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Chapter 1

Probability, Random Variables and
Expectations

Note: The primary reference for these notes is Mittelhammer (1999). Other treatments of probability
theory include Gallant (1997), Casella and Berger (2001) and Grimmett and Stirzaker (2001).

This chapter provides an overview of probability theory as it applied to both dis-
crete and continuous random variables. The material covered in this chapter serves
as a foundation of the econometric sequence and is useful throughout financial
economics. The chapter begins with a discussion of the axiomatic foundations
of probability theory and then proceeds to describe properties of univariate ran-
dom variables. Attention then turns to multivariate random variables and important
difference from univariate random variables. Finally, the chapter discusses the ex-
pectations operator and moments.

1.1 Axiomatic Probability

Probability theory is derived from a small set of axioms – a minimal set of essential assumptions. A
deep understanding of axiomatic probability theory is not essential to financial econometrics or to the
use of probability and statistics in general, although understanding these core concepts does provide
additional insight.

The first concept in probability theory is the sample space, which is an abstract concept containing
primitive probability events.

Definition 1.1 (Sample Space). The sample space is a set, Ω, that contains all possible outcomes.

Example 1.1. Suppose interest is on a standard 6-sided die. The sample space is 1-dot, 2-dots, . . .,
6-dots.

Example 1.2. Suppose interest is in a standard 52-card deck. The sample space is then A♣, 2♣, 3♣,
. . . , J♣, Q♣, K♣, A♦, . . . , K♦, A♥, . . . ,K♥, A♠, . . . ,K♠.

Example 1.3. Suppose interest is in the logarithmic stock return, defined as rt = lnPt − lnPt−1, then
the sample space is R, the real line.
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The next item of interest is an event.

Definition 1.2 (Event). An event, ω , is a subset of the sample space Ω.

An event may be any subsets of the sample space Ω (including the entire sample space), and the
set of all events is known as the event space.

Definition 1.3 (Event Space). The set of all events in the sample space Ω is called the event space,
and is denoted F .

Event spaces are a somewhat more difficult concept. For finite event spaces, the event space
is usually the power set of the outcomes – that is, the set of all possible unique sets that can be
constructed from the elements. When variables can take infinitely many outcomes, then a more
nuanced definition is needed, although the main idea is to define the event space to be all non-empty
intervals (so that each interval has infinitely many points in it).

Example 1.4. Suppose interest lies in the outcome of a coin flip. Then the sample space is {H,T}
and the event space is {∅,{H} ,{T} ,{H,T}} where ∅ is the empty set.

The first two axioms of probability are simple: all probabilities must be non-negative and the total
probability of all events is one.

Axiom 1.1. For any event ω ∈ F ,
Pr(ω)≥ 0. (1.1)

Axiom 1.2. The probability of all events in the sample space Ω is unity, i.e.

Pr(Ω) = 1. (1.2)

The second axiom is a normalization that states that the probability of the entire sample space
is 1 and ensures that the sample space must contain all events that may occur. Pr(·) is a set-valued
function – that is, Pr(ω) returns the probability, a number between 0 and 1, of observing an event ω .

Before proceeding, it is useful to refresh four concepts from set theory.

Definition 1.4 (Set Union). Let A and B be two sets, then the union is defined

A∪B = {x : x ∈ A or x ∈ B} .

A union of two sets contains all elements that are in either set.

Definition 1.5 (Set Intersection). Let A and B be two sets, then the intersection is defined

A∩B = {x : x ∈ A and x ∈ B} .

The intersection contains only the elements that are in both sets.

Definition 1.6 (Set Complement). Let A be a set, then the complement set, denoted

Ac = {x : x /∈ A} .

The complement of a set contains all elements which are not contained in the set.
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Set Complement Disjoint Sets

A AC A B

Set Intersection Set Union

A B

A ∩B

A B

A ∪B

Figure 1.1: The four set definitions presented in R2. The upper left panel shows a set and its
complement. The upper right shows two disjoint sets. The lower left shows the intersection of two
sets (darkened region) and the lower right shows the union of two sets (darkened region). In all
diagrams, the outer box represents the entire space.

Definition 1.7 (Disjoint Sets). Let A and B be sets, then A and B are disjoint if and only if A∩B = ∅.

Figure 1.1 provides a graphical representation of the four set operations in a 2-dimensional space.
The third and final axiom states that probability is additive when sets are disjoint.

Axiom 1.3. Let {Ai}, i = 1,2, . . . be a finite or countably infinite set of disjoint events.1 Then

Pr

(∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai) . (1.3)

Assembling a sample space, event space and a probability measure into a set produces what is
known as a probability space. Throughout the course, and in virtually all statistics, a complete prob-
ability space is assumed (typically without explicitly stating this assumption).2

1

Definition 1.8. A S set is countably infinite if there exists a bijective (one-to-one) function from the elements of S to the
natural numbers N= {1,2, . . .} . Common sets that are countable infinite include the integers (Z) and the rational numbers
(Q).

2A complete probability space is complete if and only if B∈F where Pr(B) = 0 and A⊂B, then A∈F . This condition
ensures that probability can be assigned to any event.
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Definition 1.9 (Probability Space). A probability space is denoted using the tuple (Ω,F ,Pr) where
Ω is the sample space, F is the event space and Pr is the probability set function which has domain
ω ∈ F .

The three axioms of modern probability are very powerful, and a large number of theorems can
be proven using only these axioms. A few simple example are provided, and selected proofs appear
in the Appendix.

Theorem 1.1. Let A be an event in the sample space Ω, and let Ac be the complement of A so that
Ω = A∪Ac. Then Pr(A) = 1−Pr(Ac).

Since A and Ac are disjoint, and by definition Ac is everything not in A, then the probability of the
two must be unity.

Theorem 1.2. Let A and B be events in the sample space Ω. Then Pr(A∪B)= Pr(A) + Pr(B)−
Pr(A∩B).

This theorem shows that for any two sets, the probability of the union of the two sets is equal to
the probability of the two sets minus the probability of the intersection of the sets.

1.1.1 Conditional Probability

Conditional probability extends the basic concepts of probability to the case where interest lies in the
probability of one event conditional on the occurrence of another event.

Definition 1.10 (Conditional Probability). Let A and B be two events in the sample space Ω. If
Pr(B) 6= 0, then the conditional probability of the event A, given event B, is given by

Pr(A|B) = Pr(A∩B)
Pr(B)

. (1.4)

The definition of conditional probability is intuitive. The probability of observing an event in set
A, given an event in the set B has occurred, is the probability of observing an event in the intersection
of the two sets normalized by the probability of observing an event in set B.

Example 1.5. In the example of rolling a die, suppose A = {1,3,5} is the event that the outcome is
odd and B = {1,2,3} is the event that the outcome of the roll is less than 4. Then the conditional
probability of A given B is

Pr({1,3})
Pr({1,2,3}) =

2
6
3
6

=
2
3

since the intersection of A and B is {1,3}.

The axioms can be restated in terms of conditional probability, where the sample space consists
of the events in the set B.
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1.1.2 Independence

Independence of two measurable sets means that any information about an event occurring in one set
has no information about whether an event occurs in another set.

Definition 1.11. Let A and B be two events in the sample space Ω. Then A and B are independent if
and only if

Pr(A∩B) = Pr(A)Pr(B) (1.5)

, A⊥⊥ B is commonly used to indicate that A and B are independent.

One immediate implication of the definition of independence is that when A and B are inde-
pendent, then the conditional probability of one given the other is the same as the unconditional
probability of the random variable – i.e. Pr(A|B) = Pr(A).

1.1.3 Bayes Rule

Bayes rule is frequently encountered in both statistics (known as Bayesian statistics) and in financial
models where agents learn about their environment. Bayes rule follows as a corollary to a theorem
that states that the total probability of a set A is equal to the conditional probability of A given a set of
disjoint sets B which span the sample space.

Theorem 1.3. Let Bi,i = 1,2 . . . be a finite or countably infinite partition of the sample space Ω so
that B j∩Bk = ∅ for j 6= k and

⋃∞
i=1 Bi = Ω. Let Pr(Bi)> 0 for all i, then for any set A,

Pr(A) =
∞∑

i=1

Pr(A|Bi)Pr(Bi) . (1.6)

Bayes rule restates the previous theorem so that the probability of observing an event in B j given
an event in A is observed can be related to the conditional probability of A given B j.

Corollary 1.1 (Bayes Rule). Let Bi,i = 1,2 . . . be a finite or countably infinite partition of the sample
space Ω so that B j ∩Bk = ∅ for j 6= k and

⋃∞
i=1 Bi = Ω. Let Pr(Bi) > 0 for all i, then for any set A

where Pr(A)> 0,

Pr
(
B j|A

)
=

Pr
(
A|B j

)
Pr
(
B j
)∑∞

i=1 Pr(A|Bi)Pr(Bi)
.

=
Pr
(
A|B j

)
Pr
(
B j
)

Pr(A)

An immediate consequence of the definition of conditional probability is the

Pr(A∩B) = Pr(A|B)Pr(B) ,

which is referred to as the multiplication rule. Also notice that the order of the two sets is arbitrary, so
that the rule can be equivalently stated as Pr(A∩B) = Pr(B|A)Pr(A). Combining these two (as long
as Pr(A)> 0),

Pr(A|B)Pr(B) = Pr(B|A)Pr(A)

⇒ Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
. (1.7)
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Example 1.6. Suppose a family has 2 children and one is a boy, and that the probability of having a
child of either sex is equal and independent across children. What is the probability that they have 2
boys?

Before learning that one child is a boy, there are 4 equally probable possibilities: {B,B}, {B,G},
{G,B} and {G,G}. Using Bayes rule,

Pr({B,B}|B≥ 1) =
Pr(B≥ 1|{B,B})×Pr({B,B})∑

S∈{{B,B},{B,G},{G,B},{G,B}}Pr(B≥ 1|S)Pr(S)

=
1× 1

4

1× 1
4 +1× 1

4 +1× 1
4 +0× 1

4

=
1
3

so that knowing one child is a boy increases the probability of 2 boys from 1
4 to 1

3 . Note that∑
S∈{{B,B},{B,G},{G,B},{G,B}}

Pr(B≥ 1|S)Pr(S) = Pr(B≥ 1) .

Example 1.7. The famous Monte Hall Let’s Make a Deal television program is an example of Bayes
rule. Contestants competed for one of three prizes, a large one (e.g. a car) and two uninteresting
ones (duds). The prizes were hidden behind doors numbered 1, 2 and 3. Before the contest starts, the
contestant has no information about the which door has the large prize, and to the initial probabilities
are all 1

3 . During the negotiations with the host, it is revealed that one of the non-selected doors
does not contain the large prize. The host then gives the contestant the chance to switch from the
door initially chosen to the one remaining door. For example, suppose the contestant choose door 1
initially, and that the host revealed that the large prize is not behind door 3. The contestant then has
the chance to choose door 2 or to stay with door 1. In this example, B is the event where the contestant
chooses the door which hides the large prize, and A is the event that the large prize is not behind door
2.

Initially there are three equally likely outcomes (from the contestant’s point of view), where D
indicates dud, L indicates the large prize, and the order corresponds to the door number.

{D,D,L} ,{D,L,D} ,{L,D,D}

The contestant has a 1
3 chance of having the large prize behind door 1. The host will never remove

the large prize, and so applying Bayes rule we have

Pr(L = 2|H = 3,S = 1) =
Pr(H = 3|S = 1,L = 2)×Pr(L = 2|S = 1)∑3
i=1 Pr(H = 3|S = 1,L = i)×Pr(L = i|S = 1)

=
1× 1

3
1
2 × 1

3 +1× 1
3 +0× 1

3

=
1
3
1
2

=
2
3
.
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where H is the door the host reveals, S is initial door selected, and L is the door containing the large
prize. This shows that the probability the large prize is behind door 2, given that the player initially
selected door 1 and the host revealed door 3 can be computed using Bayes rule.

Pr(H = 3|S = 1,L = 2) is the probability that the host shows door 3 given the contestant selected
door 1 and the large prize is behind door 2, which always happens since the host will never reveal
the large prize. P(L = 2|S = 1) is the probability that the large is in door 2 given the contestant
selected door 1, which is 1

3 . Pr(H = 3|S = 1,L = 1) is the probability that the host reveals door 3
given that door 1 was selected and contained the large prize, which is 1

2 , and P(H = 3|S = 1,L = 3)
is the probability that the host reveals door 3 given door 3 contains the prize, which never happens.

Bayes rule shows that it is always optimal to switch doors. This is a counter-intuitive result and
occurs since the host’s action reveals information about the location of the large prize. Essentially, the
two doors not selected by the host have combined probability 2

3 of containing the large prize before
the doors are opened – opening the third assigns its probability to the door not opened.

1.2 Univariate Random Variables

Studying the behavior of random variables, and more importantly functions of random variables (i.e.
statistics) is essential for both the theory and practice of financial econometrics. This section covers
univariate random variables and multivariate random variables are discussed later.

The previous discussion of probability is set based and so includes objects which cannot be de-
scribed as random variables, which are a limited (but highly useful) sub-class of all objects that can
be described using probability theory. The primary characteristic of a random variable is that it takes
values on the real line.

Definition 1.12 (Random Variable). Let (Ω,F ,Pr) be a probability space. If X : Ω→ R is a real-
valued function have as its domain elements of Ω, then X is called a random variable.

A random variable is essentially a function which takes ω ∈ Ω as an input and returns a value
x ∈ R, where R is the symbol for the real line. Random variables come in one of three forms:
discrete, continuous and mixed. Random variables which mix discrete and continuous distributions
are generally less important in financial economics and so here the focus is on discrete and continuous
random variables.

Definition 1.13 (Discrete Random Variable). A random variable is called discrete if its range consists
of a countable (possibly infinite) number of elements.

While discrete random variables are less useful than continuous random variables, they are still
commonly encountered.

Example 1.8. A random variable which takes on values in {0,1} is known as a Bernoulli random
variable, and is the simplest non-degenerate random variable (see Section 1.2.3.1).3 Bernoulli random
variables are often used to model “success” or “failure”, where success is loosely defined – a large
negative return, the existence of a bull market or a corporate default.

The distinguishing characteristic of a discrete random variable is not that it takes only finitely
many values, but that the values it takes are distinct in the sense that it is possible to fit small intervals
around each point without the overlap.

3A degenerate random variable always takes the same value, and so is not meaningfully random.



8 Probability, Random Variables and Expectations

Example 1.9. Poisson random variables take values in{0,1,2,3, . . .} (an infinite range), and are com-
monly used to model hazard rates (i.e. the number of occurrences of an event in an interval). They
are especially useful in modeling trading activity (see Section 1.2.3.2).

1.2.1 Mass, Density, and Distribution Functions

Discrete random variables are characterized by a probability mass function (pmf) which gives the
probability of observing a particular value of the random variable.

Definition 1.14 (Probability Mass Function). The probability mass function, f , for a discrete random
variable X is defined as f (x) = Pr(x) for all x ∈ R(X), and f (x) = 0 for all x /∈ R(X) where R(X) is
the range of X (i.e. the values for which X is defined).

Example 1.10. The probability mass function of a Bernoulli random variable takes the form

f (x; p) = px (1− p)1−x

where p ∈ [0,1] is the probability of success.

Figure 1.2 contains a few examples of Bernoulli pmfs using data from the FTSE 100 and S&P
500 over the period 1984–2012. Both weekly returns, using Friday to Friday prices and monthly
returns, using end-of-month prices, were constructed. Log returns were used (rt = ln(Pt/Pt−1)) in
both examples. Two of the pmfs defined success as the return being positive. The other two define
the probability of success as a return larger than -1% (weekly) or larger than -4% (monthly). These
show that the probability of a positive return is much larger for monthly horizons than for weekly.

Example 1.11. The probability mass function of a Poisson random variable is

f (x;λ ) =
λ x

x!
exp(−λ )

where λ ∈ [0,∞) determines the intensity of arrival (the average value of the random variable).

The pmf of the Poisson distribution can be evaluated for every value of x≥ 0, which is the support
of a Poisson random variable. Figure 1.4 shows empirical distribution tabulated using a histogram for
the time elapsed where .1% of the daily volume traded in the S&P 500 tracking ETF SPY on May 31,
2012. This data series is a good candidate for modeling using a Poisson distribution.

Continuous random variables, on the other hand, take a continuum of values – technically an
uncountable infinity of values.

Definition 1.15 (Continuous Random Variable). A random variable is called continuous if its range is
uncountably infinite and there exists a non-negative-valued function f (x) defined or all x ∈ (−∞,∞)
such that for any event B ⊂ R(X), Pr(B) =

∫
x∈B f (x) dx and f (x) = 0 for all x /∈ R(X) where R(X)

is the range of X (i.e. the values for which X is defined).

The pmf of a discrete random variable is replaced with the probability density function (pdf) for
continuous random variables. This change in naming reflects that the probability of a single point of
a continuous random variable is 0, although the probability of observing a value inside an arbitrarily
small interval in R(X) is not.
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Figure 1.2: These four charts show examples of Bernoulli random variables using returns on the
FTSE 100 and S&P 500. In the top two, a success was defined as a positive return. In the bottom two,
a success was a return above -1% (weekly) or -4% (monthly).

Definition 1.16 (Probability Density Function). For a continuous random variable, the function f is
called the probability density function (pdf).

Before providing some examples of pdfs, it is useful to characterize the properties that any pdf
should have.

Definition 1.17 (Continuous Density Function Characterization). A function f : R→ R is a mem-
ber of the class of continuous density functions if and only if f (x) ≥ 0 for all x ∈ (−∞,∞) and∫∞
−∞ f (x) dx = 1.

There are two essential properties. First, that the function is non-negative, which follows from
the axiomatic definition of probability, and second, that the function integrates to 1, so that the total
probability across R(X) is 1. This may seem like a limitation, but it is only a normalization since any
non-negative integrable function can always be normalized to that it integrates to 1.

Example 1.12. A simple continuous random variable can be defined on [0,1] using the probability
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density function

f (x) = 12
(

x− 1
2

)2

and figure 1.3 contains a plot of the pdf.

This simple pdf has peaks near 0 and 1 and a trough at 1/2. More realistic pdfs allow for values
in (−∞,∞), such as in the density of a normal random variable.

Example 1.13. The pdf of a normal random variable with parameters µ and σ2 is given by

f (x) =
1√

2πσ2
exp

(
−(x−µ)2

2σ2

)
. (1.8)

N
(
µ,σ2) is used as a shorthand notation for a random variable with this pdf. When µ = 0 and σ2 = 1,

the distribution is known as a standard normal. Figure 1.3 contains a plot of the standard normal pdf
along with two other parameterizations.

For large values of x (in the absolute sense), the pdf of a standard normal takes very small values,
and peaks at x = 0 with a value of 0.3989. The shape of the normal distribution is that of a bell (and
is occasionally referred to a bell curve).

A closely related function to the pdf is the cumulative distribution function, which returns the total
probability of observing a value of the random variable less than its input.

