1

Over-differencing occurs when the difference operator is applied to a stationary series. While
over-differencing cannot create a unit root, it does have negative consequences such as increasing
the residual variance and reducing the magnitude of possibly important dynamics. Finally, unit root
processes are often known as I(1) processes.

Definition 4.40 (Integrated Process of Order 1). A stochastic process {Y;} is integrated of order 1,
written I(1), if {¥;} is non-covariance-stationary and if {AY;} is covariance stationary. Note: A
process that is already covariance stationary is said to be 1(0).

The expression integrated is derived from the presence of Z§:1 &; in a unit root process where the
sum operator is the discrete version of an integrator.

4.10.6 Difference or Detrend?

Detrending removes nonstationarities from deterministically trending series while differencing re-
moves stochastic trends from unit-roots. What happens if the wrong type of detrending is used? The
unit root case is simple, and since the trend is stochastic, no amount of detrending can eliminate
the permanent component. Only knowledge of the stochastic trend at an earlier point in time can
transform the series to be stationary.

Differencing a trend-stationary series produces a series that is stationary but with a larger variance
than a correctly detrended series.
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Y[:5l+€l
A, =0+¢&—&_

while the properly detrended series would be

Yt—5t:€[

If & is a white noise process, the differenced series’s variance is twice that of the detrended series
with a large negative MA component. The parsimony principle dictates that the correctly detrended
series should be preferred even though differencing is a viable method of transforming a nonstationary
series to be stationary. Higher orders of time trends can be eliminated by re-differencing at the cost
of even higher variance.

4.10.7 Testing for Unit Roots: The Dickey-Fuller Test and the Augmented
DF Test

Dickey-Fuller tests (DF), and their generalization to augmented Dickey-Fuller tests (ADF) are the
standard test for unit roots. Consider the case of a simple random walk,

=Y 1+&

so that
AY[ = 8[.

Dickey and Fuller noted that if the null of a unit root were true, then
i=0Y_1+¢&

can be transformed into
A =7V 1+&

where ¥ = ¢ — 1 and a test could be conducted for the null Hy : ¥ = 0 against an alternative H; : Y < 0.
This test is equivalent to testing whether ¢ = 1 in the original model. ¥ can be estimated using a
simple regression of AY; on ¥;_;, and the ¢-stat can be computed in the usual way. If the distribution
of ¥ were standard normal (under the null), this would be a standard hypothesis test. Unfortunately,
it is non-standard since, under the null, ¥;_ is a unit root, and the variance increases rapidly as the
number of observations increases. The solution to this problem is to use the Dickey-Fuller distribution
rather than the standard normal to make inference on the ¢-stat of 7.
Dickey and Fuller considered three separate specifications for their test,

AY, =y 1 +& (4.91)
AY; = o+ YY1+ &
AY, = @o+ 61t +yY 1+ &

which corresponds to a unit root, a unit root with a linear time trend, and a unit root with a quadratic
time trend. The null and alternative hypotheses are the same: Hy: Yy =0, H; : ¥ < 0 (one-sided



276 Analysis of a Single Time Series

alternative), and the null that ¥; contains a unit root will be rejected if ¥ is sufficiently negative, which
is equivalent to ¢ being significantly less than 1 in the original specification.

Unit root testing is further complicated since the inclusion of deterministic regressor(s) affects the
asymptotic distribution. For example, if 7 = 200, the critical values of a Dickey-Fuller distribution
are

Notrend Constant Linear Quadratic

10% -1.62 -2.57  -3.14 -3.57
5% -1.94 -2.88  -3.43 -3.86
1% -2.58 -3.46  -4.00 -4.43

The Augmented Dickey-Fuller (ADF) test generalized the DF to allow for short-run dynamics
in the differenced dependent variable. The ADF is a DF regression augmented with lags of the
differenced dependent variable to capture short-term fluctuations around the stochastic trend,

P
AY, = YY1+ GpAYi p+8 (4.92)
p=1
P
AY, =G0+ VYi 1+ Y $pAYi p+ &
p=1
P
AY, = Qo+ 81t + Y1+ Y 0pAY,_p+E
p=1

Neither the null and alternative hypotheses nor the critical values are changed by including lagged
dependent variables. The intuition behind this result stems from the observation that the AY; , are
“less integrated” than Y; and so are asymptotically less informative.

4.10.8 Higher Orders of Integration

In some situations, integrated variables are not just /(1) but have a higher-order of integration. For
example, the log consumer price index (InCPI) is often found to be 1(2) (integrated of order 2), and so
double differencing is required to transform the original data into a stationary series. Consequently,
both the level of InCPI and its difference (inflation) contain unit-roots.

Definition 4.41 (Integrated Process of Order d). A stochastic process {Y;} is integrated of order d,
written I(d), if {(1 — L)?Y,} is a covariance stationary ARMA process.

Testing for higher orders of integration is simple: repeat the DF or ADF test on the differenced
data. Suppose that it is not possible to reject the null that the level of a variable, V3, is integrated and so
the data should be differenced (AY;). If the test applied to the differenced data rejects a unit root, the
testing procedure is complete, and the series is consistent with an /(1) process. If the differenced data
contains evidence of a unit root, the data should be double differenced (A%Y,) and the test repeated.
The null of a unit root should be rejected on the double-differenced data since no economic data are
thought to be 1(3), and so if the null cannot be rejected on double-differenced data, careful checking
for omitted deterministic trends or other serious problems in the data is warranted.
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4.10.8.1 Power of Unit Root tests

Recall that the power of a test is the probability that the null is rejected when the null is false (1 minus
the probability Type II). In the case of a unit root, power is the test’s ability to reject the null that
the process contains a unit root when the largest characteristic root is less than 1. Many economic
time-series have roots close to 1, and so it is crucial to maximize the power of a unit root test so that
models apply the correct transformation to correct for the order of integration.

DF and ADF tests are known to be very sensitive to misspecification and, in particular, have little
power to reject a false null if the ADF specification is not flexible enough to account for factors other
than the stochastic trend. Omitted deterministic time trends or insufficient lags of the differenced
dependent variable lower the power by increasing the residual variance. The same lack of power
appears in any regression test when the residual variance is too large due to omitted variables.

A few recommendations can be made regarding unit root tests:

» Use a loose model selection criteria to choose the lag length of the included differenced depen-
dent variables (e.g., AIC).

* Including extraneous deterministic regressors lowers power, but failing to include relevant de-
terministic regressors produces a test with no power, even asymptotically, and so be conserva-
tive when excluding deterministic regressors.

* More powerful tests than the ADF are available. Specifically, DF-GLS of Elliott, Rothenberg,
and Stock (1996) is increasingly available, and it has maximum power against certain alterna-
tives.

* Trends tend to be obvious and so always plot both the data and the differenced data.

* Use a general-to-specific search to perform unit root testing. Start from a model which should
be too large. If the unit root is rejected, one can be confident that there is no unit root since
this is a low power test. If a unit root cannot be rejected, reduce the model by removing in-
significant deterministic components first since these lower power without affecting the z-stat.
If all regressors are significant, and the null still cannot be rejected, then conclude that the data
contains a unit root.

4.10.9 Example: Unit root testing

Two series will be examined for unit roots: the default spread and the log U.S. consumer price index.
The InCPI, which measures consumer prices index less energy and food costs (also known as core
inflation), has been taken from FRED, consists of quarterly data, and covers the period between
August 1968 and August 2008. Figure 4.9 contains plots of both series and the first and second
differences of InCPI.

InCPI is trending, and the spread does not have an apparent time trend. However, deterministic
trends should be over-specified, and so the initial model for InCPI will include both a constant and
a time-trend, and the model for the spread will include a constant. The lag length used in the model
was automatically selected using the BIC.

Results of the unit root tests are presented in table 4.4. Based on this output, the spreads reject a
unit root at the 5% level, but the InCPI cannot. The next step is to difference the InCPI to produce
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Unit Root Analysis of InCPI and the Default Spread
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Figure 4.9: These four panels plot the log consumer price index (InCPI), AInCPI, A>InCPI and the
default spread. Both A%InCPI and the default spread reject the null of a unit root.

AlInCPI. Rerunning the ADF test on the differenced CPI (inflation) and including either a constant or
no deterministic trend, the null of a unit root still cannot be rejected. Further differencing the data,
A?InCPI, = §InCPI, — InCPI,_, strongly rejects, and so InCPI appears to be I(2). The final row of
the table indicates the number of lags used in the ADF. This value is selected using the BIC with a
maximum of 12 lags for InCPI or 36 lags for the spread (3 years).

4.10.10 Seasonal Differencing

When a time series has both a unit root and a seasonal pattern, it is common to use a seasonal dif-
ference rather than a first difference. In many cases, the model using seasonally differencing can
be simpler than the model built using the first difference. Define the operator A to be the seasonal
difference defined as A;Y; =Y; —Y,_; = (1 — L*) ¥;. This difference is the year-over-year change, or if
Y; has been logged, the year-over-year growth rate.
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In CPI AjpIn CPI A Inf Default
t-stat -0.981 -1.323 1.691 -2.811 -1.498 -4.935 -3.395 -1.751
p-value 0947 0.618 0.978 0.057 0.126 0.000 0.011 0.076
Deterministic Linear Const None Const None None Const None
Num. Lags 9 9 9 20 20 19 21 21

Table 4.4: ADF results for tests that InCPI and the default spread have unit-roots. The null of a unit
root cannot be rejected in InCPI, nor can the null that AInCPI contains a unit root, and so CPI appears
to be an 1(2) process. The default spread rejects the null of a unit root, although it is highly persistent.

4.11 SARIMA Models

All of the key concepts presented for modeling time series, whether stationary or non-stationary, can
be compactly expressed as a Seasonal Autoregressive Integrated Moving Averages (SARIMA) model.
The SARIMA encompasses:

* P: Autoregressive dynamics in observation time through ® (L) =1—¢;L— ... — ¢pL”

* Q: Moving average dynamics in observation time through © (L) = (1 — 6L —... — 6pL?)

d: Differencing in observation time A?

Py: Autoregressive dynamics in observation time through ® (L) = 1 — ¢ 1L5 — ... — ¢ p LT

Q,: Moving average dynamics in observation time through ® (L) = (1 — 6, 1L — ... — 6, o, [5")

dy: Differencing in observation time A%

s: The seasonal period

Polynomial deterministic terms 0 (1) = 0+ 01t + ... + Ot™
« Seasonal deterministic dummies'® y(£) = Y277 %/} moa s=i

These parameters, excluding the deterministic regressors, are commonly collected into a single ex-
pression: SARIMA(P,d, Q) x (Ps,ds, Qss). The full model is then

D (L) Dy (L) AALY, =8 (1) +7(1) +O(L) Oy (L) &.
While this specification looks very complex, the both products ® (L) @ (L) AY’A% and @ (L) O (L)

are lag polynomials so that the model is just a (parameterized and restricted) ARMA that may also
contain trends and deterministic seasonal components. Forecasting SARIMA models is no different

SThese can be alternatively replaced with a season Fourier series of order k, () = Zf:l Y, isin (2kwt) +
y,.icos (2knt) where T =1 —s|(r — 1) /5| cycles over the sequence 1,2,...,s. Including a Fourier series of order intro-
duces 2k parameters, and in many applications 2k < s — 1 components are sufficient to model the deterministic seasonal
variation.
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SARIMA Order b O 01 6 AIC

(1,1,1) x (1,0,0,12) 0.00 0.19 0.64 0.00  -955.0
(0.03) (0.64)  (16.38) (0.01)

(1,0,1) x (1,1,0,12) 0.00 0.94 0.07 —0.39 -1018.6
(0.06) (72.95) (1.85)  (—12.19)

Table 4.5: Estimated parameters, t-stats and AIC for three models with seasonalities. The AIC prefers
the seasonal difference.

from forecasting an ARMA model once the polynomials have been expanded. For example, the
SARIMA(1,0,1) x (1,1,0,4) with a time-trend can be equivalently written as

(1=9:1L) (1— 9 1L*) AsY, = &+ 811+ (1+6L) €

(4

(1=¢1L) (1 —¢u L) (1—LY Y, = 8o+ &1t + (1 +0L) g

t

( )

( )

(1 — ¢ L— (1)471L4 + ¢1¢4’1L5> (1 —L4) Y, = &g+ 01t + (1 + GL) &
(1 — 1L — (14 @a1) L* + ($104.1 + 1) L + 941 L° — ¢1¢4,1L9) 8o+ 81+ (1+6L) &

When written as a standard ARMA without using the lag operator, we have

Yi=8+0t+¢0 Y1+ (1+¢s1)Yi—a— (01041 +01) Y5 —@a1Y—3+@1921Yi—9+ 0&_1 +&.

The model is a restricted ARMA(9, 1) where many coefficients are either have cross-lag restrictions
imposed or are restricted to be zero. Once the coefficient are known (or have been estimated), fore-
casts are computed using

Ey [Yyn) =80+ 81 (t + 1) + 1B [Yipn1] + GaEy [Yiy—a] — O5Ee [Yi s
— O8E; [Y; 1 5—s] ++ GoE; [Yi o] + OF, [€4)—1]

where the estimated coefficient have been replaced for simplicity of exposition, so that, e.g., ¢4 =
1+ a1

Table 4.5 revisits the housing growth data using SARMA models. The two models are identical
except that one uses the first difference, and the other uses the seasonal difference. These parame-
ters very different and indicate very different dynamics. The AIC selects the model containing the
seasonal difference.

4.12 Filters

Most time-series modeling’s ultimate goal is to forecast a time-series in its entirety, which requires a
model for both permanent and transitory components. In some situations, it may be desirable to focus
on either the short-run dynamics or the long-run dynamics exclusively, for example, in technical
analysis where prices are believed to be long-run unpredictable but may have some short- or medium-
run predictability. Linear filters are a class of functions that can be used to “extract” a stationary cyclic
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component from a time-series that contains both short-run dynamics and a permanent component.
Generically, a filter for a time series {Y; } is defined as

oo
Xi= ) wii (4.93)

i=—00

where X; is the filtered time-series or filter output. In most applications, it is desirable to assign a label
to X;, either a trend, written 7;, or a cyclic component, C;.

Filters are further categorized into causal and non-causal. Causal filters are restricted to depend
on only the past and present of ¥;, and so as a class are defined through

o0
X, = Zwiy,_i. (4.94)
=0

Causal filters are more useful in isolating trends from cyclical behavior for forecasting purposes, while
non-causal filters are more useful for historical analysis of macroeconomic and financial data.

4.12.1 Frequency, High- and Low-Pass Filters

This text has exclusively dealt with time series in the time domain — that is, understanding dynamics
and building models based on the time distance between points. An alternative strategy for describing
a time series is in terms of frequencies and the magnitude of the cycle at a given frequency. For
example, suppose a time series has a cycle that repeats every four periods. This series could be
equivalently described as having a cycle with a frequency of 1 in 4, or .25. A frequency description is
relatively compact — it is only necessary to describe a process from frequencies of O to 0.5, the latter
of which would be a cycle with a period of 2.1

The idea behind filtering is to choose a set of frequencies and then to isolate the cycles which occur
within the selected frequency range. Filters that eliminate high-frequency cycles are known as low-
pass filters, while filters that eliminate low-frequency cycles are known as high-pass filters. Moreover,
high- and low-pass filters are related in such a way that if {w;} is a set of weights corresponding
to a high-pass filter, vo = 1 —wg, v; = —w; i # 0 is a set of weights corresponding to a low-pass
filter. This relationship forms an identity since {v; + w;} must correspond to an all-pass filter since
Yo (it wi)Y,—1 =Y, for any set of weights.

The goal of a filter is to select a particular frequency range and nothing else. The gain function
describes the amount of attenuations which occurs at a given frequency.!” A gain of 1 at a particular
frequency means any signal at that frequency is passed through unmodified while a gain of 0 means
that the signal at that frequency is eliminated from the filtered data. Figure 4.10 contains a graphical
representation of the gain function for a set of ideal filters. The four panels show an all-pass (all

16The frequency % is known as the Nyquist frequency since it is not possible to measure any cyclic behavior at frequen-
cies above % since these would have a cycle of 1 period and so would appear constant.

17The gain function for any filter of the form X; = Zfﬁfoo w;Y;_; can be computed as

G(f) =Y wjexp(—ik2nf)

k=—00

where i = /—1.
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Ideal Filters
All Pass Low Pass
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Figure 4.10: These four panels depict the gain functions from a set of ideal filters. The all-pass filter
allows all frequencies through. The low-pass filter cuts off at 1L0‘ The high-pass cuts off below % and

the band-pass filter cuts off below % and above %.

frequencies unmodified), a low-pass filter with a cutoff frequency of %, a high-pass with a cutoff

frequency of +, and a band-pass filter with cutoff frequencies of % and %.18 In practice, only the
all-pass filter (which corresponds to a filter with weights wg = 1, w; = 0 for i # 0) can be constructed

using a finite sum, and so applied filtering must make trade-offs.

18Band-pass filters are simply the combination of two low-pass filters. Specifically, if {w;} is set of weights from a
low-pass filter with a cutoff frequency of f; and {v;} is a set of weights from a low-pass filter with a cutoff frequency of
F2, fo > fi, then {v; —w;} is a set of weights which corresponds to a band-pass filter with cutoffs at f; and f>.
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4.12.2 Moving Average and Exponentially Weighted Moving Average (EWMA)

Moving averages are the simplest filters and are often used in technical analysis. Moving averages
can be constructed as both causal and non-causal filters.

Definition 4.42 (Causal Moving Average). A causal moving average (MA) is a function which takes

the form
1 n
= Zl Yi—it1
1=

Definition 4.43 (Centered (Non-Causal) Moving Average). A centered moving average (MA) is a
function which takes the form

Note that the centered MA is an average over 2n + 1 data points.

Moving averages are low-pass filters since their weights add up to 1. In other words, the moving
average would contain the permanent component of {¥;} and so would have the same order of inte-
gration. The cyclic component, C; = Y; — 7;, would have a lower order of integration that ¥;. Since
moving averages are low-pass filters, the difference of two moving averages must be a band-pass fil-
ter. Figure 4.11 contains the gain function from the difference between a 20-day and 50-day moving
average, which is commonly used in technical analysis.

Exponentially Weighted Moving Averages (EWMA) are a close cousin of the MA which places
greater weight on recent data than on past data.

Definition 4.44 (Exponentially Weighted Moving Average). A exponentially weighed moving aver-
age (EWMA) is a function which takes the form

T=(1-2)) A%
i=0

for some A € (0,1).

The name EWMA is derived from the exponential decay in the weights, and EWMAs can be equiva-
lently expressed (up to an initial condition) as

T=(1—-A)AY, +A15_;.

Like MAs, EWMAs are low-pass filters since the sum of the weights is 1.

EWMAs are commonly used in financial applications as volatility filters, where the dependent
variable is chosen to be the squared return. The difference between two EWMAs is often referred
to as a Moving Average Convergence Divergence (MACD) filter in technical analysis. Two numbers
index MACDs, a fast period and a slow period, where the number of data in the MACD can be
convertedto A as A = (n—1)/(n+1), and so a MACD(12,26) is the difference between two EWMAs
with parameters .842 and .926. 4.11 contains the gain function from a MACD(12,26) (the difference
between two EWMASs), which is similar to, albeit smoother than, the gain function from the difference
of a 20-day and a 50-day MAs.
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4.12.3 Hodrick-Prescott Filter

The Hodrick and Prescott (1997) (HP) filter is constructed by balancing the fitting the trend to the
data and the trend’s smoothness. The HP filter is defined as the solution to

T T-1
mind (% —%)°+A Y (51-7) = (5 +71))
=1 =2

where (7,_| — 7;) — (T + T,_1) can be equivalently expressed as the second-difference of 7, A%7,. A
is a smoothness parameter: if A = 0 then the solution to the problem is 7, = ¥; V¢, and as A — oo, the
“cost” of variation in {7, } becomes arbitrarily high and 7, = By + B¢ where By and f; are the least
squares fit of a linear trend model to the data.

It is simple to show that the solution to this problem must have

y=I71

where I is a band-diagonal matrix (all omitted elements are 0) of the form

1+ 24 A
—2A 1454 —4A A
A —4A 1+6A —4A A
A 41 1464 —4A A

A —4A 1464 —4A A
A —4A 1464 —4A A
A —4A 1454 -2
A —2A 1+A

and The solution to this set of T equations in 7" unknowns is

’L':F_ly.

The cyclic component is defined as C; =Y, — 7;.

Hodrick and Prescott (1997) recommend values of 100 for annual data, 1600 for quarterly data,
and 14400 for monthly data. The HP filter is non-causal and so is not appropriate for prediction. The
gain function of the cyclic component of the HP filter with A = 1600 is illustrated in figure 4.11.
While the filter attempts to eliminate components with a frequency below ten years of quarterly data
(%), there is some gain until about % and the gain is not unity until approximately %

4.12.4 Baxter-King Filter

Baxter and King (1999) consider the problem of designing a filter to be close to the ideal filter subject
to using a finite number of points.'® They further argue that extracting the cyclic component requires
the use of both a high-pass and a low-pass filter — the high-pass filter is to cutoff the most persistent
components while the low-pass filter is used to eliminate high-frequency noise. The BK filter is

191deal filters, except for the trivial all-pass, require an infinite number of points to implement, and so are infeasible.
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defined by a triple, two-period lengths (inverse frequencies) and the number of points used to construct
the filter (k), and is written as BK(p, q) where p < g are the period lengths.

Baxter and King suggest using a band-pass filter with cutoffs at % and % for quarterly data. The
final choice for their approximate ideal filter is the number of nodes, for which they suggest 12. The
number of points has two effects. First, the BK filter cannot be used in the first and last k points.
Second, a higher number of nodes will produce a more accurate approximation to the ideal filter.

Implementing the BK filter is simple. Baxter and King show that the optimal weights for a low-
pass filter at a particular frequency f satisfy

Wwo = 2f (4.95)
o= Q) g (4.96)
I
k
ezpk+u‘1<r-§:w> (4.97)
i=—k
wi=wi+0,i=0,1,...k (4.98)
Wi =Ww_;. (4.99)

The BK filter is constructed as the difference between two low-pass filters, and so

k
T, = Z wiY_; (4.100)
=k
k
C=)_ (vi—w)¥ (4.101)
i=—k

where {w;} and {v;} are both weights from low-pass filters where the period used to construct {w;}
is longer than the period used to construct {v;}. The gain function of the BK|,(6,32) is illustrated in
the upper right panel of figure 4.11. The approximation is reasonable, with near unit gain between %

and % and little gain outside.

4.12.5 First Difference

Another very simple filter to separate a “trend” from a ”cyclic” component is the first difference. Note
that if ¥; is an I(1) series, then the first difference which contains the “cyclic” component, C; = %AY,,
is an I(0) series and so the first difference is a causal filter. The “trend” is measured using an MA(2),
T = % (Y, +Y,_1) so that ¥; = C; + 7;. The FD filter is not sharp — it allows for most frequencies to
enter the cyclic component — and so is not recommended in practice.

4.12.6 Beveridge-Nelson Decomposition

The Beveridge and Nelson (1981) decomposition extends the first-order difference decomposition to
include any predictable component in the future trend as part of the current trend. The idea behind the
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Actual Filters
HP Filter (Cyclic) BKj; (6,32) Filter (Cyclic)

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

First Difference MA(50) - MA(20) Difference

0.0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 03 0.4 0.5
EWMA (A =0.94) MACD(12,26)
0.5 0.5
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.11: These six panels contain the standard HP filter, the BK|,(6,32) filter, the first difference
filter, an EWMA with A = .94, a MACD(12,26) and the difference between a 20-day and a 50-day
moving average. The gain functions in the right hand column have been normalized so that the
maximum weight is 1. The is equivalent to scaling all of the filter weights by a constant, and so is
simple a change in variance of the filter output.

BN decomposition is simple: if the predictable part of the long-run component places the long-run
component above its current value, then the cyclic component should be negative. Similarly, if the
predictable part of the long-run component expects that the long-run component should trend lower,
then the cyclic component should be positive. Formally the BN decomposition is defined as

%= lim ¥, —hu (4.102)
h—o0
G=Y—-1

where u is the drift in the trend, if any. The trend can be equivalently expressed as the current level
of ¥; plus the expected increments minus the drift,

h
o =Y+ lim Z;E (AT, — u] (4.103)
1=
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where u is the unconditional expectation of the increments to Y3, E[Af’ﬂr j|,]. The trend component
contains the persistent component, and so the filter applied must be a low-pass filter, while the cyclic
component is stationary and so must be the output of a high-pass filter. The gain of the filter ap-
plied when using the BN decomposition depends crucially on the forecasting model for the short-run
component.

Suppose {Y;} is an I(1) series which has both a permanent and transitive component. Since {Y;}
is I(1), AY; must be I(0) and so can be described by a stationary ARMA(P,Q) process. For simplicity,
suppose that AY; follows an MA(3) so that

AY; =0+ 01&-1+ 6162+ 038 3+¢
In this model, 1 = ¢g, and the A-step ahead forecast is given by

AV =1+ 018+ 661+ 636
Af/wfz\t = U+ 6026 + 6384
AYt+3|t = U+ 63&
AYH—h|t =U h=>4,
and so
=Y, +(01+6,+63)&+(0,+63)g_1+ 638>

and

Ci=—(01+6:+63)&—(0:+63) &1 — 0362
Alternatively, suppose that AY; follows an AR(1) so that

AY; = ¢o+ ¢1AY, 1 + &.

This model can be equivalently defined in terms of deviations around the long-run mean, Ay; = AY; —

¢o/(1—¢1), as

AY, =0+ 91AY, 1 + &

1_
AY = 00r P 4 gAY 1
1—¢1
AY, = li%(pl 917 ?Om +01AY, 1 +&
0o oo
AY; — = AY,_ 1 —
t T— o) 0 —1 T— o) + &

AV = 01A; 1 + &.

In this transformed model, u = 0 which simplifies finding the expression for the trend. The A-step
ahead forecast if Ay is given by

A)%z+h\t = ‘PlhAyt
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and so

h
=Y +hli>nolozlAyt+”
=

h
=Y+ 1 IAS
i fim 91t
h
=Y, + lim Ay i
+ lim y,;qn

e P
=Y+ lim A
Ll
which follows since limy,_, . E?:l ¢f = —1+1limy, 00 E?:o ¢! =1/(1—¢;)—1. The main criti-
cism of the Beveridge-Nelson decomposition is that the trend and the cyclic component are perfectly
(negatively) correlation.

4.12.7 Extracting the cyclic components from Real US GDP

The cyclic component was extracted from log real US GDP data taken from the Federal Reserve Eco-
nomics Database using alternative filters. Data were available from 1947 Q1 to Q2 2020. Figure 4.12
contains the cyclical component extracted using four methods. The top panel contains the standard
HP filter with A = 1600. The middle panel contains BKj»(6,32) (solid) and BKj»(1,32) (dashed)
filters, the latter of which is a high pass-filter since the faster frequency is 1. Note that the first and
last 12 points of the cyclic component are set to 0. The bottom panel contains the cyclic component
extracted using a Beveridge-Nelson decomposition based on an AR(1) estimated on GDP growth
data. For the BN decomposition, the first 2 points are zero, reflecting the loss of data due to the first
difference and fitting the AR(1) to the first difference.2’

The HP filter and the BKj,(1,32) are remarkably similar with a correlation of over 99%. The
correlation between the BKj»(6,32) and the HP filter is 96%. The key difference between the two is
in the lack of a high-frequency component in the HP filter. The cyclic component from the BN de-
composition has a small negative correlation with the other three filters, although choosing a different
model for GDP growth would change the decomposition.

4.13 Nonlinear Models for Time-Series Analysis

While this chapter has exclusively focused on linear time-series processes, many non-linear time-
series processes have been found to provide parsimonious descriptions of the dynamics in financial
data. Two which have proven particularly useful in the analysis of financial data are Markov Switch-
ing Autoregressions (MSAR) and Threshold Autoregressions (TAR), especially the subclass of Self-
Exciting Threshold Autoregressions (SETAR).?!

20The AR(1) was chosen from a model selection search of AR models with an order up to 8 using the SBIC.
2! There are many nonlinear models frequently used in financial econometrics for modeling quantities other than the
conditional mean. For example, both the ARCH (conditional volatility) and CaViaR (conditional Value-at-Risk) models
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Cyclical Component of U.S. Real GDP
Hodrick-Prescott (A = 1600)

0.051
0.007
—0.051
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Figure 4.12: The top panel contains the filtered cyclic component from a HP filter with A = 1600. The
middle panel contains the cyclic component from BK»(6,32) (solid) and BK}>(1,32) (dashed) filters.
The bottom panel contains the cyclic component from a Beveridge-Nelson decomposition based on
an AR(1) model for GDP growth rates.

4.13.1 Markov Switching Autoregression

Markov switching autoregression, introduced into econometrics in Hamilton (1989), uses a composite
model which evolves according to both an autoregression and a latent state which determines the
value of the autoregressive parameters. In financial applications using low-frequency asset returns,
an MSAR that allows the mean and the variance to be state-dependent has been found to outperform
linear models (Perez-Quiros and Timmermann, 2000).

Definition 4.45 (Markov Switching Autoregression). A k-state Markov switching autoregression
(MSAR) is a stochastic process which has dynamics that evolve through both a Markovian state
process and an autoregression where the autoregressive parameters are state dependent. The states,

are nonlinear in the original data.
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labeled 1,2,...,k, are denoted s; and follow a k-state latent Markov Chain with transition matrix P,
pPu pi2 --- Plk
21 P22 --- P2k
p— | o F (4.104)
Pri P2 -+ DPkk

where p;j = Pr(s;+1 = i|s, = j). Note that the columns must sum to 1 since Zle Pr(s;1 =i|s; =
j) = 1. Data are generated according to a P order autoregression,

Y= 05"+ 0 Yo+ 9 Y, + 0 (4.105)
where q)(s’) = [q)ést) ¢1(s’) ,()s’)]’ are state-dependent autoregressive parameters, ) is the state-

dependent standard deviation and & ~ N(0,1).2> The unconditional state probabilities (Pr (s; = 7)),
known as the ergodic probabilities, are denoted & = [7 7, ... m]" and are the solution to

n =Pm. (4.106)

The ergodic probabilities can also be computed as the normalized eigenvector of P corresponding to
the only unit eigenvalue.

Rather than attempting to derive properties of an MSAR, consider a simple specification with two
states, no autoregressive terms, and where only the mean of the process varies>

_ ¢H + &
Y,_{ oL+ g, (4.107)
where the two states are indexed by H (high) and L (low). The transition matrix is

pP— [ PHH PHL ] _ [ pun 1 —prp (4.108)
PLH DILL l—pun  pLL

and the unconditional probabilities of being in the high and low state, 7y and 7y, respectively, are

I —prr

My = PHb (4.109)
2—pHH — DPLL

g = L PHH (4.110)
2 —PpHH — PLL

This simple model is useful for understanding the data generation in a Markov Switching process:

1. At ¢t =0 an initial state, sg, is chosen according to the ergodic (unconditional) probabilities.
With probability 7y, so = H and with probability 7, = 1 — 7y, so = L.

22The assumption that & N (0,1) can be easily relaxed to include other i.i.d. processes for the innovations.
23See Hamilton (1994, chapter 22) or Krolzig (1997) for further information on implementing MSAR models.
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2. The state probabilities evolve independently from the observed data according to a Markov
Chain. If so = H, s1 = H with probability pgy, the probability s;.1 = H given s, = H and
s1 = L with probability pry = 1 — pgg. If so = L, s = H with probability py; =1 — prr and
s1 = L with probability py;.

3. Once the state at # = 1 is known, the value of Y] is chosen according to
o +e ifsi=H
Yl - L . .
o-+¢& ifs;=L

4. Steps 2 and 3 are repeated for t = 2,3,...,T, to produce a time series of Markov Switching
data.

4.13.1.1 Markov Switching Examples

Using the 2-state Markov Switching Autoregression described above, four systems were simulated
for 100 observations.

¢ Pure mixture

- Uy =4, up = -2, Vig] = 1 in both states
- PHH =5 =DpLL
- y=n.=.5

— Remark: This is a “pure” mixture model where the probability of each state does not
depend on the past. This occurs because the probability of going from high to high is the
same as the probability of going from low to high, 0.5.

* Two persistent States

- Uy =4, up = -2, V]g] = 1 in both states
— puH = .9 = prr so the average duration of each state is 10 periods.

- 7'CH=717L=.5

Remark: Unlike the first parameterization this is not a simple mixture. Conditional on the
current state being H, there is a 90% chance that the next state will remain H.

* One persistent state, on transitory state
- ‘U,H :4, ‘LLL - —2, V[St] - 1 ifst :H and V[St] - 2 ifs, :L
- PHH =9, pLL =5
- Ty = .83, n, =.16

— Remark: This type of model is consistent with quarterly data on U.S. GDP where booms
(H) typically last 10 quarters while recessions die quickly, typically in 2 quarters.

¢ Mixture with different variances

- ug=4,u.=-2,Vig]=1ifs;, =H and V[g]| =16 if s, =L
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- PHH =5 =DpLL
- 7'L'H:7ZL:.5

— Remark: This is another “pure” mixture model, but the variances differ between the states.
One nice feature of mixture models (MSAR is a member of the family of mixture mod-
els) is that the unconditional distribution of the data may be non-normal even though the
shocks are conditionally normally distributed.?*

Figure 4.13 contains plots of 100 data points generated from each of these processes. The first
(MSAR(1)) produces a mixture with modes at -2 and 4 each with equal probability, and the states
(top panel, bottom right) are i.i.d.. The second process produced a similar unconditional distribution,
but the state evolution is very different. Each state is very persistent and, conditional on the current
state being high or low, the next state is likely to remain the same. The third process had one very
persistent state and one with much less persistence. These dynamics produced a large skew in the
unconditional distribution since the state where 1 = —2 was visited less frequently than the state with
u = 4. The final process (MSAR(4)) has state dynamics similar to the first but produces a very dif-
ferent unconditional distribution. The difference occurs since the variance depends on the state of the
Markov process.

4.13.2 Threshold Autoregression and Self-Exciting Threshold Autoregres-
sion
A second class of nonlinear models that have gained considerable traction in financial applications

are Threshold Autoregressions (TAR), and in particular, the subfamily of Self-Exciting Threshold
Autoregressions (SETAR).?

Definition 4.46 (Threshold Autoregression). A threshold autoregression is a P Order autoregres-
sive process with state-dependent parameters where the state is determined by the lagged level of an
exogenous variable X;_j for some k > 1.

Yt:d’(gsr)_f—(pl(St)Yt—l+-~-+¢I.()SZ)YZ—[7+G(SZ)8I (4111)

Let —oco =Xp < X1 < X3 <... <Xy < Xpy41 = 00 be a partition of x in to N + 1 distinct bins. s; = j
if X,y € (Xj,Xj+1).

Self-exciting threshold autoregressions, introduced in Tong (1978), are similarly defined. The
only change is in the definition of the threshold variable; rather than relying on an exogenous variable
to determine the state, the state in SETARSs is determined by lagged values of the dependent variable.

Definition 4.47 (Self Exciting Threshold Autoregression). A self exciting threshold autoregression is
a P Order autoregressive process with state-dependent parameters where the state is determined by
the lagged level of the dependent variable, Y;_; for some k > 1.

Y[:¢O(St)+¢1(St)Y[—l+---+¢I()SI)YZ‘7P+G(SI)81‘ (4112)

Z*Mixtures of finitely many normals, each with different means and variances, can be used approximate many non-
normal distributions.
258ee Fan and Yao (2005) for a comprehensive treatment of non-linear time-series models.
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Markov Switching Processes
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Figure 4.13: The four panels of this figure contain simulated data generated by the 4 Markov switching
processes described in the text. In each panel, the large subpanel contains the generated data, the top
right subpanel contains a kernel density estimate of the unconditional density and the bottom right
subpanel contains the time series of the state values (high points correspond to the high state).

Let —co=Yy <Y <Y <...<Yn <Yyy1 =00 bea partition of y in to N + 1 distinct bins. s; = j is
Yk € (¥}, Yjr1).

The primary application of SETAR models in finance has been to exchange rates which often
exhibit a behavior that is difficult to model with standard ARMA models: many FX rates exhibit
random-walk-like behavior in a range yet remain within the band longer than would be consistent
with a simple random walk. A symmetric SETAR is a parsimonious model that can describe this
behavior and is parameterized
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,=Y_14+&ifC—8<Y,<C+38 (4.113)
,=C(1—¢)+¢Y,_1+¢&ifY,<C—8orY,>C+§6

where C is the “target” exchange rate. The first equation is a standard random walk, and when Y; is
within the target band, it behaves like a random walk. The second equation is only relevant when Y;
is outside of its target band and ensures that ¥; is mean-reverting towards C as long as |¢| < 1.26 ¢
is usually assumed to lie between 0 and 1 which produces a smooth mean reversion back towards the
band.

To illustrate this process’s behavior and highlight the differences between it and a random walk,
200 data points were generated with different values of ¢ using standard normal innovations. The
mean was set to 100 and the used 6 = 5, and so Y; follows a random walk when between 95 and
105. The lag value of the threshold variable (k) was set to one. Four values for ¢ were used: 0, 0.5,
0.9 and 1. The extreme cases represent a process which is immediately mean-reverting (¢ = 0), in
which case as soon as Y; leaves the target band it is immediately returned to C, and a process that
is a pure random walk (¢ = 1) since ¥; = Y,_| + & for any value of ¥;_;. The two interior cases
represent smooth reversion back to the band; when ¢ = .5, the reversion is quick, and when ¢ = .9,
the reversion is slow. When ¢ is close to 1, it is challenging to differentiate a band SETAR from a
pure random walk, which is one of the explanations for the poor performance of unit root tests where
tests often fail to reject a unit root despite clear economic theory predicting that a time series should
be mean reverting.

4.A Computing Autocovariance and Autocorrelations

This appendix covers the derivation of the ACF for the MA(1), MA(Q), AR(1), AR(2), AR(3), and
ARMAC(1,1). Throughout this appendix, {& } is assumed to be a white noise process, and the processes
parameters are always assumed to be consistent with covariance stationarity. All models are assumed
to be mean 0, an assumption made without loss of generality since autocovariances are defined using
demeaned time series,

Y% =E[(Y; —u)(Yi—s — )]

where u = E[Y;]. Recall that the autocorrelation is simply the of the s autocovariance to the variance,

_%
Ps %
This appendix presents two methods for deriving the autocorrelations of ARMA processes: backward
substitution and the Yule-Walker equations, a set of k equations with k unknowns where Y, 71, ..., Y—1

are the solution.

4.A.1 Yule-Walker

The Yule-Walker equations are a linear system of max (P, Q) + 1 equations (in an ARMA(P, Q)) where
the solution to the system is the long-run variance and the first k — 1 autocovariances. The Yule-Walker

26Recall the mean of an AR(1) Y; = ¢o + @Y, + & is ¢ /(1 — @) where ¢9 = C(1 — ¢) and ¢; = ¢ in this SETAR.
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Self Exciting Threshold Autoregression Processes
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Figure 4.14: The four panels of this figure contain simulated data generated by a SETAR with different
values of ¢. When ¢ = 0 the process is immediately returned to its unconditional mean C = 100.
Larger values of ¢ increase the amount of time spent outside of the “target band” (95-105) and when
¢ =1, the process is a pure random walk.

equations are formed by equating the definition of an autocovariance with an expansion produced by
substituting for the contemporaneous value of ¥;. For example, suppose Y; follows an AR(2) process,

Y=Y 1+gY 2+g
The variance must satisfy

E[Y,Y,] = E[Y,($1Y,—1 + Y, 2+ &)] (4.114)
E[Y?] = E[01Y;Y,—1 + $2Y, Y2 + Vi&]
VY] = ¢iE[Y Y 1]+ :E[V}Y, o] + E[Y;&].

In the final equation above, terms of the form E[Y;Y;_] are replaced by their population values, ¥, and

E[Y,&] is replaced with its population value, 6.

VLY = GiE[NY, 1]+ GE[YY, o] +E[Y&] (4.115)
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becomes

=017+ ¢y + 0’ (4.116)

and so the long run variance is a function of the first two autocovariances, the model parameters, and
the innovation variance. This can be repeated for the first autocovariance,

E[Y;Y;_1] = ¢E]Y, 1Y 1] + %:E[Y; 1Y, 2] +E[Y;_1&]
becomes

Nn=90Y+0n, (4.117)
and for the second autocovariance,
E[Y,Y; 2] = ¢1E[Y, oY 1]+ B[V, oY, 2] + E[Y;_2&] becomes
becomes

=017+ 0%. (4.118)

Together eqgs. (4.116), (4.117) and (4.118) form a system of three equations with three unknowns. The
Yule-Walker method relies heavily on the covariance stationarity and so E[Y;Y; ;] = E[Y,_4Y;_j_ ]
for any h. This property of covariance stationary processes was repeatedly used in forming the pro-
ducing the Yule-Walker equations since E[YY;] = E[Y;_1Y,_] = E[Y;_2Y;—2] = 1 and E[YY,_{] =
E[Y;—1Y;—2] = 71.The Yule-Walker method will be demonstrated for several models, starting from a
simple MA(1) and working up to an ARMA(I1,1).

4.A1.1 MA(1)

The autocorrelations of the MA(1) are simple to derive.
Y=060i_1+¢&

The Yule-Walker equations are

E[Y,Y,] = E[6:& 1] +E[gY] (4.119)
E[Y;Y;_1] =E[61&_1Y:—1] +E[&Y;_1]
E[Y,Y,_»] =E[01&_1Y,_2] + E[&Y; 5]

% = 0c* + o> (4.120)
7 = 6,0°
=0

Additionally, both ¥, and ps, s > 2 are 0 by the white noise property of the residuals, and so the
autocorrelations are

. 9162
~ 0’c2+02
_Te%’
p2 =0.

P1
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4.A1.2 MA(Q)

The Yule-Walker equations can be constructed and solved for any MA(Q), and the structure of the
autocovariance is simple to detect by constructing a subset of the full system.
E[Y,Y;] =E[01&_1Y] + E[6:&_2Y;| + E[63&_3Y;| + ...+ E[6p&_oYi] (4.121)
Yo = 91262 + 922(72 + 932(72 +...+ 9562 + 02
=02 (1+6{+65+65+...+6))
E[Y;Y; 1] =E[61& 1Y, 1] +E[62& 2Y; 1] +E[63& 3Y, 1] +... +E[0p& oY; 1] (4.122)
Y1 = 0167+ 6016,6° + 6,067 + ...+ 60p_10p0>
=026+ 616, + 6,05 +...+0p_16p)
E[YY; 2] = E[61& 1Y, 2] + E[62& 2Y; 5] +E[638 3Y; 2] +... +E[6p&_oY; 2] (4.123)
P = 6,67+ 0,6;6° 4+ 6,0,6° +...+ 6y 090>
=0%(6,+ 0165+ 6,05 +...+0p_260p)

The pattern that emerges shows,

0—s O—s
%=00"+)> 0200, =02 (6+ ) 6i6iyy).
i=1 i=1

and so, ¥ is a sum of Q — s+ 1 terms. The autocorrelations are
P = 01+>2," 661

1+6,+32, 62

py = 6 +3226:61>

1+6,+32, 62

(4.124)

po = %
°T1ve+52 62

i=1"i

pQ+S:07 s20

4.A1.3 AR(1)

The Yule-Walker method requires be max(P, Q) + 1 equations to compute the autocovariance for an
ARMA(P,Q) process and in an AR(1), two are required (the third is included to establish this point).

Yi=01Y_1+&
E[Y,Y,] = E[g1Y, Y] + E[&Y, (4.125)

E[Y;Y;—1] =E[¢1Y,—1Y—1] +E[&Y_1]
E[Y;Y, 2] =E[¢1Y;_1Y; 2] + E[&Y;_5]
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These equations can be rewritten in terms of the autocovariances, model parameters and 6 by taking
expectation and noting that E[,Y;] = 62 since ¥; = & + ¢1&_1 + ¢128t,2 +...andE[&Y,_;]=0,7>0
since {&} is a white noise process.

Y=oy +o° (4.126)
=00
H=00n

The third is redundant since 9, is fully determined by 7y, and ¢, and higher autocovariances are
similarly redundant since y; = ¢; %1 for any s. The first two equations can be solved for ¥ and 7,

N = ¢in+o’

o= 0w
=% = ¢in+o’
=1—0iw = o’
=n(l-¢f) = o°
=N 62
O p—
1—¢7
and
o= 0
62
N =
1-¢?
2
(e}
>N = ——>.
1—¢?

The remaining autocovariances can be computed using the recursion y; = ¢1%;—1, and so

262

B0 g

Finally, the autocorrelations can be computed as ratios of autocovariances,

s 2
N o o
= ¢’11—¢%/1—¢>%
p1 =9

2 2
_ % _ s O c
Ps=1 "’11—¢%/1—¢%

ps = 9y
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4.A1.4 AR(2)

The autocorrelations in an AR(2)
V=011 +®Yi2+&
can be similarly computed using the max(P, Q) + 1 equation Yule-Walker system,
E[Y,Y,] = $iE[Y,_1Y;] + $:E[Y, oY)] + E& Y] (4.127)

E[Y}Y;_1] = ;iE[Y,_1Yi—1] + %:E[Y; 2, 1] +E[&Y, ]
E[YYi—2] = iE[Y,_1Yi—2] + $:E[Y;»Y, 2] + E[&Y, o]

and then replacing expectations with their population counterparts, 19,1, 7> and c2.

To=017i+$pp+0° (4.128)
Nn=010+0n
n=0N+0N

Further, it must be the case that ¥, = ¢1%—1 + ¢2%—> for s > 2. To solve this system of equations,

divide the autocovariance equations by 7}y, the long run variance. Omitting the first equation, the
system reduces to two equations in two unknowns,

P1 = 01p0+ P21
P2 = @11+ P2p0

since po = /% = 1.

P1 = 01+ PP
p2=¢1p1+ P

Solving this system,

pP1 =01+ d2p1
pP1— $2p1 = ¢
p1(l—¢2) =¢
0
11—

p1

and

p2=¢1p1+ ¢
01
=¢11_¢2 + 2
019+ (1)
B 1—¢,
_ it h—¢7
11—
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Since ps = @1 ps—1 + P2ps—2, these first two autocorrelations are sufficient to compute the other auto-
correlations,

pP3 = Q12+ ¢2p1
o, O+ 0o — 03
11—

o}
l—¢

+ ¢

and the long run variance of Y;,

N =0n+ oy + o’
N — 0171 — o = 07

(1 —@1p1 — $op2) = 2

62

~ 1—¢1p1 — $2p2
The final solution is computed by substituting for p; and po,

Y

o2

Y

= 2 h o2
L= 0172 — ¢ P

1—¢
_1—¢2( o’ )
1+ \ (i + o —1)(2—91—1)

4.A1.5 AR(3)

Begin by constructing the Yule-Walker equations,

E[Y,Y,] = ¢:E[Y,1Y/] + Q:E[Y,oY/] + ¢3E[Y,3Y,] + E[&Y]
E[Y,Y,_1] = ;iE[Y; 1Y, 1] + %E[Y, oY 1] + E[Y;_3Y,_1] + E[&Y;_1]
E[YYi—2] = ¢1E[Y,_1Y, 2] + $E[Y, oY, o] + Q:3E[Y,_3Y;, 5] + E[&Y; 5]
E[YY; 3] = 1E[Y; 1Y 3]+ E[Y; oY 3] + Q:E[Y, 3Y; 3] +E[gY; 4]

Replacing the expectations with their population values, ¥y, 71, ... and o2, the Yule-Walker equations
can be rewritten

0 =07+0r+¢:1+0° (4.129)
N=0n+on-+or
L=0Nn+®w+oGn
B=0r+oy+ 0B

and the recursive relationship ¥ = ¢1%—1 + ¢2%—2 + ¢3% 3 can be observed for s > 3.0mitting the
first condition and dividing by %,

pP1 = 91p0 + P01 + @302
P2 = 01p1 + 200 + 9301
pP3 = ¢1P2+ P01 + P3P0.
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leaving three equations in three unknowns since pp = /% = 1.

p1 = ¢1+92p1+ P3p2
P2 = 91p1 + 92+ 931
p3 = ¢1p2+ 9201 + §3
Following some tedious algebra, the solution to this system is
_ 01+ 0203
1= — 13— 07
L= 02+ 7 + $301 — 97
1= — 913 — 03
ps — 03+ 07 + 0703 + 0107 + 20102+ 0303 — 203 — 0107 — 93 '
1=y — 13— 03
Finally, the unconditional variance can be computed using the first three autocorrelations,
To=¢N+ ¢+ ¢3%0°
N—0Nn—hp—p=0"
(1= @101+ 9202 + $3p3) = 0>

p1

(72

T 1= 91p1 — $2p2 — B3p3
2 (1= — 9193 — 93)
(I—¢2— 35— 1) (1+ 02+ 0301 — 07) (14 ¢34+ ¢1 — ¢2)

Y

Y=

4.A.1.6 ARMA(1,1)

Deriving the autocovariances and autocorrelations of an ARMA process is more complicated than for
a pure AR or MA process. An ARMA(1,1) is specified as

=011 +016_1+¢&

and since P = Q = 1, the Yule-Walker system requires two equations, noting that the third or higher
autocovariance is a trivial function of the first two autocovariances.