Definition 1.18 (Cumulative Distribution Function). The cumulative distribution function (cdf) for a
random variable X is defined as F (c) = Pr(x≤ c) for all c ∈ (−∞,∞).

Cumulative distribution function is used for both discrete and continuous random variables.

Definition 1.19 (Discrete cdf). When X is a discrete random variable, the cdf is

F (x) =
∑
s≤x

f (s) (1.9)

for x ∈ (−∞,∞).

Example 1.14. The cdf of a Bernoulli is

F (x; p) =


0 if x < 0
p if 0≤ x < 1
1 if x≥ 1

.

The Bernoulli cdf is simple since it only takes 3 values. The cdf of a Poisson random variable
relatively simple since it is defined as sum the probability mass function for all values less than or
equal to the function’s argument.

Example 1.15. The cdf of a Poisson(λ )random variable is given by

F (x;λ ) = exp(−λ )

bxc∑
i=0

λ i

i!
, x≥ 0.

where b·c returns the largest integer smaller than the input (the floor operator).
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Continuous cdfs operate much like discrete cdfs, only the summation is replaced by an integral
since there are a continuum of values possible for X .

Definition 1.20 (Continuous cdf). When X is a continuous random variable, the cdf is

F (x) =
∫ x

−∞
f (s) ds (1.10)

for x ∈ (−∞,∞).

The integral computes the total area under the pdf starting from −∞ up to x.

Example 1.16. The cdf of the random variable with pdf given by 12(x−1/2)2 is

F (x) = 4x3−6x2 +3x.

and figure 1.3 contains a plot of this cdf.

This cdf is the integral of the pdf, and checking shows that F (0) = 0, F (1/2) = 1/2 (since it is
symmetric around 1/2) and F (1) = 1, which must be 1 since the random variable is only defined on
[0,1].h

Example 1.17. The cdf of a normally distributed random variable with parameters µ and σ2 is given
by

F (x) =
1√

2πσ2

∫ x

−∞
exp

(
−(s−µ)2

2σ2

)
ds. (1.11)

Figure 1.3 contains a plot of the standard normal cdf along with two other parameterizations.

In the case of a standard normal random variable, the cdf is not available in closed form, and so
when computed using a computer (i.e. in Excel or MATLAB), fast, accurate numeric approximations
based on polynomial expansions are used (Abramowitz and Stegun, 1964).

The cdf can be similarly derived from the pdf as long as the cdf is continuously differentiable. At
points where the cdf is not continuously differentiable, the pdf is defined to take the value 0.4

Theorem 1.4 (Relationship between cdf and pdf). Let f (x) and F (x) represent the pdf and cdf of a
continuous random variable X, respectively. The density function for X can be defined as f (x)= ∂F(x)

∂x
whenever f (x) is continuous and f (x) = 0 elsewhere.

Example 1.18. Taking the derivative of the cdf in the running example,

∂F (x)
∂x

= 12x2−12x+3

= 12
(

x2− x+
1
4

)
= 12

(
x− 1

2

)2

.

4Formally a pdf does not have to exist for a random variable, although a cdf always does. In practice, this is a technical
point and distributions which have this property are rarely encountered in financial economics.
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Figure 1.3: The top panels show the pdf for the density f (x) = 12
(
x− 1

2

)2
and its associated cdf.

The bottom left panel shows the probability density function for normal distributions with alternative
values for µ and σ2. The bottom right panel shows the cdf for the same parameterizations.

1.2.2 Quantile Functions

The quantile function is closely related to the cdf – and in many important cases, the quantile function
is the inverse (function) of the cdf. Before defining quantile functions, it is necessary to define a
quantile.

Definition 1.21 (Quantile). Any number q satisfying Pr(x≤ q) = α and Pr(x≥ q) = 1−α is known
as the α-quantile of X and is denoted qα .

A quantile is just the point on the cdf where the total probability that a random variable is smaller
is α and the probability that the random variable takes a larger value is 1−α . The definition of
a quantile does not necessarily require uniqueness and non-unique quantiles are encountered when
pdfs have regions of 0 probability (or equivalently cdfs are discontinuous). Quantiles are unique
for random variables which have continuously differentiable cdfs. One common modification of
the quantile definition is to select the smallest number which satisfies the two conditions to impose
uniqueness of the quantile.
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The function which returns the quantile is known as the quantile function.

Definition 1.22 (Quantile Function). Let X be a continuous random variable with cdf F (x). The
quantile function for X is defined as G(α) = q where Pr(x≤ q) = α and Pr(x > q) = 1−α . When
F (x) is one-to-one (and hence X is strictly continuous) then G(α) = F−1 (α).

Quantile functions are generally set-valued when quantiles are not unique, although in the com-
mon case where the pdf does not contain any regions of 0 probability, the quantile function is the
inverse of the cdf.

Example 1.19. The cdf of an exponential random variable is

F (x;λ ) = 1− exp
(
− x

λ

)
for x≥ 0 and λ > 0. Since f (x;λ )> 0 for x > 0, the quantile function is

F−1 (α;λ ) =−λ ln(1−α) .

The quantile function plays an important role in simulation of random variables. In particular, if
u∼U (0,1)5, then x = F−1 (u) is distributed F . For example, when u is a standard uniform (U (0,1)),
and F−1 (α) is the quantile function of an exponential random variable with shape parameter λ , then
x = F−1 (u;λ ) follows an exponential(λ ) distribution.

Theorem 1.5 (Probability Integral Transform). Let U be a standard uniform random variable, FX (x)
be a continuous, increasing cdf . Then Pr

(
F−1 (U)< x

)
= FX (x) and so F−1 (U) is distributed F.

Proof. Let U be a standard uniform random variable, and for an x ∈ R(X),

Pr(U ≤ F (x)) = F (x) ,

which follows from the definition of a standard uniform.

Pr(U ≤ F (x)) = Pr
(
F−1 (U)≤ F−1 (F (x))

)
= Pr

(
F−1 (U)≤ x

)
= Pr(X ≤ x) .

The key identity is that Pr
(
F−1 (U)≤ x

)
= Pr(X ≤ x), which shows that the distribution of

F−1 (U) is F by definition of the cdf. The right panel of figure 1.8 shows the relationship between the
cdf of a standard normal and the associated quantile function. Applying F (X) produces a uniform U
through the cdf and applying F−1 (U) produces X through the quantile function.
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Figure 1.4: The left panel shows a histogram of the elapsed time in seconds required for .1% of the
daily volume being traded to occur for SPY on May 31, 2012. The right panel shows both the fitted
scaled χ2 distribution and the raw data (mirrored below) for 5-minute “realized variance” estimates
for SPY on May 31, 2012.

1.2.3 Common Univariate Distributions

Discrete

1.2.3.1 Bernoulli

A Bernoulli random variable is a discrete random variable which takes one of two values, 0 or 1. It
is often used to model success or failure, where success is loosely defined. For example, a success
may be the event that a trade was profitable net of costs, or the event that stock market volatility as
measured by VIX was greater than 40%. The Bernoulli distribution depends on a single parameter p
which determines the probability of success.

Parameters

p ∈ [0,1]

5The mathematical notation ∼ is read “distributed as”. For example, x ∼U (0,1) indicates that x is distributed as a
standard uniform random variable.
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Support

x ∈ {0,1}

Probability Mass Function

f (x; p) = px (1− p)1−x , p≥ 0

Moments

Mean p
Variance p(1− p)

1.2.3.2 Poisson

A Poisson random variable is a discrete random variable taking values in {0,1, . . .}. The Poisson
depends on a single parameter λ (known as the intensity). Poisson random variables are often used
to model counts of events during some interval, for example the number of trades executed over a
5-minute window.

Parameters

λ ≥ 0

Support

x ∈ {0,1, . . .}

Probability Mass Function

f (x;λ ) = λ
x

x! exp(−λ )

Moments

Mean λ

Variance λ

Continuous

1.2.3.3 Normal (Gaussian)

The normal is the most important univariate distribution in financial economics. It is the familiar “bell-
shaped” distribution, and is used heavily in hypothesis testing and in modeling (net) asset returns (e.g.
rt = lnPt− lnPt−1 or rt =

Pt−Pt−1
Pt−1

where Pt is the price of the asset in period t).

Parameters

µ ∈ (−∞,∞) , σ2 ≥ 0
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Figure 1.5: Weekly and monthly densities for the FTSE 100 and S&P 500. All panels plot the
pdf of a normal and a standardized Student’s t using parameters estimated with maximum likelihood
estimation (See Chapter1). The points below 0 on the y-axis show the actual returns observed during
this period.
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Support

x ∈ (−∞,∞)

Probability Density Function

f
(
x; µ,σ2)= 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
Cumulative Distribution Function

F
(
x; µ,σ2)= 1

2 +
1
2erf

(
1√
2

x−µ

σ

)
where erf is the error function.6

Moments

Mean µ

Variance σ2

Median µ

Skewness 0
Kurtosis 3

Notes

The normal with mean µ and variance σ2 is written N
(
µ,σ2). A normally distributed random vari-

able with µ = 0 and σ2 = 1 is known as a standard normal. Figure 1.5 shows the fit normal distribu-
tion to the FTSE 100 and S&P 500 using both weekly and monthly returns for the period 1984–2012.
Below each figure is a plot of the raw data.

1.2.3.4 Log-Normal

Log-normal random variables are closely related to normals. If X is log-normal, then Y = ln(X) is
normal. Like the normal, the log-normal family depends on two parameters, µ and σ2, although
unlike the normal these parameters do not correspond to the mean and variance. Log-normal random
variables are commonly used to model gross returns, Pt+1/Pt (although it is often simpler to model
rt = lnPt− lnPt−1 = ln(Pt/Pt−1) which is normally distributed).

Parameters

µ ∈ (−∞,∞) , σ2 ≥ 0

Support

x ∈ (0,∞)

6The error function does not have a closed form and is defined

erf(x) =
2√
π

∫ x

0
exp
(
−s2) ds.
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Probability Density Function

f
(
x; µ,σ2)= 1

x
√

2πσ2 exp
(
− (lnx−µ)2

2σ2

)
Cumulative Distribution Function

Since Y = ln(X)∼ N
(
µ,σ2), the cdf is the same as the normal only using lnx in place of x.

Moments

Mean exp
(

µ + σ
2

2

)
Median exp(µ)
Variance

{
exp
(
σ2)−1

}
exp
(
2µ +σ2)

1.2.3.5 χ2 (Chi-square)

χ2
ν random variables depend on a single parameter ν known as the degree-of-freedom. They are com-

monly encountered when testing hypotheses, although they are also used to model continuous vari-
ables which are non-negative such as conditional variances. χ2

ν random variables are closely related
to standard normal random variables and are defined as the sum of ν independent standard normal
random variables which have been squared. Suppose Z1, . . . ,Zν are standard normally distributed and
independent, then x =

∑ν

i=1 z2
i follows a χ2

ν .7

Parameters

ν ∈ [0,∞)

Support

x ∈ [0,∞)

Probability Density Function

f (x;ν) = 1
2

ν
2 Γ( ν

2 )
x

ν−2
2 exp

(
− x

2

)
, ν ∈ {1,2, . . .} where Γ(a) is the Gamma function.8

Cumulative Distribution Function

F (x;ν) = 1
Γ( ν

2 )
γ
(

ν

2 ,
x
2

)
where γ (a,b) is the lower incomplete gamma function.

Moments

Mean ν

Variance 2ν

7ν does not need to be an integer,
8The χ2

v is related to the gamma distribution which has pdf f (x;α,b) = 1
β α Γ(α)

xα−1 exp(−x/β ) by setting α = ν/2
and β = 2.
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Notes

Figure 1.4 shows a χ2 pdf which was used to fit some simple estimators of the 5-minute variance
of the S&P 500 from May 31, 2012. These were computed by summing and squaring 1-minute
returns within a 5-minute interval (all using log prices). 5-minute variance estimators are important
in high-frequency trading and other (slower) algorithmic trading.

1.2.3.6 Student’s t and standardized Student’s t

Student’s t random variables are also commonly encountered in hypothesis testing and, like χ2
ν ran-

dom variables, are closely related to standard normals. Student’s t random variables depend on a
single parameter, ν , and can be constructed from two other independent random variables. If Z a
standard normal, W a χ2

ν and Z ⊥⊥W , then x = z/
√w

ν
follows a Student’s t distribution. Student’s t

are similar to normals except that they are heavier tailed, although as ν →∞ a Student’s t converges
to a standard normal.

Support

x ∈ (−∞,∞)

Probability Density Function

f (x;ν) =
Γ( ν+1

2 )√
νπΓ( ν

2 )

(
1+ x2

ν

)− ν+1
2

where Γ(a) is the Gamma function.

Moments

Mean 0, ν > 1
Median 0
Variance ν

ν−2 , ν > 2
Skewness 0, ν > 3
Kurtosis 3 (ν−2)

ν−4 , ν > 4

Notes

When ν = 1, a Student’s t is known as a Cauchy random variable. Cauchy random variables are so
heavy-tailed that even the mean does not exist.

The standardized Student’s t extends the usual Student’s t in two directions. First, it removes the
variance’s dependence on ν so that the scale of the random variable can be established separately
from the degree of freedom parameter. Second, it explicitly adds location and scale parameters so
that if Y is a Student’s t random variable with degree of freedom ν , then

x = µ +σ

√
ν−2√

ν
y

follows a standardized Student’s t distribution (ν > 2 is required). The standardized Student’s t is
commonly used to model heavy-tailed return distributions such as stock market indices.
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Figure 1.5 shows the fit (using maximum likelihood) standardized t distribution to the FTSE 100
and S&P 500 using both weekly and monthly returns from the period 1984–2012. The typical degree
of freedom parameter was around 4, indicating that (unconditional) distributions are heavy-tailed with
a large kurtosis.

1.2.3.7 Uniform

The continuous uniform is commonly encountered in certain test statistics, especially those testing
whether assumed densities are appropriate for a particular series. Uniform random variables, when
combined with quantile functions, are also useful for simulating random variables.

Parameters

a, b the end points of the interval, where a < b

Support

x ∈ [a,b]

Probability Density Function

f (x) = 1
b−a

Cumulative Distribution Function

F (x) = x−a
b−a for a≤ x≤ b, F (x) = 0 for x < a and F (x) = 1 for x > b

Moments

Mean b−a
2

Median b−a
2

Variance (b−a)2

12
Skewness 0
Kurtosis 9

5

Notes

A standard uniform has a = 0 and b = 1. When x∼ F , then F (x)∼U (0,1)

1.3 Multivariate Random Variables

While univariate random variables are very important in financial economics, most applications re-
quire the use multivariate random variables. Multivariate random variables allow the relationship
between two or more random quantities to be modeled and studied. For example, the joint distribu-
tion of equity and bond returns is important for many investors.
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Throughout this section, the multivariate random variable is assumed to have n components,

X =


X1
X2
...

Xn


which are arranged into a column vector. The definition of a multivariate random variable is virtually
identical to that of a univariate random variable, only mapping ω ∈Ω to the n-dimensional space Rn.

Definition 1.23 (Multivariate Random Variable). Let (Ω,F ,P) be a probability space. If X : Ω→Rn

is a real-valued vector function having its domain the elements of Ω, then X : Ω→ Rn is called a
(multivariate) n-dimensional random variable.

Multivariate random variables, like univariate random variables, are technically functions of events
in the underlying probability space X (ω), although the function argument ω (the event) is usually
suppressed.

Multivariate random variables can be either discrete or continuous. Discrete multivariate random
variables are fairly uncommon in financial economics and so the remainder of the chapter focuses
exclusively on the continuous case. The characterization of a what makes a multivariate random
variable continuous is also virtually identical to that in the univariate case.

Definition 1.24 (Continuous Multivariate Random Variable). A multivariate random variable is said
to be continuous if its range is uncountably infinite and if there exists a non-negative valued function
f (x1, . . . ,xn) defined for all (x1, . . . ,xn) ∈ Rn such that for any event B⊂ R(X),

Pr(B) =
∫

. . .

∫
{x1,...,xn}∈B

f (x1, . . . ,xn) dx1 . . . dxn (1.12)

and f (x1, . . . ,xn) = 0 for all (x1, . . . ,xn) /∈ R(X).

Multivariate random variables, at least when continuous, are often described by their probability
density function.

Definition 1.25 (Continuous Density Function Characterization). A function f : Rn→R is a member
of the class of multivariate continuous density functions if and only if f (x1, . . . ,xn)≥ 0 for all x ∈Rn

and ∫ ∞
−∞

. . .

∫ ∞
−∞

f (x1, . . . ,xn) dx1 . . . dxn = 1. (1.13)

Definition 1.26 (Multivariate Probability Density Function). The function f (x1, . . . ,xn) is called a
multivariate probability function (pdf).

A multivariate density, like a univariate density, is a function which is everywhere non-negative
and which integrates to unity. Figure 1.7 shows the fit joint probability density function to weekly
returns on the FTSE 100 and S&P 500 (assuming that returns are normally distributed). Two views
are presented – one shows the 3-dimensional plot of the pdf and the other shows the iso-probability
contours of the pdf. The figure also contains a scatter plot of the raw weekly data for comparison. All
parameters were estimated using maximum likelihood.
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Example 1.20. Suppose X is a bivariate random variable, then the function f (x1,x2) =
3
2

(
x2

1 + x2
2
)

defined on [0,1]× [0,1] is a valid probability density function.

Example 1.21. Suppose X is a bivariate standard normal random variable. Then the probability
density function of X is

f (x1,x2) =
1

2π
exp
(
−x2

1 + x2
2

2

)
.

The multivariate cumulative distribution function is virtually identical to that in the univariate
case, and measure the total probability between −∞ (for each element of X) and some point.

Definition 1.27 (Multivariate Cumulative Distribution Function). The joint cumulative distribution
function of an n-dimensional random variable X is defined by

F (x1, . . . ,xn) = Pr(Xi ≤ xi, i = 1, . . . ,n)

for all (x1, . . . ,xn) ∈ Rn, and is given by

F (x1, . . . ,xn) =

∫ xn

−∞
. . .

∫ x1

−∞
f (s1, . . . ,sn) ds1 . . .dsn. (1.14)

Example 1.22. Suppose X is a bivariate random variable with probability density function

f (x1,x2) =
3
2
(
x2

1 + x2
2
)

defined on [0,1]× [0,1]. Then the associated cdf is

F (x1,x2) =
x3

1x2 + x1x3
2

2
.

Figure 1.6 shows the joint cdf of the density in the previous example. As was the case for uni-
variate random variables, the probability density function can be determined by differentiating the
cumulative distribution function with respect to each component.

Theorem 1.6 (Relationship between cdf and pdf). Let f (x1, . . . ,xn) and F (x1, . . . ,xn) represent the
pdf and cdf of an n-dimensional continuous random variable X, respectively. The density func-
tion for X can be defined as f (x1, . . . ,xn) =

∂
nF(x)

∂x1∂x2...∂xn
whenever f (x1, . . . ,xn) is continuous and

f (x1, . . . ,xn) = 0 elsewhere.