E[V,Y,] = E[¢ Y _1¥] + E[61&_1Y,] +E[& ] (4.130)

E[VY, 1] =E[1Y, 1Y, 1] +E[61& 1Y, 1] +E[&Y, 1]
The presence of the E[6,&_1Y;] term in the first equation complicates solving this system since &
appears in Y; directly though 6;&_; and indirectly through ¢,Y;_;. The non-zero relationships can

be determined by recursively substituting ¥; until it consists of only &, &_ and Y;_; (since Y;_, is
uncorrelated with & _; by the WN assumption).

Yi=01Y -1+ 0161 +¢& (4.131)
=01(01Y; 2+01& 2+& 1) +01&§ 1+&
= OtY 2+ 01016 2+ G161+ 016 1+&
=0 2+ $1018 2+ ($1+61)e—1+&
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and so E[01&_1Y;] = 01(¢; + 91)62 and the Yule-Walker equations can be expressed using the popu-
lation moments and model parameters.

=017+ 61(¢1 +61)0” + o>
% =010+ 6;6°

These two equations in two unknowns which can be solved,

% =11 + 61 (¢1 + 61) 0> + o7
= ¢1(017% + 616%) + 6, (¢1 + 6,) 6% + 6>
= 029+ ¢10,6°+ 6,(¢) + 6,)6° + &>
% —07% = 62(910) + $16; + 67 + 1)

X 62(1+912+2(])191)
O:
1—¢7
Y = ¢17% + 6,67
02(1+02+2¢,0
:¢1( ( i o} 1))+9162
1— ¢
s (62(1+912+2¢191))+(1—¢12)9162
= ¢1
1—¢? 1—¢?
_ 0%(91+¢167 +29761) N (6 — 6,¢7) 0>
1—¢7 1—¢7
_ 02 (91+ 167 +29761 + 61 —9761)
1—¢7
_ 29201+ 107 + ¢1 + 6)
1—¢?
_0%(91+61) (9161 +1)
1—¢?
and so the 1%tautocorrelation is
o2 (91+6))(4161+1)
p— 1-67 _ (91461)(¢161+1)
' TR0402000)  (1+602+20161)

1-¢?
Returning to the next Yule-Walker equation,
E[V}Y; 2] = E[¢1Y, 1Y, 2] +E[01& 1Y, 2] +E[&Y, ]

and so » = ¢171, and, dividing both sized by Y, p» = ¢;p;. Higher order autocovariances and
autocorrelation follow ¥, = ¢1%;,—1 and p; = ¢;ps_1 respectively, and so p; = f_l pP1, s > 2.
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4.A.2 Backward Substitution

Backward substitution is a direct but tedious method to derive the ACF and long-run variance.

4.A2.1 AR(1)

The AR(1) process,
i=01Y-1+&

is stationary if |¢;| < 1 and {&} is white noise. To compute the autocovariances and autocorrela-
tions using backward substitution, ¥; = ¢1Y;_1 + & must be transformed into a pure MA process by
recursive substitution,

Yi=01Y1+& (4.132)
=01(01Y2+&_1)+&
=Y 2+ g1+ E
=02 (PY 3 +& o)+ &1 +&
= ¢i7’Yt—3 +ole o+ d1E-1+ &
=&+ 0161+ 078 2+ 078 3+

[ee]
Y, = Z ‘Pf &—i-
i=0

The variance is the expectation of the square,

% = V[Y;] = E[Y?] (4.133)
= E[(Z oiei)’]
i=0
[(8r+¢181 1+¢12€z 2+¢138r 3403

Z‘Pl & erZ Z o107 ie )]

i=0 j=0,i#j
0o 00 o
Zcbl & J+ED D, oiojaia )
i*()j*()i#j
00
Zcpf’Ee, : +Z Z 010{Elei ]
=0 i=0 j=0,i#j
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The difficult step in the derivation is splitting up the &_; into those that are matched to their own

lag (8z2—i) to those which are not (&_;&_j, i # j). The remainder of the derivation follows from

the assumption that {&} is a white noise process, and so E[eff‘i] = (72 and E[&_;&_;1=0, i # j.
. . . . / . 1

Finally, the identity that lim, 0 > 1o % = lim, 00 Y 1o (97) = - ¢2 for |¢| < 1 was used to

simplify the expression.The 1st autocovariance can be computed using the same steps on the MA(oco)

representation,

N = [Yth 1] (4.134)

Z¢1€l lz(p 8t l

[(8; + ¢1£t—1 + (Pl 81‘—2 + ¢)]3£l—3 + .. .)(85_1 + ¢] 8[_2 + ¢1285_3 + ¢?8t_4 + .. )]

o0 o
s
Z&“efl Y Y 0l e e ]

i=0 j=1,i#]
f/nzfm e J+ED. Y ojof e iE ]
i=0 j*l i£]
—¢1Z¢ Ele] i ,+Z Z 0{0{ 'Ele, e,
i=0 j=1,i#j
=¢1Z¢%f62+2 S oiol!
i=0 i=0 j=1,i]
(Z(I)ZI 2)
52
:¢11_¢12
=0

and the s™ autocovariance can be similarly determined.

:E[Y,Yt ] (4.135)

—E[Z(Plgt lZ‘P 8; l
= E[Z 9 g2 s_,-+Z Z oi0] e ie )]

i=0 j=s,i]

0o oo

¢IZ¢1 8[ s—i +E[Z Z (pllq)l]_sgl*igl*j]
i=0 j=s,i#j

)

=01y oo’ +D Y oie/ 0

=0 i=0 j=s,i#]
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ot (S o)
i=0
= 0%

Finally, the autocorrelations can be computed from rations of autocovariances, p; = 1 /% = ¢ and

Ps = Ys/ Yo = 07.

4.A.22 MAQ1)

The MA(1) model is the simplest non-degenerate time-series model considered in this course,
Y =016 1+&

and the derivation of its autocorrelation function is trivial since there no backward substitution is
required. The variance is

= V[Y)] = E[Ytz] (4.136)
—E[(61&_1+&)%
—E[67¢? | + 261861 + €]
—E[6¢? ] +E[2618:& 1] +E[e?]
= 0{0’>+0+0”
= o°(1467)

and the 1st autocovariance is

n =E[l Y] (4.137)
=E[(01&6_1+&)(01&_2+&_1)]
= E[Glzet_lel_z + 918,2_1 + 0188 2+ &€& 1]
—E[67¢,_16 5] +E[01€* || +E[01&& 2] +Elgg_1]
=0+6,62+0+0
= 9102

The 2™ (and higher) autocovariance is

v =E[1}Y, 2] (4.138)
=E[(01&6_1+&)(01&_3+&_2)]
=EB[0e 163+ 016_18_2+ 01663+ &€ 2]
=B[07&_1&-3] +E[016_16_2] + E[61&6&_3] + E&€ 2]
=04+0+040
=0

and the autocorrelations are p; = 0 /(1 + 912), ps=0,5>2.
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4.A.2.3 ARMA(1,1)
An ARMA(1,1) process,

=011 +016_1+¢&

is stationary if |@;| < 1 and {&} is white noise. The derivation of the variance and autocovariances
is more tedious than for the AR(1) process. It should be noted that derivation is longer and more
complex than solving the Yule-Walker equations.Begin by computing the MA(co) representation,

Y=0Y_1+01&5_1+& (4.139)
Vi =01(¢1Y; 2+ 616 2+&1)+ 0161+ &

Y, =07Y 0+ 01016 2+ 16 1+ 016 1 +&

Y, = 07 ($1Yi3+ 0163+ &2)+ $101&—2+ (¢ +6))&—1 +&

Y, = 0¥, 3+ 070163+ 9le 2+ $101&_2+ (91 +01)e—1 + &

Y, =07 (1Yi—a+016_a+&_3)+ 070163+ 01 (¢1 + 01) &2+ (91 + 01)&1 + &

Yy = 01Yi 4+ 070164+ 0763+ 070163+ 01 (91 +01) &2+ (91 + 61)&1 + &

Y= 01Y, 4+ 070164+ 07 (91 +61)&—3+91(d1+61)& 2+ (91 +61)er—1 +&

Y, =&+ (¢1+00)&_1+ 1 (¢ +01)&—2+ 97 (¢ + 613+ ...

o0
Yi=e+) 0{(61+6)e—1-

i=0

The primary issue is that the backward substitution form, unlike in the AR(1) case, is not completely
symmetric. Specifically, & has a different weight than the other shocks and does not follow the same

pattern.

0=V [1] =E[¥] (4.140)

=E

00 2
(afk§:¢ﬂ¢r+90a_k4>

i=0

=E|(&+(91+61)& 1+ (61+6)6 207 (91 +61)& 3+...) ]

[ee] o0 2
g2 +2¢ Z 01 (91 +61) &1+ (Z ol (61 +61) 8;—1—;‘)

=E

=E[¢’] +E

i=0 i=0

26 ) 01 (91+61) &1

i=0

0o 2
+E (Z 91 (91 +61) 8z1i>
i=0

. 2
=0’ +0+E (Z 01 (01 + 91)8111')
i=0

o0 o0 o0
=G HE Y o (G +00) e Y D 0i0] (146 e e
i=0

=0 j=0,ji
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o0

:GZ+Z¢2I(¢1+91 [ +Z Z 0i07 (91 +61) E [e—1_i€—1_j]

i=0 i=0 j=0,j#i

=0 +Z¢2l o1+ 6,) +Z Z ¢1¢1 (1 +61)*0

i=0 j=0,j#i

=0 +Z¢ (61+61)°

_ 621—¢12+(¢1+91)2
1—¢7
_ 621+912+2¢191
19
The difficult step in this derivations is in aligning the &_; since {&} is a white noise process. The
autocovariance derivation is reasonably involved (and presented in full detail).

N =E[YY; ] (4.141)

(& +> i (41 + 91>8t—1—i> (81‘—1 +Y 01 (o + 91)£t—2—i>]
i=0 i=0
E[(&+(¢1+61)&—1+01 (@1 +61) &2+ (91 +61)&—3+...)
(&—14(¢1+61) &2+ @1 (@1 +61) &3+ 07 (91 +61) &—a+...)]
=E [&8;1 +D 0191 +00)eg 2 i+ 9 (P1+0)e 181

i=0 i=0

+ (Z 91 (¢1+61) €z1i) (Z 91 (¢1+61) 3121‘)]
i=0 i=0

D 0l (g1+6)aE 2

i=0

=E[g&_1]+E +E

> (9 + 91)6}18;11']

i=0

<Z¢ (¢1+61)&—1- 1) <Z¢f(¢1+91)8z2i>]
i=0
<Z 01 (91 +61) 8:11') (Z 01 (91 +61) 8:21')]

i=0 i=0

=0+0+(¢1+6))0>+E

= (¢1+61)0° +E Z‘PZ’H P07l 0 i +> D 00l (h+61) e 1 &2

i=0 j=0,i#j+1

=(¢1+61)0°+E Zasz’“ 01+ 61) €5

+E Z Z ‘P1¢1 (01+61) &1 i€ 2 i

i=0 j=0,i#j+1
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o0

= (91+61) 0> +E [¢1 Y _ 7 (91+61) &2, | +0
i=0

=(01+61)0%+61>_ 07 (91+61)°E ", ]
i=0

= (01 +61)0°+91 > 7 (91 +61)° 0
i=0

(¢1+ 6, )2 c?
1—97
02| (1-97) (91+6)+ 01 (41 +61)’]
1—¢?
o2 (¢1+ 61 — ¢ — 9261 + 97 +2076, — ¢,6?)
1—¢7
o2 [Q)l + 6; +¢1291 — ¢1912]
1—¢?
020146 (0161 + 1)
1—¢7
The most difficult step in this derivation is in showing that B[Y"°0 ¢! (¢1 + 61)&_1&_1-i] = 62(¢1 +

01) since there is one &__; which is aligned to &_; (i.e. when i = 0), and so the autocorrelations
may be derived,

= (g1 +6)) 0%+ ¢

o2 (¢1+61)(¢161+1)
- 1o 4.142)
p1= 02(1+0242¢,6;) (4.
1—¢?
(01 +61)(¢16;+1)

(1462 +2¢161)

and the remaining autocorrelations can be computed using the recursion, ps = ¢1p5—1, s > 2.

Exercises

Exercise 4.1. Is the sum of two white noise processes, & = 1, + V; necessarily a white noise process?
Exercise 4.2. Suppose that ¥; follows a random walk then AY; =Y; —Y;_ is stationary.

1. IsY; —Y;_; for and j > 2 stationary?

2. Ifitis and {&} is an i.i.d. sequence of standard normals, what is the distribution of ¥; —Y,_;?

3. What is the joint distribution of ¥; —¥; _;and ¥; _, —Y,_;_j, (Note: The derivation for an arbitrary
h is challenging)?
Note: If it helps in this problem, consider the case where j =2 and h = 1.
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Exercise 4.3. Precisely describe the two types of stationarity.
Exercise 4.4. Why is stationarity a useful property?
Exercise 4.5. Write the AR(1) ¥; = ¢ + ¢1Y;—| + & as an MA(oco) assuming |¢; | < 1.

Exercise 4.6. Write the MA(1) ¥; = @o + 0, &_1 + & as an AR(co) assuming |6 < 1. Hint: ¥;_; =
do+6h& 2+& 1 =& 1=Y1— 00— & .

Exercise 4.7. What are the 1-step and 2-step optimal forecasts for the conditional mean when Y; =
Po+ ¢1Y,_1 + & where & ~ N (0,1)?

Exercise 4.8. What is the optimal 3-step forecast from the ARMA(1,2), Y; = ¢po+ ¢1Y;,—1 +01&_1 +
0,&_, + &, where & is a mean O white noise process?

Exercise 4.9. What are the 1- step and 2-step optimal mean square forecast errors when Y; = ¢o +
01&_1+ 0,&_,+ & where g ~ N(O, 1)?

Exercise 4.10. Assume {& } is a mean zero i.i.d. sequence.
1. For each of the following processes, find E;[Y;1].

@ Y=¢p+¢Y_1+&
®) Yi=d¢o+6i1&-1+&
© Yi=¢p+¢Y_1+pY 2+
(d) Y =¢o+ 9Yr 2+ &
© Y=¢p+¢Y 1+6i&1+&

2. For (a), (d) and (e), derive the h-step ahead forecast, E,[Y;,,]. What is the long run behavior of
the forecast in each case?

Exercise 4.11. Write down the characteristic equations for the systems listed below, find the roots,
and classify each as convergent, explosive, stable or metastable.

1., =1+.6Y,_1+X,

2. Y, =3+.8Y, 1 +X,

3. Y, =.6Y_+3Y_2+X

4. Y, =2.74+1.2Y,_ 1+ 2Y, 2 +X,
5. Y, =04414Y,_+ 24Y,_»,+X,
6. Y, =10— 8Y,_ +.2Y,_r+X,

Exercise 4.12. Under what conditions on the parameters are the following processes covariance sta-
tionary when & ~ WN (0,062) is w ahite noise process?

1. Y,=¢o+&
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[\

Y= +¢ Y1 tE

(98]

Y=o+ 0161+ &

N

=@+ 0Y 1+ ¢Y 2+ &

9,

Y =0+ ¢Y 2+g

@)

Yi=@+¢1Y1+ 0161+ &

Exercise 4.13. In which of the following models are the {Y;} covariance stationary, assuming {&} is
a mean-zero white noise process. If the answer is conditional, explain the conditions required. In any
case, explain your answer:

1. AY, =-02Y,_1+&

2., =0+0Y, 1 +®Y, 2+&

3., =00+0.1X, 1+, X =X,—1+ &
4. Y, =08Y;_1+¢&

Exercise 4.14. Which of the following models are covariance stationary, assuming {&} is a mean-
zero white noise process. If the answer is conditional, explain the conditions required. In any case,
explain your answer:

1. Y, = ¢o+0.8Y,_1 +0.2Y,_»+¢
2. Y, = o+ O1dj>200) T &
3. ,=0t+08&_1+ &
4. Y, =4 _1+9¢ r+¢&
5. i =&+ 16
Exercise 4.15. Assuming & ~ WN (0, 6?), compute mean E [¥;] and variance V [¥;] of:
1. Y, =¢o—0.8Y,_ +&
2. Y, =¢p+0.5¢_14+0.5¢_r+¢
3., =00+>.2, 0 i +&
Exercise 4.16. Compute the ACF and PACF for:
LY, =¢+¢Y 1+&
2. Y, =¢00—0.56_1+0.5¢_r+¢&
3., =00+>.2, 0 i +&

4. Y, = ¢o+ ¢1Y;—1 + @Y, > + & [Hard]
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Exercise 4.17. Consider an AR(1)
Yi=¢+¢Yi1+&

What are the values of the following quantities?
L. E[Yi11], E¢[¥Y41], and E/[Y42]
2. VY], Vi[Yita], and V, [V 10]
3. p—1 and po
Exercise 4.18. Consider an MA(1)

Yi=¢o+01&-1+&

1. What is a minimal set of assumptions sufficient to ensure {Y;} is covariance stationary if {&}
is an i.i.d.sequence?

2. What are the values of the following quantities?
(@) ElY11], E/[Y;41] and E;[Y; 5]
(b) V[Yl‘+1] ) Vl‘ [)]Z‘-FI]’ and Vl [Yl‘+2]
(¢) p—1 and pp
Exercise 4.19. Consider an MA(2)

=u+01&_1+6& r+&

1. What is a minimal set of assumptions sufficient to ensure {Y;} is covariance stationary if {&}
is an i.i.d. sequence?

2. What are the values of the following quantities?

(@) E[Yi41], E/[Yi41] and E;[Y; 5]

() VY], ViYiq1], Vi[Yii2]
© pnh=12734 ...

Exercise 4.20. Suppose you observe the three sets of ACF/PACF in figure 4.15. What ARMA speci-
fication would you expect in each case. Note: Dashed line indicates the 95% confidence interval for
a test that the autocorrelation or partial autocorrelation is 0.

Exercise 4.21. Justify a reasonable model for each of these time series in Figure 4.16 using informa-
tion in the autocorrelation and partial autocorrelation plots. In each set of plots, the left most panel
shows that data (7" = 100). The middle panel shows the sample autocorrelation with 95% confidence
bands. The right panel shows the sample partial autocorrelation for the data with 95% confidence
bands.

Exercise 4.22. Describe two methods that are used to estimate the parameters of ARMA models. Are
there any limitations of either estimation method?
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Autocorrelation and Partial Autocorrelation function

ACF PACF
(a)
0.50 0.5
0.25{ 88 .
0.0 -_- -_-_-_-_
0.00
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
(b)
0.5 0.5
0.0 — —
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
(©)
0.2 0.2
O-Oll-‘.l—-II. O'Ol._-l'_-lil
—0.2 —0.2
1 2 3 4 5 6 7 8 9 1011 12 1 2 3 4 5 6 7 8 9 1011 12

Figure 4.15: The ACF and PACEF of three stochastic processes. Use these to answer question 4.20.
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Figure 4.16: Plots for question problem 4.21.
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Exercise 4.23. Explain difference between what the ACF and PACF measure, and how each is useful.

Exercise 4.24. Suppose you model the difference AY, = ¢y + ¢ AY;_; + & where & ~ N (0,0%).
What are:

L. E; [AYi11], E [AY; 2]

2. Ei[Yi1], Er [Yigo)]

3. E;[AY;;4] and E; [Y; 1] for an arbitrary A
4. Vi [AYi1], Vi [AY;12]

5. Vi [Yenls Vi [Yio]

6. V;[AY; ] and V; [V}, ;] for an arbitrary &

Exercise 4.25. Determine which of the the model below are covariance stationary. If not, explain
which property of covariance stationarity they violate

LLY,=Y 1+¢&
2. Y= ¢o+0.9Y,1 — 0.3Y,— 110000 + &
3. Y, =033+1.4Y,_1—-0.45Y,_ >+ ¢&

&

Y, = @o+ Z?zz Yil|Quarter—i] T & Where data is observed quarterly

9,1

LY, =¢p+1.33g_1+¢

(@)

Y=o+ St+0.5Y,_+¢

Exercise 4.26. Describe the four key types of non-stationarity in data and provide a model that ex-
emplifies each type.

Exercise 4.27. What are the 1-step and 2-step forcasts E; [V, | from the models:
1. =¢o+0t+¢&
2. Y, =¢o+6t+¢1Y, 1 +&
3. Y, =g+ 61t + 8t + 0161+ &
4. InY, =¢o+St+&,e N (O, 62) (use properties of Lognormal random variables)
5. nY;=InY,_1+¢&,¢€ NN (O, 62) (use properties of Lognormal random variables)

Exercise 4.28. Write the following models using both lag notation and as the standard ARMA repre-
sentation where Y; is the left-hand-side variable:

1. SARIMA(1,0,0) x (1,0,0,4)

2. SARIMA(0,0,2) x (1,1,0,12)
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3. SARIMA(2,0,2) x (0,0,0,0)
4. SARIMA(1,2,1) x (0,0,0,0)
5. SARIMA(0,0,0) x (1,1,1,24)
Exercise 4.29. What are the E; [Y, +h\t] forh=1,2,3,4,5 for the following models:
1. SARIMA(1,0,1) x (1,0,1,4)
2. SARIMA(1,1,1) x (1,0,1,4)
3. SARIMA(1,0,1) x (1,1,1,4)

Exercise 4.30. What are the E; [Y,,),]| for h =1,2,3,4,5 for the model (1 —¢L) (1 — ¢L*) AgY, =
¢+ (1+6,L) (14 6,L*) &Note that the model is a SARIMA(1,0,1) x (1,1,1,4) with a non-zero
constant ¢.

Exercise 4.31. Suppose Y; is I (1) and follows a SARIMA(1,0,0) x (0, 1,0,4) where |¢;| < 1.
1. What is the model of AY;?

2. Is AY,; covariance stationary? (You can solve the problem for a specific value of |¢;| < 1 if it
helps.

Exercise 4.32. Suppose you were trying to differentiate between an AR(1) and an MA(1) but could
not estimate any regressions. What would you do?

Exercise 4.33. How are the autocorrelations and partial autocorrelations useful in building a model?

Exercise 4.34. Describe the three methods of model selection discussed in class: general-to-specific,
specific-to-general and the use of information criteria (Schwarz/Bayesian Information Criteria and/or
Akaike Information Criteria). When might each be preferred to the others?

Exercise 4.35. Consider the AR(2)
Yy=0Y 1+, 2+¢&
1. Rewrite the model with AY; on the left-hand side and ¥;_; and AY;_ on the right-hand side.

2. What restrictions are needed on ¢; and ¢, for this model to collapse to an AR(1) in the first
differences?

3. When the model collapses, what does this tell you about ¥;?

Exercise 4.36. Discuss the important issues when testing for unit roots in economic time-series.

Exercise 4.37. Outline the steps needed to determine whether a time series {Y; } contains a unit root.
Be certain to discuss the important considerations at each step, if any.
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Exercise 4.38. Determine the order integration of each of the three time time series using the ADF
test results in the table below. The column difference indicates the numebr of times the series was
differened before running the test. The included trend was one of none, a constant (Const), a constant
and time-trend (Time), or a constant and linear and quadratice time trends (Quad). The table reports
the test statistic and its p-value.

Series 1 Series 2 Series 3
Difference Trend ADF Stat P-value ADF Stat P-value ADF Stat P-value
None 6.269 1.000 1.123 0.932 1.939 0.988
Const 0.620 0.988 0.988 0.994 9.490 1.000
Time -3.624 0.028 -1.691 0.755 0.221 0.996
Quad -3.620 0.086 -3.219 0.202 -3.695 0.071
A None -1.331 0.170 0.044 0.699 0.655 0.858
A Const -7.806 0.000 -1.954 0.307 -1.651 0.457
A Time -7.829 0.000 -2.273 0.449 -11.12 0.000
A Quad -7.813 0.000 -2.263 0.699 -11.10 0.000
A? None -7.892 0.000 -15.10 0.000 -12.87 0.000
A? Const -7.876 0.000 -15.09 0.000 -12.87 0.000
A2 Time -7.858 0.000 -15.06 0.000 -12.85 0.000
A2 Quad -7.845 0.000 -15.03 0.000 -12.85 0.000

Exercise 4.39. Outline the steps needed to perform a unit root test on as time-series of FX rates. Be
sure to detail the any important considerations that may affect the test.