Example 1.23. Suppose X is a bivariate random variable with cumulative distribution function F (x1,x2)=
x3

1x2+x1x3
2

2 . The probability density function can be determined using

f (x1,x2) =
∂ 2F (x1,x2)

∂x1∂x2

=
1
2

∂
(
3x2

1x2 + x3
2
)

∂x2

=
3
2
(
x2

1 + x2
2
)
.
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1.3.1 Marginal Densities and Distributions

The marginal distribution is the first concept unique to multivariate random variables. Marginal den-
sities and distribution functions summarize the information in a subset, usually a single component,
of X by averaging over all possible values of the components of X which are not being marginalized.
This involves integrating out the variables which are not of interest. First, consider the bivariate case.

Definition 1.28 (Bivariate Marginal Probability Density Function). Let X be a bivariate random vari-
able comprised of X1 and X2. The marginal distribution of X1 is given by

f1 (x1) =

∫ ∞
−∞

f (x1,x2) dx2. (1.15)

The marginal density of X1 is a density function where X2 has been integrated out. This integration
is simply a form of averaging – varying x2 according to the probability associated with each value of
x2 – and so the marginal is only a function of x1. Both probability density functions and cumulative
distribution functions have marginal versions.

Example 1.24. Suppose X is a bivariate random variable with probability density function

f (x1,x2) =
3
2
(
x2

1 + x2
2
)

and is defined on [0,1]× [0,1]. The marginal probability density function for X1 is

f1 (x1) =
3
2

(
x2

1 +
1
3

)
,

and by symmetry the marginal probability density function of X2 is

f2 (x2) =
3
2

(
x2

2 +
1
3

)
.

Example 1.25. Suppose X is a bivariate random variable with probability density function f (x1,x2)=
6
(
x1x2

2
)

and is defined on [0,1]× [0,1]. The marginal probability density functions for X1 and X2 are

f1 (x1) = 2x1 and f2 (x2) = 3x2
2.

Example 1.26. Suppose X is bivariate normal with parameters µ = [µ1 µ2]
′ and

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
,

then the marginal pdf of X1 is N
(
µ1,σ

2
1
)
, and the marginal pdf of X2 is N

(
µ2,σ

2
2
)
.

Figure 1.7 shows the fit marginal distributions to weekly returns on the FTSE 100 and S&P 500
assuming that returns are normally distributed. Marginal pdfs can be transformed into marginal cdfs
through integration.
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Definition 1.29 (Bivariate Marginal Cumulative Distribution Function). The cumulative marginal
distribution function of X1 in bivariate random variable X is defined by

F1 (x1) = Pr(X1 ≤ x1)

for all x1 ∈ R, and is given by

F1 (x1) =

∫ x1

−∞
f1 (s1) ds1.

The general j-dimensional marginal distribution partitions the n-dimensional random variable X
into two blocks, and constructs the marginal distribution for the first j by integrating out (averaging
over) the remaining n− j components of X . In the definition, both X1 and X2 are vectors.

Definition 1.30 (Marginal Probability Density Function). Let X be a n-dimensional random variable
and partition the first j (1 ≤ j < n) elements of X into X1, and the remainder into X2 so that X =
[X ′1 X ′2]

′. The marginal probability density function for X1 is given by

f1,..., j
(
x1, . . . ,x j

)
=

∫ ∞
−∞

. . .

∫ ∞
−∞

f (x1, . . . ,xn) dx j+1 . . .dxn. (1.16)

The marginal cumulative distribution function is related to the marginal probability density func-
tion in the same manner as the joint probability density function is related to the cumulative distribu-
tion function. It also has the same interpretation.

Definition 1.31 (Marginal Cumulative Distribution Function). Let X be a n-dimensional random vari-
able and partition the first j (1 ≤ j < n) elements of X into X1, and the remainder into X2 so that
X = [X ′1 X ′2]

′. The marginal cumulative distribution function for X1 is given by

F1,..., j
(
x1, . . . ,x j

)
=

∫ x1

−∞
. . .

∫ x j

−∞
f1,..., j

(
s1, . . . ,s j

)
ds1 . . .ds j. (1.17)

1.3.2 Conditional Distributions

Marginal distributions provide the tools needed to model the distribution of a subset of the compo-
nents of a random variable while averaging over the other components. Conditional densities and
distributions, on the other hand, consider a subset of the components a random variable conditional
on observing a specific value for the remaining components. In practice, the vast majority of model-
ing makes use of conditioning information where the interest is in understanding the distribution of
a random variable conditional on the observed values of some other random variables. For example,
consider the problem of modeling the expected return of an individual stock. Balance sheet infor-
mation such as the book value of assets, earnings and return on equity are all available, and can be
conditioned on to model the conditional distribution of the stock’s return.

First, consider the bivariate case.

Definition 1.32 (Bivariate Conditional Probability Density Function). Let X be a bivariate random
variable comprised of X1 and X2. The conditional probability density function for X1 given that
X2 ∈ B where B is an event where Pr(X2 ∈ B)> 0 is

f (x1|X2 ∈ B) =

∫
B f (x1,x2) dx2∫

B f2 (x2) dx2
. (1.18)
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When B is an elementary event (e.g. single point), so that Pr(X2 = x2) = 0 and f2 (x2)> 0, then

f (x1|X2 = x2) =
f (x1,x2)

f2 (x2)
. (1.19)

Conditional density functions differ slightly depending on whether the conditioning variable is re-
stricted to a set or a point. When the conditioning variable is specified to be a set where Pr(X2 ∈ B)>
0, then the conditional density is the joint probability of X1 and X2 ∈ B divided by the marginal prob-
ability of X2 ∈ B. When the conditioning variable is restricted to a point, the conditional density is the
ratio of the joint pdf to the margin pdf of X2.

Example 1.27. Suppose X is a bivariate random variable with probability density function

f (x1,x2) =
3
2
(
x2

1 + x2
2
)

and is defined on [0,1]× [0,1]. The conditional probability of X1 given X2 ∈
[1

2 ,1
]

f
(

x1|X2 ∈
[

1
2
,1
])

=
1
11
(
12x2

1 +7
)
,

the conditional probability density function of X1 given X2 ∈
[
0, 1

2

]
is

f
(

x1|X2 ∈
[

0,
1
2

])
=

1
5
(
12x2

1 +1
)
,

and the conditional probability density function of X1 given X2 = x2 is

f (x1|X2 = x2) =
x2

1 + x2
2

x2
2 +1

.

Figure 1.6 shows the joint pdf along with both types of conditional densities. The upper left panel
shows that conditional density for X2 ∈ [0.25,0.5]. The highlighted region contains the components
of the joint pdf which are averaged to produce the conditional density. The lower left also shows the
pdf but also shows three (non-normalized) conditional densities of the form f (x1|x2). The lower right
pane shows these three densities correctly normalized.

The previous example shows that, in general, the conditional probability density function differs
as the region used changes.

Example 1.28. Suppose X is bivariate normal with mean µ = [µ1 µ2]
′ and covariance

Σ =

[
σ2

1 σ12
σ12 σ22

]
,

then the conditional distribution of X1 given X2 = x2 is N
(

µ1 +
σ12
σ2

2
(x2−µ2) ,σ

2
1 −

σ
2
12

σ2
2

)
.

Marginal distributions and conditional distributions are related in a number of ways. One obvious
way is that f (x1|X2 ∈ R(X2)) = f1 (x1) – that is, the conditional probability of X1 given that X2 is in
its range is the marginal pdf of X1. This holds since integrating over all values of x2 is essentially
not conditioning on anything (which is known as the unconditional, and a marginal density could, in
principle, be called the unconditional density since it averages across all values of the other variable).

The general definition allows for an n-dimensional random vector where the conditioning variable
has a dimension between 1 and j < n.
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Definition 1.33 (Conditional Probability Density Function). Let f (x1, . . . ,xn) be the joint density
function for an n-dimensional random variable X = [X1 . . .Xn]

′ and and partition the first j (1≤ j < n)
elements of X into X1, and the remainder into X2 so that X = [X ′1 X ′2]

′. The conditional probability
density function for X1 given that X2 ∈ B is given by

f
(
x1, . . . ,x j|X2 ∈ B

)
=

∫
(x j+1,...,xn)∈B f (x1, . . . ,xn) dxn . . . dx j+1∫

(x j+1,...,xn)∈B f j+1,...,n
(
x j+1, . . . ,xn

)
dxn . . . dx j+1

, (1.20)

and when B is an elementary event (denoted x2) and if f j+1,...,n (x2)> 0,

f
(
x1, . . . ,x j|X2 = x2

)
=

f
(
x1, . . . ,x j,x2

)
f j+1,...,n (x2)

(1.21)

In general the simplified notation f
(
x1, . . . ,x j|x2

)
will be used to represent f

(
x1, . . . ,x j|X2 = x2

)
.

1.3.3 Independence

A special relationship exists between the joint probability density function and the marginal density
functions when random variables are independent– the joint must be the product of each marginal.

Theorem 1.7 (Independence of Random Variables). The random variables X1,. . . ,Xn with joint den-
sity function f (x1, . . . ,xn) are independent if and only if

f (x1, . . . ,xn) =
n∏

i=1

fi (xi) (1.22)

where fi (xi) is the marginal distribution of Xi.

The intuition behind this result follows from the fact that when the components of a random
variable are independent, any change in one component has no information for the others. In other
words, both marginals and conditionals must be the same.

Example 1.29. Let X be a bivariate random variable with probability density function f (x1,x2) =
x1x2 on [0,1]× [0,1], then X1 and X2 are independent. This can be verified since

f1 (x1) = x1 and f2 (x2) = x2

so that the joint is the product of the two marginal densities.

Independence is a very strong concept, and it carries over from random variables to functions of
random variables as long as each function involves only one random variable.9

Theorem 1.8 (Independence of Functions of Independent Random Variables). Let X1 and X2 be in-
dependent random variables and define y1 = Y1 (x1) and y2 = Y2 (x2), then the random variables Y1
and Y2 are independent.

9This can be generalized to the full multivariate case where X is an n-dimensional random variable where the first j
components are independent from the last n− j components defining y1 = Y1 (x1, . . . ,x j) and y2 = Y2 (x j+1, . . . ,xn).
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Figure 1.6: These four panels show four views of a distribution defined on [0,1]× [0,1]. The upper
left panel shows the joint cdf. The upper right shows the pdf along with the portion of the pdf used to
construct a conditional distribution f (x1|x2 ∈ [0.25,0.5]) . The line shows the actual correctly scaled
conditional distribution which is only a function of x1 plotted at E [X2|X2 ∈ [0.25,0.5]]. The lower
left panel also shows the pdf along with three non-normalized conditional densities. The bottom right
panel shows the correctly normalized conditional densities.
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Independence is often combined with an assumption that the marginal distribution is the same to
simplify the analysis of collections of random data.

Definition 1.34 (Independent, Identically Distributed). Let {Xi} be a sequence of random variables.
If the marginal distribution for Xi is the same for all i and Xi ⊥⊥ X j for all i 6= j, then {Xi} is said to
be an independent, identically distributed (i.i.d.) sequence.

1.3.4 Bayes Rule

Bayes rule is used both in financial economics and econometrics. In financial economics, it is often
used to model agents learning, and in econometrics it is used to make inference about unknown
parameters given observed data (a branch known as Bayesian econometrics). Bayes rule follows
directly from the definition of a conditional density so that the joint can be factored into a conditional
and a marginal. Suppose X is a bivariate random variable, then

f (x1,x2) = f (x1|x2) f2 (x2)

= f (x2|x1) f1 (x2) .

The joint can be factored two ways, and equating the two factorizations results in Bayes rule.

Definition 1.35 (Bivariate Bayes Rule). Let X by a bivariate random variable with components X1
and X2, then

f (x1|x2) =
f (x2|x1) f1 (x1)

f2 (x2)
(1.23)

Bayes rule states that the probability of observing X1 given a value of X2 is equal to the joint
probability of the two random variables divided by the marginal probability of observing X2. Bayes
rule is normally applied where there is a belief about X1 ( f1 (x1), called a prior), and the conditional
distribution of X1 given X2 is a known density ( f (x2|x1), called the likelihood), which combine to
form a belief about X1 ( f (x1|x2), called the posterior). The marginal density of X2 is not important
when using Bayes rule since the numerator is still proportional to the conditional density of X1 given
X2 since f2 (x2) is a number, and so it is common to express the non-normalized posterior as

f (x1|x2)∝ f (x2|x1) f1 (x1) ,

where ∝ is read “is proportional to”.

Example 1.30. Suppose interest lies in the probability a firm does bankrupt which can be modeled
as a Bernoulli distribution. The parameter p is unknown but, given a value of p, the likelihood that a
firm goes bankrupt is

f (x|p) = px (1− p)1−x .

While p is known, a prior for the bankruptcy rate can be specified. Suppose the prior for p follows a
Beta(α,β ) distribution which has pdf

f (p) =
pα−1 (1− p)β−1

B(α,β )



1.3 Multivariate Random Variables 29

where B(a,b) is Beta function that acts as a normalizing constant.10 The Beta distribution has support
on [0,1] and nests the standard uniform as a special case when α = β = 1. The expected value of a
random variable with a Beta(α,β ) is α

α+β
and the variance is αβ

(α+β )2(α+β+1)
where α > 0 and β > 0.

Using Bayes rule,

f (p|x) ∝ px (1− p)1−x× pα−1 (1− p)β−1

B(α,β )

=
pα−1+x (1− p)β−x

B(α,β )
.

Note that this isn’t a density since it has the wrong normalizing constant. However, the component of
the density which contains p is p(α−x)−1 (1− p)(β−x+1)−1 (known as the kernel) is the same as in the
Beta distribution, only with different parameters. Thus the posterior, f (p|x) is Beta(α + x,β − x+1).
Since the posterior is the same as the prior, it could be combined with another observation (and the
Bernoulli likelihood) to produce an updated posterior. When a Bayesian problem has this property,
the prior density said to be conjugate to the likelihood.

Example 1.31. Suppose M is a random variable representing the score on the midterm, and interest
lies in the final course grade, C. The prior for C is normal with mean µ and variance σ2, and that the
distribution of M given C is also conditionally normal with mean C and variance τ2. Bayes rule can
be used to make inference on the final course grade given the midterm grade.

f (c|m) ∝ f (m|c) fC (c)

∝ 1√
2πτ2

exp

(
−(m− c)2

2τ2

)
1√

2πσ2
exp

(
−(c−µ)2

2σ2

)

= K exp

(
−1

2

{
(m− c)2

τ2 +
(c−µ)2

σ2

})

= K exp
(
−1

2

{
c2

τ2 +
c2

σ2 −
2cm
τ2 −

2cµ

σ2 +
m2

τ2 +
µ2

σ2

})
= K exp

(
−1

2

{
c2
(

1
τ2 +

1
σ2

)
−2c

(m
τ2 +

µ

σ2

)
+

(
m2

τ2 +
µ2

σ2

)})
This (non-normalized) density can be shown to have the kernel of a normal by completing the

square,11

10The beta function can only be given as an indefinite integral,

B(a,b) =
∫ 1

0
sa−1 (1− s)b−1 ds.

11Suppose a quadratic in x has the form ax2 +bx+ c. Then

ax2 +bx+ c = a(x−d)2
+ e

where d = b/(2a) and e = c−b2/(4a).
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f (c|m)∝ exp

− 1

2
(

1
τ2 +

1
σ2

)−1

c−

(
m
τ2 +

µ

σ2

)
(

1
τ2 +

1
σ2

)
2 .

This is the kernel of a normal density with mean(
m
τ2 +

µ

σ2

)
(

1
τ2 +

1
σ2

) ,
and variance (

1
τ2 +

1
σ2

)−1

.

The mean is a weighted average of the prior mean, µ and the midterm score, m, where the weights
are determined by the inverse variance of the prior and conditional distributions. Since the weights
are proportional to the inverse of the variance, a small variance leads to a relatively large weight. If
τ2 = σ2,then the posterior mean is the average of the prior mean and the midterm score. The variance
of the posterior depends on the uncertainty in the prior (σ2) and the uncertainty in the data (τ2). The
posterior variance is always less than the smaller of σ2 and τ2. Like the Bernoulli-Beta combination
in the previous problem, the normal distribution is a conjugate prior when the conditional density is
normal.

1.3.5 Common Multivariate Distributions

1.3.5.1 Multivariate Normal

Like the univariate normal, the multivariate normal depends on 2 parameters, µ and n by 1 vector of
means and Σ an n by n positive semi-definite covariance matrix. The multivariate normal is closed
to both to marginalization and conditioning – in other words, if X is multivariate normal, then all
marginal distributions of X are normal, and so are all conditional distributions of X1 given X2 for any
partitioning.

Parameters

µ ∈ Rn, Σ a positive semi-definite matrix

Support

x ∈ Rn

Probability Density Function

f (x; µ,Σ) = (2π)−
n
2 |Σ|−

1
2 exp

(
−1

2 (x−µ)′Σ−1 (x−µ)
)

Cumulative Distribution Function

Can be expressed as a series of n univariate normal cdfs using repeated conditioning.
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Weekly FTSE and S&P 500 Returns Marginal Densities
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Figure 1.7: These four figures show different views of the weekly returns of the FTSE 100 and
the S&P 500. The top left contains a scatter plot of the raw data. The top right shows the marginal
distributions from a fit bivariate normal distribution (using maximum likelihood). The bottom two
panels show two representations of the joint probability density function.
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Moments

Mean µ

Median µ

Variance Σ

Skewness 0
Kurtosis 3

Marginal Distribution

The marginal distribution for the first j components is

fX1,...X j

(
x1, . . . ,x j

)
= (2π)−

j
2 |Σ11|−

1
2 exp

(
−1

2
(x1−µ1)

′
Σ
−1
11 (x1−µ1)

)
,

where it is assumed that the marginal distribution is that of the first j random variables12, µ = [µ ′1 µ ′2]
′

where µ1 correspond to the first j entries, and

Σ =

[
Σ11 Σ12
Σ
′
12 Σ22

]
.

In other words, the distribution of
[
X1, . . .X j

]′ is N (µ1,Σ11). Moreover, the marginal distribution of
a single element of X is N

(
µi,σ

2
i
)

where µi is the ith element of µ and σ2
i is the ith diagonal element

of Σ.

Conditional Distribution

The conditional probability of X1 given X2 = x2 is

N
(
µ1 +β

′ (x2−µ2) ,Σ11−β
′
Σ22β

)
where β = Σ

−1
22 Σ

′
12.

When X is a bivariate normal random variable,[
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
σ2

1 σ12
σ12 σ2

2

])
,

the conditional distribution is

X1|X2 = x2 ∼ N
(

µ1 +
σ12

σ2
2
(x2−µ2) ,σ

2
1 −

σ2
12

σ2
2

)
,

where the variance can be seen to always be positive since σ2
1 σ2

2 ≥ σ2
12 by the Cauchy-Schwarz

inequality (see 1.15).