Exercise 4.40. The table below that contains model estimates that are nested by the augmented
Mincer-Zarnowitz regression

Yiin =0+ BYpy+ Y2+

The table reports coefficients and their 7-stats. Missing coefficient indicate that the variable was
excluded from the model. The covariance estimator used in the MZ regression is reported in the final
column.

1. Is the forecast systematically biased, on average?
2. Is the forcast error systematically related to the forecast?

3. Is the forecast error unpredictable?

h o B Y Cov. Est.
1 0.06 1.08 White
(1.34)  (29.6)

1| —0.05 1.00 236 Newey-West
(—1.43)  (34.7) (4.58)

31 —-0.17 1.02 White
(—0.87)  (12.4)
31 —-0.17 1.02 Newey-West

(=2.03) (37.8)
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Exercise 4.41. What are the expected values for o, B and ¥ when a forecasting model is well specified
in the Mincer-Zarnowitz regression,

Yion=0+ BYHh\t + VXt + N
Provide an explanation for why these values should be expected.

Exercise 4.42. Let Y, = ¢p + ¢1Y;_| + & where {&} is a WN process.

1. Derive an explicit expression for the 1-step and 2-step ahead forecast errors, €,y = Yi4n —
Yt+hlt where f’ﬂrh‘t is the MSE optimal forecast where h =1 or h = 2.

2. What is the autocorrelation function of a time-series of forecast errors {et+h|t} for h =1 and
h =27

3. Generalize the above to a generic A (In other words, leave the solution as a function of £).
4. How could you test whether the forecast has excess dependence using an ARMA model?
Exercise 4.43. Let Y; = o + 0,&_1 + 6,&_» + & with the usual assumptions on {& }.

1. Derive an explicit expression for the 1-step and 2-step ahead forecast errors, e,y = Yi4n —
Y, +h|r Where Y, +n|r 1s the MSE optimal forecast where 7 = 1 or h =2 (what is the MSE optimal
forecast?).

2. What is the autocorrelation function of a time-series of forecast errors {e;;}, h=1o0r h=2.
(Hint: Use the formula you derived above)

3. Can you generalize the above to a generic 4? (In other words, leave the solution as a function
of h).

4. How could you test whether the forecast has excess dependence using an ARMA model?

Exercise 4.44. When should you use a Diebold-Mariano test statistic instead of a Mincer-Zarnowitz
test when evaluating forecasts?

Exercise 4.45. Outline the steps needed to perform a Diebold-Mariano test that two models for the
conditional mean are equivalent (in the MSE sense).

Exercise 4.46. A Diebold-Mariano test statistic is defined using & = I — I8 where I/ is the loss
produced using the forecasts from model i. How do you interpret a Diebold-Mariano test statistic
when the test statistic is signficant and negative? What is the interpretation if the test statistic is
significant and positive? And what if it is not significant?

Exercise 4.47. What are the consequences of using White or Newey-West to estimate the covariance
in a linear regression when the errors are serially uncorrelated and homoskedastic?
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Chapter 5

Analysis of Multiple Time Series

The alternative reference for the material in this chapter is Enders (2004) (chapters 5 and 6). Chap-
ters 10-11 and 18-19 in Hamilton (1994) provide a more technical treatment of the material.

Multivariate time-series analysis extends many of the ideas of univariate time-series analysis
to systems of equations. The primary model used in multivariate time-series analysis is the
vector autoregression (VAR). Many properties of autoregressive processes extend naturally
to multivariate time-series using a slight change in notation and results from linear algebra.
This chapter examines the properties of vector time-series models, estimation and identi-
fication and introduces two new concepts: Granger Causality and the Impulse Response
Function. The chapter concludes by examining models of contemporaneous relationships
between two or more time-series in the framework of cointegration, spurious regression and

cross-sectional regression of stationary time-series.

In many applications, analyzing a time-series in isolation is a reasonable choice; in others, uni-
variate analysis is insufficient to capture the complex dynamics among interrelated time series. For
example, Campbell (1996) links financially interesting variables, including stock returns and the de-
fault premium, in a multivariate system where shocks to one variable propagate to the others. The
vector autoregression (VAR) is the standard model used to model multiple stationary time-series. If
the time series are not stationary, a different type of analysis, cointegration, is used.

5.1 Vector Autoregressions

Vector autoregressions are remarkably similar to univariate autoregressions, and most results carry
over by replacing scalars with matrices and scalar operations with their linear algebra equivalent.

5.1.1 Definition

The definition of a vector autoregression is nearly identical to that of a univariate autoregression.

Definition 5.1 (Vector Autoregression of Order P). A P™ order vector autoregression, written VAR(P),
is a process that evolves according to

Y, =P+ DY, + DY, o +...+DPpY; _p+ & 5.1
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where Y; is a k by 1 vector stochastic process, ®( is a k by 1 vector of intercept parameters, ®;,
j=1,...,P are k by k parameter matrices and & is a vector white noise process with the additional
assumption that E,_;[&;] = 0.

A VAR(P) reduces to an AR(P) when k = 1 so that Y, and the coefficient matrices, ®;, are scalars. A
vector white noise process extends the three properties of a univariate white noise process to a vector;
it is mean zero, has finite covariance and is uncorrelated with its past. The components of a vector
white noise process are not assumed to be contemporaneously uncorrelated.

Definition 5.2 (Vector White Noise Process). A k by 1 vector-valued stochastic process, {&;}is a
vector white noise if

Elg] = 0 (5.2)
Eleig ] = O
Elgg)] = X

for all  where X is a finite positive definite matrix.

The simplest VAR is a first-order bivariate specification which is equivalently expressed as

Y, =Py +P1 Y1 + &,

Yig | _ | ¢10 n 0111 12,1 Yii1 L | 8
Y2, Y20 011 9221 2,1 & |’

or

Yii=010+0111Y1—1+¢121Y2,—1+€1,
Yor=0mo+ ¢ 1Y1—1+001Y2—1+&y.

Each element of Y; is a function of each element of Y,_;.

5.1.2 Properties of a VAR(1)

The properties of the VAR(1) are straightforward to derive. Importantly, section 5.2 shows that all
VAR(P)s can be rewritten as a VAR(1), and so the properties of any VAR follow from those of a
first-order VAR.

5.1.2.1 Stationarity
A VAR(1), driven by vector white noise shocks,
Y =Py +P1Y, 1+ &

is covariance stationary if the eigenvalues of ®; are less than 1 in modulus.! In the univariate case,
this is statement is equivalent to the condition || < 1. Assuming the eigenvalues of ®; are less than
one in absolute value, backward substitution can be used to show that

IThe definition of an eigenvalue is:
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[e.9] o0
Y, =) 0@+ ) dig (5.3)
i=0 i=0
which, applying Theorem 5.3, is equivalent to
m .
Y =—®) '+ Pl (5.4)
i=0

where the eigenvalue condition ensures that @} converges to zero as i grows large.

5.1.2.2 Mean

Taking expectations of Y, expressed in the backward substitution form yields

E[Y;]=E (Ik—<1>1)’1<1>o]+E > e (5.5)
i=0

o0
=(L— @) ' ®g+ Y PE[e,_]
i=0

oo

= (L= @) ' Pp+ ) D}0
i=0

= (L—®@;) ' D

The mean of a VAR process resembles that of a univariate AR(1), (1 — ¢;)~'¢.> The long-run mean
depends on the intercept, Py, and the inverse of ;. The magnitude of the inverse is determined by

Definition 5.3 (Eigenvalue). A is an eigenvalue of a square matrix A if and only if |A — AL,| = 0 where |- | denotes
determinant.

Definition 5.4. Eigenvalues play a unique role in the matrix power operator.

Theorem 5.1 (Singular Value Decomposition). Let A be an n by n real-valued matrix. Then A can be decomposed as
A = UAV’' where VU =U'V =1, and A is a diagonal matrix containing the eigenvales of A.

Theorem 5.2 (Matrix Power). Let A be an n by n real-valued matrix. Then A = AA...A = UAV'UAV'...UAV' =
UA"V' where A" is a diagonal matrix containing each eigenvalue of A raised to the power m.

The essential properties of eigenvalues for applications to VARs are given in the following theorem:
Theorem 5.3 (Convergent Matrices). Let A be an n by n matrix. Then the following statements are equivalent
e A" —»0asm— oo.
o All eigenvalues of A, A, i = 1,2,...,n, are less than I in modulus (|A;| < 1).
* The series Y - A" =1, +A+A%+...+A" — (I, —A) "L asm — oo

Note: Replacing A with a scalar a produces many familiar results: a” — 0 as m — oo (property 1) and Z,m:o at —
(1—a)~" as m — oo (property 3) as long as |a|<I (property 2).
>When a is a scalar where |a| < 1, then >_7~ya’ = 1/ (1 —a). This result extends to a k x k square matrix A when all
of the eigenvalues of A are less than 1, so that Y20 A’ = (I — A"
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the eigenvalues of @1, and if any eigenvalue is close to one, then (I —®;)~! is large in magnitude
and, all things equal, the unconditional mean is larger. Similarly, if ®; = 0, then the mean is ®; since
{Y;} is a constant plus white noise.

5.1.2.3 Variance

Before deriving the variance of a VAR(1), it useful to express a VAR in deviations form. Define
1 = E[Y,] to be the unconditional expectation (assumed it is finite). The deviations form of the
VAR(P)

Y =P+ DY, 1 + DY, o +...+DPpY;_pt+ &

is

Y —u=2 (Y1 — )+ P (Yy2—u)+...+Pp(Yip—u)+¢ (5.6)
?l :q)l?t—l+q)2?t—2+"'+(bp?t—f’+8[~

The deviations form is mean 0 by construction, and so the backward substitution form in a VAR(1) is

Y =) ®le (5.7)

The deviations form translates the VAR from its original mean, u, to a mean of 0. The process
written in deviations form has the same dynamics and shocks, and so can be used to derive the long-
run covariance and autocovariances and to simplify multistep forecasting. The long-run covariance is
derived using the backward substitution form so that

E[(Y,—u)(Y,—un)] =E[YY,] =E <Z cpggt,.) (Z q:ﬁs;,-) ] (5.8)
0
—E Zdb & i€, CI)')

(Since &; is WN)

i=0
o0

~ S iz ()
i=0
vee (E[(Y,—p) (Y, —p)]) = Ly — @ @) vec ()

where u = (I — ®;)~'®y. The similarity between the long-run covariance of a VAR(1) and the long-
run variance of a univariate autoregression, 6 /(1 — (})12), are less pronounced. The difference between
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these expressions arises since matrix multiplication is non-commutative (AB # BA, in general). The
final line makes use of the vec (vector) operator to compactly express the long-run covariance. The
vec operator and a Kronecker product stack the elements of a matrix product into a single column.?
The eigenvalues of ®; also affect the long-run covariance, and if any are close to 1, the long-run
covariance is large since the maximum eigenvalue determines the persistence of shocks. All things
equal, more persistence lead to larger long-run covariances since the effect of any shock last longer.

5.1.2.4 Autocovariance

The autocovariances of a vector-valued stochastic process are defined

Definition 5.7 (Autocovariance). The autocovariance matrices of k by 1 vector-valued covariance
stationary stochastic process {Y;} are defined

Ty = E[(Yr — ) (Yi—s — )] (5.10)

and
Ty =E[(Y: — ) (Yirs — 1)] (5.11)
Where [,L - E[Y[] - E[Yzfj] - E[Y[+J].
The structure of the autocovariance function is the first significant deviation from the univariate

time-series analysis in chapter 4. Vector autocovarianes are reflected, and so are symmetric only when
transposed. Specifically,

3The vec of a matrix A is defined:

Definition 5.5 (vec). Let A = [q;;] be an m by n matrix. The vec operator (also known as the stack operator) is defined

vecA = . 5.9

where a; is the j column of the matrix A.
The Kronecker Product is defined:

Definition 5.6 (Kronecker Product). Let A = [;;] be an m by n matrix, and let B = [b;;] be a k by / matrix. The Kronecker
product is defined

a11B alzB alnB

ang ang aan
ARB=

auB apB ... a,B

and has dimension mk by nl.
It can be shown that
Theorem 5.4 (Kronecker and vec of a product). Let A, B and C be conformable matrices as needed. Then

vec (ABC) = (C'®A) vecB
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T #T,
but*

I,=I"_.
In contrast, the autocovariances of stationary scalar processes satisfy ¥, = y_;. Computing the auto-
covariances uses the backward substitution form so that

Iy=E[(Y,—u)(Yr—s—n)] =E ( die, ,) (Zq:l’lg,_s_,-) (5.12)
=0 J

m .
(Z q>1£z 1> ( q)llngsfi

(Zcb e,_s_,-> (Zdﬂlet_s_i)] (5.13)
i=0

i B .
< (I)l] 8t—s—i> (ZCI)I] 81—5—i> ]
i i=0

I
tr

=0+ PiE

e L

= d1VI]Y,]

and

Ty =E[(Y,—u)(Yrs—p)] =E (Z cbflst_,) (Z cbl'lstﬂ_i) ] (5.14)
i=0 i=0

i m . m . /
[ \ico i=0
/

o s—1 '
(Zcbaet_i) (Zcbaem_,) (5.15)
i=0 i=0

I
es!

[/ oo 00
=E (Z‘bﬁgt—i) <Z£;_i (cpfl)l(cp’I)S) +0
L \i=0 i=0
[/ oo . 00 )
& (Z qylgt_i) (Z ‘. (cpg)l> (@)’
L \i=0 i=0
= V [Y[] (¢/1)Y
where V[Y,] is the symmetric covariance matrix of the VAR. Like most properties of a VAR, the
autocovariance function of a VAR(1) closely resembles that of an AR(1): 7 = |S| / (1— )
|S|V Y,
¢ V.

4This follows directly from the property of a transpose that if A and B are compatible matrices, (AB)’ = B’A’.
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5.2 Companion Form
Any stationary VAR(P) can be rewritten as a VAR(1). Suppose {Y;} follows a VAR(P) process,

Yt = q)o +(D1Yt_1 +CI)2Y[_2 + o e +¢PYt—P —'— 81‘.

By subtracting the mean and stacking P lags of Y; into a large column vector denoted Z;, a VAR(P)
is equivalently expressed as a VAR(1) using the companion form.

Definition 5.8 (Companion Form of a VAR(P)). Let Y; follow a VAR(P) given by

Y =P+ P1Y, 1 +P2Y, 2+... +PpY,pt+ &

-1
where &, is a vector white noise process and y = (I - Z[f;: ! CIDP) ®y = E[Y/] is finite. The com-

panion form is

Z,=YZ,_,+¢, (5.16)
where
Y, —u
Y, —
7, = t 1. g ; (5.17)
Yipi1— U
[ @, D, Dy ... Pp_; Dp |
L 0 0 ... 0 0
Y = 0 I, 0o ... 0 0 (5.18)
i o o0 o0 . I; 0 |
and i
& > 0 0
0 , 00 ... 0
=\ . |E&&I=|. . . . |- (5.19)
0 0 0 ... 0_

The properties of a VAR(P) are identical to that of its companion form VAR(1). For example, VAR(P)
is covariance stationary if all of the eigenvalues of Y - there are k X P of them - are less than one in
absolute value (modulus if complex).5

5.3 Empirical Examples

Two examples from the macrofinance literature are used throughout this chapter to illustrate the ap-
plication of VARs.

>The companion form is also useful when working with univariate AR(P) models. An AR(P) can be equivalently
expressed as a VAR(1), which simplifies computing properties such as the long-run variance and autocovariances.
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5.3.1 Example: The interaction of stock and bond returns

Stocks and bonds are often thought to hedge one another. VARs provide a simple method to determine
whether their returns are linked through time. Consider the VAR(1)

VWM, | _ | ¢o1 n 0111 12,1 VWM, L | 8

TERM, (13%) d11 P21 TERM; 4 &
where VWM, is the return on the value-weighted-market portfolio and 7 ERM;is the return on a port-
folio that is long the 10-year and short the 1-year U.S. government bond. The VAR contains a model

for stock returns
VWM, = ¢o1 + ¢11,1VWM; 1 + 012\ TERM, | + €1,

and a model for the return on the term premium,
TERM; = ¢o1 + ¢211VWM,_1 + ¢20 |1 TERM,_1 + &4

Since these models do not share any parameters, the coefficient can be estimated equation-by-equation
using OLS.® A VAR(1) is estimated using monthly return data (multiplied by 12) for the VWM from
CRSP and the 10-year constant maturity treasury yield from FRED covering the period February 1962
until December 2018.”

0.801 0.059 0.166
VWM; | | (0.000) (0.122)  (0.004) VWM,_4 €l
TERM, | — | 0.232 —0.104 0.116 | | TERM, &,
(0.041) (0.000)  (0.002)

The p-value of each coefficient is reported in parenthesis. The estimates indicate that stock returns
are not predictable using past stock returns but are predictable using the returns on the lagged term
premium: positive returns on the term premium lead increase expected returns in stocks. In contrast,
positive returns in equities decrease the expected return on the term premium. The annualized long-
run mean can be computed from the estimated parameters as

12 % Loy 0.059 0.166 1\ " [ 0.801 | 10.558
01 —0.104 0.116 0232 | | 1.907 |’

These model-based estimates are similar to the sample averages of returns of 10.57 and 1.89 for VWM
and TERM, respectively.

5.3.2 Example: Monetary Policy VAR

VARs are widely used in macrofinance to model closely related macroeconomic variables. This exam-
ple uses a 3-variable VAR containing the unemployment rate, the effective federal funds rate, which
is the rate that banks use to lend to each other, and inflation. Inflation is measured using the implicit

Theoretical motivations often lead to cross-parameter equality restrictions in VARs. These models cannot be esti-
mated equation-by-equation. A VAR subject to linear equality restrictions can be estimated using a system OLS estimator.

"The yields of the bonds are converted to prices, and then returns are computed as the log difference of the prices plus
accrued interest.



5.3 Empirical Examples 327

Raw Data
AlnUNEMP,_, FF,_; AINF,_;
AlnUNEMP; 0.624 0.015 0.016
(0.000) (0.001) (0.267)
FF; —0.816 0.979 —0.045
(0.000) (0.000) (0.317)
AINF,; —0.501 —-0.009 —0.401
(0.010) (0.626) (0.000)

Standardized Series
AlnUNEMP,_, FF,_; AINF,_;

AlnUNEMP, 0.624 0.153 0.053

(0.000)  (0.001) (0.267)

FF; —0.080 0979 —-0.015
(0.000) (0.000)  (0.317)

AINF, —0.151 -0.028 —0.401
(0.010)  (0.626) (0.000)

Table 5.1: Parameter estimates from the monetary policy VAR. The top panel contains estimates using
original, unmodified values while the bottom panel contains estimates from data standardized to have
unit variance. While the magnitudes of many coefficients change, the p-values and the eigenvalues of
the parameter matrices are identical, and the parameters are roughly comparable since the series have
the same variance.

GDP price deflator. Two of the three variables, the unemployment and inflation rates, appear to be
nonstationary when tested using an ADF test, and so are differenced.®

Using a VAR(1) specification, the model can be described

AUNEMP; AUNEMP; _, €1y
FF[ - q)() + q)l FFl‘—l + 827t
AINF; AINF;_; €3

Two sets of parameters are presented in Table 5.1. The top panel contains estimates using non-
scaled data. The bottom panel contains estimates from data where each series is standardized to have
unit variance. Standardization produces coefficients that have comparable magnitudes. Despite this
transformation and very different parameter estimates, the p-values remain unchanged since OLS
t-stats are invariant to rescalings of this type. The eigenvalues of the two parameter matrices are
identical, and so the estimate of the persistence of the process is not affected by standardizing the
data.

8 All three series, UNRATE (unemployment), DFF (Federal Funds), and GDPDEF (deflator), are available in FRED.
The unemployment and Federal Funds rates are aggregated to quarterly by taking the mean of all observations within a
quarter. The inflation rate is computed from the deflator as 4001n (GDPDEF; /GDPDEF,_ ).
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5.4 VAR forecasting

Constructing forecasts of a vector time series is identical to constructing the forecast from a single
time series. h-step forecasts are recursively constructed starting with E, [Y,;], using E;[Y;4{] to
construct E; [Y; ], and continuing until E; [Y;].

Recall that the h-step ahead forecast, ¥, +a)r iInan AR(1) 18

h—1
E[Yiin] = 6{00+ 91,
j=0

The h-step ahead forecast of a VAR(1) , Y, +h|r- has the same structure, and is

h—1
EfYi] =) @@ +P}Y,.
j=0

This formula can be used to produce multi-step forecast of any VAR using the companion form.
In practice, it is simpler to compute the forecasts using the deviations form of the VAR since it
includes no intercept,

Y =0, Y, 1 +DY, o+...+PpY,pte,

where u = (Iy—®;—...— CIDP)_1 Ppand Y, =Y, — u are mean 0. The h-step forecasts from the
deviations form are computed using the recurrence

Et [?Hh] = chEt Wﬂrh—l] + CDZEI [?Hh—z] + ...+ CI)PEz [Yz+h—P]-

starting at E,[Y,,{]. Using the forecast of E,[Y,,], the h-step ahead forecast of Y, is constructed
by adding the long-run mean, E,[Y,, ] = 1 +E/[Y,11].

5.4.1 Example: Monetary Policy VAR

Forecasts from VARSs incorporate information beyond the history of a single time series. Table 5.2
contains the relative Mean Square Error of out-of-sample forecasts for the three variables in the policy
VAR. Each set of forecasts is produced by recursively estimating model parameters using a minimum
of 50% of the available sample. Forecasts are produced for up to 8 quarters ahead. Each series is also
forecast using a univariate AR model.

The out-of-sample MSE of the forecasts from a model is defined

T—h
MSE = 1/T—h—R Z (Yn — f/t+h|t)2
=R

where R is the size of the initial in-sample period, Y;, is the realization of the variable in period ¢ 4 A,
and YHM, is the h-step ahead forecast produced at time . The relative MSE is defined as

MSE

Relative MSE =
elative MSE,,
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VAR AR

Horizon Series Restricted Unrestricted Restricted Unrestricted
Unemployment 0.522 0.520 0.520 0.521

1 Fed. Funds Rate 0.887 0.903 0.917 0.927
Inflation 0.869 0.868 0.839 0.839
Unemployment 0.716 0.710 0.743 0.745

2 Fed. Funds Rate 0.923 0.943 1.102 1.119
Inflation 1.082 1.081 1.030 1.030
Unemployment 0.872 0.861 0.962 0.965

4 Fed. Funds Rate 0.952 0.976 1.071 1.098
Inflation 1.000 0.999 0.998 0.998
Unemployment 0.820 0.806 0.971 0.977

8 Fed. Funds Rate 0.974 1.007 1.058 1.105
Inflation 1.001 1.000 0.998 0.997

Table 5.2: Relative out-of-sample Mean Square Error for forecasts between 1 and 8-quarters ahead.
The benchmark model is a constant for the unemployment rate and the inflation rate and a random
walk for the Federal Funds rate. Model parameters are recursively estimated, and forecasts are pro-
duced once 50% of the available sample. Model order is selected using the BIC.

where MSE,,, is the out-of-sample MSE of a benchmark model. The Federal Funds rate is modeled
in levels, and so the benchmark model is a random walk. The other two series are differenced, and so
use the historical mean (an AR(0)) as the benchmark model. The number of lags in either the VAR or
the AR is selected by minimizing the BIC (see Section 5.5).

Each model is estimated using two methods, the standard estimator and a restricted estimator
where the long-run mean forced to match the in-sample mean. The restricted model is estimated in
two steps. First, the sample mean is subtracted, and then the model is estimated without a constant.
The forecasts are then constructed using the sample mean plus the forecast of the demeaned data.
The two-step estimator ensures that the model mean reverts to the historical average. The unrestricted
model jointly estimates the intercept with the parameters that capture the dynamics and so does not
revert (exactly) to the sample mean even over long horizons. These two method can produce qual-
itatively different forecasts in persistent time series due to differences in the average values of the

data used as lags (Yt_j = (T —P)_1 ZtT;Pj_jHY, for j =1,2,...,P) and the average value of the

contemporaneous values (Y; = (T — P)_1 Z;T: p+1 Yr). The two-step estimator uses the same mean
value for both, Y = 7! Zle Y;.

The VAR performs well in this forecasting problem. It produced the lowest MSE in 7 of 12
horizon-series combinations. When it is not the best model, it performs only slightly worse than
the autoregression. Ultimately, the choice of a model to use in forecasting applications — either
multivariate or univariate — is an empirical question that is best answered using in-sample analysis
and pseudo-out-of-sample forecasting.
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5.5 Estimation and Identification

Understanding the dependence structure in VAR models requires additional measures of cross-variable
relationships. The cross-correlation function (CCF) and partial cross-correlation function (PCCF) ex-
tend the autocorrelation and partial autocorrelation functions used to identify the model order in a
single time series.

Definition 5.9 (Cross-correlation). The st cross correlations between two covariance stationary series
{x;} and {Y;} are defined

E[(xt — ,ux) (Yt—s - .uy)]
Vx| V(Y]

Prys = (5.20)

and
E[(Y; — py) (xr—5 — )]
V[x,]V[Y,]

Pyx,s = (5.21)

where the order of the indices indicates the lagged variable, E[Y;] = u, and E[x;] = p,.

Cross-correlations, unlike autocorelations, are not symmetric in the order of the arguments. Partial
cross-correlations are defined using a similar extension of partial autocorrelation as the correlation
between x; and Y;_ controlling for ¥;_q,... Y (s—1)-

Definition 5.10 (Partial Cross-correlation). The partial cross-correlations between two covariance
stationary series {x;} and {Y;} are defined as the population values of the coefficients ¢y, in the
regression

X =00+ Oax;—1+...+ ¢XS,1Xt,(s,1) + ¢y1Y171 +...+ (pysletf(sfl) + (ny,sYt—s + Ex (5.22)
and @, ¢ in the regression
Y, = ¢0 + ¢y1Yt—l +...+ ¢ys—1Yz—(s—]) + ¢x1xt—1 +...+ ¢xs—1xt—(s—1) + (Pyx,sxt—s + gy,t (523)

where the order of the indices indicates which lagged variable. In a k-variable VAR, the PCCF of
series i with respect to series j is the population value of the coefficient @yy;s in the regression

Yi=¢o+0\ Y 1+...+ 0, | +0ryYjis+&

where ¢ ; are 1 by k vectors of parameters.

The controls in the s partial cross-correlation are included variables in a VAR(s-1). If the data are
generated by a VAR(P), then the s™ partial cross-correlation is 0 whenever s > P. This behavior
is analogous to the behavior of the PACF in an AR(P) model. The PCCF is a useful diagnostic to
identify the order of a VAR and for verifying the order of estimated models when applied to residuals.

Figure 5.1 plots 1,000 simulated data points from a high-order bivariate VAR. One component
of the VAR follows a HAR(22) process with no spillovers from the other component. The second
component is substantially driven by both spillovers from the HAR and its own innovation. The
complete specification of the VAR(22) is
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Simulated data from a VAR(22)

o W v Wl WWM

200 400 00 00 1000

Figure 5.1: Simulated data from the VAR(22) in eq. (5.24). Both processes are stationary but highly
persistent and have a high degree of comovement.

5 22
x| 105 09 Xi—1 0O O Xi—i 0 O Xi—j Exy
U s [l e 2 e o [0 s )
(5.24)
Figure 5.2 contains plots of the theoretical ACF and CCF (cross-correlation function) of this VAR.
Both ACFs and CCFs indicate that the series are highly persistent. They also show that both variables
are a strong predictor of either at any lag since the squared correlation can be directly interpretable
as an R?. Figure 5.3 contains plots of the partial auto- and cross-correlation function. These are
markedly different from the ACFs and CCFs. The PACF and PCCF of x both cut off after one lag.
This happens since x has O coefficients on all lagged values after the first. The PACF and PCCF of y
are more complex. The PACF resembles the step-function of the coefficients in the HAR model. It
cuts off sharply after 22 lags since this is the order of the VAR. The PCCF of y is also non-zero for
many lags, and only cuts off after 21. The reduction in the cut-off is due to the structure of the VAR
where x is only exposed to the lagged value of y at the first lag, and so the dependence is reduced by
one.

These new definitions enable the key ideas of the Box-Jenkins methodology to be extended to vec-
tor processes. While this extension is technically possible, using the ACF, PACF, CCF, and PCCF
to determine the model lag length is difficult. The challenge of graphical identification of the or-
der is especially daunting in specifications with more than two variables since there are many de-
pendence measures to inspect — a k-dimensional stochastic process has 2 (k2 — k) distinct auto- and
cross-correlation functions.

The standard approach is to adopt the approach advocated in Sims (1980). The VAR specification
should include all variables that theory indicates are relevant, and the lag length should be chosen so
that the model has a high likelihood of capturing all of the dynamics. Once the maximum value of
the lag length is chosen, a general-to-specific search can be conducted to reduce the model order, or
an information criterion can be used to select an appropriate lag length. In a VAR, the Akaike IC,
Hannan and Quinn (1979) IC and the Schwarz/Bayesian IC are
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Figure 5.2: The four panels contain the ACFs and CCFs of the VAR(22) process in eq. (5.24).

AIC:  In|E(P)|+k*P=
HQIC:  In|Z(P)|

BIC:  In|&(P)|+k*P—

2

T
+k2P21nlnT

T
InT

T

where £(P) is the covariance of the residuals estimated using a VAR(P) and | - | is the determinant.® All
models must use the same values on the left-hand-side irrespective of the lags included when choosing
the lag length. In practice, it is necessary to adjust the sample when estimating the parameters of
models with fewer lags than the maximum allowed. For example, when comparing models with up to
2 lags, the largest model is estimated by fitting observations 3,4,...,T since two lags are lost when
constructing the right-hand-side variables. The 1-lag model should also fit observations 3,4,...,T
and so observation 1 is excluded from the model since it is not needed as a lagged variable.

%In|Z| is, up to an additive constant, the Gaussian log-likelihood divided by T. These three information criteria are all
special cases of the usual information criteria for log-likelihood models which take the form —L + P;c where Pjc is the
penalty which depends on the number of estimated parameters in the model and the information criterion.
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Partial Auto and Cross Correlations
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Figure 5.3: The four panels contain the PACFs and PCCFs of the VAR(22) process in eq. (5.24).
Values marked with a red x are exactly 0.

The lag length should be chosen to minimize one of the criteria. The BIC has the most substantial
penalty term and so always chooses a (weakly) smaller model than the HQIC. The AIC has the small-
est penalty, and so selects the largest model of the three ICs. Ivanov and Kilian (2005) recommend
the AIC for monthly models and the HQIC for quarterly models unless the sample size is less than
120 quarters. In short samples, the BIC is preferred. Their recommendation is based on the accuracy
of the impulse response function, and so may not be ideal in other applications, e.g., forecasting.

Alternatively, a likelihood ratio test can be used to test whether to specifications are equivalent.
The LR test statistic is

(T = Pok?) (In|E(P)| = In[£(P)[) ~ Ao, _p, 1o

»—Py)k
where P; is the number of lags in the restricted (smaller) model, P, is the number of lags in the
unrestricted (larger) model and k is the dimension of Y;. Since model 1 is a restricted version of
model 2, its covariance is larger and so this statistic is always positive. The —P>k? term in the log-
likelihood is a degree of freedom correction that generally improves small-sample performance of
the test. Ivanov and Kilian (2005) recommend against using sequential likelihood ratio testing in lag
length selection.
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Lag Length AIC HQIC BIC LR P-val

0 4.014 3.762 3.605 925 0.000
1 0.279 0.079 0.000Y4  39.6 0.000
2 0.190 0.042 0.041 40.9 0.000
3 0.096 0.000" 0.076 29.0 0.001
4 0.050" 0.007 0.160 7.34 0.602"
5 0.094 0.103 0.333 29.5 0.001
6 0.047 0.108 0.415 13.2 0.155
7 0.067 0.180 0.564 32.4 0.000
8 0.007 0.1724 0.634 19.8 0.019
9 0.0004 0.217 0.756 7.68 0.5664
10 0.042 0.312 0.928 13.5 0.141
11 0.061 0.382 1.076 13.5 0.141
12 0.079 0.453 1.224 - -

Table 5.3: Normalized values for the AIC, HQIC, and BIC in a Monetary Policy VAR. The informa-
tion criteria are normalized by subtracting the smallest value from each column. The LR and P-value
in each row are for a test with the null that the coefficient on lag / + 1 are all zero (Hy : ;1 = 0) and
the alternative H; : ®;, | # 0. Values marked with ¥ indicate the lag length selected using a specific-
to-general search. Values marked with A indicate the lag length selected using general-to-specific.

5.5.1 Example: Monetary Policy VAR

The Monetary Policy VAR is used to illustrate lag length selection. The information criteria, log-
likelihoods, and p-values from the LR tests are presented in Table 5.3. This table contains the AIC,
HQIC, and BIC values for lags 0 (no dynamics) through 12 as well as likelihood ratio test results for
testing / lags against / 4+ 1. Note that the LR and P-value corresponding to lag / test the null that the
fit using [/ lags is equivalent to the fit using / 4+ 1 lags. Using the AIC, 9 lags produces the smallest
value and is selected in a general-to-specific search. A specific-to-general search stops at 4 lags since
the AIC of 5 lags is larger than the AIC of 4. The HQIC chooses 3 lags in a specific-to-general
search and 9 in a general-to-specific search. The BIC selects a single lag irrespective of the search
direction. A general-to-specific search using the likelihood ratio chooses 9 lags, and a hypothesis-
test-based specific-to-general procedure chooses 4. The specific-to-general stops at 4 lags since the
null Hy : P = 4 tested against the alternative that H; : P = 5 has a p-value of 0.602, which indicates
that these models provide similar fits of the data.

Finally, the information criteria are applied in a “global search” that evaluates models using every
combination of lags up to 12. This procedure fits a total of 4096 VARs (which only requires a few
seconds on a modern computer), and the AIC, HQIC, and the BIC are computed for each.!® Using
this methodology, the AIC search selected lags 1-3 and 7-9, the HQIC selects lags 1-3, 6, and 8, and
the BIC continues to select a parsimonious model that includes only the first lag. Search procedures
of this type are computationally viable for checking up to 20 lags.

10For a maximum lag length of L, 2 models must be estimated.
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5.6 Granger causality

Granger causality (GC, also known as prima facia causality) is the first concept exclusive to vector
analysis. GC is the standard method to determine whether one variable is useful in predicting another
and evidence of Granger causality it is a good indicator that a VAR, rather than a univariate model, is
needed.

Granger causality is defined in the negative.

Definition 5.11 (Granger causality). A scalar random variable x; does not Granger cause Y; if E[Y; |x;—1,Y;—1,%_2,’
E[Y;|,Y;_1,Y;_2,...]."1 Thatis, x, does not Granger cause Y; if the forecast of ¥; is the same whether
conditioned on past values of x; or not.

Granger causality can be simply illustrated in a bivariate VAR.

{ Xt } _ { P11 121 } { Xi—1 } n { P12 P22 } { Xt—2 } + { €l }
Y 21,1 P21 Y1 012 ¢ Y, » €
In this model, if ¢»1,1 = ¢21 2 = 0 then x; does not Granger cause Y;. Note that x; not Granger causing
Y; says nothing about whether Y; Granger causes x;.
An important limitation of GC is that it does not account for indirect effects. For example, suppose

x; and Y; are both Granger caused by Z;. x; is likely to Granger cause Y; in a model that omits Z; if
EY|Y,—1,%_1,...] #E[Y|Y;_1,...] even though E[Y;|Y;_1,Z;_,x;—1,...] = E[Y;|Y;—1,Z—1,.. ]

Testing

Testing Granger causality in a VAR(P) is implemented using a likelihood ratio test. In the VAR(P),

Y, =Pg+P1Y;, 1 +PY, o+... +PpY,_p+¢&,

Y;, does not Granger cause Y;; if ¢;;1 = ¢;j2 = ... = ¢;j p = 0. The likelihood ratio test statistic
for testing the null Hy : ¢;;,, = 0, Vm € {1,2,...,P} against the alternative H; : ¢;j, # 0 Im €
{1,2,...,P}is

& & A
(T — (PK*—k)) (In[Z,| —1n|Z,) ~ xp

where X, is the estimated residual covariance when the null of no Granger causation is imposed
(Ho: ¢jj1 = ¢ijo=...= ¢;jp=0)and X, is the estimated covariance in the unrestricted VAR(P).'2

5.6.1 Example: Monetary Policy VAR

The monetary policy VAR is used to illustrate testing Granger causality. Table 5.4 contains the results
of Granger causality tests in the monetary policy VAR with three lags (as chosen by the HQIC). Tests
of a variable causing itself have been omitted since these are not informative about the need for a

Technically, this definition is for Granger causality in the mean. Other definition exist for Granger causality in the
variance (replace conditional expectation with conditional variance) and distribution (replace conditional expectation with
conditional distribution).

2The multiplier in the test is a degree of freedom adjusted factor. There are T data points, and there are Pk*> —k
parameters in the restricted model.
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Fed. Funds Rate Inflation Unemployment
Exclusion P-val Stat  P-val Stat  P-val Stat
Fed. Funds Rate - — 0.001 13.068 0.014  8.560
Inflation 0.001  14.756 - - 0375 1.963
Unemployment 0.000  19.586 0.775  0.509 - -
All 0.000  33.139 0.000 18.630 0.005 10.472

Table 5.4: Tests of Granger causality. This table contains tests where the variable on the left-hand
side is excluded from the regression for the variable along the top. Since the null is no GC, rejection
indicates a relationship between past values of the variable on the left and contemporaneous values of
variables on the top.

multivariate model. The table contains tests whether the variables in the left-hand column Granger
Cause the variables labeled across the top. Each row contains a p-value indicating significance using
standard test sizes (5 or 10%), and so each variable causes at least one other variable. Column-by-
column examination demonstrated that every variable is caused by at least one other variable. The
final row labeled All tests the null that a univariate model performs as well as a multivariate model by
restricting all variable other than the target to have zero coefficients. This test further confirms that
the VAR is required for each component.

5.7 Impulse Response Functions

In the univariate world, the MA(co) representation of an ARMA is sufficient to understand how a
shock decays. When analyzing vector data, this is no longer the case. A shock to one series has an
immediate effect on that series, but it can also affect the other variables in the system which, in turn,
feed back into the original variable. It is not possible to visualize the propagation of a shock using
only the estimated parameters in a VAR. Impulse response functions simplify this task by providing
a visual representation of shock propagation.

5.7.1 Defined

Definition 5.12 (Impulse Response Function). The impulse response function of ¥;, an element of Y,
with respect to a shock in €}, an element of €, for any j and i, is defined as the change in Yj; 4, s > 0
for a one standard deviation shock in €; ;.

This definition is somewhat difficult to parse and the impulse response function easier to under-
stand using the vector moving average (VMA) representation of a VAR.!> When Y, is covariance
stationary then it must have a VMA representation,

Yi=u+&+E1& 1+E262+...

3Recall that a stationary AR(P) can also be transformed into a MA(oco). Transforming a stationary VAR(P) into a
VMA(c0) is the multivariate time-series analogue.
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Using this VMA, the impulse response of ¥; with respect to a shock in €; at period 4 is

IRF, = O'thej (525)

where e; is a vector of Os with 1 in position j, e; = |0,...,0,1,0,...,0| and where o; is the stan-
—— N —

j—1 k—j
dard deviation of €;. These impulse responses are then {G], G]_[l },G]_gl],cjigi], .. } if i=j and
{O G]:[llﬂ,cj_[zu],ajug ], } otherwise where E,[,ﬂ is the element in row i and column j of X,,. The

coefficients of the VMA can be computed from the VAR using the relationship
Ej = CI)IEJ‘,1 -I-CI)zEj,z-l- .. -I-CI)pEj_P

where £y = I; and &, = 0 for m < 0. For example, in a VAR(2),

Y =P1Y, 1 + P Y, 2+ &,
Bo=I Z1 =@, Er = D} + &y, and E3 = B} + DD, + DDy,

5.7.2 Orthogonal Impulse Response Functions

The previous discussion assumed shocks are uncorrelated so that a shock to component j had no
effect on the other components of the error. This assumption is problematic since the shocks are
often correlated, and so it is not possible to change one in isolation. The model shocks have covari-
ance Cov [g,] = X, and so a set of orthogonal shocks can be produced as 1, = r e, Using these
uncorrelated and standardized shocks, the VMA is now

Y, =p+e+5 28 e +EXPE e 4
— w4+, +En, Bt
where £,, = E,,X"2. The impulse response for a shock to series j in period £ is X Ve ; j in period 0,
OIRF), = Ze; (5.26)

for h > 1. If X is diagonal, then these impulse responses are identical to the expression in eq. (5.25).
In practice, the Cholesky factor is used as the square root of the covariance matrix. The Cholesky
factor is a lower triangular matrix which imposes a de facto ordering to the shocks. For example, if

11
=14

1 10
=1 5]

/
so that X = EIC/Z (ZIC/2> . Shocking element j has an effect of every series the appears after j (j,...,k)

then the Cholesky factor is

but not on the first j — 1 (1,...,j—1). In some contexts, it is plausible that there is a natural order to
the shocks since some series are faster than others.
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In the monetary policy VAR, it is commonly assumed that changes in the Federal Funds rate
immediately spillover to unemployment and inflation, but that unemployment and inflation only feed-
back into the Federal Funds rate with a lag. Similarly, it is commonly assumed that changes in
unemployment affect inflation immediately, but that inflation does not have a contemporaneous im-
pact on unemployment. When using the Cholesky factor, the impulse responses depend on the order
of the variables in the VAR. Additionally, in many important applications — for example when a VAR
includes multiple financial variables — then there is no plausible method to order the shocks since
financial variables are likely to react simultaneously to a shock.

The leading alternative to the using the Cholesky factor is to use a Generalized Impulse Response
function (Pesaran and Shin, 1998). This method is invariant to the order of the variables since it does
not use a matrix square root. The GIRF is justified as the difference measuring between the conditional
expectation of Y, given shock j is one standard deviation and the conditional expectation of Y, ,

E [Yiinlej = 0] —E; [Yiqu)].

When the VAR is driven by normally distributed errors, this expression is

GIRF, = 0} 'E;Ze;. (5.27)

The GIRF is equivalently expressed as

- / —_ /
G [Glj,sz,---,ij} /Cjjx 0; =& [ﬁlj,ﬁzj,---,ﬁkj} O

where f3;; is the population value of th regression coefficient of regressing €; on €;.

5.7.3 Example: Impulse Response in the Monetary Policy VAR

The monetary policy VAR is used to illustrate impulse response functions. Figure 5.4 contains the
impulse responses of the three variable to the three shocks. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky, and it is assumed that
the shock to the Federal Funds Rate impacts all variables immediately, the shock the unemployment
affects inflation immediately but not the Federal Funds rate, and that the inflation shock has no im-
mediate effect. The unemployment rate is sensitive to changes in the Federal Funds rate, and one
standard deviation shock reduces the change (AUNEMP;) in the unemployment rate by up to 0.15%
as the impulse evolves.

5.7.4 Confidence Intervals

Impulse response functions, like the parameters of the VAR, are estimated quantities and subject to
statistical variation. Confidence bands are used to determine whether an impulse response different
from zero. Since the parameters of the VAR are asymptotically normally distributed (as long as it
is stationary and the innovations are white noise), the impulse responses also asymptotically normal,
which follows as an application of the 0-method. The analytical derivation of the covariance of the
impulse response function is tedious (see Section 11.7 in Hamilton (1994) for details). Instead, two
computational methods to construct confidence bands of impulse response functions are described:
Monte Carlo and bootstrap.
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Impulse Response Function

Inflation Rate Inflation Rate Inflation Rate
to Inflation Shock to Unemployment Shock to Fed Funds Shock
()_1-..--""-1_‘ 0.101 .........
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01t 0.00 e
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Unemployment Rate Unemployment Rate Unemployment Rate
to Inflation Shock to Unemployment Shock to Fed Funds Shock

021 ¥
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Federal Funds Rate Federal Funds Rate Federal Funds Rate

to Inflation Shock to Unemployment Shock to Fed Funds Shock

4 8 12 16 4 8 12 16 4 8 12 16

Figure 5.4: Impulse response functions for 16 quarters. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky so that a shock to the
Federal Funds rate spills over immediately to the other two variables, an unemployment shock spills
over to inflation, and an inflation shock has no immediate effect on the other series.

5.7.4.1 Monte Carlo Confidence Intervals

Monte Carlo confidence intervals come in two forms, one that directly simulates ®; from its asymp-
totic distribution and one that simulates the VAR and draws ®; as the result of estimating the unknown
parameters in the simulated VAR. The direct sampling method is simple:
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. Compute 6 from the data and estimate the covariance matrix A in the asymptotic distribution

VT(6-6) AN (0,A) where 6 is the collection of all model parameters, ®(,®1, ..., ®p and X.

. Using 6 and A, generate simulated values fiDOb,CiDI by ,(Appb and ZA‘,b from the asymptotic distri-

2

bution as & +A'/°€ where £ % N(0,Li2(p,1))- These arei.i.d.draws froma N(6,A) distribution.

. Using CIA)Ob,(ADIb7...,cIA)Pb and ib, compute the impulse responses {ﬁjb} where j = 1,2,...,h.

Save these values.

. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and

1000.

. For each impulse response and each horizon, sort the responses. The 5™ and 95" percentile of

this distribution are the confidence intervals.

The second Monte Carlo method simulates data assuming the errors are i.i.d. normally distributed,
and then uses these values to produce a draw from the joint distribution of the model parameters. This
method avoids the estimation of the parameter covariance matrix A in the alternative Monte Carlo
method.

. Compute ® from the initial data and estimate the residual covariance .

. Using ® and £, simulate a time-series {Y,} with as many observations as the original data.

These can be computed directly using forward recursion

~ a A 2 al/2
Y, =Pg+ DY, 1 +...+PpY; p+ X / Er

where € < N(0,I;) are multivariate standard normally distributed. The P initial values are
set to a consecutive block of the historical data chosen at random, Y;,Y;11,...,Y¢yrp_1 for
te{l,..., T —P}.

. Using {Y,}, estimate the model parameters &g,,®,...,Dp, and L.

. Using ®¢p, P15, ...,Dpp and £, compute the impulse responses {ijb} where j =1,2,...,h.

Save these values.

. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and

1000.

. For each impulse response for each horizon, sort the impulse responses. The 5% and 95t

percentile of this distribution are the confidence intervals.

Of these two methods, the former should be preferred since the assumption of i.i.d.normally dis-

tributed errors in the latter may be unrealistic, especially when modeling financial data.
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5.7.4.2 Bootstrap Confidence Intervals

The bootstrap is a simulation-based method that resamples from the observed data produce a simu-
lated data set. The idea behind this method is simple: if the residuals are realizations of the actual
error process, one can use them directly to simulate this distribution rather than making an arbitrary
assumption about the error distribution (e.g., i.i.d.normal). The procedure is essentially identical to
the second Monte Carlo procedure outlined above:

1. Compute @ from the initial data and estimate the residuals &;.

2. Using &;, compute a new series of residuals & by sampling, with replacement, from the original
residuals. The new series of residuals can be described

{&u,8upy- -, 8up }

where u; are i.i.d.discrete uniform random variables taking the values 1,2,...,7T. In essence,
the new set of residuals is just the old set of residuals reordered with some duplication and
omission. '

3. Using ® and {&4,,€u,,..., 8y, }, simulate a time-series {Y,;} with as many observations as the
original data. These can be computed directly using the VAR

Y, =dg+ DY, 1 +...+DpY,_p+8,

4. Using {Y;}, compute estimates of ®;,®15,...,Dp, and £, from a VAR.

5. Using ﬁDOb,élb,...,Cﬁpb and ¥, compute the impulse responses {iﬂ,} where j = 1,2,...,h.
Save these values.

6. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

7. For each impulse response for each horizon, sort the impulse responses. The 5" and 95%
percentile of this distribution are the confidence intervals.

5.8 Cointegration

Many economic time-series are nonstationarity and so standard VAR analysis which assumes all
series are covariance stationary is unsuitable. Cointegration extends stationary VAR models to non-
stationary time series. Cointegration analysis also provides a method to characterize the long-run
equilibrium of a system of non-stationary variables. Before more formally examining cointegration,
consider the consequences if two economic variables that have been widely documented to contain
unit roots, consumption and income, have no long-run relationship. Without a stable equilibrium
relationship, the values of these two variables would diverge over time. Individuals would either have
extremely high saving rates — when income is far above consumption, or become incredibly indebted.