12Any two variables can be reordered in a multivariate normal by swapping their means and reordering the correspond-
ing rows and columns of the covariance matrix.
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Notes

The multivariate Normal has a number of novel and useful properties:

• A standard multivariate normal has µ = 0 and Σ = In.

• If the covariance between elements i and j equals zero (so that σi j = 0), they are independent.

• For the normal, zero covariance (or correlation) implies independence. This is not true of most
other multivariate random variables.

• Weighted sums of multivariate normal random variables are normal. In particular is c is a n by
1 vector of weights, then Y = c′X is normal with mean c′µ and variance c′Σc.

1.4 Expectations and Moments

Expectations and moments are (non-random) functions of random variables that are useful in both
understanding properties of random variables – e.g. when comparing the dispersion between two
distributions – and when estimating parameters using a technique known as the method of moments
(see Chapter 1).

1.4.1 Expectations

The expectation is the value, on average, of a random variable (or function of a random variable).
Unlike common English language usage, where one’s expectation is not well defined (e.g. could be
the mean or the mode, another measure of the tendency of a random variable), the expectation in a
probabilistic sense always averages over the possible values weighting by the probability of observing
each value. The form of an expectation in the discrete case is particularly simple.

Definition 1.36 (Expectation of a Discrete Random Variable). The expectation of a discrete random
variable, defined E [X ] =

∑
x∈R(X) x f (x), exists if and only if

∑
x∈R(X) |x| f (x)<∞.

When the range of X is finite then the expectation always exists. When the range is infinite, such
as when a random variable takes on values in the range 0,1,2, . . ., the probability mass function must
be sufficiently small for large values of the random variable in order for the expectation to exist.13

Expectations of continuous random variables are virtually identical, only replacing the sum with an
integral.

Definition 1.37 (Expectation of a Continuous Random Variable). The expectation of a continuous
random variable, defined E [X ] =

∫∞
−∞ x f (x)dx, exists if and only if

∫∞
−∞ |x| f (x) dx <∞.

The existence of an expectation is a somewhat difficult concept. For continuous random variables,
expectations may not exist if the probability of observing an arbitrarily large value (in the absolute
sense) is very high. For example, in a Student’s t distribution when the degree of freedom parameter
ν is 1 (also known as a Cauchy distribution), the probability of observing a value with size |x| is

13An expectation is said to be nonexistent when the sum converges to ±∞ or oscillates. The use of the |x| in the
definition of existence is to rule out both the −∞ and the oscillating cases.



34 Probability, Random Variables and Expectations

Approximation to Std. Normal cdf and Quantile Function
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Figure 1.8: The left panel shows a standard normal and a discrete approximation. Discrete approxi-
mations are useful for approximating integrals in expectations. The right panel shows the relationship
between the quantile function and the cdf.

proportional to x−1 for large x (in other words, f (x)∝ cx−1) so that x f (x)≈ c for large x. The range
is unbounded, and so the integral of a constant, even if very small, will not converge, and so the
expectation does not exist. On the other hand, when a random variable is bounded, it’s expectation
always exists.

Theorem 1.9 (Expectation Existence for Bounded Random Variables). If |x| < c for all x ∈ R(X),
then E [X ] exists.

The expectation operator, E [·] is generally defined for arbitrary functions of a random variable,
g(x). In practice, g(x) takes many forms – x, x2, xp for some p, exp(x) or something more compli-
cated. Discrete and continuous expectations are closely related. Figure 1.8 shows a standard normal
along with a discrete approximation where each bin has a width of 0.20 and the height is based on
the pdf value at the mid-point of the bin. Treating the normal as a discrete distribution based on this
approximation would provide reasonable approximations to the correct (integral) expectations.

Definition 1.38 (Expectation of a Function of Random Variable). The expectation of a random vari-
able defined as a function of X , Y = g(x), is E [Y ] = E [g(X))] =

∫∞
−∞ g(x) f (x)dx exists if and only

if
∫∞
−∞ |g(x)| dx <∞.

When g(x) is either concave or convex, Jensen’s inequality provides a relationship between the
expected value of the function and the function of the expected value of the underlying random vari-
able.

Theorem 1.10 (Jensen’s Inequality). If g(·) is a continuous convex function on an open interval con-
taining the range of X, then E [g(X)] ≥ g(E [X ]). Similarly, if g(·) is a continuous concave function
on an open interval containing the range of X, then E [g(X)]≤ g(E [X ]).

The inequalities become strict if the functions are strictly convex (or concave) as long as X is not
degenerate.14 Jensen’s inequality is common in economic applications. For example, standard utility

14A degenerate random variable has probability 1 on a single point, and so is not meaningfully random.
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functions (U (·)) are assumed to be concave which reflects the idea that marginal utility (U ′ (·)) is
decreasing in consumption (or wealth). Applying Jensen’s inequality shows that if consumption is
random, then E [U (c)] < U (E [c]) – in other words, the economic agent is worse off when facing
uncertain consumption. Convex functions are also commonly encountered, for example in option
pricing or in (production) cost functions. The expectations operator has a number of simple and
useful properties:

• If c is a constant, then E [c] = c. This property follows since the expectation is an integral
against a probability density which integrates to unity.

• If c is a constant, then E [cX ] = cE [X ]. This property follows directly from passing the
constant out of the integral in the definition of the expectation operator.

• The expectation of the sum is the sum of the expectations,

E

[
k∑

i=1

gi (X)

]
=

k∑
i=1

E [gi (X)] .

This property follows directly from the distributive property of multiplication.

• If a is a constant, then E [a+X ] = a+E [X ]. This property also follows from the distribu-
tive property of multiplication.

• E [ f (X)] = f (E [X ]) when f (x) is affine (i.e. f (x) = a+bx where a and b are constants).
For general non-linear functions, it is usually the case that E [ f (X)] 6= f (E [X ]) when X is
non-degenerate.

• E [X p] 6= E [X ]p except when p = 1 when X is non-degenerate.

These rules are used throughout financial economics when studying random variables and functions
of random variables.

The expectation of a function of a multivariate random variable is similarly defined, only integrat-
ing across all dimensions.

Definition 1.39 (Expectation of a Multivariate Random Variable). Let (X1,X2, . . . ,Xn) be a continu-
ously distributed n-dimensional multivariate random variable with joint density function f (x1,x2, . . .xn).
The expectation of Y = g(X1,X2, . . . ,Xn) is defined as∫ ∞

−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

g(x1,x2, . . . ,xn) f (x1,x2, . . . ,xn) dx1 dx2 . . . dxn. (1.24)

It is straight forward to see that rule that the expectation of the sum is the sum of the expectation
carries over to multivariate random variables, and so

E

[
n∑

i=1

gi (X1, . . .Xn)

]
=

n∑
i=1

E [gi (X1, . . .Xn)] .

Additionally, taking gi (X1, . . .Xn) = Xi, we have E
[∑n

i=1 Xi
]
=
∑n

i=1 E [Xi].
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1.4.2 Moments

Moments are expectations of particular functions of a random variable, typically g(x) = xs for s =
1,2, . . ., and are often used to compare distributions or to estimate parameters.

Definition 1.40 (Noncentral Moment). The rth noncentral moment of a continuous random variable
X is defined

µ
′
r ≡ E [X r] =

∫ ∞
−∞

xr f (x) dx (1.25)

for r = 1,2, . . ..

The first non-central moment is the average, or mean, of the random variable.

Definition 1.41 (Mean). The first non-central moment of a random variable X is called the mean of
X and is denoted µ .

Central moments are similarly defined, only centered around the mean.

Definition 1.42 (Central Moment). The rth central moment of a random variables X is defined

µr ≡ E
[
(X−µ)r]= ∫ ∞

−∞
(x−µ)r f (x) dx (1.26)

for r = 2,3 . . ..

Aside from the first moment, references to “moments” refer to central moments. Moments may
not exist if a distribution is sufficiently heavy-tailed. However, if the rth moment exists, then any
moment of lower order must also exist.

Theorem 1.11 (Lesser Moment Existence). If µ ′r exists for some r, then µ ′sexists for s≤ r. Moreover,
for any r, µ ′r exists if and only if µr exists.

Central moments are used to describe a distribution since they are invariant to changes in the
mean. The second central moment is known as the variance.

Definition 1.43 (Variance). The second central moment of a random variable X , E
[
(X−µ)2

]
is

called the variance and is denoted σ2 or equivalently V [X ].

The variance operator (V [·]) also has a number of useful properties.

• If c is a constant, then V [c] = 0.

• If c is a constant, then V [cX ] = c2V [X ].

• If a is a constant, then V [a+X ] = V [X ].

• The variance of the sum is the sum of the variances plus twice all of the covariancesa,

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi]+2
n∑

j=1

n∑
k= j+1

Cov
[
X j,Xk

]

aSee Section 1.4.7 for more on covariances.
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The variance is a measure of dispersion, although the square root of the variance, known as the
standard deviation, is typically more useful.15

Definition 1.44 (Standard Deviation). The square root of the variance is known as the standard devi-
ations and is denoted σ or equivalently std(X).

The standard deviation is a more meaningful measure than the variance since its units are the
same as the mean (and random variable). For example, suppose X is the return on the stock market
next year, and that the mean of X is 8% and the standard deviation is 20% (the variance is .04). The
mean and standard deviation are both measured as the percentage change in investment, and so can
be directly compared, such as in the Sharpe ratio (Sharpe, 1994). Applying the properties of the
expectation operator and variance operator, it is possible to define a studentized (or standardized)
random variable.

Definition 1.45 (Studentization). Let X be a random variable with mean µ and variance σ2, then

Z =
x−µ

σ
(1.27)

is a studentized version of X (also known as standardized). Z has mean 0 and variance 1.

Standard deviation also provides a bound on the probability which can lie in the tail of a distribu-
tion, as shown in Chebyshev’s inequality.

Theorem 1.12 (Chebyshev’s Inequality). Pr [|x−µ| ≥ kσ ]≤ 1/k2 for k > 0.

Chebyshev’s inequality is useful in a number of contexts. One of the most useful is in establishing
consistency in any an estimator which has a variance that tends to 0 as the sample size diverges.

The third central moment does not have a specific name, although it is called the skewness when
standardized by the scaled variance.

Definition 1.46 (Skewness). The third central moment, standardized by the second central moment
raised to the power 3/2,

µ3

(σ2)
3
2

=
E
[
(X−E [X ])3

]
E
[
(X−E [X ])2

] 3
2
= E

[
Z3] (1.28)

is defined as the skewness where Z is a studentized version of X .

The skewness is a general measure of asymmetry, and is 0 for symmetric distribution (assuming
the third moment exists). The normalized fourth central moment is known as the kurtosis.

Definition 1.47 (Kurtosis). The fourth central moment, standardized by the squared second central
moment,

µ4

(σ2)
2 =

E
[
(X−E [X ])4

]
E
[
(X−E [X ])2

]2 = E
[
Z4] (1.29)

is defined as the kurtosis and is denoted κ where Z is a studentized version of X .
15The standard deviation is occasionally confused for the standard error. While both are square roots of variances, the

standard deviation refers to deviation in a random variable while the standard error is reserved for parameter estimators.
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Kurtosis measures of the chance of observing a large (and absolute terms) value, and is often
expressed as excess kurtosis.

Definition 1.48 (Excess Kurtosis). The kurtosis of a random variable minus the kurtosis of a normal
random variable, κ−3, is known as excess kurtosis.

Random variables with a positive excess kurtosis are often referred to as heavy-tailed.

1.4.3 Related Measures

While moments are useful in describing the properties of a random variable, other measures are also
commonly encountered. The median is an alternative measure of central tendency.

Definition 1.49 (Median). Any number m satisfying Pr(X ≤ m) = 0.5 and Pr(X ≥ m) = 0.5 is known
as the median of X .

The median measures the point where 50% of the distribution lies on either side (it may not be
unique), and is just a particular quantile. The median has a few advantages over the mean, and in
particular, it is less affected by outliers (e.g. the difference between mean and median income) and it
always exists (the mean doesn’t exist for very heavy-tailed distributions).

The interquartile range uses quartiles16 to provide an alternative measure of dispersion than stan-
dard deviation.

Definition 1.50 (Interquartile Range). The value q.75−q.25 is known as the interquartile range.

The mode complements the mean and median as a measure of central tendency. A mode is a local
maximum of a density.

Definition 1.51 (Mode). Let X be a random variable with density function f (x). A point c where
f (x) attains a maximum is known as a mode.

Distributions can be unimodal or multimodal.

Definition 1.52 (Unimodal Distribution). Any random variable which has a single, unique mode is
called unimodal.

Note that modes in a multimodal distribution do not necessarily have to have equal probability.

Definition 1.53 (Multimodal Distribution). Any random variable which as more than one mode is
called multimodal.

Figure 1.9 shows a number of distributions. The distributions depicted in the top panels are all
unimodal. The distributions in the bottom pane are mixtures of normals, meaning that with probability
p random variables come from one normal, and with probability 1− p they are drawn from the other.
Both mixtures of normals are multimodal.

16Other tiles include terciles (3), quartiles (4), quintiles (5), deciles (10) and percentiles (100). In all cases the bin ends
are[(i−1/m) , i/m] where m is the number of bins and i = 1,2, . . . ,m.
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Figure 1.9: These four figures show two unimodal (upper panels) and two multimodal (lower panels)
distributions. The upper left is a standard normal density. The upper right shows three χ2 densities
for ν = 1, 3 and 5. The lower panels contain mixture distributions of 2 normals – the left is a 50-50
mixture of N (−1,1) and N (1,1) and the right is a 30-70 mixture of N (−2,1) and N(1,1).
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1.4.4 Multivariate Moments

Other moment definitions are only meaningful when studying 2 or more random variables (or an n-
dimensional random variable). When applied to a vector or matrix, the expectations operator applies
element-by-element. For example, if X is an n-dimensional random variable,

E [X ] = E


X1
X2
...

Xn

=


E [X1]
E [X2]

...
E [Xn]

 . (1.30)

Covariance is a measure which captures the tendency of two variables to move together in a linear
sense.

Definition 1.54 (Covariance). The covariance between two random variables X and Y is defined

Cov [X ,Y ] = σXY = E [(X−E [X ]) (Y −E [Y ])] . (1.31)

Covariance can be alternatively defined using the joint product moment and the product of the
means.

Theorem 1.13 (Alternative Covariance). The covariance between two random variables X and Y
can be equivalently defined

σXY = E [XY ]−E [X ]E [Y ] . (1.32)

Inverting the covariance expression shows that no covariance is sufficient to ensure that the ex-
pectation of a product is the product of the expectations.

Theorem 1.14 (Zero Covariance and Expectation of Product). If X and Y have σXY = 0, then
E [XY ] = E [X ]E [Y ].

The previous result follows directly from the definition of covariance since σXY = E [XY ]−
E [X ]E [Y ]. In financial economics, this result is often applied to products of random variables so
that the mean of the product can be directly determined by knowledge of the mean of each variable
and the covariance between the two. For example, when studying consumption based asset pricing, it
is common to encounter terms involving the expected value of consumption growth times the pricing
kernel (or stochastic discount factor) – in many cases the full joint distribution of the two is intractable
although the mean and covariance of the two random variables can be determined.

The Cauchy-Schwarz inequality is a version of the triangle inequality and states that the expecta-
tion of the squared product is less than the product of the squares.

Theorem 1.15 (Cauchy-Schwarz Inequality). E
[
(XY )2

]
≤ E

[
X2]E

[
Y 2].

Example 1.32. When X is an n-dimensional random variable, it is useful to assemble the variances
and covariances into a covariance matrix.
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Definition 1.55 (Covariance Matrix). The covariance matrix of an n-dimensional random variable X
is defined

Cov [X ] = Σ = E
[
(X−E [X ]) (X−E [X ])′

]
=


σ2

1 σ12
... σ1n

σ12 σ2
2 . . . σ2n

...
... . . . ...

σ1n σ2n . . . σ2
n


where the ith diagonal element contains the variance of Xi (σ2

i ) and the element in position (i, j)
contains the covariance between Xi and X j

(
σi j
)
.

When X is composed of two sub-vectors, a block form of the covariance matrix is often conve-
nient.

Definition 1.56 (Block Covariance Matrix). Suppose X1 is an n1-dimensional random variable and
X2 is an n2-dimensional random variable. The block covariance matrix of X = [X ′1 X ′2]

′ is

Σ =

[
Σ11 Σ12
Σ
′
12 Σ22

]
(1.33)

where Σ11 is the n1 by n1 covariance of X1, Σ22 is the n2 by n2 covariance of X2 and Σ12 is the n1 by
n2 covariance matrix between X1 and X2 and element (i, j) equal to Cov

[
X1,i,X2, j

]
.

A standardized version of covariance is often used to produce a scale-free measure.

Definition 1.57 (Correlation). The correlation between two random variables X and Y is defined

Corr [X ,Y ] = ρXY =
σXY

σX σY
. (1.34)

Additionally, the correlation is always in the interval [−1,1], which follows from the Cauchy-
Schwarz inequality.

Theorem 1.16. If X and Y are independent random variables, then ρXY = 0 as long as σ2
X and σ2

Y
exist.

It is important to note that the converse of this statement is not true – that is, a lack of correla-
tion does not imply that two variables are independent. In general, a correlation of 0 only implies
independence when the variables are multivariate normal.

Example 1.33. Suppose X and Y have ρXY = 0, then X and Y are not necessarily independent. Sup-
pose X is a discrete uniform random variable taking values in {−1,0,1} and Y =X2, so that σ2

X = 2/3,
σ2

Y = 2/9 and σXY = 0. While X and Y are uncorrelated, the are clearly not independent, since when
the random variable Y takes the value 1, X must be 0.

The corresponding correlation matrix can be assembled. Note that a correlation matrix has 1s on the
diagonal and values bounded by [−1,1] on the off-diagonal positions.

Definition 1.58 (Correlation Matrix). The correlation matrix of an n-dimensional random variable X
is defined

(Σ� In)
− 1

2 Σ(Σ� In)
− 1

2 (1.35)

where the i, jth element has the form σXiX j/
(
σXiσX j

)
when i 6= j and 1 when i = j.
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1.4.5 Conditional Expectations

Conditional expectations are similar to other forms of expectations only using conditional densities
in place of joint or marginal densities. Conditional expectations essentially treat one of the variables
(in a bivariate random variable) as constant.

Definition 1.59 (Bivariate Conditional Expectation). Let X be a continuous bivariate random variable
comprised of X1 and X2. The conditional expectation of X1 given X2

E [g(X1) |X2 = x2] =

∫ ∞
−∞

g(x1) f (x1|x2) dx1 (1.36)

where f (x1|x2) is the conditional probability density function of X1 given X2.17

In many cases, it is useful to avoid specifying a specific value for X2 in which case E [X1|X1] will
be used. Note that E [X1|X2] will typically be a function of the random variable X2.

Example 1.34. Suppose X is a bivariate normal distribution with components X1 and X2, µ = [µ1 µ2]
′

and

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
,

then E [X1|X2 = x2] = µ1 +
σ12
σ2

2
(x2−µ2). This follows from the conditional density of a bivariate

random variable.