14This is one version of the bootstrap and is appropriate for homoskedastic data. If the data are heteroskedastic, some
form of block bootstrap is needed.
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These two scenarios are implausible, and so there must be some long-run (or equilibrium) relationship
between consumption and income. Similarly, consider the relationship between the spot and future
price of oil. Standard finance theory dictates that future’s price, f;, is a conditionally unbiased estimate
of the spot price in period 7 + 1, 5,41 (E¢[s;+1] = f;, assuming various costs such as the risk-free rate
and storage are 0). Additionally, today’s spot price is also an unbiased estimate of tomorrow’s spot
price (E;[s;+1] = s;). However, both the spot and future price contain unit roots. Combining these two
identities reveals a cointegrating relationship: s; — f; should be stationary even if the spot and future
prices contain unit roots. >

In stationary time-series, whether scalar or when the multiple processes are linked through a VAR,
the process is self-equilibrating; given enough time, a process reverts to its unconditional mean. In a
VAR, both the individual series and linear combinations of the series are stationary. The behavior of
cointegrated processes is meaningfully different. Each component of a cointegrated process contains
a unit root, and so has shocks with a permanent impact. However, when combined with another series,
a cointegrated pair revert towards one another. A cointegrated pair is mean reverting to a stochastic
trend (a unit root process), rather than to fixed value.

Cointegration and error correction provide a set of tools to analyze long-run relationships and
short-term deviations from the equilibria. Cointegrated time-series exhibit temporary deviations from
a long-run trend but are ultimately mean reverting to this trend. The Vector Error Correction Model
(VECM) explicitly includes the deviation from the long-run relationship when modeling the short-
term dynamics of the time series to push the components towards their long-run relationship.

5.8.1 Definition

Recall that a first-order integrated process is not stationary in levels but is stationary in differences.
When this is the case, Y; is I(1) and AY; =Y; —Y;_; is I(0). Cointegration builds on this structure
by defining relationships across series which transform multiple /(1) series into 7(0) series without
using time-series differences.

Definition 5.13 (Bivariate Cointegration). Let {x;} and {Y;} be two I(1) series. These series are
cointegrated if there exists a vector B with both elements non-zero such that

B'lx Yi) = Bix, — BaYs ~ 1(0) (5.28)

This definition states that there exists a nontrivial linear combination of x; and Y; that is station-
ary. This feature — a stable relationship between the two series, is a powerful tool in the analysis of
nonstationary data. When treated individually, the data are extremely persistent; however, there is a
well-behaved linear combination with transitory shocks that is stationary. Moreover, in many cases,
this relationship takes a meaningful form such as Y¥; — x;.

Cointegrating relationships are only defined up to a non-zero constant. For example if x;, — BY;
is a cointegrating relationship, then 2x, — 2BY; = 2(x; — BY;) is also a cointegrating relationship.
The standard practice is to normalize the vector on one of the variables so that its coefficient is
unity. For example, if Bix; — Y, is a cointegrating relationship, the two normalized versions are
xi— Ba/B1Y: = x — BY; and Y, — B1/Boxs = Y — By

The complete definition in the general case is similar, albeit slightly more intimidating.

I5This assumes the horizon is short.
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Figure 5.5: A plot of four time-series that all begin at the same initial value and use the same shocks.
All data are generated by Y, = ®;;Y;_1 + & where ®;; varies across the panels.

Definition 5.14 (Cointegration). A set of k variables Y, are cointegrated if at least two series are I(1)
and there exists a non-zero, reduced rank k by k£ matrix 7 such that

Y, ~ 1(0). (5.29)

The non-zero requirement is obvious: if 7 = 0 then 7Y, = 0 and this time series is trivially 7(0).
The second requirement that 7 is reduced rank is not. This technical requirement is necessary since
whenever 7 is full rank and 7Y, ~ I(0), the series must be the case that Y, is also /(0). However, for
variables to be cointegrated, they must be integrated. If the matrix is full rank, the common unit roots
cannot cancel, and 7Y; must have the same order of integration as Y. Finally, the requirement that at
least two of the series are I(1) rules out the degenerate case where all components of Y, are /(0), and
allows Y; to contain both /(0) and /(1) random variables. If Y, contains both /(0) and /(1) random
variables, then the long-run relationship only depends on the /(1) random variable.

For example, suppose the components of Y; = [Ylt,th]' are cointegrated so that Y;, — BYy; is
stationary. One choice for 7 is

I —p
(1 5]
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To begin developing an understanding of cointegration, examine the plots in Figure 5.5. These four
plots show two nonstationary processes and two stationary processes all initialized at the same value
and using the same shocks. These plots contain simulated data from VAR(1) processes with different
parameters, D;;.

Y, =D;;Y, 1+ &,

8 2 10
CI’UZ{Z 8]’ 4312:{01}7
Ai=1,0.6 ALi=1,1

72 -3 3
@21:[‘2 .7]’ q’”:[.l —.2}’
4 =0.9,0.5 A =—0.43,-0.06

where A; are the eigenvalues of the parameter matrices. The nonstationary processes both have unit
eigenvalues. The eigenvalues in the stationary processes are all less than 1 (in absolute value). The
cointegrated process has a single unit eigenvalue while the independent unit root process has two. In
a VAR(1), the number of unit eigenvalues plays a crucial role in cointegration and higher dimension
cointegrated systems may contain between 1 and k — 1 unit eigenvalues. The number of unit eigen-
values shows the count of the unit root “drivers” in the system of equations.'® The picture presents
evidence of the most significant challenge in cointegration analysis: it can be challenging to tell when
two series are cointegrated, a feature in common with unit root testing of a single time series.

5.8.2 Vector Error Correction Models (VECM)

The Granger representation theorem provides a key insight into cointegrating relationships. Granger
demonstrated that if a system is cointegrated then there exists a vector error correction model with a
reduced rank coefficient matrix and if there is a VECM with a reduced rank coefficient matrix then the
system must be cointegrated. A VECM describes the short-term deviations from the long-run trend
(a stochastic trend/unit root). The simplest VECM is

Ax; T T2 X—1 €1,
N e, 5.30
{ AY, } { 1 T Y1 €. (5.30)
which states that changes in x; and Y; are related to the levels of x; and Y; through the cointe-

grating matrix (7). However, since x; and Y; are cointegrated, there exists 8 such that x, — BY; =
[ 1 —-B } [ x Y }~I (0) . Substituting this value into this equation, equation 5.30 is equivalently

expressed as
Ax, (04] Xt—1 €1y
— 1 — o 5.31
AR IR R b s
The short-run dynamics evolve according to

Axy = o (x—1 — BY—1) + €1y (5.32)

161n higher order VAR models, the eigenvalues must be computed from the companion form.
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and
AY; = oo (x,—1 — BY;—1) + &2 (5.33)

The important elements of this VECM can be clearly labeled: x;_; — BY;_ is the deviation from
the long-run trend (also known as the equilibrium correction term) and ; and o are the speed of
adjustment parameters. VECMs impose one restriction of the as: they cannot both be O (if they
were, T would also be 0). In its general form, an VECM can be augmented to allow past short-run
deviations to also influence present short-run deviations and to include deterministic trends. In vector
form, an VECM(P) evolves according to

AY, =09+ 7nY;_1 +mAY;_1 +12AY; 2+ ... ++7pAY,_p+ &

where 1Y;_; = aB’Y; captures the cointegrating relationship, 8 represents a linear time trend in the
original data (levels) and 7 ;AY,_;, j = 1,2,...,P capture short-run dynamics around the stochastic
trend.

5.8.2.1 The Mechanics of the VECM

Any cointegrated VAR can be transformed into an VECM. Consider a simple cointegrated bivariate

VAR(1)
Xt . 8 2 Xr—1 8]71‘
e

To transform this VAR to an VECM, begin by subtracting [x;_; ¥;—1]" from both sides

Xt Xr—1 ] Xr—1 Xr—1 €1t
- = — +1 o 5.34
{Yr} [Ytl_ {le} {le} {82;] (5.34)

|
=3 ]l VD b+ ]
e

[ Axt ] . -2 Xt—1 81’[
_AYt__{QMI 1}{1/:1 Jr82z
In this example, the speed of adjustment parameters are —.2 for Ax; and .2 for AY; and the normalized
(on x;) cointegrating relationship is [1 — 1].

In the general multivariate case, a cointegrated VAR(P) can be turned into an VECM by recursive
substitution. Consider a cointegrated VAR(3),

Y, =P1Y; 1 + DY, 2 +P3Y; 3+ &

This system is cointegrated if at least one but fewer than k eigenvalues of 7 = ®| + P, + P3 — 1 are
not zero. To begin the transformation, add and subtract ®3Y;_, to the right side
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Y =Y, 1 +PY, 2+ P3Y; 2 —P3Y, 2+ P3Y, 3+ &
=P1Y, 1 + DY, 2 +P3Y, 2 —P3AY, o+ &
=P1Y; 1+ (P2 4+ DP3)Y,—p — P3AY, 5 + &

Next, add and subtract (P, + P3)Y,_; to the right-hand side,
Y =P, 1 + (P +P3) Y1 — (P2 +P3) Y1 + (P2 +DP3) Y, 2 — P3AY, 5+ &

= DY, + (P2 +P3) Y, — (P2 +DP3)AY, | —DP3AY, 2+ &
= (D1 + Dy +P3)Y,— 1 — (P2 +D3)AY,_| — P3AY, 5 + &

Finally, subtract Y,_; from both sides,

Y=Y = (P +Po+D3)Y, 1 — Yo — (P + D3)AY, | — D3AY, » + &
AY; = (1 + D+ D3 — ;) Y1 — (P2 +P3)AY, | — P3AY; 2+ €.

The final step is to relabel the equation in terms of 7 notation,
Y- Y, = ((I)l + Py 4+ P53 — Ik>Yt—l - ((I)2 + @3)AY,_1 —P3AY, »r+ & (5.35)
AY; — TCthl + ﬂ:IAthl + ﬂ:zAYzfz -I- 8;.
which is equivalent to
AY, = aB'Y,_1 + mAY,_1 4+ mAY,_» + ;. (5.36)

where o contains the speed of adjustment parameters, and 3 contains the cointegrating vectors. This
recursion can be used to transform any VAR(P), whether cointegrated or not,

Y 1 =P1Y, 1+ DY, 2+... +PpY, pt+ &
into its VECM from

AY; =Y 1+ T AY, 1 +1AY, 2+ ...+ 7p_1AY,—py1 + &

using the identities 7 = —I; + Y"1, ®; and 7, = — Zf:pﬂ ;.17

17Stationary VAR(P) models can be written as VECM with one important difference. When {Y,} is covariance sta-
tionary, then & must have rank k. In cointegrated VAR models, the coefficient 7 in the VECM always has rank between
1 and k — 1. If & has rank O, then the VAR(P) contains k distinct unit roots and it is note possible to construct a linear
combination that is 7(0).
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5.8.2.2 Cointegrating Vectors

The key to understanding cointegration in systems with three or more variables is to note that the
matrix which governs the cointegrating relationship, 7, can always be decomposed into two matrices,

T=aoaf

where o and 3 are both k by r matrices where r is the number of cointegrating relationships. For
example, suppose the parameter matrix in an VECM is

03 02 -0.36
r=| 02 05 -0.35
-03 -03 0.39

The eigenvalues of this matrix are .9758, .2142 and 0. The O eigenvalue of 7 indicates there are two
cointegrating relationships since the number of cointegrating relationships is rank(7). Since there are
two cointegrating relationships,  can be normalized to be

10
B=1]0 1
B B

and o has 6 unknown parameters. a8’ combine to produce

o1 o2 o+ o
T=| a1 O fi+anp |,
031 03 03181+ a3

and o can be determined using the left block of 7. Once o is known, any two of the three remaining
elements can be used to solve of B and ;. Appendix A contains a detailed illustration of the steps
used to find the speed of adjustment coefficients and the cointegrating vectors in trivariate cointegrated
VARs.

5.8.3 Rank and the number of unit roots

The rank of 7 is the same as the number of distinct cointegrating vectors. Decomposing 7 = o8’
shows that if 7 has rank r, then o and 8 must both have r linearly independent columns. ¢ contains the
speed of adjustment parameters, and 3 contains the cointegrating vectors. There are r cointegrating
vectors, and so the system contains m = k — r distinct unit roots. This relationship holds since when
there are k variables and m distinct unit roots, it is always possible to find r distinct linear combinations
eliminate the unit roots and so are stationary.

Consider a trivariate cointegrated system driven by either one or two unit roots. Denote the under-
lying unit root processes as wi; and wy ;. When there is a single unit root driving all three variables,
the system can be expressed

Yi;=Kiwi;+ €y
,=10owi+&y
Y3, =Kswis+ €3,
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where €, is a covariance stationary error (or /(0), but not necessarily white noise).
In this system there are two linearly independent cointegrating vectors. First consider normalizing
the coefficient on Y; ; to be 1 and so in the equilibrium relationship Y; ; — B1Y2, — B1 Y3, must satisfy

K1 = B+ Brk3.

This equality ensures that the unit roots are not present in the difference. This equation does not have
a unique solution since there are two unknown parameters. One solution is to further restrict f; =0
so that the unique solution is 8 = & /k3 and an equilibrium relationship is ¥; ; — (k1 /x3)Y3,. This
alternative normalization produces a cointegrating vector since

K1 K1 K1 K1
Yip— Vi, =Kiwi +€,— —Kwi,— —8&; =€ — —&y
K3 K3 K3 K3

Alternatively one could normalize the coefficient on Y>; and so the equilibrium relationship Y, ; —
Bi1Y1; — B2Y3, would require

K = Bk + BrKs.

This equation is also not identified since there are two unknowns and one equation. To solve assume
B1 = 0 and so the solution is B, = k» /K3, which is a cointegrating relationship since

K2 K2 K2 K2
V), — Vi, =wi, +&;— KW, — —&; =& — — &
K3 K3 K3 K3

’

These solutions are the only two needed since any other definition of the equilibrium must be a
linear combination of these. The redundant equilibrium is constructed by normalizing on Y ; to define
an equilibrium of the form Y; ; — B1Y2; — B,Y3 ;. Imposing 33 = O to identify the solution, B = ki /x>
which produces the equilibrium condition

K1
Y Gt —Y 2.t
K>
This equilibrium is already implied by the first two,
K1 K2
Yij——Ys;and Vo, — —Y3,
K3 K3
and can be seen to be redundant since
K1 K1 K1 K2
Yl,t - —Yz,z = Yl,t - _Y3,t - Yz,t - —Y3,t
K K3 K> K3

In this system of three variables and one common unit root the set of cointegrating vectors can be
expressed as

1 0
B=1|0 1
K1 K>
K3 K3

When a system has only one unit root and three series, there are two non-redundant linear combina-
tions of the underlying variables which are stationary. In a complete system with k variables and a
single unit root, there are kK — 1 non-redundant linear combinations that are stationary.
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Next consider a trivariate system driven by two unit roots,

Yi; = Kiwis + Kiowo, + €1y

Y2, =K 1w+ Kowa,+ &y
Y3, = K3 1w+ Kspwo s + €3,

where the errors €;, are again covariance stationary but not necessarily white noise. If the coefficient
on Y], is normalized to 1, then it the weights in the equilibrium condition, Y; ; — B1Y>; — B2Y3, satisty

K11 = Bika1 + P2k
Ki2 = Pikan + Pakso

to order to eliminate both unit roots. This system of two equations in two unknowns has the solution

HEEREE]

This solution is unique (up to the initial normalization), and there are no other cointegrating vectors
so that

1

ﬁ . Ki1K32—Kji2K2
- K21 K32 — K2 K3
KioKy1 —Ki1K31

K21K32— K22 K31
This line of reasoning extends to k-variate systems driven by m unit roots. One set of r cointe-
grating vectors is constructed by normalizing the first r elements of Y one at a time. In the general
case

Yl‘ = KW;"‘E;

where K is a k by m matrix, w; an m by 1 set of unit root processes, and & is a k by 1 vector of
covariance stationary errors. Normalizing on the first r variables, the cointegrating vectors in this
system are

B = [ :3 } (5.37)

where I, is an r-dimensional identity matrix. 3 is a m by r matrix of loadings,

B =K;'K], (5.38)

where K is the first » rows of K (r by m) and K is the bottom m rows of K (m by m). In the trivariate
example driven by one unit root,

Klz[Kll and K2:K3
Lv)

and in the trivariate system driven by two unit roots,
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K21 K22
K1 = [K‘H KIZ] and K2 = .
K31 K32

Applying eqs. (5.37) and (5.38) produces the previously derived set of cointegrating vectors. Note
that when r = 0 then the system contains k unit roots and so is not cointegrated (in general) since the
system would have three equations and only two unknowns. Similarly when r = k there are no unit
roots and any linear combination is stationary.

5.8.3.1 Relationship to Common Features and common trends

Cointegration is a particular case of a broader concept known as common features. In the case of
cointegration, both series have a common stochastic trend (or common unit root). Other examples
of common features include common heteroskedasticity, defined as x; and Y; are heteroskedastic but
there exists a combination, x;, — BY;, which is not, common nonlinearities which are defined analo-
gously (replacing heteroskedasticity with nonlinearity), and cobreaks, where two series both contain
structural breaks but x;, — BY; does now. Incorporating common features often produces simpler mod-
els than leaving them unmodeled.

5.8.4 Testing

Testing for cointegration, like testing for a unit root in a single series, is complicated. Two meth-
ods are presented, the original Engle-Granger 2-step procedure and the more sophisticated Johansen
methodology. The Engle-Granger method is generally only applicable if there are two variables, if the
system contains exactly one cointegrating relationship, or if the cointegration vector is known (e.g.,
an accounting identity where the left-hand side has to add up to the right-hand side). The Johansen
methodology is substantially more general and can be used to examine complex systems with many
variables and multiple cointegrating relationships.

5.8.4.1 Johansen Methodology

The Johansen methodology is the dominant technique used to determine whether a system of 7(1)
variables is cointegrated and if so, to determine the number of cointegrating relationships. Recall that
one of the requirements for a set of integrated variables to be cointegrated is that 7 has reduced rank,

AY; =Y, 1+ mAY;_1+...+ TpAY;_p&;,

and the number of non-zero eigenvalues of 7 is between 1 and k — 1. If the number of non-zero
eigenvalues is k, the system is stationary. If no non-zero eigenvalues are present, then the system
contains k unit roots, is not cointegrated and it is not possible to define a long-run relationship. The
Johansen framework for cointegration analysis uses the magnitude of the eigenvalues of 7 to test for
cointegration. The Johansen methodology also allows the number of cointegrating relationships to be
determined from the data directly, a key feature missing from the Engle-Granger two-step procedure.

The Johansen methodology makes use of two statistics, the trace statistic (A,,..) and the maximum
eigenvalue statistic (A4,,,). Both statistics test functions of the estimated eigenvalues of & but have
different null and alternative hypotheses. The trace statistic tests the null that the number of cointe-
grating relationships is less than or equal to r against an alternative that the number is greater than r.



5.8 Cointegration 351

Define ;li, i=1,2,...,k to be the complex modulus of the eigenvalues of 7 and let them be ordered
such that A; > Ay > ... > A;.!® The trace statistic is defined

A (F) = —T Ek: In (1 —i,-> .

i=r+1

There are k trace statistics. The trace test is applied sequentially, and the number of cointegrating
relationships is determined by proceeding through the test statistics until the null is not rejected. The
first trace statistic, Ay, (0) = —T Zle In(1— ii), tests the null there are no cointegrating relationships
(i.e., the system contains k unit roots) against an alternative that the number of cointegrating relation-
ships is one or more. If there are no cointegrating relationships, then the true rank of 7 is 0, and each
of the estimated eigenvalues should be close to zero. The test statistic A,,.(0) ~ 0 since every unit
root “driver” corresponds to a zero eigenvalue in 7. When the series are cointegrated, 7 has one or
more non-zero eigenvalues. If only one eigenvalue is non-zero, so that A; > 0, then in large samples

In (1 — 711) < 0and A, (0) =~ —T (1 — A;), which becomes arbitrarily large as T grows.

Like unit root tests, cointegration tests have nonstandard distributions that depend on the included
deterministic terms if any. Software packages return the appropriate critical values for the length of
the time-series analyzed and included deterministic regressors if any.

The maximum eigenvalue test examines the null that the number of cointegrating relationships is
r against the alternative that the number is r 4 1. The maximum eigenvalue statistic is defined

A (r,r+1)=—=T1n (1 —j,rH)

1th

Intuitively, if there are r + 1 cointegrating relationships, then the r+ 1" ordered eigenvalue should be

A

positive, In (1 - 7Lr+1) < 0, and the value of A,,,,(r,r+1) ~ =T In(1 — A, ) should be large. On the

other hand, if there are only r cointegrating relationships, the r+ 11" eigenvalue is zero, its estimate

should be close to zero, and so the statistic should be small. Again, the distribution is nonstandard,
but statistical packages provide appropriate critical values for the number of observations and the
included deterministic regressors.

The steps to implement the Johansen procedure are:

Step 1: Plot the data series being analyzed and perform univariate unit root testing. A set of vari-
ables can only be cointegrated if they are all integrated. If the series are trending, either linearly or
quadratically, remember to include deterministic terms when estimating the VECM.

Step 2: The second stage is lag length selection. Select the lag length using one of the procedures
outlined in the VAR lag length selection section (e.g., General-to-Specific or AIC). For example, to
use the General-to-Specific approach, first select a maximum lag length L and then, starting with
[ =L, test [ lags against /[ — 1 use a likelihood ratio test,

LR= (T —1-K*)(In[Z_1| — In|%)]) ~ 2.

Repeat the test by decreasing the number of lags (/) until the LR rejects the null that the smaller model
is equivalent to the larger model.
Step 3: Estimate the selected VECM,

18The complex modulus is defined as |A;| = |a + bi| = Va® + b2,
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AY; =nY; 1+ mAY, 1 +...+7p_1AY;_pi 1+ €

and determine the rank of 7w where P is the lag length previously selected. If the levels of the series
appear to be trending, then the model in differences should include a constant and

AY, =0¢g+7nY,_1 +mAY; 1 +...+ p_1AY;_pr1+ €

should be estimated. Using the A,.. and A,,, tests, determine the cointegrating rank of the system. It
is important to check that the residuals are weakly correlated — so that there are no important omitted
variables, the residuals are not excessively heteroskedastic, which affects the size and power of the
procedure, and are approximately Gaussian.

Step 4: Analyze the normalized cointegrating vectors to determine whether these conform to implica-
tions of finance theory. Hypothesis tests on the cointegrating vector can also be performed to examine
whether the long-run relationships conform to a particular theory.

Step S: The final step of the procedure is to assess the adequacy of the model by plotting and an-
alyzing the residuals. This step should be the final task in the analysis of any time-series data, not
just the Johansen methodology. If the residuals do not resemble white noise, the model should be
reconsidered. If the residuals are stationary but autocorrelated, more lags may be necessary. If the
residuals are /(1), the system may not be cointegrated.

Lag Length Selection

Tests of cointegration using the two test statistic, A, and A,,,, are sensitive to the lag length. The
number of included lags must be sufficient to produce white noise residuals. The lag length is com-
monly chosen using an IC, and given the trade-off between a model that is too small — which leaves
serial correlation in the model residuals — and too large, which produces noisier estimates of parame-
ters but no serial correlation, a loose criterion like the AIC is preferred to a more strict one.

Trends

Nonstationary time series often contain time trends. Like the Augmented Dickey-Fuller test, Jo-
hansen’s A,,.. and A, tests are both sensitive to the choice of included trends. There are five different
configurations of trends in the VECM,

AY; =80+ 61t +a (BY,—1+ Y+ 7vt) + TAY, 1+ ...+ Tp_1AY,_pi +E.
The five test configurations of the test are:
* notrends, 5o =01 =Y, =7, =0;
* linear trend in Yy, @’BY,_1 ismean 0, 8, =y, =7, = 0;
* linear trend in Y;, non-zero mean o’fY,_1, 81 =y, = 0;
e quadratic trend in Y;, non-zero mean o’BY,_1, Y; = 0;and

e quadratic trend in Y,, linear trend in o/ $Y;_1, no restrictions on the parameters.
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The simplest specification sets all trends to be 0, so that
AY; = (X/ﬁYt_l +mAY;—1+...+7wp_1AY,_pi1 F+E.

The specification is only appropriate if the components of Y, are not trending. When the component
time series of Y; have linear time trends, then

AY; =80+ o' (BY,—1+ 7))+ TAY,— 1+ ...+ Tp_1AY,_pi1 + €

allows them to appear in two places. The two intercepts, 8¢ and o'y, play different roles. &¢ allows
for time trends in the component series since the left-hand-side has been differenced, so that a time-
trend in the level becomes an intercept in the difference. 7, allows the cointegrating relationship
to have a non-zero mean, which is practically important in many applications of cointegration. The
model can be estimated assuming ¥, = 0 so that

AY; =6y + (X’ﬁYI,I +mAY;—1+...+7wp_1AY,_pi1 €.

In this specification, the components are allowed to have unrestricted time trends but the cointegrating
relationships are restricted to be mean zero. In practice, this requires that the growth rates of the
component time series in Y, are the same. The full set of time trends are included in the model, the Y;
is allowed to have a quadratic time trend (the difference has a linear time trend) and the cointegrating
relationship,

BY—1+7Y+ 7t

may also have a time trend. The specification with a time trend can be restricted so that y; = 0 in
which case the cointegrating relationships are allowed to have a mean different from 0 but not to be
trending.

Additional trend components increase the critical values of the A, and A,,, test statistics, and so,
all things equal, it is harder to reject the null. The principle behind selecting deterministic terms in
the Johansen’s framework is the same as when including deterministic terms in ADF tests — any de-
terministic that is present in the data must be included, and failing to include a required deterministic
term prevents the null from being rejected even in large samples. Similarly, including more deter-
ministic trends than required lowers the power of the test and so makes it more challenging to find
cointegration when it is present. Deterministic trends should be eliminated using a general-to-specific
search starting with the full set of terms, and eliminating any that are (jointly) insignificant.

5.8.4.2 Example: Consumption Aggregate Wealth

To illustrate cointegration and error correction, three series which have revived the CCAPM in re-
cent years are examined (Lettau and Ludvigson, 2001a; Lettau and Ludvigson, 2001b). These three
series are consumption (c), asset prices (a) and labor income (y). The data are made available by
Martin Lettau on his web site, and contain quarterly data from 1952:1 until 2017:3. These series are
documented to be cointegrated in published papers, and the cointegrating error is related to expected
future returns. When ¢ — dp — ,a — By is positive, then consumption is above its long-run trend, and
so asset returns are expected to be above average. When this error is negative, then c is relatively low
compared to asset values and labor income, and so asset values are too high.


https://sites.google.com/view/martinlettau/data
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Trace Test
Null Alternative  A,. Crit. Val.
=0 r>1 19.06 29.80
=1 r>2 8.68 15.49
Max Test
Null Alternative A,.. Crit. Val.
= r=1 10.39 21.13
r=1 r=2 6.64 14.26
r=2 r=3 2.03 3.84

Table 5.5: Results of testing using the Johansen methodology to the cay time series.

The Johansen methodology begins by examining the original data for unit roots. The results in
Table 5.6 establish that all series have unit roots using ADF tests. The next step tests eigenvalues of
7 in the VECM

AY; =6p+T (Y,,I + ’}’0) + T AY;_ 1+ 1AY; o+ ...+ +7pAY,_p+&;.

using A and A, tests. Table 5.5 contains the results of the two tests. These tests are applied
sequentially. The first null hypothesis is not rejected for either test, which indicates that the 7 has
rank 0, and so the system contains three distinct unit roots, and so the variables are not cointegrated. 19

5.8.4.3 A Single Cointegrating Relationship: Engle-Granger Methodology

The Engle-Granger method exploits the defining characteristic of a cointegrated system with a single
cointegrating relationship — if the time series are cointegrated, then a linear combination of the se-
ries can be constructed that is stationary. If they are not, then any linear combination remains 7(1).
When there are two variables, the Engle-Granger methodology begins by specifying the cross-section
regression

Y, =Bxi+&

where B can be estimated using OLS. It may be necessary to include a constant,

Y, =68 +Bx+&

or a constant and time trend,

Y, =68+ 61t +Px +¢,

if the residuals from the simple cross-sectional regression are not mean O or trending. The model
residuals, &, are constructed from the OLS estimates of the model coefficients and are tested for the

19The first null not rejected indicates the cointegrating rank of the system. If all null hypotheses are rejected, then the
original system appears stationary, and a reanalysis of the /(1) classification of the original data is warranted.
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presence of a unit root. If x; and Y; are both I(1) and & is 1(0), then the series are cointegrated. If
the null that & contains a unit root is not rejected, then the two series are no cointegrated since the
difference did not eliminate the unit root. The procedure concludes by using & to estimate the VECM
to estimate parameters which may be of interest (e.g., the speed of convergence parameters).

Step 1: Begin by analyzing x; and Y; in isolation to ensure that they are both integrated, plot the data,
and perform ADF tests. Remember, variables can only be cointegrated if they are integrated.

Step 2: Estimate the long-run relationship by fitting

Y, =8+ 61t + Bx; + &,

where the two deterministic terms are included only if necessary, using OLS and computing the
estimated residuals {&}. Use an ADF test (or DF-GLS for more power) and test Hy : ¥ = 0 against
Hj : ¥ <0 1n the regression

A& = Y& 1 +YIAE 1+ ...+ YpAE _p+ 1.

Deterministic effects are removed in the cross-sectional regression, and so are not included in the ADF
test. If the null is rejected and & is stationary, then x; and Y; appear to be cointegrated. Alternatively,
if & still contains a unit root, the series are not cointegrated.>”

Step 3: If a cointegrating relationship is found, specify and estimate the VECM

Ax, || o1 o (Y;—1— 6 — 61t — Bxi—1) ] [ Ax; ] [ Ax;p ] [ M, }
{ AY; ] B [ T2 ] +[ (Y -1 — 8 — 61t — Bxi—1) TR Ay [T T Ay | T M2

Note that this specification is not linear in its parameters. Both equations have interactions between
the o and B parameters and so OLS cannot be used. Engle and Granger noted that the terms involving
B can be replaced with & _; = (Y;—; — B1 — Boxi—1),

Ax; o1 o€ Ax; Ax;_p My
bl R A e R el R e
and so parameters of these specifications can be estimated using OLS. The substitution has no impact
on the standard errors of the estimated parameters since the parameters of the cointegrating relation-
ship are super-consistent (i.e., they converge faster than the standard /T rate).
Step 4: The final step is to assess the model adequacy and test hypotheses about ¢ and ;. Standard
diagnostic checks including plotting the residuals and examining the ACF should be used to examine

model adequacy. Impulse response functions for the short-run deviations can be examined to assess
the effect of a shock on the deviation of the series from the long term trend.

Deterministic Regressors

The cross-sectional regression in the Engle-Granger methodology can be modified to accommodate
three configurations of deterministic regressors. The simplest configuration has no deterministic terms
so that the regression is

Y, =Bx +&.

20The distribution of the ADF is different when testing cointegration than when testing for a unit root. Software
packages report the correct value which depends on the number of variables in the cointegrating relationship and the
deterministic terms if any.
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Engle-Granger is only limited finding a single cointegrating relationship, which might exist between
k variables, not just 2. In this case, the cross-sectional regression is

Y, = ﬁlxt‘i‘gz

where X, is the k — 1 by 1 vector, and the cointegrating vector is [1, — ﬁ/} . This generalized form can
be further extended by altering the deterministic terms in the model. For example, it is common to
include an intercept in the cross-sectional regression,

Y; :50+[3/Xt+€z-

This structure allows the long-run relationship between Y; and X; to have a non-zero mean. The
intercept should be included except where theory suggests that the cointegrating errors should be
zero, e.g., in the relationship between spot and future prices or the long-run relationship between
prices of the same security trading in different markets.

The cross-sectional regression can be further extended to include a time trend,

Yt:5()+5]t+ﬁlxt+£[

When the model includes a time-trend, the long-run relationship, ¥; and X;, is assumed to be trending
over time, so that ¥; — & — 8;7 — B'X, is a mean-zero / (0) process. This might occur if the growth rates
of ¥; and the components X, differ. It is much less common to include time-trends in the cointegrating
relationship. Best practice is to only include 8 if there is some a priori reason to believe that the
relationship has a time-trend and when 31 is statistically different from 0 when the cross-sectional
regression is estimated. The cross-sectional regression can be compactly expressed as

Y, = S/dt +ﬁ/Xz + &

where d, is the vector of included deterministic regressors, i.e., on of [| (nothing), [1], or [1,z].

Dynamic OLS

The parameter estimators of the cointegrating vector estimated using a cross-sectional regression
is not normally distributed in large samples. It is also not efficient since the /(1) variables might
have short-run dynamics. Dynamic OLS, a simple modification of the Engle-Granger regression,
addresses both of these. It adds lags and leads of the differences on the right-hand-side variables to
the cross-sectional regression. These extra terms effectively remove the short term dynamics in the
right-hand-side variables. In a bivariate cointegrated relationship, the Dynamic OLS regression is

P
/
Y, =06'd; + B + Z Yidx;—i + &
i=—P
where d; is a vector of deterministic terms in the model. This regression is estimated using OLS, and

Al A
the estimated cointegrating relationship is ¥; — 6 d; — B1x;. If there are more than 1-right-hand-side
variables, then the regression is

P
Y, =8'd,+B'X, + Z YAX, i+ &
=P
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Unit Root Tests
Series  T-stat P-val ADF Lags

c -1.198 0.674 5
a -0.205 0.938 3
y -2302 0.171 0
1
0
1

g 2706 0.379
g9 2573 0447
& -2.679 0.393

Table 5.6: The top three lines contain the results of ADF tests for unit roots in the three components of
cay : Consumption, Asset Prices and Aggregate Wealth. The final lines contain the results of unit root
tests on the estimated residuals from the cross-sectional regressions. The variable in the superscript is
the dependent variable in the Engle-Granger regression. The lags column reports the number of lags
used in the ADF procedure, which is automatically selected using the AIC.

where f3, 7; and X; are k — 1 by 1 vectors. The estimators of the cointegrating vector are asymptot-
ically normally distributed, although the parameter covariance must be estimated using a long-run
covariance estimator that accounts for dependence, e.g., Newey-West (see Section 5.9.2). The num-
ber of leads and lags to include in the model is can be selected using an information criterion. In
application in macrofinance, it is often chosen to capture 1 year of data, so either 4 (quarterly) or 12
(monthly).

5.8.4.4 Cointegration in Consumption, Asset Prices and Income

The Engle-Granger procedure begins by performing unit root tests on the individual series and exam-
ining the data. Table 5.6 and contain the results from ADF tests and Figure 5.6 plots the detrended
series. The null of a unit root is not rejected in any of the three series, and all have time-detrended
errors which appear to be nonstationary.

The next step is to specify the cointegrating regression

Cr = 50+Baaz+ﬁth‘|‘8t

and to estimate the long-run relationship using OLS. The estimated cointegrating vector from is [1 —
0.249 —0.785], and corresponds to a long-run relationship of & = ¢; + .643 — 0.249a, — 0.785Y;.
Finally, the residuals are tested for the presence of a unit root. The results of this test are labeled &'
in Table 5.6 and indicate that the null is not rejected, and so the three series are not cointegrated. The
Engle-Granger methodology agrees with the Johansen methodology that it is not possible to eliminate
the unit roots from the three series using a single linear combination. It is also possible to normalize
the coefficients on a or y by using these are the dependent variable. The final two lines in Table 5.6
contain results for these specifications. The results for the alternative agree with the finding for ¢, and
the series do not appear to be cointegrated. The middle panel of Figure 5.6 plot the three residual series
where each of the variables is used as the dependent. The residuals constructed from the regression
when a or y are the dependent are multiplied by —1 so that the sign on ¢ is always positive, and all
three series are normalized to have unit variance (for comparability). The three residual series are very
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Comparing Engle-Granger and Dynamic OLS

Dependent Variable
c a y
6 —0.643 —0.640 1.917 1.874  0.702  0.713
(—6.896) (7.784) (5.312)
Be 2.284  2.385 1.163  1.180
(6.994) (18.521)
B. 0.249  0.260 —-0.214 —-0.229
(6.187) (—3.790)
By 0.785 0.773 —1.322 —1.421
(17.339) (—4.024)

Table 5.7: Each column reports estimates of the cointegrating relationship where the dependent vari-
able varies across the three series. The parameter estimators in Engle-Granger regressions are not
asymptotically normally distributed, and so t-stats are not reported. The t-stats reported for the esti-
mates produces using Dynamic OLS are computed using the Newey-West covariance estimator with
14 lags.

similar which indicates that the choice of the dependent variable has little impact on the estimates of
the cointegrating relationship.
The VECM uses the residuals estimated using the cross-sectional regression, & = ¢; — 0y — Baar —

BY..

0.003 —0.000 0.192 0.102 0.147
_ | 0.004 0.002 A . . —-0.
Aa, | =1 Gomy | | ©0o37) | &1 | ©116) (©00s) (0.414) Aa;—y | +1,
Ay 0.003 0.000 0.369 0.061 —0.139 Ayi—1

—

0.000) (0.515) (0.000) (0.088)  (0.140)

The coefficients on the lagged residual measure the speed of adjustment. The estimates are all close to
0 indicating that deviations from the equilibrium are highly persistent. Two of the speed of adjustment
coefficients are not statistically different from zero, which indicates that three series are not well
described as a cointegrated system. The lag length in the VECM is selected by minimizing the HQIC
using up to 4 lags of the quarterly data.

Table 5.7 contains estimates of the parameters from the Engle-Granger cross-sectional regressions
and the Dynamic OLS regressions. The DOLS estimates are asymptotically normal (if the series
are cointegrated) and so standard errors, computed using the Newey-West covariance estimator, are
reported for the coefficients. The bottom panel of Figure 5.6 plot the residual from the two estimators
when c is the dependent variable. The leads and lags have little effect on the estimated cointegration
vector, and so the two series are very similar.

5.8.5 Spurious Regression and Balance

When a regression is estimated using two related /(1) variables, the cointegrating relationship domi-
nates and the regression coefficients can be directly interpreted as the cointegrating vectors. However,
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Analysis of cay
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Figure 5.6: The top panel contains plots of detrended residuals from regressions of consumption, asset
prices and labor income on a linear time trend. The middle panel contains a plot of residuals from
the three specifications of the Engle-Granger regression where each of the three series is used as the
dependent variable. The residuals are multiplied by -1 when a or y is the dependent variable so they
the sign on c is always positive. The residuals are all normalized to have unit variance. The bottom
panel plots the residuals computed using the Dynamic OLS estimates of the cointegrating relationship
when c is the dependent variable and 4 leads and lags are used.

when a model is estimated on two unrelated /(1) variables, the regression estimator is no longer con-
sistent. For example, let x; and Y; be independent random walk processes.
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Xy = Xi—1+ N
and

Y=Y 1+V
In the regression

x = PY +&

A

B is not consistent for 0 despite the independence of x; and Y;.

Models that include independent /(1) processes are known as spurious regressions. When the
regressions are spurious, the estimated B can take any value and typically have #-stats that indicate
significance at conventional levels. The solution to this problems is simple: whenever regressing
one /(1) variable on another, always check to be sure that the regression residuals are 7(0) and not
I(1) — in other words, verify that the series are cointegrated. If the series are not cointegrated, it is
not possible to estimate a meaningful long-run relationship between the two (or more) /(1) random
variables. Nonstationary time series that are not cointegrated can be differenced to be 7(0) and then
modeled as a stationary VAR.

Balance is an important concept when data which contain both stationary and integrated data. An
equation is balanced if all variables have the same order of integration. The usual case occurs when
a stationary variable (/(0)) is related to one or more other stationary variables. It is illustrative to
consider the four combinations:

* 1(0) on I(0): The usual case. Standard asymptotic arguments apply. See section 5.9 for more
issues in cross-section regression using time-series data.

* I(1) on I(0): This regression is unbalanced. An /(0) variable can never explain the long-run
variation in an /(1) variable. The usual solution is to difference the /(1) and then examine
whether the short-run dynamics in the differenced (1), which are 1(0), can be explained by the
1(0).

* I(1) on I(1): One of two outcomes: cointegration or spurious regression.

* 1(0) on I(1): This regression is unbalanced. An I(1) variable can never explain the variation
in an 1(0) variable, and unbalanced regressions are not useful tools for explaining economic
phenomena. Unlike spurious regressions, the z-stat still has a standard asymptotic distribu-
tion although caution is needed since the CLT does not, in empirically relevant samples sizes,
provide an accurate approximation to the finite sample distribution. Poor finite-sample approx-
imations are common in applications where a stationary variable, e.g., returns on the market,
is regressed on a highly persistent predictor (such as the default premium, dividend yield or
price-to-earnings ratio).

5.9 Cross-sectional Regression with Time-series Data

Cross-sectional regressions are commonly estimated using data that occur sequentially, e.g., the CAP-
M and related models. Chapter 3 used n to index the observations to indicate that the data are not
ordered,
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Y, = Bixn1 + Boxua + - - . 4 Brxok + €n- (5.39)

Here the observation index is replaced with 7 to indicate that ordered time-series data are used in the
regression,

Y, = Bixe + Boxeo + ..+ Brxek + & (5.40)

Five assumptions are used to establish the asymptotic distribution of the parameter estimated. Here
these assumptions are restated using time-series indices.

Assumption 5.1 (Linearity). The model specification is linear in X;, ; = X, + &.

Assumption 5.2 (Stationary Ergodicity). {(X;, &)} is a strictly stationary and ergodic sequence.
Assumption 5.3 (Rank). E[X/X,] = Xxx is non-singular and finite.

Assumption 5.4 (Martingale Difference). {X¢&;, F;_1} is a martingale difference sequence, E [(x &) 2} <
coj=12,....,kt=12...and S = V[T*%X’S] is finite and non singular.

Assumption 5.5 (Moment Existence). E[x;{,] <00, j=1,2,....k t=1,2,... and E[¢}] = 6? < o,
t=1,2,...

Assumption 3.9 may be violated when estimating cross-sectional models using time series data. When
this assumption is violated, the scores from the linear regression, X} & are a not martingale difference
with respect to the time ¢ — 1 information set, F;_;. The autocorrelation in the scores occurs when
the errors from the model, &, have a persistent component that is not explained by the regressors.
The MDS assumption featured prominently in two theorems: the asymptotic distribution of B and the
estimation of the covariance of the parameters.

Theorem 5.5. Under assumptions 3.1 and 3.7 - 3.9
VT(Br—B) % N(0,Z{SEW) (5.41)
where Xxx = E[X!X;] and S = V[T ~'/?X'¢]
Theorem 5.6. Under assumptions 3.1 and 3.7 - 3.10,
ixx :TilX/X l ZXX
T
S=T7'> XX, 58
n=1
=7 (X'EX)

and ) |
a—lae—l P w—1gy-1
Z"XX SZXX — Z"XX SZXX

where E = diag(élz, e ,é%) is a matrix with the squared estimated residuals along the diagonal.



362 Analysis of Multiple Time Series

When the MDS assumption does now hold, the asymptotic covariance takes a different form that re-
flects the persistence in the data, and so an alternative estimator is required to estimate the covariance
of ﬁ The new estimator is an extended version of White’s covariance estimator that accounts for the
predictability of the scores (X]¢&;). The correlation in the scores alters the amount of “unique” informa-
tion available to estimate the parameters. The standard covariance estimator assumes that the scores
are uncorrelated with their past and so each contributes its full share to the precision to 3 When
the scores are autocorrelated, only the unpredictable component of the score is informative about the
value of the regression coefficient, and the covariance estimator must account for this change in the
available information. Heteroskedasticity Autocorrelation Consistent (HAC) covariance estimators
are consistent even in the presence of score autocorrelation.

5.9.1 Estimating the mean with time-series errors

To understand why a HAC estimator is needed, consider estimating the mean in two different setups.
In the first, the shock, {&}, is assumed to be a white noise process with variance o2. In the second,
the shock follows an MA(1) process.

5.9.1.1 White Noise Errors

Suppose the data generating process for ¥; is,

i=u+g
where {& } is a white noise process. It is simple to show that
E[Y;] = u and V[¥;] = o2
since the error is a white noise process. Define the sample mean estimator in the usual way,

T

p=T'3Y,

t=1

The sample mean is unbiased,
T
R Y]
=1
T
7y e
=1
T
DY
=1

The variance of the mean estimator exploits the white noise property which ensures E[¢g;€;]=0 when-
everi# j.
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and so, V[fi] = o°/r, the standard result.

5.9.1.2 MA(1) errors
Suppose the model is altered so that the error process ({1, }) is a mean zero MA(1) constructed from
white noise shocks ({&}),

N =0& 1 +&.

The properties of the error are easily derived using the results in Chapter 4. The mean is 0,
E[n:] =E[0&_1 + &) = 0E[&_1] +E[&] = 00+0=0,

and the variance depends on the MA parameter,

Vind]

E[(Gz—:, 1+&)7

E[0%e’ |+ 26 | + &7
E[0° |]+2E[e;&_1] +E[€/]
626> +2 0+ o2

o?(1+62).

The DGP for ¥; is

Yl‘zu+nl7

and so the mean and variance of Y; are

E[Y;] = u and V[¥;] = V[n,] = 0*(1+67).
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The sample mean estimator remains unbiased,

T
p=17"Y Y,
t=1

T
B[4 =E [T‘l ZYt]
. t=1
=77 ElY]
t=1
= TIXT:‘LL
=1
= U.

The variance of the mean estimator, however, is different, since 1, is autocorrelated, and so E[n; 1, 1] #

Vig]=E <T12n—u>2]
t=1

r T
=E[(T7'> n)’
=1

T-1 T-2 2

T 1
=E T_Z(anerZanm+22nmz+z+..-+22nmt+r_z+22mm+r—1)
=1

L t=1 t=1 t=1 =1
T T—1 T-2

=723 EMmA +2772Y EMmesa] +2T72 > EMymiia] +...+

=1 t=1 =1

2 !
2772 B2 2772 Enimiir]

t=1 t=1

T T-1 T-2 2 1
= TﬁZZ’}/()—I—ZTizZ% +2T722’)/2—|— .. —|—2T7227T_2—|—2T722’}/T_1
t=1 t=1 t=1 =1 =1

where yy = E[n?] = V[n,] and % = E[1;1,—]. Only ¥ and 7; are non-zero when the error follows an
MA(1) process. 1 = V[n,] = 6% (1 + 62) and
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v =E[nm—i]

=E[(0g_1+&)(0&_2+¢&_1)]

—E[0%_16_,+0€> |+ 0&&_5+&8_1]

— 0%E[e,_1& o] + OE[e* || + 0E[e:& 2] +E[g& 1]

=6%0+60>+60+0

= 00>
The remaining autocovariance are all 0 since ¥, =0, s > Q in a MA(Q). Returning to the variance of
M,

T T—1
VRl =T72> p+2T ) 7 (5.42)
=1 =1
=T Typ+2T (T - 1)y
_ht2n
S

When the errors are autocorrelated, the usual mean estimator has a different variance that reflects the
dependence in the errors. Importantly, the usual estimator variance is no longer correct and V[fl] #
/7.

This simple illustration captures the key idea that underlies the Newey-West variance estimator,

L
. . L\ .
Siw = 70+2Z (1 _L——H) Iz
=1

When L = 1, the only weightis 1 —1/2=1/2 and 6]%,W = Yo+ 71, which is different from the variance in
the MA(1) error example. However as L increases, the weight on y; converges to 1since limy_,o 1 —
L+_1 = 1. The Newey-West variance estimator asymptotically includes all of the autocovariance in the
variance, ¥ + 271, and when L grows large,

(AY]%]W — % +2’}’1.

The variance of the estimated mean can be consistently estimated using GI%W as

0 +2n - G]%]W
T T T’
As a general principle, the variance of the sum is the sum of the variances only true when the errors
are uncorrelated. HAC covariance estimators account for time-series dependence and lead to correct
inference as long as L grows with the sample size.”!

It is tempting to estimate eq. (5.42) using the natural estimator 613 ac = To+27/7. This estimator
is not guaranteed to be positive in finite samples, an in general unweighted estimators of the form

Via]

2l Allowing L to grow at the rate T/ is optimal in a certain sense related to testing.
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621 ac = Yo +2% +2% + ...+ 2§, may be negative. The Newey-West variance estimator, 61%,W, is
guaranteed to be positive for any L. The weights that scale the autocovariances, (1 — LLH) , alter the
estimator and ensure that the estimate is positive.

5.9.2 Estimating the variance of 3 when the errors are autocorrelated

There are two solutions to modeling cross-sectional data that have autocorrelated errors. The direct
method is to alter the cross-sectional model to capture the time-series variation by including both
contemporaneous effects of X, as well as lagged values of ¥; (and possibly lags of X;). This approach
needs to include sufficient lags so that the errors are white noise. If the dependence is fully modeled,
then White’s heteroskedasticity (but not autocorrelation) consistent covariance estimator is consistent,
and there 1s no need for a more complex covariance estimator.

The second approach modifies the covariance estimator to account for the dependence in the data.
The key insight in White’s estimator of S,

T
S=7"") XX,
t=1

is that this form explicitly captures the dependence between the etz and X/X;. Heteroskedasticity
Autocorrelation Consistent estimators work similarly by capturing both the dependence between the
e,2 and X)X, (heteroskedasticity) and the dependence between the X;e; and X, jer— j (autocorrelation).
HAC estimators of the score covariance in linear regressions use the same structure, and

T L T T
Suc=T"" [ D eIXX+> wi | Y ee XX+ > egieX, X, (5.43)
t=1 =1 s=Il+1 q=l+1

L
=To+ Zwl (fl +1A11)
=1
L /
= lAﬂoJrZWl (fﬁ-fl)
=1

where {w;} are a set of weights. The Newey-West estimator uses w; = 1 — Llﬁ and is always positive
semi-definite. Other estimators alter the weights and have different finite-sample properties.