The law of iterated expectations uses conditional expectations to show that the conditioning does
not affect the final result of taking expectations – in other words, the order of taking expectations does
not matter.

Theorem 1.17 (Bivariate Law of Iterated Expectations). Let X be a continuous bivariate random
variable comprised of X1 and X2. Then E [E [g(X1) |X2]] = E [g(X1)] .

The law of iterated expectations follows from basic properties of an integral since the order of
integration does not matter as long as all integrals are taken.

Example 1.35. Suppose X is a bivariate normal distribution with components X1 and X2, µ = [µ1 µ2]
′

and

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
,

then E [X1] = µ1 and

E [E [X1|X2]] = E
[

µ1 +
σ12

σ2
2
(X2−µ2)

]
= µ1 +

σ12

σ2
2
(E [X2]−µ2)

= µ1 +
σ12

σ2
2
(µ2−µ2)

= µ1.
17A conditional expectation can also be defined in a natural way for functions of X1 given X2 ∈ B where Pr(X2 ∈ B)> 0.
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When using conditional expectations, any random variable conditioned on behaves “as-if” non-
random (in the conditional expectation), and so E [E [X1X2|X2]] = E [X2E [X1|X2]]. This is a very useful
tool when combined with the law of iterated expectations when E [X1|X2] is a known function of X2.

Example 1.36. Suppose X is a bivariate normal distribution with components X1 and X2, µ = 0 and

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
,

then

E [X1X2] = E [E [X1X2|X2]]

= E [X2E [X1|X2]]

= E
[

X2

(
σ12

σ2
2

X2

)]
=

σ12

σ2
2

E
[
X2

2
]

=
σ12

σ2
2

(
σ

2
2
)

= σ12.

One particularly useful application of conditional expectations occurs when the conditional ex-
pectation is known and constant, so that E [X1|X2] = c.

Example 1.37. Suppose X is a bivariate random variable composed of X1 and X2 and that E [X1|X2] =
c. Then E [X1] = c since

E [X1] = E [E [X1|X2]]

= E [c]
= c.

Conditional expectations can be taken for general n-dimensional random variables, and the law of
iterated expectations holds as well.

Definition 1.60 (Conditional Expectation). Let X be a n-dimensional random variable and and parti-
tion the first j (1≤ j < n) elements of X into X1, and the remainder into X2 so that X = [X ′1 X ′2]

′. The
conditional expectation of g(X1) given X2 = x2

E [g(X1) |X2 = x2] =

∫ ∞
−∞

. . .

∫ ∞
−∞

g
(
x1, . . . ,x j

)
f
(
x1, . . . ,x j|x2

)
dx j . . . dx1 (1.37)

where f
(
x1, . . . ,x j|x2

)
is the conditional probability density function of X1 given X2 = x2.

The law of iterated expectations also holds for arbitrary partitions as well.

Theorem 1.18 (Law of Iterated Expectations). Let X be a n-dimensional random variable and and
partition the first j (1≤ j < n) elements of X into X1, and the remainder into X2 so that X = [X ′1 X ′2]

′.
Then E [E [g(X1) |X2]] = E [g(X1)]. The law of iterated expectations is also known as the law of total
expectations.
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Full multivariate conditional expectations are extremely common in time series. For example,
when using daily data, there are over 30,000 observations of the Dow Jones Industrial Average avail-
able to model. Attempting to model the full joint distribution would be a formidable task. On the
other hand, modeling the conditional expectation (or conditional mean) of the final observation, con-
ditioning on those observations in the past, is far simpler.

Example 1.38. Suppose {Xt} is a sequence of random variables where Xt comes after Xt− j for j ≥ 1.
The conditional conditional expectation of Xt given its past is

E [Xt |Xt−1,Xt−2, . . .] .

Example 1.39. Let {εt} be a sequence of independent, identically distributed random variables
with mean 0 and variance σ2 <∞. Define X0 = 0 and Xt = Xt−1 + εt . Xt is a random walk, and
E [Xt |Xt−1] = Xt−1.

This leads naturally to the definition of a martingale, which is an important concept in financial
economics which related to efficient markets.

Definition 1.61 (Martingale). If E
[
Xt+ j|Xt−1,Xt−2 . . .

]
= Xt−1 for all j ≥ 0 and E [|Xt |] <∞, both

holding for all t, then {Xt} is a martingale. Similarly, if E
[
Xt+ j−Xt−1|Xt−1,Xt−2 . . .

]
= 0 for all

j ≥ 0 and E [|Xt |]<∞, both holding for all t, then {Xt} is a martingale.

1.4.6 Conditional Moments

All moments can be transformed made conditional by integrating against the conditional probability
density function. For example, the (unconditional) mean becomes the conditional mean, and the
variance becomes a conditional variance.

Definition 1.62 (Conditional Variance). The variance of a random variable X conditional on another
random variable Y is

V [X |Y ] = E
[
(X−E [X |Y ])2 |Y

]
(1.38)

= E
[
X2|Y

]
−E [X |Y ]2 .

The two definitions of conditional variance are identical to those of the (unconditional) variance
where the (unconditional) expectation has been replaced by a conditional expectation. Conditioning
can be used to compute higher-order moments as well.

Definition 1.63 (Conditional Moment). The rth central moment of a random variables X conditional
on another random variable Y is defined

µr ≡ E
[
(X−E [X |Y ])r |Y

]
(1.39)

for r = 2,3, . . ..

Combining the conditional expectation and the conditional variance leads to the law of total vari-
ance.
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Theorem 1.19. The variance of a random variable X can be decomposed into the variance of the
conditional expectation plus the expectation of the conditional variance,

V [X ] = V [E [X |Y ]]+E [V [X |Y ]] . (1.40)

The law of total variance shows that the total variance of a variable can be decomposed into the
variability of the conditional mean plus the average of the conditional variance. This is a useful
decomposition for time-series.

Independence can also be defined conditionally.

Definition 1.64 (Conditional Independence). Two random variables X1 and X2 are conditionally in-
dependent, conditional on Y , if

f (x1,x2|y) = f1 (x1|y) f2 (x2|y) .

Note that random variables that are conditionally independent are not necessarily unconditionally
independent.

Example 1.40. Suppose X is a trivariate normal random variable with mean 0 and covariance

Σ =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3


and define Y1 = x1 + x3 and Y2 = x2 + x3. Then Y1 and Y2 are correlated bivariate normal with mean 0
and covariance

ΣY =

[
σ2

1 +σ2
3 σ2

3
σ2

3 σ2
2 +σ2

3

]
,

but the joint distribution of Y1 and Y2 given X3 is bivariate normal with mean 0 and

ΣY |X3 =

[
σ2

1 0
0 σ2

2

]
and so Y1 and Y2 are independent conditional on X3.

Other properties of unconditionally independent random variables continue to hold for condi-
tionally independent random variables. For example, when X1 and X2 are independent conditional
on X3, then the conditional covariance between X1 and X2 is 0 (as is the conditional correlation),
and E [E [X1X2|X3]] = E [E [X1|X3]E [X2|X3]] – that is, the conditional expectation of the product is the
product of the conditional expectations.

1.4.7 Vector and Matrix Forms

Vector and matrix forms are particularly useful in finance since portfolios are often of interest where
the underlying random variables are the individual assets and the combination vector is the vector of
portfolio weights.

Theorem 1.20. Let Y =
∑n

i=1 ciXi where ci, i = 1, . . . ,n are constants. Then E [Y ] =
∑n

i=1 ciE [Xi]. In
matrix notation, Y = c′x where c is an n by 1 vector and E [Y ] = c′E [X ] .
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The variance of the sum is the weighted sum of the variance plus all of the covariances.

Theorem 1.21. Let Y =
∑n

i=1 ciXi where ci are constants. Then

V [Y ] =
n∑

i=1

c2
i V [Xi]+2

n∑
j=1

n∑
k= j+1

c jckCov
[
Xi,X j

]
(1.41)

or equivalently

σ
2
Y =

n∑
i=1

c2
i σ

2
Xi
+2

n∑
j=1

n∑
k= j+1

c jckσX jXk .

This result can be equivalently expressed in vector-matrix notation.

Theorem 1.22. Let c in an n by 1 vector and let X by an n-dimensional random variable with covari-
ance Σ. Define Y = c′x. The variance of Y is σ2

Y = c′Cov [X ]c = c′Σc.

Note that the result holds when c is replaced by a matrix C.

Theorem 1.23. Let C be an n by m matrix and let X be an n-dimensional random variable with mean
µX and covariance ΣX . Define Y = C′x. The expected value of Y is E [Y ] = µY = C′E [X ] = C′µX and
the covariance of Y is ΣY = C′Cov [X ]C = C′ΣX C.

Definition 1.65 (Multivariate Studentization). Let X be an n-dimensional random variable with mean
µ and covariance Σ, then

Z = Σ
− 1

2 (x−µ) (1.42)

is a studentized version of X where Σ
1
2 is a matrix square root such as the Cholesky factor or one

based on the spectral decomposition of Σ. Z has mean 0 and covariance equal to the identity matrix
In.

The final result for vectors relates quadratic forms of normals (inner-products) to χ2 distributed
random variables.

Theorem 1.24 (Quadratic Forms of Normals). Let X be an n-dimensional normal random variable
with mean 0 and identity covariance In. Then x′x =

∑n
i=1 x2

i ∼ χ2
n .

Combing this result with studentization, when X is a general n-dimensional normal random vari-
able with mean µ and covariance Σ,

(x−µ)′
(

Σ
− 1

2

)′
Σ
− 1

2 (x−µ)′ = (x−µ)′Σ−1 (x−µ)′ ∼ χ
2
n .

1.4.8 Monte Carlo and Numerical Integration

Expectations of functions of continuous random variables are integrals against the underlying pdf.
In some cases, these integrals are analytically tractable, although in many situations integrals cannot
be analytically computed and so numerical techniques are needed to compute expected values and
moments.

Monte Carlo is one method to approximate an integral. Monte Carlo utilizes simulated draws
from the underlying distribution and averaging to approximate integrals.



1.4 Expectations and Moments 47

Definition 1.66 (Monte Carlo Integration). Suppose X ∼ F (θ) and that it is possible to simulate a
series {xi} from F (θ). The Monte Carlo expectation of a function g(x) is defined

̂E [g(X)] = m−1
m∑

i=1

g(xi) ,

Moreover, as long as E [|g(x)|]<∞, limm→∞m−1∑m
i=1 g(xi) = E [g(x)].

The intuition behind this result follows from the properties of {xi}. Since these are i.i.d.draws
from F (θ), they will, on average, tend to appear in any interval B ∈ R(X) in proportion to the proba-
bility Pr(X ∈ B). In essence, the simulated values coarsely approximating the discrete approximation
shown in 1.8.

While Monte Carlo integration is a general technique, there are some important limitations. First,
if the function g(x) takes large values in regions where Pr(X ∈ B) is small, it may require a very
large number of draws to accurately approximate E [g(x)] since, by construction, there are unlikely to
many points in B. In practice the behavior of h(x) = g(x) f (x) plays an important role in determining
the appropriate sample size.18 Second, while Monte Carlo integration is technically valid for random
variables with any number of dimensions, in practice it is usually only reliable when the dimension
is small (typically 3 or fewer), especially when the range is unbounded (R(X) ∈ Rn). When the
dimension of X is large, many simulated draws are needed to visit the corners of the (joint) pdf, and
if 1,000 draws are sufficient for a unidimensional problem, 1000n may be needed to achieve the same
accuracy when X has n dimensions.

Alternatively the function to be integrated can be approximated using a polygon with an easy-
to-compute area, such as the rectangles approximating the normal pdf shown in figure 1.8. The
quality of the approximation will depend on the resolution of the grid used. Suppose u and l are the
upper and lower bounds of the integral, respectively, and that the region can be split into m intervals
l = b0 < b1 < .. . < bm−1 < bm = u. Then the integral of a function h(·) is∫ u

l
h(x)dx =

m∑
i=1

∫ bi

bi−1

h(x)dx.

In practice, l and u may be infinite, in which case some cut-off point is required. In general, the cut-off
should be chosen to that they vast majority of the probability lies between l and u (

∫ u
l f (x)dx≈ 1).

This decomposition is combined with an area for approximating the area under h between bi−1
and bi. The simplest is the rectangle method, which uses a rectangle with a height equal to the value
of the function at the mid-point.

Definition 1.67 (Rectangle Method). The rectangle rule approximates the area under the curve with
a rectangle and is given by ∫ u

l
h(x)dx≈ h

(
u+ l

2

)
(u− l) .

The rectangle rule would be exact if the function was piece-wise flat. The trapezoid rule improves
the approximation by replacing the function at the midpoint with the average value of the function
and would be exact for any piece-wise linear function (including piece-wise flat functions).

18Monte Carlo integrals can also be seen as estimators, and in many cases standard inference can be used to determine
the accuracy of the integral. See Chapter 1 for more details on inference and constructing confidence intervals.
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Definition 1.68 (Trapezoid Method). The trapezoid rule approximates the area under the curve with
a trapezoid and is given by ∫ u

l
h(x)dx≈ h(u)+h(l)

2
(u− l) .

The final method is known as Simpson’s rule which is based on using a quadratic approximation
to the underlying function. It is exact when the underlying function is piece-wise linear or quadratic.

Definition 1.69 (Simpson’s Rule). Simpson’s Rule uses an approximation that would be exact if they
underlying function were quadratic, and is given by∫ u

l
h(x)dx≈ u− l

6

(
h(u)+4h

(
u+ l

2

)
+h(l)

)
.

Example 1.41. Consider the problem of computing the expected payoff of an option. The payoff of
a call option is given by

c = max(s1− k,0)

where k is the strike price, s1is the stock price at expiration and s0 is the current stock price. Suppose
returns are normally distributed with mean µ = .08 and standard deviation σ = .20. In this problem,
g(r) = (s0 exp(r)− k) I[s0 exp(r)>k] where I[·] and a binary indicator function which takes the value 1
when the argument is true, and

f (r) =
1√

2πσ2
exp

(
−(r−µ)2

2σ2

)
.

Combined, the function the be integrated is∫ ∞
−∞

h(r)dr =

∫ ∞
−∞

g(r) f (r)dr

=

∫ ∞
−∞

(s0 exp(r)− k) I[s0 exp(r)>k]
1√

2πσ2
exp

(
−(r−µ)2

2σ2

)
dr

s0 = k = 50 was used in all results.
All four methods were applied to the problem. The number of bins and the range of integration

was varied for the analytical approximations. The number of bins ranged across {10,20, 50, 1000}
and the integration range spanned {±3σ , ±4σ , ±6σ , ±10σ} and the bins were uniformly spaced
along the integration range. Monte Carlo integration was also applied with m ∈ {100,1000}.

All thing equal, increasing the number of bins increases the accuracy of the approximation. In
this example, 50 appears to be sufficient. However, having a range which is too small produces values
which differ from the correct value of 7.33. The sophistication of the method also improves the
accuracy, especially when the number of nodes is small. The Monte Carlo results are also close, on
average. However, the standard deviation is large, about 5%, even when 1000 draws are used, so that
large errors would be commonly encountered and so many more points are needed to ensure that the
integral is always accurate.
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Shorter Problems

Problem 1.1. Suppose [
X
U

]
∼ N

([
µX
0

]
,

[
σ2

X 0
0 σ2

U

])
and Y = 2X +U . What is E [Y ] and V [Y ]?

Problem 1.2. Show Cov [aX +bY,cX +dY ] = acV [X ]+bdV [Y ]+ (ad +bc)Cov [X ,Y ].

Problem 1.3. Show that the two forms of the covariance,

E [XY ]−E [X ]E [Y ] and E [(X−E [X ]) (Y −E [Y ])]

are equivalent when X and Y are continuous random variables.

Problem 1.4. Suppose {Xi} is a sequence of random variables where V [Xi] =σ2 for all i, Cov [Xi,Xi−1] =
θ and Cov

[
Xi,Xi− j

]
= 0 for j > 1 . What is V [X̄ ] where X̄ = n−1∑n

i=1 Xi?

Problem 1.5. Suppose Y = βX + ε where X ∼ N
(
µX ,σ

2
X
)
, ε ∼ N

(
0,σ2) and X and ε are indepen-

dent. What is Corr [X ,Y ]?

Problem 1.6. Prove that E [a+bX ] = a+bE [X ] when X is a continuous random variable.

Problem 1.7. Prove that V [a+bX ] = b2V [X ] when X is a continuous random variable.

Problem 1.8. Prove that Cov [a+bX ,c+dY ] = bdCov [X ,Y ] when X and Y are a continuous random
variables.

Problem 1.9. Prove that V [a+bX + cY ] = b2V [X ] + c2V [Y ] + 2bcCov [X ,Y ] when X and Y are a
continuous random variables.

Problem 1.10. Suppose {Xi} is an i.i.d. sequence of random variables. Show that

V [X̄ ] = V

[
1
n

n∑
i=1

Xi

]
= n−1

σ
2

where σ2 is V [X1].

Problem 1.11. Prove that Corr [a+bX ,c+dY ] = Corr [X ,Y ].

Problem 1.12. Suppose {Xi} is a sequence of random variables where, for all i, V [Xi] =σ2, Cov [Xi,Xi−1] =
θ and Cov

[
Xi,Xi− j

]
= 0 for j > 1.. What is V [X̄ ]?

Problem 1.13. Prove that E [a+bX |Y ] = a+bE [X |Y ] when X and Y are continuous random variables.

Problem 1.14. Suppose that E [X |Y ] =Y 2 where Y is normally distributed with mean µ and variance
σ2. What is E [a+bX ]?

Problem 1.15. Suppose E [X |Y = y] = a+ by and V [X |Y = y] = c+ dy2 where Y is normally dis-
tributed with mean µ and variance σ2. What is V [X ]?

Problem 1.16. Show that the law of total variance holds for a V [X1] when X is a bivariate normal
with mean µ = [µ1 µ2]

′ and covariance

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
.
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Longer Exercises

Exercise 1.1. Sixty percent (60%) of all traders hired by a large financial firm are rated as performing
satisfactorily or better in their first-year review. Of these, 90% earned a first in financial econometrics.
Of the traders who were rated as unsatisfactory, only 20% earned a first in financial econometrics.

1. What is the probability that a trader is rated as satisfactory or better given they received a first
in financial econometrics?

2. What is the probability that a trader is rated as unsatisfactory given they received a first in
financial econometrics?

3. Is financial econometrics a useful indicator of trader performance? Why or why not?

Exercise 1.2. Large financial firms use automated screening to detect rogue trades – those that exceed
risk limits. One of your colleagues has introduced a new statistical test using the trading data that,
given that a trader has exceeded her risk limit, detects this with probability 98%. It also only indicates
false positives – that is non-rogue trades that are flagged as rogue – 1% of the time.

1. Assuming 99% of trades are legitimate, what is the probability that a detected trade is rogue?
Explain the intuition behind this result.

2. Is this a useful test? Why or why not?

3. How low would the false positive rate have to be to have a 98% chance that a detected trade
was actually rogue?

Exercise 1.3. Your corporate finance professor uses a few jokes to add levity to his lectures. Each
week he tells 3 different jokes. However, he is also very busy, and so forgets week to week which
jokes were used.

1. Assuming he has 12 jokes, what is the probability of 1 repeat across 2 consecutive weeks?

2. What is the probability of hearing 2 of the same jokes in consecutive weeks?

3. What is the probability that all 3 jokes are the same?

4. Assuming the term is 8 weeks long, and they your professor has 96 jokes, what is the probability
that there is no repetition during the term? Note that he remembers the jokes he gives in a
particular lecture, only forgets across lectures.

5. How many jokes would your professor need to know to have a 99% chance of not repeating any
in the term?

Exercise 1.4. A hedge fund company manages three distinct funds. In any given month, the proba-
bility that the return is positive is shown in the following table:

Pr(r1,t > 0) = .55 Pr(r1,t > 0∪ r2,t > 0) = .82
Pr(r2,t > 0) = .60 Pr(r1,t > 0∪ r3,t > 0) = .7525
Pr(r3,t > 0) = .45 Pr(r2,t > 0∪ r3,t > 0) = .78
Pr(r2,t > 0∩ r3,t > 0|r1,t > 0) = .20
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1. Are the events of “positive returns” pairwise independent?

2. Are the events of “positive returns” independent?

3. What is the probability that funds 1 and 2 have positive returns, given that fund 3 has a positive
return?

4. What is the probability that at least one fund will have a positive return in any given month?

Exercise 1.5. Suppose the probabilities of three events, A, B and C are as depicted in the following
diagram:

A B

C

.15 .10

.10
.05

.15

.05

.175

1. Are the three events pairwise independent?

2. Are the three events independent?

3. What is Pr(A∩B)?

4. What is Pr(A∩B|C)?

5. What is Pr(C|A∩B)?

6. What is Pr(C|A∪B)?

Exercise 1.6. At a small high-frequency hedge fund, two competing algorithms produce trades. Al-
gorithm α produces 80 trades per second and 5% lose money. Algorithm β produces 20 trades per
second but only 1% lose money. Given the last trade lost money, what is the probability it was pro-
duced by algorithm β?

Exercise 1.7. Suppose f (x,y) = 2− x− y where x ∈ [0,1] and y ∈ [0,1].

1. What is Pr(X > .75∩Y > .75)?

2. What is Pr(X +Y > 1.5)?

3. Show formally whether X and Y are independent.
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4. What is Pr(Y < .5|X = x)?

Exercise 1.8. Suppose f (x,y) = xy for x ∈ [0,1] and y ∈ [0,2].

1. What is the joint cdf?

2. What is Pr(X < 0.5∩Y < 1)?

3. What is the marginal cdf of X? What is Pr(X < 0.5)?

4. What is the marginal density of X?

5. Are X and Y independent?

Exercise 1.9. Suppose F (x) = 1− px+1 for x ∈ [0,1,2, . . .] and p ∈ (0,1).

1. Find the pmf.

2. Verify that the pmf is valid.

3. What is Pr(X ≤ 8) if p = .75?

4. What is Pr(X ≤ 1) given X ≤ 8?

Exercise 1.10. A firm producing widgets has a production function q(L) = L0.5 where L is the amount
of labor. Sales prices fluctuate randomly and can be $10 (20%), $20 (50%) or $30 (30%). Labor
prices also vary and can be $1 (40%), 2 (30%) or 3 (30%). The firm always maximizes profits after
seeing both sales prices and labor prices.

1. Define the distribution of profits possible?

2. What is the probability that the firm makes at least $100?

3. Given the firm makes a profit of $100, what is the probability that the profit is over $200?

Exercise 1.11. A fund manager tells you that her fund has non-linear returns as a function of the
market and that his return is ri,t = 0.02+2rm,t−0.5r2

m,t where ri,t is the return on the fund and rm,t is
the return on the market.

1. She tells you her expectation of the market return this year is 10%, and that her fund will have
an expected return of 22%. Can this be?

2. At what variance is would the expected return on the fund be negative?

Exercise 1.12. For the following densities, find the mean (if it exists), variance (if it exists), median
and mode, and indicate whether the density is symmetric.

1. f (x) = 3x2 for x ∈ [0,1]

2. f (x) = 2x−3 for x ∈ [1,∞)
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3. f (x) =
[
π
(
1+ x2)]−1 for x ∈ (−∞,∞)

4. f (x) =
(

4
x

)
.2x.84−x for x ∈ {0,1,2,3,4}

Exercise 1.13. The daily price of a stock has an average value of £2. Then then Pr(X > 10) < .2
where X denotes the price of the stock. True or false?

Exercise 1.14. An investor can invest in stocks or bonds which have expected returns and covariances
as

µ =

[
.10
.03

]
, Σ =

[
.04 −.003
−.003 .0009

]
where stocks are the first component.

1. Suppose the investor has £1,000 to invest and splits the investment evenly. What is the expected
return, standard deviation, variance and Sharpe Ratio (µ/σ ) for the investment?

2. Now suppose the investor seeks to maximize her expected utility where her utility is defined is
defined in terms of her portfolio return, U (r) = E [r]− .01V [r]. How much should she invest in
each asset?

Exercise 1.15. Suppose f (x) = (1− p)x p for x ∈ (0,1, . . .) and p ∈ (0,1]. Show that a random
variable from the distribution is “memoryless” in the sense that Pr(X ≥ s+ r|X ≥ r) = Pr(X ≥ s). In
other words, the probability of surviving s or more periods is the same whether starting at 0 or after
having survived r periods.

Exercise 1.16. Your Economics professor offers to play a game with you. You pay £1,000 to play and
your Economics professor will flip a fair coin and pay you 2x where x is the number of tries required
for the coin to show heads.

1. What is the pmf of X?

2. What is the expected payout from this game?

Exercise 1.17. Consider the roll of a fair pair of dice where a roll of a 7 or 11 pays 2x and anything
else pays −x where x is the amount bet. Is this game fair?

Exercise 1.18. Suppose the joint density function of X and Y is given by f (x,y) = 1/2xexp(−xy)
where x ∈ [3,5] and y ∈ (0,∞).

1. Give the form of E [Y |X = x].

2. Graph the conditional expectation curve.

Exercise 1.19. Suppose a fund manager has $10,000 of yours under management and tells you that
the expected value of your portfolio in two years time is $30,000 and that with probability 75% your
investment will be worth at least $40,000 in two years time.

1. Do you believe her?
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2. Next, suppose she tells you that the standard deviation of your portfolio value is 2,000. Assum-
ing this is true (as is the expected value), what is the most you can say about the probability
your portfolio value falls between $20,000 and $40,000 in two years time?

Exercise 1.20. Suppose the joint probability density function of two random variables is given by
f (x) = 2

5 (3x+2y) where x ∈ [0,1] and y ∈ [0,1].

1. What is the marginal probability density function of X?

2. What is E [X |Y = y]? Are X and Y independent? (Hint: What must the form of E [X |Y ] be when
they are independent?)

Exercise 1.21. Let Y be distributed χ2
15.

1. What is Pr(y > 27.488)?

2. What is Pr(6.262≤ y≤ 27.488)?

3. Find C where Pr(y≥ c) = α for α ∈ {0.01,0.05,0.01}.
Next, Suppose Z is distributed χ2

5 and is independent of Y .

4. Find C where Pr(y+ z≥ c) = α for α ∈ {0.01,0.05,0.01}.

Exercise 1.22. Suppose X is a bivariate random variable with parameters

µ =

[
5
8

]
, Σ =

[
2 −1
−1 3

]
.

1. What is E [X1|X2]?

2. What is V [X1|X2]?

3. Show (numerically) that the law of total variance holds for X2.

Exercise 1.23. Suppose y∼ N (5,36) and x∼ N (4,25) where X and Y are independent.

1. What is Pr(y > 10)?

2. What is Pr(−10 < y < 10)?

3. What is Pr(x− y > 0)?

4. Find C where Pr(x− y >C) = α for α ∈ {0.10,0.05,0.01}?
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Rectangle Method
Bins ±3σ ±4σ ±6σ ±10σ

10 7.19 7.43 7.58 8.50
20 7.13 7.35 7.39 7.50
50 7.12 7.33 7.34 7.36

1000 7.11 7.32 7.33 7.33

Trapezoid Method
Bins ±3σ ±4σ ±6σ ±10σ

10 6.96 7.11 6.86 5.53
20 7.08 7.27 7.22 7.01
50 7.11 7.31 7.31 7.28

1000 7.11 7.32 7.33 7.33

Simpson’s Rule
Bins ±3σ ±4σ ±6σ ±10σ

10 7.11 7.32 7.34 7.51
20 7.11 7.32 7.33 7.34
50 7.11 7.32 7.33 7.33

1000 7.11 7.32 7.33 7.33

Monte Carlo
Draws (m) 100 1000

Mean 7.34 7.33
Std. Dev. 0.88 0.28

Table 1.1: Computed values for the expected payout for an option, where the correct value is 7.33 The
top three panels use approximations to the function which have simple to compute areas. The bottom
panel shows the average and standard deviation from a Monte Carlo integration where the number of
points varies and 10,000 simulations were used.
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Chapter 2

Estimation, Inference, and Hypothesis
Testing

Note: The primary reference for these notes is Ch. 7 and 8 of Casella and Berger (2001). This text
may be challenging if new to this topic and Ch. 7 – 10 of Wackerly, Mendenhall, and Scheaffer (2001)
may be useful as an introduction.

This chapter provides an overview of estimation, distribution theory, inference, and
hypothesis testing. Testing the implications of an economic or financial model is a
multi-step process. First, an estimator for the unknown model parameters is con-
structed. Next, the distribution of the estimator is determined. Finally, formal hy-
pothesis tests are conducted to examine whether the data are consistent with the
implications of the theoretical model. This chapter is intentionally “generic” by
design and focuses on independent and identically distributed random variables.
Properties of specific models are studied in detail in the chapters on linear regres-
sion, time series, and univariate volatility modeling.

Using data to evaluate an economic theory is a three-step process:

• construct an estimator for the unknown parameters;

• determine the distributional of the estimator; and

• conduct hypothesis tests to examine whether the data are compatible with a theoretical model.

This chapter covers each of these steps with a focus independent and identically distributed data
(i.i.d.). The heterogeneous but independent data are covered in the chapter on linear regression (chap-
ter 3), and dependent data are covered in the chapters on time series (chapters 4, 5, 7, and 9).

2.1 Estimation

Once a model has been specified and hypotheses postulated, the first step is to estimate the model’s
parameters. Many methods are available to accomplish this task. These include parametric, semi-
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parametric, semi-nonparametric, and nonparametric estimators and a variety of estimation methods
often classified as M-, R- and L-estimators.1

Parametric models are tightly parameterized and have desirable statistical properties when their
specification is correct. Nonparametric estimators are more flexible and avoid making strong as-
sumptions about the relationship between variables. This structure allows nonparametric estimators
to capture a wide range of relationships but comes at the cost of precision. In many cases, nonpara-
metric estimators have a slower rate of convergence than similar parametric estimators. The practical
consequence of the rate is that nonparametric estimators are more useful in large data sets where the
relationships between variables may be difficult to postulate a priori. When less data is available, or
when an economic model proffers a relationship among variables, parametric estimators are generally
preferable.

Semi-parametric and semi-nonparametric estimators bridge the gap between fully parametric es-
timators and nonparametric estimators. Their difference lies in “how parametric” the model and
estimator are. Estimators that postulate parametric relationships between variables but estimate the
underlying distribution of errors flexibly are semi-parametric. Estimators that take a stand on the
distribution of the errors but allow flexible relationships between variables are semi-nonparametric.
This chapter focuses exclusively on parametric models and estimators. This choice is more reflective
of the common practice than a critique of alternative methods.

Another important characterization of estimators is whether they are members of the M-, L- or
R-estimator classes.2 M-estimators (also known as extremum estimators) always involve maximizing
or minimizing some objective function. M-estimators are the most commonly used class in financial
econometrics and include maximum likelihood, regression, classical minimum distance, and both the
classical and the generalized method of moments. L-estimators, also known as linear estimators, are
a class where the estimator can be expressed as a linear function of ordered data. Members of this
family can always be written as

θ̂ =
n∑

i=1

wiyi

for some set of weights {wi} where the data, yi, are ordered such that y j−1 ≤ y j for j = 2,3, . . . ,n.
This class of estimators obviously includes the sample mean by setting wi =

1
n for all i, and also

includes the median by setting wi = 0 for all i except w j = 1 where j = (n+ 1)/2 (n is odd) or
w j = w j+1 = 1/2 where j = n/2 (n is even). R-estimators exploit the order of the data. Common
examples of R-estimators include the minimum, maximum and Spearman’s rank correlation, which
is the usual correlation estimator applied to the ranks of the data. Rank statistics are often robust to
outliers and non-linearities.

2.1.1 M-Estimators

The use of M-estimators is pervasive in financial econometrics. The three most common variants of
M-estimators are the method of moments, both classical and generalized, maximum likelihood, and

1There is another important dimension in the categorization of estimators: Bayesian or frequentist. Bayesian esti-
mators use Bayes’ rule to perform inference about unknown quantities (parameters) conditioning on the observed data.
Frequentist estimators rely on randomness averaging out across observations. Frequentist methods are dominant in finan-
cial econometrics, although the use of Bayesian methods has been recently increasing.

2Many estimators are members of more than one class. For example, the median is a member of all three.
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classical minimum distance.

2.1.2 Maximum Likelihood

Maximum likelihood uses the distribution of the data to estimate unknown parameters by finding the
values which make the data as likely as possible to have been observed – in other words, by max-
imizing the likelihood. Maximum likelihood estimation begins by specifying the joint distribution,
f (y;θ), of the observable data, y = {y1,y2, . . . ,yn}, as a function of a k by 1 vector θ , which con-
tains all parameters. Note that this is the joint density, and so it includes both the information in
the marginal distributions of yi and information relating the marginals to one another.3 Maximum
likelihood estimation “reverses” the likelihood, so that it is a function of θ given the observed y,
L(θ ;y) = f (y;θ).

The maximum likelihood estimator, θ̂ , is defined as the solution to

θ̂ = argmax
θ

L(θ ;y) (2.1)

where argmax returns the value of the parameter that maximizes the equation.4 Since L(θ ;y) is
strictly positive, the log of the likelihood can be used to estimate θ .5 The log-likelihood is defined
as l(θ ;y) = lnL(θ ;y). In most situations the maximum likelihood estimator (MLE) can be found by
solving the k by 1 score vector,

∂ l(θ ;y)
∂θ

= 0

although a score-based solution does not work when θ is constrained, if θ̂ lies on the boundary of
the parameter space, or when the permissible range of values for Yi depends on θ . The first problem
is common enough that it is worth keeping in mind. The other two issues are rarely encountered in
financial econometrics.

2.1.2.1 Maximum Likelihood Estimation of a Poisson Model

Realizations from a Poisson process are non-negative and discrete. The Poisson is common in ultra-
high-frequency econometrics, where the usual assumption that prices lie in a continuous space is

3Formally the relationship between the marginal is known as the copula. Copulas and their use in financial economet-
rics are examined in chpater 9.

4Many likelihoods have more than one maximum (i.e., local maxima). The maximum likelihood estimator is always
defined as the global maximum.

5Note that the log transformation is strictly increasing and globally concave. If z? is the maximum of g(z), and thus

∂g(z)
∂ z

∣∣∣∣
z=z?

= 0

then z? must also be the maximum of ln(g(z)) since

∂ ln(g(z))
∂ z

∣∣∣∣
z=z?

=
g′(z)
g(z)

∣∣∣∣
z=z?

=
0

g(z?)
= 0

which follows since g(z)> 0 for any value of z.
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implausible. For example, US equities’ transaction prices evolve on a grid of prices typically sepa-
rated by $0.01. Suppose Yi

i.i.d.∼ Poisson(λ ). The pdf of a single observation is

f (Yi = yi;λ ) =
exp(−λ )λ yi

yi!
(2.2)

and since the data are independent and identically distributed (i.i.d.), the joint likelihood is simply the
product of the n individual likelihoods,

f (y;λ ) = L(λ ;y) =
n∏

i=1

exp(−λ )λ yi

yi!
.

The log-likelihood is

l(λ ;y) =
n∑

i=1

−λ + yi ln(λ )− ln(yi!) (2.3)

which can be further simplified to

l(λ ;y) =−nλ + ln(λ )
n∑

i=1

yi−
n∑

j=1

ln(y j!)

The first derivative is

∂ l(λ ;y)
∂λ

=−n+λ
−1

n∑
i=1

yi. (2.4)

The MLE is found by setting the derivative to 0 and solving,

−n+ λ̂
−1

n∑
i=1

yi = 0

λ̂
−1

n∑
i=1

yi = n

n∑
i=1

yi = nλ̂

λ̂ = n−1
n∑

i=1

yi

The maximum likelihood estimator of λ in a Poisson is the sample mean.

2.1.2.2 Maximum Likelihood Estimation of a Normal (Gaussian) Model

Suppose yi is assumed to be i.i.d.normally distributed with mean µ and variance σ2. The pdf of a
normal is
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f (Yi = yi;θ) =
1√

2πσ2
exp

(
−(yi−µ)2

2σ2

)
. (2.5)

where θ =
[
µ σ2]′. The joint likelihood is the product of the n individual likelihoods,

f (y;θ) = L(θ ;y) =
n∏

i=1

1√
2πσ2

exp

(
−(yi−µ)2

2σ2

)
.

Taking logs,

l(θ ;y) =
n∑

i=1

−1
2

ln(2π)− 1
2

ln(σ2)− (yi−µ)2

2σ2 (2.6)

which simplifies to

l(θ ;y) =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

n∑
i=1

(yi−µ)2

σ2 .

Taking the derivative with respect to the parameters θ =
(
µ,σ2)′,

∂ l(θ ;y)
∂ µ

=
n∑

i=1

(yi−µ)

σ2 (2.7)

∂ l(θ ;y)
∂σ2 =− n

2σ2 +
1
2

n∑
i=1

(yi−µ)2

σ4 . (2.8)

Setting these equal to zero, the first condition can be directly solved by multiplying both sides by σ̂2,
assumed positive, and the estimator for µ is the sample average.

n∑
i=1

(yi− µ̂)

σ̂2 = 0

σ̂
2

n∑
i=1

(yi− µ̂)

σ̂2 = σ̂
2×0

n∑
i=1

yi−nµ̂ = 0

nµ̂ =
n∑

i=1

yi

µ̂ = n−1
n∑

i=1

yi
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Plugging the estimator µ̂ into the second component of the score and setting equal to 0, the ML
estimator of σ2 is

− n
2σ̂2 +

1
2

n∑
i=1

(yi− µ̂)2

σ̂4 = 0

2σ̂
4

(
− n

2σ̂2 +
1
2

n∑
i=1

(yi− µ̂)2

σ̂4

)
= 2σ̂

4×0

−nσ̂
2 +

n∑
i=1

(yi− µ̂)2 = 0

σ̂
2 = n−1

n∑
i=1

(yi− µ̂)2

2.1.3 Conditional Maximum Likelihood

Interest often lies in the distribution of a random variable conditional on one or more observed values,
where the distribution of the variables conditioned on is not directly of interest. When this occurs, it is
natural to use conditional maximum likelihood. Suppose interest lies in modeling a random variable
Y conditional on one or more variables X. The likelihood for a single observation is fi (yi|xi), and
when Yi are conditionally i.i.d. , then

L(θ ;y|X) =
n∏

i=1

f (yi|xi) ,

and the log-likelihood is

l (θ ;y|X) =
n∑

i=1

ln f (yi|xi) .