5.A Cointegration in a trivariate VAR

This section details how to:
* determine whether a trivariate VAR is cointegrated;
* determine the number of cointegrating vectors in a cointegrated system; and

 decompose the 7 matrix into ¢, the adjustment coefficient, and 3, the cointegrating vectors.
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5.A.1 Stationary VAR
Consider the VAR(1),

Xt 9 -4 2 Xt—1 8171‘

Yt — 2 8 —3 Y[*l + 82’[

Z; S22 Zi—1 &y

The eigenvalues of the parameter matrix determine the stationarity properties of this VAR process. If
the eigenvalues are all less than one in modulus, then the VAR(1) is stationary. This is the case here,
and the eigenvalues are 0.97, 0.62, and 0.2. An alternative method is to transform the model into an

VECM

" Ax,

9 —4 2 100 X1 €1

AY, | =2 8 -3|-|010 Yo |+ | &y

| AZ, | 5 2 1| (001 Zi &,
Ay ] [ -1 -4 2 ][ xa .
A, |=| 2 —2 =3 || Y |+] e
i AZ, ] | ) 2 =9 ] Zi 1 &3

AW, = TW; + &

where w; is a vector composed of x;, ¥; and Z;. The rank of the parameter matrix 7 can be determined
by transforming it into row-echelon form.

—-0.1 —04 02 | 4 -2 1 4 =2 1 4 -2
02 -02 -03|=1]102 —-02 —-03|=|0 -1 01|=]0 1 —0.1
05 02 -09 05 02 -09 0 —1.8 0.1 0 —1.8 0.1 |
1 0 -1 1 0 —1 1 0 0]

=/01 =01 |=]01 —01|=]010

0 0 —0.08 00 1 00 1|

Since the 7 matrix is full rank, the system must be stationary. This method is equivalent to computing
the eigenvalues of the parameter matrix in the VAR.

5.A.2 Independent Unit Roots
Consider the simple VAR
Xt 1 00 Xt—1 817[ i
i [=]0 10| Y% |+] e
7 0 01 Zi &
The eigenvalues of the coefficient matrix are all 1 and the VECM is
[ Axt i 1 0 O i 1 0 O Xr—1 1 8171‘
AY, | = 01 0|—-(010O0 i1 | + | &y
L AZ[ | 0 0 1 | O 0 1 thl 83’1‘
[ Ax, ]| [0 0 O [ x—1 €1
AY, =100 0 i1 | +| &y
L AZ[ | L 0 0 O L Zl—l 83’[
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and the rank of 7 is clearly 0, so this system contains three independent unit roots. This structure also
applies to higher order nonstationary VAR models that contain independent unit root processes — the
coefficient matrix in the VECM is always rank 0 when the system contains as many distinct unit roots
as variables.

5.A.3 Cointegrated with one cointegrating relationship

Consider the VAR(1),
Xt 08 01 01 Xr—1 8171
Y, | =] —0.16 1.08 0.08 i1 |+ | &y
Z 0.36 —0.18 0.82 Zi_1 £

The eigenvalues of the parameter matrix are 1, 1 and .7. The VECM form of this model is

[ Ax ] 08 01 0.1 100 X1 €1
AY, | =|] —016 1.08 008 |—|0 1 0 Yoy |+ | &
| AZ, | 036 —0.18 0.82 00 1 Zi €
(A ] [ 02 01 01 X1 €1
AY, | =] —0.16 008 0.08 Yoo |+ e
Az | | 036 —0.18 —0.18 | | Z, €3

The eigenvalues of 7 are 0, 0 and —.3, and so rank () = 1. Recall that the number of cointegrating
vectors is the rank of 7 in a cointegrated system. In this example, there is one cointegrating vector,
which can be computed by transforming 7 into row-echelon form,

-0.2 0.1 0.1 1 -0.5 -0.5 I =05 -05
-0.16 008 008 |[=| —-0.16 008 008 |=[0 O 0
036 —-0.18 —0.18 036 —0.18 —0.18 0 O 0

The cointegrating vector is f = [1 —0.5 —0.5]’ and o is found by noting that

. (04] —%(Xl —5 0
T
T=af = | m 50 —50 |,
T
o3 —§Ot3 —503
so that & = [—.2 —.16 0.36]’ is the first column of 7.

5.A.4 Cointegrated with two cointegrating relationships
Consider the VAR(1),

Xt 03 04 03 Xi—1 €1

)

Y, |=]01 05 04| Y., |+] ey
Z 02 02 06 || Z_, &
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The eigenvalues of the parameter matrix are 1, .2+.1i and .2-.1i, which have complex moduli of 1,
.223 and .223, respectively. The VECM form of this model is

Ax; 0.3 04 03 1 00 Xi—1 €1

AY; | = 0.1 05 04 |—-]0 1 O i1 |+ | &y
| AZ, | 02 02 0.6 00 1 7 €3,
I Ax; ] [ —-0.7 04 0.3 X1 i €1

AY, | =] 01 —05 04 Yo |+ | ey
Az, | | 02 02 04|z ]| | &y

The eigenvalues of 7 are 0, —0.8 4+ 0.1i and —0.8 — 0.14, and so rank () = 2. The number of cointe-
grating vectors is the rank of 7. One set of cointegrating vectors can be found by transforming 7 into
row-echelon form?2,

-0.7 04 03 1 —-0.57143 —0.42857 1 —0.57143 —0.42857
01 —-05 04 | =101 —0.5 0.4 = | 0 —0.44286 0.44286 | =
02 02 -04 0.2 0.2 —0.4 0 0.31429 —-0.31429
1 —0.57143 —0.42857 1 0 -1
0 1 —1 =101 -1
0 031429 —0.31429 00 O

B is the transpose of first two rows of the row-echelon form,

1 0
0 1
-1 -1

B

o is found using the relationship

/ o 012 —01 — 02
T=o0f =| op1 O —0—02n |,
031 O3 —031— 032

and so « is the first two columns of 7,

-0.7 04
a=| 01 -05
02 02

22The cointegrating vectors are only defined up to an arbitrary normalization. Any set of cointegrating vectors § and be
used to create a different set by multiplying by a k by & full-rank matrix A so that § = Af is also a cointegrating vector.
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Exercises

Shorter Questions

Problem 5.1. Under what conditions are two random variables cointegrated?

Problem 5.2. Suppose Y; = &y + P Y;_| + & where Y; is a k by 1 vector values variable and P
and ®; are conformable. What are the 1 and 2 step forecasts from this model?

Longer Questions

Exercise 5.1. Consider the estimation of a mean where the errors are a white noise process.

L.

il.

ii.
1v.

V.

Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are L.i.d.

Now suppose error process follows an MA(1) so that & = v; + 8, v, where V; is a WN process.

Show that the usual mean estimator is still unbiased and derive the variance of the mean.

Suppose that {1, } and {n,,} are two sequences of uncorrelated i.i.d. standard normal random
variables.

X =M+ 011N -1+ 6012M2,1
Yi=n,+61M1 -1+ 620,1
What are E;[x; 1] and E;[x;1,]?
Define the autocovariance matrix of a vector process.

Compute the autocovariance matrix I'; for j = 0,£1.

Exercise 5.2. Consider an AR(1)

1.

il.

What are the two types of stationarity? Provide precise definitions.

Which of the following bivariate Vector Autoregressions are stationary? If they are not station-
ary are they cointegrated, independent unit roots or explosive? Assume

E1r | iia
YN (0,1
o] evon

Recall that the eigenvalues values of a 2 x2 non-triangular matrix
T T
T— 11 T2
1 T2

can be solved using the two-equation, two-unknowns system A + Ay = @y + M and A A, =
M1y — W27 .
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(@) ]
Xt | 1.4 4 Xi—1 E1t
HMEEMIEE
(b) )
Xe | 10 Xt—1 €1t
G =levlbn R ]
(©

iii. What are spurious regression and balance?
iv. Why is spurious regression a problem?

v. Briefly outline the steps needed to test for a spurious regression in
Y, =B+ P+ &.
Exercise 5.3. Consider the AR(2)
Yi=¢01Y—1 + 92+ &.

i. Rewrite the model with AY; on the left-hand side and ¥; | and AY;_; on the right-hand side.

ii. What restrictions are needed on ¢; and ¢, for this model to collapse to an AR(1) in the first
differences?

iii. When the model collapses, what does this imply about Y;?

Consider the VAR(1)

Xr =X—1+ €1y
Y, =Bxi—1+ &y

where {&;} is a vector white noise process.
i. Are x; and Y; cointegrated?

1. Write this model in error correction form.

Xt . 04 0.3 Xr—1 + 8171‘
Y, | =108 061, £2s

where {&;} is a vector white noise process.

Consider the VAR(1)

i. Verify that x; and ¥; are cointegrated.
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1i. Write this model in error correction form.

iii. Compute the speed of adjustment coefficient & and the cointegrating vector 3 where the B on
X; 1s normalized to 1.

Exercise 5.4. Data on interest rates on US government debt is collected for 3-month (3MO) T-bills,
and 3-year (3YR) and 10-year (10YR) bonds from 1957 until 2009. Three transformed variables are
defined using these three series:

Level 3IMO
Slope 10YR—-3MO
Curvature (10YR—3YR)— (3YR—3MO)

i. In terms of VAR analysis, does it matter whether the original data or the level-slope-curvature
model is fit? Hint: Think about reparameterizations between the two.

Granger Causality analysis is performed on this set, and the p-values are

Level,_; Slope;—; Curvature,;_

Level,  0.000 0.244 0.000

Slope;  0.000 0.000 0.000
Curvature;  0.000 0.000 0.000

All (excl. self)  0.000 0.000 0.000

ii. Interpret this table.

iii. When constructing impulse response graphs the selection of the covariance of the shocks is
important. Outline the alternatives and describe situations when each may be preferable.

iv. Figure 5.7 contains the impulse response curves for this model. Interpret the graph. Also,
comment on why the impulse responses can all be significantly different from O in light of the
Granger Causality table.

v. Why are some of the lag-0 impulses precisely 0.0?

Exercise 5.5. Answer the following questions:

i. Consider the AR(2)
=0V, 1+ Y 2+&

(a) Rewrite the model with AY; on the left-hand side and Y;_; and AY;_; on the right-hand
side.

(b) What restrictions are needed on @; and ¢, for this model to collapse to an AR(1) in the
first differences?

(c) When the model collapses, what does this imply about Y;?
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Level-Slope-Curvature Impulse Response

Level Shock Slope Shock Curvature Shock
0.6/ ~_- i 0.6 0.6
3 0.4[\ 0.4 0.4
30.2 : 02 1 0.2
0 0 — 0 :
0 10 20 0 10 20 0 10 20

Slope

Curvature

Figure 5.7: Impulse response functions and 95% confidence intervals for the level-slope-curvature
exercise.

ii. Consider the VAR(1)

Xt =X—1+ €1y
Y, = Bxi—1+ &y

where {&,} is a vector white noise process.

(a) Are x; and Y; cointegrated?

(b) Write this model in error correction form.

iii. Consider the VAR(1)
x| _[0625 031257 [x1 ], [ e
Y | =0.75 0.375 Y, &y
where {&,} is a vector white noise process.

(a) Verify that x; and Y; are cointegrated.

(b) Write this model in error correction form.
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(c) Compute the speed of adjustment coefficient o and the cointegrating vector 8 where the
B on x; is normalized to 1.

Exercise 5.6. Consider the estimation of a mean where the errors are a white noise process.

i. Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are L.i.d.

Now suppose error process follows an AR(1) so that ¥, = u+ ¢ and & = pg,_; + Vv, where {v;}
is a WN process.

ii. Show that the usual mean estimator is still unbiased and derive the variance of the sample mean.

iii. What is Granger Causality and how is it useful in Vector Autoregression analysis? Be as specific
as possible.

Suppose that {1, } and {n2,} are two sequences of uncorrelated i.i.d. standard normal random
variables.

X =My +6011MN1—1+6012M2,1
Yi=n2;+601M1 -1+ 62M0,1

iv. Define the autocovariance matrix of a vector process.
v. Compute the autocovariance matrix I'; for j =0, £1.

vi. The AIC, HQIC, and BIC are computed for a bivariate VAR with lag length ranging from O to
12 and are in the table below. Which model is selected by each criterion?

Lag Length AIC HQIC BIC

0 2.1916 2.1968 2.2057
1 09495 0.9805 1.0339
2 09486 1.0054 1.1032
3 09716 1.0542 1.1965
4 09950 1.1033 1.2900
5 1.0192 1.1532 1.3843
6 1.0417 1.2015 1.4768
7 1.0671 1.2526 1.5722
8 1.0898 1.3010 1.6649
9 1.1115 1.3483 1.7564
10 1.1331 1.3956 1.8478
11 1.1562 1.4442 1.9406

12 1.1790 1.4926 2.0331
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Exercise 5.7. Consider the VAR(1)

Xt =X—1+ €1y
Y, = Bxi—1+ &y

where {&;} is a vector white noise process.
1. Are x; and Y¥; cointegrated?

ii. Write this model in error correction form.

Exercise 5.8. Answer the following questions.
1. Describe two methods for determining the number of lags to use in a VAR(P)

1. Consider the VAR(P)
Yt =P1Y¢ 1 +P2Y¢ 2+ &

Write this VAR in companion form. Under what conditions is this process stationary?
iii. For the remainder of the question, consider the 2-dimentional VAR(1)
Yi=P1Y( 1+ &

Define Granger Causality and explain what conditions on ®; are needed for no series in y; to
Granger cause any other series in y;.

iv. Define cointegration in this system.
v. What conditions on ®; are required for the VAR(1) to be cointegrated?
vi. Write the VAR(1) in error correction form.

vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.9. Consider a VAR(1)
Y =P1Y 1 +&

i. What are the impulses in this model?
ii. Define cointegration for this model.
1. What conditions on the eigenvalues of ®; are required for cointegration to be present?
iv. Consider a 2-dimensional VAR(1) written in error correction form
AY; =11Y;_| + &.
Assume each of the variables in Y, are I(1). What conditions on the rank of IT must hold when:

(a) Y;_ are stationary

(b) Y,_ are cointegrated
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(¢) Y,_; are random walks
v. Define spurious regression. Why is this a problem?
Exercise 5.10. Consider the VAR(P)
Y, =Y, 1+ DY, 2+ &
1. Write this in companion form. Under what conditions is the VAR(P) stationary?

ii. Consider the 2-dimentional VAR
Y, =P1Y; 1+ &

(a) What conditions on @ are required for the VAR(1) to have cointegration?

(b) Describe how to test for cointegration using the Engle-Granger method.

Exercise 5.11. Consider a VAR(1)
Y =P1Y, 1+¢&

1. What is an impulse response function for this model?
ii. Define cointegration for this model.
iii. What conditions on the eigenvalues of ®; are required for cointegration to be present?
iv. Consider a 2-dimensional VAR(1) written in error correction form
AY, =11Y;_1 + &.
Assume each of the variables in Y, are I(1). What conditions on the rank of IT must hold when:

(a) Y;— are stationary
(b) Y;_ are cointegrated

(¢) Y;_; are random walks
v. Define spurious regression. Why is this a problem?
Exercise 5.12. Answer the following questions.
1. Describe two methods for determining the number of lags to use in a VAR(P)

ii. Consider the VAR(P)
Y, =D01Y, 1 + DY, o+ &

Write this in companion form. Under what conditions is the VAR(P) stationary?
iii. For the remainder of the question, consider the 2-dimentional VAR(1)
Yl‘ — q)lYl—l +8t'

Define Granger Causality and explain what conditions on ®; are needed for no series in Y; to
Granger cause any other series in Y;.
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iv. Define cointegration in this system.
v. What conditions on ®; are required for the VAR(1) to have cointegration?
vi. Write the VAR(1) in error correction form.
vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.13. Answer the following questions.

i. Suppose ¥; = ¢o+ @1y + ¢ Y;_» + & where {&} is a white noise process.
ii. Write this model in companion form.
(a) Using the companion form, derive expressions for the first two autocovariances of ¥;. (It
is not necessary to explicitly solve them in scalar form)

(b) Using the companion form, determine the formal conditions for ¢ and ¢, to for {¥;} to be
covariance stationary. You can use the result that when A is a 2 by 2 matrix, its eigenvalues
solve the two equations

MAy = ayaxn —apay
ﬂ,l—F/b = aj]+ax
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Chapter 6
Generalized Method Of Moments (GMM)

Note: The primary reference text for these notes is Hall (2005). Alternative, but less comprehensive,
treatments can be found in chapter 14 of Hamilton (1994) or some sections of chapter 4 of Greene
(2007). For an excellent perspective of GMM from a finance point of view, see chapters 10, 11 and 13
in Cochrane (2001).

Generalized Moethod of Moments is a broadly applicable parameter estimation
strategy which nests the classic method of moments, linear regression, maximum
likelihood. This chapter discusses the specification of moment conditions — the
building blocks of GMM estimations, estimation, inference and specificatrion test-
ing. These ideas are illustrated through three examples: estimation of a consump-
tion asset pricing model, linear factors models and stochastic volatility.

Generalized Method of Moments (GMM) is an estimation procedure that allows economic models
to be specified while avoiding often unwanted or unnecessary assumptions, such as specifying a par-
ticular distribution for the errors. This lack of structure means GMM is widely applicable, although
this generality comes at the cost of a number of issues, the most important of which is questionable
small sample performance. This chapter introduces the GMM estimation strategy, discuss specifica-
tion, estimation, inference and testing.

6.1 Classical Method of Moments

The classical method of moments, or simply method of moments, uses sample moments to estimate
unknown parameters. For example, suppose a set of T observations, yy,...,yr are i.i.d. Poisson with
intensity parameter A. Since E[y,] = A, a natural method to estimate the unknown parameter is to use
the sample average,

T
A=T7"> "y 6.1)
t=1

which converges to A as the sample size grows large. In the case of Poisson data , the mean is not
the only moment which depends on A, and so it is possible to use other moments to learn about the
intensity. For example the variance V[y,] = A, also depends on A and so E[y?] = A2 + A. This can be
used estimate to lambda since
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T
A+A2=E [T—lzy,zl (6.2)
t=1

and, using the quadratic formula, an estimate of A can be constructed as

L =l /14+4)2
i = Y (6.3)

2

where )7 =71 Zthl ylz. Other estimators for A could similarly be constructed by computing higher
order moments of y;.! These estimators are method of moments estimators since they use sample
moments to estimate the parameter of interest. Generalized Method of Moments (GMM) extends the
classical setup in two important ways. The first is to formally treat the problem of having two or more
moment conditions which have information about unknown parameters. GMM allows estimation and
inference in systems of Q equations with P unknowns, P < Q. The second important generalization
of GMM is that quantities other than sample moments can be used to estimate the parameters. GMM
exploits laws of large numbers and central limit theorems to establish regularity conditions for many
different “moment conditions” that may or may not actually be moments. These two changes pro-
duce a class of estimators that is broadly applicable. Section 6.7 shows that the classical method of
moments, ordinary least squares and maximum likelihood are all special cases of GMM.

6.2 Examples

Three examples will be used throughout this chapter. The first is a simple consumption asset pricing
model. The second is the estimation of linear asset pricing models and the final is the estimation of a
stochastic volatility model.

6.2.1 Consumption Asset Pricing

GMM was originally designed as a solution to a classic problem in asset pricing: how can a consump-
tion based model be estimated without making strong assumptions on the distribution of returns? This
example is based on Hansen and Singleton (1982), a model which builds on Lucas (1978).

The classic consumption based asset pricing model assumes that a representative agent maximizes
the conditional expectation of their lifetime discounted utility,

E, [Z ﬁiU(c,+i)
i=0

where [ is the discount rate (rate of time preference) and U (-) is a strictly concave utility function.
Agents allocate assets between N risky assets and face the budget constraint

(6.4)

. . o . R By B, .
I'The quadratic formula has two solutions. It is simple to verify that the other solution, %, is negative and so

cannot be the intensity of a Poisson process.
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N
¢+ ij,t(]j,z = ZRj,zC[j,t—mj +wy (6.5)
j=1 j=1
where ¢; is consumption, p;, and g;, are price and quantity of asset j, j=1,2,...,N, R, is the time ¢

payoff of holding asset j purchased in period 7 —mj, g ;—m; 1s the amount purchased in period z —m;
and wy is real labor income. The budget constraint requires that consumption plus asset purchases
(LHS) is equal to portfolio wealth plus labor income. Solving this model produces a standard Euler
equation,

ijU/(Cl) = ﬁijt [Rj,t—O—ij/(Ct—i—mjﬂ (6.6)

which is true for all assets and all time periods. This Euler equation states that the utility foregone by
purchasing an asset at p;, must equal the discounted expected utility gained from holding that asset
in period t +m;. The key insight of Hansen and Singleton (1982) is that this simple condition has
many testable implications, mainly that

[ () ()| - &

Note that —L" s the gross rate of return for asset j (1 plus the net rate of return). Since the Euler

equation holds for all time horizons, it is simplest to reduce it to a one-period problem. Defining r; ;11
to be the net rate of return one period ahead for asset j,

B (B (14r,.) (L] Zy g 6.8)
U'(ct)

which provides a simple testable implication of this model. This condition must be true for any asset
J which provides a large number of testable implications by replacing the returns of one series with
those of another. Moreover, the initial expectation is conditional which produces further implications
for the model. Not only is the Euler equation required to have mean zero, it must be uncorrelated with
any time ¢ instrument z;, and so it must also be the case that

E Kﬁ (1+7rj111) (%) — 1) zt} =0. (6.9)

The use of conditioning information can be used to construct a huge number of testable restrictions.
This model is completed by specifying the utility function to be CRRA,

e
Ule) = ;_y (6.10)
Ule)=c; " (6.11)

where 7 is the coefficient of relative risk aversion. With this substitution, the testable implications are

E [([3 (1+rjs41) (c,:)y_l) zt] =0 (6.12)




382 Generalized Method Of Moments (GMM)

where z; is any ¢ available instrument (including a constant, which will produce an unconditional
restriction).

6.2.2 Linear Factor Models

Linear factor models are widely popular in finance due to their ease of estimation using the Fama
and MacBeth (1973) methodology and the Shanken (1992) correction. However, Fama-MacBeth,
even with the correction, has a number of problems; the most important is that the assumptions
underlying the Shanken correction are not valid for heteroskedastic asset pricing models and so the
modified standard errors are not consistent. GMM provides a simple method to estimate linear asset
pricing models and to make correct inference under weaker conditions than those needed to derive the
Shanken correction. Consider the estimation of the parameters of the CAPM using two assets. This
model contains three parameters: the two s, measuring the risk sensitivity, and A,,, the market price
of risk. These two parameters are estimated using four equations,

rft = ﬁlrﬁﬂ + €1 (6.13)
1o = Bty + &
iy =PBiA" +
5 = B A" + My

where 7,
errors.

These equations should look familiar; they are the Fama-Macbeth equations. The first two — the
“time-series” regressions — are initially estimated using OLS to find the values for f8;, j = 1,2 and
the last two — the “cross-section” regression — are estimated conditioning on the first stage s to
estimate the price of risk. The Fama-MacBeth estimation procedure can be used to generate a set of
equations that should have expectation zero at the correct parameters. The first two come from the
initial regressions (see chapter 3),

is the excess return to asset j, ry,, is the excess return to the market and €;, and 7, are

(ris +Birp )1 =0 (6.14)
(5 + Barp )T =0

and the last two come from the second stage regressions

i —BiA" =0 (6.15)
15, — BA™ =0

This set of equations consists 3 unknowns and four equations and so cannot be directly estimates
using least squares. One of the main advantages of GMM is that it allows estimation in systems
where the number of unknowns is smaller than the number of moment conditions, and to test whether
the moment conditions hold (all conditions not significantly different from 0).
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6.2.3 Stochastic Volatility Models

Stochastic volatility is an alternative framework to ARCH for modeling conditional heteroskedas-
ticity. The primary difference between the two is the inclusion of 2 (or more) shocks in stochastic
volatility models. The inclusion of the additional shock makes standard likelihood-based methods,
like those used to estimate ARCH-family models, infeasible. GMM was one of the first methods
used to estimate these models. GMM estimators employ a set of population moment conditions to
determine the unknown parameters of the models. The simplest stochastic volatility model is known
as the log-normal SV model,

Iy = Or& (6.16)

Ino? = w+pln (62| 