The conditional likelihood is not usually sufficient to estimate parameters since the relationship
between Y and X has not been specified. Conditional maximum likelihood specifies the model pa-
rameters conditionally on xi. For example, when Yi is conditionally normally distributed, Yi|xi ∼
N
(
µi,σ

2) where µi = g(β ,xi) is some function which links parameters and conditioning variables.
In many applications a linear relationship is assumed so that

Yi = xiβ + εi

=
k∑

j=1

βiXi, j + εi

= µi + εi.

Other relationships are possible, including functions g(xiβ ) which limits to range of xiβ such as
exp(xiβ ) (positive numbers), the normal cdf (Φ(xiβ )) or the logistic function,

Λ(xiβ ) = exp(xiβ )/(1+ exp(xiβ )) ,

since both limit the range to (0,1).



2.1 Estimation 63

2.1.3.1 Example: Conditional Bernoulli

Suppose Yi and Xi are Bernoulli random variables where the conditional distribution of Yi given Xi = xi
is

Yi|Xi = xi ∼ Bernoulli(θ0 +θ1xi)

so that the conditional probability of observing a success (Yi = 1) is pi = θ0 +θ1xi. The conditional
likelihood is

L(θ ;y|x) =
n∏

i=1

(θ0 +θ1xi)
yi (1− (θ0 +θ1xi))

1−yi ,

the conditional log-likelihood is

l (θ ;y|x) =
n∑

i=1

yi ln(θ0 +θ1xi)+(1− yi) ln(1− (θ0 +θ1xi)) ,

and the maximum likelihood estimator can be found by differentiation.

∂ l (θ ;y|x)
∂ θ̂0

=
n∑

i=1

yi

θ̂0 + θ̂1xi
− 1− yi

1− θ̂0− θ̂1xi
= 0

∂ l (θ ;y|x)
∂θ1

=
n∑

i=1

xiyi

θ̂0 + θ̂1xi
− xi (1− yi)

1− θ̂0− θ̂1xi
= 0.

Using the fact that Xi is also Bernoulli, the second score can be solved

0 =
n∑

i=1

xi

(
yi

θ̂0 + θ̂1
+

(1− yi)(
1− θ̂0− θ̂1

)) =
n∑

i=1

nxy

θ̂0 + θ̂1
− nx−nxy

1− θ̂0− θ̂1xi

= nxy
(
1−
(
θ̂0 + θ̂1

))
− (nx−nxy)

(
θ̂0 + θ̂1

)
= nxy−nxy

(
θ̂0 + θ̂1

)
−nx

(
θ̂0 + θ̂1

)
+nxy

(
θ̂0 + θ̂1

)
θ̂0 + θ̂1 =

nxy

nx
,

Define nx =
∑n

i=1 xi, ny =
∑n

i=1 yi and nxy =
∑n

i=1 xiyi. The first score than also be rewritten as

0 =

n∑
i=1

yi

θ̂0 + θ̂1xi
− 1− yi

1− θ̂0− θ̂1xi
=

n∑
i=1

yi (1− xi)

θ̂0
+

yixi

θ̂0 + θ̂1
− 1− yi (1− xi)

1− θ̂0
− (1− yi)xi

1− θ̂0− θ̂1

=

n∑
i=1

yi (1− xi)

θ̂0
− 1− yi (1− xi)

1− θ̂0
+

{
xiyi

θ̂0 + θ̂1
− xi (1− yi)

1− θ̂0− θ̂1

}
=

ny−nxy

θ̂0
− n−ny−nx +nxy

1− θ̂0
+{0}

= ny−nxy− θ̂0ny + θ̂0n− θ̂0n+ θ̂0ny + θ̂0nx− θ̂0nxy

θ̂0 =
ny−nxy

n−nx
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so that θ̂1 =
nxy
nx
− ny−nxy

n−nx
. The “0” in the previous derivation follows from noting that the quantity in

braces ({}) is the first score and so is 0 at the MLE. If Xi was not a Bernoulli random variable, then
it is not usually possible to analytically solve this problem. In these cases, numerical methods are
needed.6

2.1.3.2 Example: Conditional Normal

Suppose µi = βxi where Yi given Xi = xi is conditionally normal. Assuming that Yi are conditionally
i.i.d. , the likelihood and log-likelihood are

L(θ ;y|x) =
n∏

i=1

1√
2πσ2

exp

(
−(yi−βxi)

2

2σ2

)

l (θ ;y|x) =
n∑

i=1

−1
2

(
ln(2π)+ ln

(
σ

2)+ (yi−βxi)
2

σ2

)
.

The scores of the likelihood are

∂ l (θ ;y|x)
∂β

=
n∑

i=1

xi

(
yi− β̂xi

)
σ̂2 = 0

∂ l (θ ;y|x)
∂σ2 = −1

2

n∑
i=1

1
σ̂2 −

(
yi− β̂xi

)2

(σ̂2)
2 = 0

After multiplying both sides the first score by σ̂2, and both sides of the second score by−2σ̂4, solving
the scores is straight forward, and so

β̂ =

∑n
i=1 xiyi∑n
j=1 x2

j

σ̂
2 = n−1

n∑
i=1

(yi−βxi)
2 .

2.1.3.3 Example: Conditional Poisson

Suppose Yi is conditional on Xi i.i.d.distributed Poisson(λi) where λi = exp(θxi). The likelihood and
log-likelihood are

L(θ ;y|x) =
n∏

i=1

exp(−λi)λ
yi
i

yi!

l (θ ;y|x) =
n∑

i=1

exp(θxi)+ yi (θxi)− ln(yi!) .

6When Xi is not Bernoulli, it is also usually necessary to use a function to ensure pi, the conditional probability, is in
[0,1]. The normal cdf and the logistic function are commonly used to enforce this constraint.
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The score of the likelihood is

∂ l (θ ;y|x)
∂θ

=

n∑
i=1

−xi exp
(
θ̂xi
)
+ xiYi = 0.

This score cannot be analytically solved and so a numerical optimizer must be used to find the solu-
tion. It is possible, however, to show the score has expectation 0 since E [Yi|xi = xi] = λi.

E
[

∂ l (θ ;y|x)
∂θ

]
= E

[
n∑

i=1

−Xi exp(θxi)+XiYi

]

= E

[
E

[
n∑

i=1

−Xi exp(θxi)+XiYi

∣∣∣∣∣X
]]

=
n∑

i=1

E [−xi exp(θxi) |X]+ xiE [Yi|X]

=
n∑

i=1

−xiλi + xiE [Yi|X]

=
n∑

i=1

−xiλi + xiλi = 0.

2.1.4 The Method of Moments

The Method of moments, often referred to as the classical method of moments to differentiate it from
the generalized method of moments (GMM, chapter 6), uses the data to match noncentral moments.

Definition 2.1 (Noncentral Moment). The rth noncentral moment is defined

µ
′
r ≡ E [X r] (2.9)

for r = 1,2, . . ..

Central moments are similarly defined, only centered around the mean.

Definition 2.2 (Central Moment). The rth central moment is defined

µr ≡ E
[(

X−µ
′
1
)r] (2.10)

for r = 2,3, . . . where the first central moment is defined to be equal to the first noncentral moment.

Since E [X r
i ] is not known any estimator based on it is infeasible. The natural solution is to use the

sample analogue to estimate its value, and the feasible method of moments estimator is

µ̂
′
r = n−1

n∑
i=1

X r
i , (2.11)
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the sample average of the data raised to the rth power. While the classical method of moments was
originally specified using noncentral moments, the central moments are usually the quantities of in-
terest. The central moments can be directly estimated,

µ̂r = n−1
n∑

i=1

(Xi− µ̂1)
r, (2.12)

by first estimating the mean (µ̂1) and then estimating any higher-order central moments required. An
alternative is to expand the noncentral moment in terms of central moments. For example, the second
noncentral moment can be expanded in terms of the first two central moments,

µ
′
2 = µ2 +µ

2
1

which is the usual identity that states that expectation of a random variable squared, E[X2
i ], is equal to

the variance, µ2 = σ2, plus the mean squared, µ2
1 . Likewise, it is easy to show that

µ
′
3 = µ3 +3µ2µ1 +µ

3
1

directly by expanding E
[
(X−µ1)

3
]

and solving for µ ′3. To understand that the method of moments
is in the class of M-estimators, note that the expression in eq. (2.12) is the first order condition of a
simple quadratic form,

argmin
µ,µ2,...,µk

n−1
n∑

i=1

(Xi−µ)2 +
k∑

j=2

n∑
i=1

(
n−1 (Xi−µ) j−µ j

)2
. (2.13)

The solution is exact since the number of unknown parameters is identical to the number of equa-
tions.7

2.1.4.1 Method of Moments Estimation of the Mean and Variance

The classical method of moments estimator for the mean and variance for a set of i.i.d.data {yi}n
i=1

where E [Yi] = µ and E
[
(Yi−µ)2

]
= σ2 is given by estimating the first two noncentral moments and

then solving for σ2.

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 + µ̂

2 = n−1
n∑

i=1

Y 2
i

so that the variance estimator is σ̂2 = n−1∑n
i=1Y 2

i − µ̂2. Following some algebra, it is simple to show
that the central moment estimator could be used instead, and so equivalently σ̂2 = n−1∑n

i=1 (Yi− µ̂)2.

7Note that µ1, the mean, is generally denoted with the subscript suppressed as µ .
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2.1.4.2 Method of Moments Estimation of the Range of a Uniform

Consider a set of realization of a random variable with a uniform density over [0,θ ], and so Yi
i.i.d.∼

U(0,θ). The expectation of Yi is E [Yi] = θ/2, and so the method of moments estimator for the upper
bound is

θ̂ = 2n−1
n∑

i=1

Yi.

2.1.5 Classical Minimum Distance

The third type of M-estimator is the classical minimum distance (CMD) estimator, which is also
known as minimum χ2 . CMD differs from MLE and the method of moments in that it is an estimator
that uses parameter estimates produced by another estimator rather than on the data directly. CMD
is most common when a simple MLE or moment-based estimator can estimate a modified version
of the model of interest. This model may be missing some economically or statistically motivated
constraints on the parameters. This initial estimator, ψ̂ is then used to estimate the parameters of the
model, θ , by minimizing a quadratic function of the form

θ̂ = argmin
θ

(ψ̂−g(θ))′W(ψ̂−g(θ)) (2.14)

where W is a positive definite weighting matrix and g(θ) is a function that related the model param-
eters to ψ . When W is chosen as the covariance of ψ̂ , the CMD estimator becomes the minimum-χ2

estimator since outer products of standardized normals are χ2 random variables.

2.2 Convergence and Limits for Random Variables

Before turning to estimators’ properties, it is useful to discuss some common measures of convergence
for sequences. First, recall the definition of a limit of a non-stochastic sequence.

Definition 2.3 (Limit). Let {xn} be a non-stochastic sequence. If there exists N such that for every
n>N, |xn− x|< ε ∀ε > 0, then x is called the limit of xn. When this occurs, xn→ x or limn→∞ xn = x.

A limit is a point that a sequence approaches, and eventually, always remains near. While the limit
does not need to be attained, xn is always be less than ε away from its limit for any choice of ε > 0
for n sufficiently large.

Limits of random variables come in many forms. The first the type of convergence is both the
weakest and most abstract.

Definition 2.4 (Convergence in Distribution). Let {Yn} be a sequence of random variables and let
{Fn} be the associated sequence of cdfs. If there exists a cdf F where Fn (y)→ F (y) for all y where
F is continuous, then F is the limiting cdf of {Yn}. Let Y be a random variable with cdf F , then Yn

converges in distribution to Y∼ F , Yn
d→ Y∼ F , or simply Yn

d→ F .

Convergence in distribution means that the limiting cdf of a sequence of random variables is the
same as the convergent random variable. This is a very weak form of convergence since all it requires
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Figure 2.1: This figure shows a sequence of cdfs {Fi} that converge to the cdf of a standard normal.

is that the distributions are the same. For example, suppose {Xn} is an i.i.d. sequence of standard
normal random variables, and Y is a standard normal random variable. Xn trivially converges to
distribution to Y (Xn

d→ Y ) even through Y is completely independent of {Xn} – the limiting cdf of
Xn is merely the same as the cdf of Y . Despite the weakness of convergence in distribution, it is an
essential notion of convergence that is used to perform inference on estimated parameters.

Figure 2.1 shows an example of a sequence of random variables that converge in distribution. The
sequence is

Xn =
√

n
1
n
∑n

i=1Yi−1√
2

d→ Z

where Yi are i.i.d. χ2
1 random variables and Z ∼ N (0,1). This is a studentized average since the

variance of the average is 2/n and the mean is 1. By the time n = 128 the distribution of Xn is nearly
indistinguishable from that of a standard normal.

Convergence in distribution is preserved through functions.

Theorem 2.1 (Continuous Mapping Theorem). Let Xn
d→ X and let the random variable g(X) be

defined by a function g(x) that is continuous everywhere except possibly on a set with zero probability.

Then g(Xn)
d→ g(X).

The continuous mapping theorem is useful since it facilitates the study of functions of sequences
of random variables. For example, in hypothesis testing, it is common to use quadratic forms of nor-
mals, and when appropriately standardized, quadratic forms of normally distributed random variables
follow a χ2 distribution.

The next form of convergence is stronger than convergence in distribution since the limit is to a
specific value, not just a cdf.

Definition 2.5 (Convergence in Probability). The sequence of random variables {Xn} converges in
probability to X if and only if

lim
n→∞

Pr(|Xi,n−Xi|< ε) = 1∀ε > 0, ∀i.

When this holds, Xn
p→X or equivalently plimXn = X (or plimXn−X = 0) where plim is probability

limit.
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Note that X can be either a random variable or a constant (degenerate random variable). For ex-
ample, if Xn = n−1+Z where Z is a normally distributed random variable, then Xn

p→ Z. Convergence
in probability requires virtually all of the probability mass of Xn to lie near X. This is a very weak
form of convergence since it is possible that a small amount of probability can be arbitrarily far away
from X. Suppose a scalar random sequence {Xn} takes the value 0 with probability 1− 1/n and n
with probability 1/n. Then {Xn}

p→ 0 although E [Xn] = 1 for all n.
Convergence in probability, however, is strong enough that it is suitable for studying the limiting

behavior of functions of random variables.

Theorem 2.2. Let Xn
p→ X and let the random variable g(X) be defined by a function g(x) that

is continuous everywhere except possibly on a set with zero probability. Then g(Xn)
p→ g(X) (or

equivalently plimg(Xn) = g(X)).

This theorem has several useful forms. Suppose the k-dimensional vector Xn
p→ X, the con-

formable vector Yn
p→ Y, and C is a conformable constant matrix, then

• plim CXn = CX

• plim
∑k

i=1 Xi,n =
∑k

i=1 plimXi,n =
∑k

i=1 Xi – the plim of the sum is the sum of the plims

• plim
∏k

i=1 Xi,n =
∏k

i=1 plimXi,n =
∏k

i=1 Xi – the plim of the product is the product of the plims

• plimYnXn = YX

• When Yn is a square matrix and Y is nonsingular, then Y−1
n

p→ Y−1 – the inverse function is
continuous and so plim of the inverse is the inverse of the plim

• When Yn is a square matrix and Y is nonsingular, then Y−1
n Xn

p→ Y−1X.

The plim operator has important differences from the expectations operator. In particular, the plim
operator passes through most functions. The feature allows for broad application. For example,

E
[

1
X

]
6= 1

E [X ]

whenever X is a non-degenerate random variable. However, if Xn
p→ X 6= 0, then

plim
1

Xn
=

1
plimXn

=
1
X
.

Alternative definitions of convergence strengthen convergence in probability. In particular, conver-
gence in mean square requires that the expected squared deviation must be zero. This requires that
limn→∞E [Xn] = X and limn→∞V [Xn] = 0.

Definition 2.6 (Convergence in Mean Square). The sequence of random variables {Xn} converges in
mean square to X if and only if

lim
n→∞

E
[
(Xi,n−Xi)

2
]
= 0, ∀i.

When this holds, Xn
m.s.→ X.
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Mean square convergence is strong enough to ensure that, when the limit is random X than
limn→∞E [Xn] = E [X] and limn→∞V [Xn] = V [X] – these relationships do not necessarily hold when
only Xn

p→ X.

Theorem 2.3 (Convergence in mean square implies consistency). If Xn
m.s.→ X then Xn

p→ X.

This result follows directly from Chebyshev’s inequality (Theorem 1.12). A final, and very strong,
measure of convergence for random variables is known as almost sure convergence.

Definition 2.7 (Almost sure convergence). The sequence of random variables {Xn} converges almost
surely to X if and only if

lim
n→∞

Pr(Xi,n−Xi = 0) = 1, ∀i.

When this holds, Xn
a.s.→ X.

Almost sure convergence requires all probability to be on the limit point. This is a stronger
condition than either convergence in probability or convergence in mean square, both of which allow
for some probability to be (relatively) far from the limit point.

Theorem 2.4 (Almost sure convergence implications). If Xn
a.s.→ X then Xn

m.s.→ X and Xn
p→ X .

Random variables that converge almost surely to a limit are asymptotically degenerate on that
limit.
The Slutsky theorem combines convergence in distribution with convergence in probability to show
how the joint limit of functions behaves.

Theorem 2.5 (Slutsky Theorem). Let Xn
d→ X and let Y p→ C, a constant, then for conformable X

and C,
Xn +Yn

d→ X+C
YnXn

d→ CX
Y−1

n Xn
d→ C−1X as long as C is non-singular.

This theorem is at the core of hypothesis testing. Estimated parameters are often asymptotically
normally distributed. The estimated parameters are then standardized by scaling by an estimated pa-
rameter covariance that converges in probability to the true covariance. Slutsky’s theorem establishes
that using the estimated parameter covariance matrix is asymptotically equivalent to using the true
parameter covariance matrix.

2.3 Properties of Estimators

The first step in assessing the performance of an economic model is the estimation of the parameters.
There are several desirable properties estimators may possess.
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2.3.1 Bias and Consistency

A natural question to ask about an estimator is whether, on average, it is equal to the population value
of the parameter estimated. Any discrepancy between the expected value of an estimator and the
population parameter is known as bias.

Definition 2.8 (Bias). The bias of an estimator, θ̂ , is defined

B
[
θ̂
]
= E

[
θ̂
]
−θ 0 (2.15)

where θ 0 is used to denote the population (or “true”) value of the parameter.

When an estimator has a bias of 0 it is said to be unbiased. Consistency is a closely related concept
that measures whether a parameter is far from the population value in large samples.

Definition 2.9 (Consistency). An estimator θ̂ n is said to be consistent if plimθ̂ n = θ 0. The explicit
dependence of the estimator on the sample size is used to clarify that these form a sequence,

{
θ̂ n
}∞

n=1.

Consistency requires an estimator to exhibit two features as the sample size becomes large. First,
any bias must be shrinking. Second, the distribution of θ̂ around θ 0 must be shrinking in such a way
that virtually all of the probability mass is arbitrarily close to θ 0.

Behind consistency is a set of theorems known as laws of large numbers that provide conditions
where an average converges to its expectation. The simplest is the Kolmogorov Strong Law of Large
numbers and is applicable to i.i.d.data.8

Theorem 2.6 (Kolmogorov Strong Law of Large Numbers). Let {Yi} by a sequence of i.i.d. random
variables with µ ≡ E [Yi] and define Ȳn = n−1∑n

i=1Yi. Then

Ȳn
a.s.→ µ (2.16)

if and only if E [|Yi|]<∞.

In the case of i.i.d.data the only requirement for consistency is that the expectation exists, and
so a law of large numbers applies to an average of i.i.d.data whenever its expectation exists. For
example, Monte Carlo integration uses i.i.d.draws and so the Kolmogorov LLN is sufficient to ensure
that Monte Carlo integrals converge to their expected values.
The variance of an estimator is the same as any other variance, V

[
θ̂
]
= E

[(
θ̂ −E[θ̂ ]

)2
]

although

it is worth noting that the variance is defined as the variation around its expectation, E[θ̂ ], not the
population value of the parameters, θ 0. Mean square error measures this alternative form of variation
around the population value of the parameter.

Definition 2.10 (Mean Square Error). The mean square error of an estimator θ̂ , denoted MSE
(
θ̂
)
, is

defined
MSE

(
θ̂
)
= E

[(
θ̂ −θ 0

)2
]
. (2.17)

It can be equivalently expressed as the bias squared plus the variance, MSE
(
θ̂
)
= B

[
θ̂
]2
+V

[
θ̂
]
.

When the bias and variance of an estimator both converge to zero, then θ̂ n
m.s.→ θ 0.

8A law of large numbers is strong if the convergence is almost sure. It is weak if convergence is in probability.
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2.3.1.1 Bias and Consistency of the Method of Moment Estimators

The method of moments estimators of the mean and variance are defined as

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 = n−1

n∑
i=1

(Yi− µ̂)2 .

When the data are i.i.d.with finite mean µ and variance σ2, the mean estimator is unbiased while
the variance is biased by an amount that becomes small as the sample size increases. The mean is
unbiased since

E [µ̂] = E

[
n−1

n∑
i=1

Yi

]

= n−1
n∑

i=1

E [Yi]

= n−1
n∑

i=1

µ

= n−1nµ

= µ

The variance estimator is biased since

E
[
σ̂

2]= E

[
n−1

n∑
i=1

(Yi− µ̂)2

]

= E

[
n−1

(
n∑

i=1

Y 2
i −nµ̂

2

)]

= n−1

(
n∑

i=1

E
[
Y 2

i
]
−nE

[
µ̂

2])

= n−1

(
n∑

i=1

µ
2 +σ

2−n
(

µ
2 +

σ2

n

))
= n−1 (nµ

2 +nσ
2−nµ

2−σ
2)

= n−1
(

nσ
2−n

σ2

n

)
=

n−1
n

σ
2.
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The key step in the derivation is to show that the sample mean is equal to the population mean plus
an error that is decreasing in n,

µ̂
2 =

(
µ +n−1

n∑
i=1

εi

)2

= µ
2 +2µn−1

n∑
i=1

εi +

(
n−1

n∑
i=1

εi

)2

and so its square has the expected value

E
[
µ̂

2]= E

µ
2 +2µn−1

n∑
i=1

εi +

(
n−1

n∑
i=1

εi

)2


= µ
2 +2µn−1E

[
n∑

i=1

εi

]
+n−2E

( n∑
i=1

εi

)2


= µ
2 +

σ2

n
.

2.3.2 Asymptotic Normality

While unbiasedness and consistency are highly desirable properties of any estimator, alone these do
not provide a method to perform inference. The primary tool in econometrics for inference is the
central limit theorem (CLT). CLTs exist for a wide range of possible data characteristics that include
i.i.d., heterogeneous and dependent cases. The Lindberg-Lévy CLT, which is applicable to i.i.d.data,
is the simplest.

Theorem 2.7 (Lindberg-Lévy). Let {Yi} be a sequence of i.i.d. random scalars with µ ≡ E [Yi] and
σ2 ≡ V [Yi]<∞. If σ2 > 0, then

Ȳn−µ

σ̄n
=
√

n
Ȳn−µ

σ

d→ N(0,1) (2.18)

where Ȳn = n−1∑n
i=1Yi and σ̄n =

√
σ2

n .

Lindberg-Lévy states that as long as i.i.d.data have 2 moments – a finite mean and variance –
the sample mean is asymptotically normally distributed. It can further be seen to show that other
moments of i.i.d. random variables, such as the variance, are asymptotically normally distributed as
long as two times the power of the moment exists. In other words, an estimator of the rth moment is
asymptotically normally distributed as long as the 2rth moment exists – at least in i.i.d.data.

Figure 2.2 contains density plots of the sample average of n independent χ2
1 random variables for

n= 5, 10, 50 and 100.9 The top panel contains the density of the unscaled estimates. The bottom panel

9The mean and variance of a χ2
ν are ν and 2ν , respectively.
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Consistency and Central Limits
Unscaled Estimator Distribution
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Figure 2.2: These two panels illustrate the difference between consistency and the correctly scaled
estimators. The sample mean was computed 1,000 times using 5, 10, 50 and 100 i.i.d. χ2 data points.
The top panel contains a kernel density plot of the estimates of the mean. The density when n = 100
is much tighter than when n = 5 or n = 10 since the estimates are not scaled. The bottom panel
plots

√
n(µ̂ − 1)/

√
2, the standardized version for which a CLT applies. All scaled densities have

similar dispersion although it is clear that the asymptotic approximation of the CLT is not particularly
accurate when n = 5 or n = 10 due to the right skew in the χ2

1 data.

contains the density plot of the correctly scaled terms as they appear in the CLT,
√

n(µ̂−1)/
√

2 where
µ̂ is the sample average. The densities are collapsing in the top panel. This is evidence of consistency
since µ̂ is collapsing to 1, its expected value. The bottom panel demonstrates the operation of a CLT
since the appropriately standardized means all have similar dispersion and are increasingly normally
distributed.

Central limit theorems exist for a wide variety of other data generating process including processes
which are independent but not identically distributed (i.n.i.d) or processes which are dependent, such
as time-series data. As the data become more heterogeneous, whether through dependence or by
having different variance or distributions, more restrictions are needed on certain characteristics of
the data to ensure that averages are asymptotically normally distributed. The Lindberg-Feller CLT
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allows for heteroskedasticity (different variances) and/or different marginal distributions.

Theorem 2.8 (Lindberg-Feller). Let {Yi} be a sequence of independent random scalars with µi ≡
E [Yi] and 0 < σ2

i ≡ V [Yi]<∞ where yi ∼ Fi, i = 1,2, . . .. Then

√
n

Ȳn− µ̄n

σ̄n

d→ N(0,1) (2.19)

and

lim
n→∞

max
1≤i≤n

n−1 σ2
i

σ̄2
n
= 0 (2.20)

if and only if, for every ε > 0,

lim
n→∞

σ̄
2
n n−1

n∑
i=1

∫
(z−µn)2>εNσ2

n

(z−µn)
2 dFi(z) = 0 (2.21)

where µ̄ = n−1∑n
i=1 µi and σ̄2 = n−1∑n

i=1 σ2
i .

The Lindberg-Feller CLT relaxes the requirement that the marginal distributions are identical at
the cost of a technical condition. The final condition, known as a Lindberg condition, states that
none of the random variables are so heavy-tailed as to dominate the distribution when averaged. In
practice, this can be a concern when the variables have a wide range of variances (σ2

i ). For example,
many macroeconomic data series exhibit a large decrease in the variance of their shocks after 1984, a
phenomenon is referred to as the great moderation. The statistical consequence of this decrease is that
averages that use data both before and after 1984 not be well approximated by a CLT and so caution is
warranted when using asymptotic approximations. This phenomena is also present in equity returns
where some periods – for example the technology “bubble” from 1997-2002 – have substantially
higher volatility than periods before or after. These large persistent changes in the characteristics of
the data have negative consequences on the quality of CLT approximations and large data samples are
often needed.

2.3.2.1 What good is a CLT?

Central limit theorems are the basis of most inference in econometrics, although their formal jus-
tification is only asymptotic and hence only guaranteed to be valid for an arbitrarily large data set.
Reconciling these two statements is an essential step in the evolution of an econometrician.

Central limit theorems should be seen as approximations, and as an approximation, they can be
accurate or arbitrarily poor. For example, when a series of random variables are i.i.d. , thin-tailed,
and not skewed, the distribution of the sample mean computed using as few as ten observations may
be very well approximated using a central limit theorem. On the other hand, the approximation of a
central limit theorem for the estimate of the autoregressive parameter, ρ , in

Yi = ρYi−1 + εi (2.22)

may be poor even for hundreds of data points when ρ is close to one (but smaller). Figure 2.3
contains kernel density plots of the sample means computed from a set of 10 i.i.d.draws from a
Poisson distribution with λ = 5 in the top panel and the estimated autoregressive parameter from
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Central Limit Approximations
Accurate CLT Approximation
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Figure 2.3: These two plots illustrate how a CLT can provide a good approximation, even in small
samples (top panel), or a bad approximation even for moderately large samples (bottom panel). The
top panel contains a kernel density plot of the standardized sample mean of n = 10 Poisson random
variables (λ = 5) over 10,000 Monte Carlo simulations. Here the finite sample distribution and the
asymptotic distribution overlay one another. The bottom panel contains the conditional ML estimates
of ρ from the AR(1) Yi = ρYi−1+εi where εi is i.i.d. standard normal using 100 data points and 10,000
replications. While ρ̂ is asymptotically normal, the quality of the approximation when n= 100 is poor.

the autoregression in eq. (2.22) with ρ = .95 in the bottom. Each figure also contains the pdf of
an appropriately scaled normal random variable. The CLT for the sample means of ten the Poisson
random variables is virtually indistinguishable from the actual distribution. The CLT approximation
for ρ̂ is very poor despite being based on 100 data points – 10× more than in the i.i.d.uniform
example. The difference arises because the data in the AR(1) example are not independent. With
ρ = 0.95, data are highly dependent, and more data is required for averages to be well behaved so
that the CLT approximation is accurate.

There are no hard and fast rules as to when a CLT provides a good approximation to the finite-
sample distribution. In general, the more dependent and the more heterogeneous a series, the worse
the approximation for a fixed number of observations. Simulations (Monte Carlo experiments) are a
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useful tool to investigate the validity of a CLT since they allow the finite sample distribution to be
tabulated and compared to the asymptotic distribution.

2.3.3 Efficiency

A final concept, efficiency, is useful for ranking consistent asymptotically normal (CAN) estimators
that have the same rate of convergence.10

Definition 2.11 (Relative Efficiency). Let θ̂ n and θ̃ n be two
√

n-consistent asymptotically normal
estimators for θ 0. If the asymptotic variance of θ̂ n, written avar

(
θ̂ n
)

is less than the asymptotic
variance of θ̃ n, and so

avar
(
θ̂ n
)
< avar

(
θ̃ n
)

(2.23)

then θ̂ n is said to be relatively efficient to θ̃ n.11

Note that when θ is a vector, avar
(
θ̂ n
)

is a covariance matrix. Inequality for matrices A and B is
interpreted to mean that if A < B then B−A is positive semi-definite, and so all of the variances of
the inefficient estimator must be (weakly) larger than those of the efficient estimator.

Definition 2.12 (Asymptotically Efficient Estimator). Let θ̂ n and θ̃ n be two
√

n-consistent asymptot-
ically normal estimators for θ 0. If

avar
(
θ̂ n
)
< avar

(
θ̃ n
)

(2.24)

for any choice of θ̃ n then θ̂ n is said to be the efficient estimator of θ .

One of the important features of efficiency comparisons is that they are only meaningful if both
estimators are asymptotically normal, and hence consistent, at the same rate –

√
n in the usual case.

It is trivial to produce an estimator that has a smaller variance but is inconsistent. For example, if an
estimator for a scalar unknown is θ̂ = 7 then it has no variance: it is always 7. However, unless θ0 = 7,
the estimator is also biased. Mean square error is a more appropriate method to compare estimators
where one or more may be biased since it accounts for the total variation, not just the variance.12

2.4 Distribution Theory

Most distributional theory follows from a central limit theorem applied to the moment conditions or
the score of the log-likelihood. While the moment conditions or scores are not usually the objects
of interest – θ is – a simple expansion can be used to establish the asymptotic distribution of the
estimated parameters.

10In any consistent estimator the asymptotic distribution of θ̂ −θ 0 is degenerate. In order to perform inference on an
unknown quantity, the difference between the estimate and the population parameters must be scaled by a function of the
number of data points. For most estimators this rate is

√
n, and so

√
n
(
θ̂ −θ 0

)
is asymptotically normally distributed. In

the general case, the scaled difference can be written as nδ
(
θ̂ −θ 0

)
where nδ is known as the rate.

11The asymptotic variance of a
√

n-consistent estimator, written avar
(
θ̂ n
)

is defined as limn→∞V
[√

n
(
θ̂ n−θ 0

)]
.

12Some consistent asymptotically normal estimators have an asymptotic bias and so
√

n
(
θ̃ n−θ

) d→ N (B,Σ). Asymp-

totic MSE defined as E
[
n
(
θ̂ n−θ 0

)(
θ̂ n−θ 0

)′]
= BB′+Σ provides a method to compare estimators using their asymp-

totic properties.
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2.4.1 Method of Moments

Distribution theory for the classical method of moments estimators is the most straightforward. Fur-
ther, Maximum Likelihood can be considered as a special case and so the method of moments is a
natural starting point.13 The method of moments estimator is defined as

µ̂ = n−1
n∑

i=1

Xi

µ̂2 = n−1
n∑

i=1

(Xi− µ̂)2

...

µ̂k = n−1
n∑

i=1

(Xi− µ̂)k

To understand the distribution theory for the method of moments estimator, begin by reformulating
the estimator as the solution of a set of k equations evaluated using the population values of µ , µ2, . . .

n−1
n∑

i=1

Xi−µ = 0

n−1
n∑

i=1

(Xi−µ)2−µ2 = 0

...

n−1
n∑

i=1

(Xi−µ)k−µk = 0

Define g1i = Xi−µ and g ji = (Xi−µ) j−µ j, j = 2, . . . ,k, and the vector gi as

gi =


g1i
g2i
...

gki

 . (2.25)

Using this definition, the method of moments estimator can be seen as the solution to

gn
(
θ̂
)
= n−1

n∑
i=1

gi
(
θ̂
)
= 0.

13While the class of method of moments estimators and maximum likelihood estimators contains a substantial overlap,
method of moments estimators exist that cannot be replicated as a score condition of any likelihood since the likelihood
is required to integrate to 1.



2.4 Distribution Theory 79

Consistency of the method of moments estimator relies on a law of large numbers holding for
n−1∑n

i=1 Xi and n−1∑n
i=1 (Xi−µ) j for j = 2, . . . ,k. If Xi is an i.i.d. sequence and as long as E

[
|Xn−µ| j

]
exists, then n−1∑n

i=1 (Xn−µ) j p→ µ j.14 An alternative, and more restrictive approach is to assume

that E
[
(Xn−µ)2 j

]
= µ2 j exists, and so

E

[
n−1

n∑
i=1

(Xi−µ) j

]
= µ j (2.26)

V

[
n−1

n∑
i=1

(Xi−µ) j

]
= n−1

(
E
[
(Xi−µ)2 j

]
−E

[
(Xi−µ) j

]2
)

(2.27)

= n−1 (
µ2 j−µ

2
j
)
,

and so n−1∑n
i=1 (Xi−µ) j m.s.→ µ j which implies consistency.

The asymptotic normality of parameters estimated using the method of moments follows from the
asymptotic normality of

√
n

(
n−1

n∑
i=1

gi (θ 0)

)
= n−1/2

n∑
i=1

gi (θ 0) , (2.28)

an assumption. This requires the elements of gn to be sufficiently well behaved so that averages are
asymptotically normally distributed. For example, when xi is i.i.d., the Lindberg-Lévy CLT would
require xi to have 2k moments when estimating k parameters. When estimating the mean, 2 moments
are required (i.e., the variance is finite). To estimate the mean and the variance using i.i.d.data, 4
moments are required for the estimators to follow a CLT. As long as the moment conditions are
differentiable in the actual parameters of interest θ – for example, the mean and the variance – a
mean value expansion can be used to establish the asymptotic normality of these parameters.15

n−1
n∑

i=1

gi(θ̂) = n−1
n∑

i=1

gi(θ 0)+n−1
n∑

i=1

∂gi(θ)

∂θ
′

∣∣∣∣
θ=θ̄

(
θ̂ −θ 0

)
(2.30)

= n−1
n∑

i=1

gi(θ 0)+Gn
(
θ̄
)(

θ̂ −θ 0
)

14Technically, n−1∑n
i=1 (xi−µ)

j a.s.→ µ j by the Kolmogorov law of large numbers, but since a.s. convergence implies
convergence in probability, the original statement is also true.

15The mean value expansion is defined in the following theorem.

Theorem 2.9 (Mean Value Theorem). Let s : Rk → R be defined on a convex set Θ ⊂ Rk. Further, let s be continuously
differentiable on Θ with k by 1 gradient

∇s
(
θ̂
)
≡ ∂ s(θ)

∂θ

∣∣∣∣
θ=θ̂

. (2.29)

Then for any points θ and θ 0 there exists θ̄ lying on the segment between θ and θ 0 such that s(θ) = s(θ 0) +

∇s
(
θ̄
)′
(θ −θ 0).
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where θ̄ is a vector that lies between θ̂ and θ 0, element-by-element. Note that n−1∑n
i=1 gi(θ̂) = 0

by construction and so

n−1
n∑

i=1

gi(θ 0)+Gn
(
θ̄
)(

θ̂ −θ 0
)
= 0

Gn
(
θ̄
)(

θ̂ −θ 0
)
=−n−1

n∑
i=1

gi(θ 0)

(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1 n−1

n∑
i=1

gi(θ 0)

√
n
(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1√nn−1

n∑
i=1

gi(θ 0)

√
n
(
θ̂ −θ 0

)
=−Gn

(
θ̄
)−1√ngn(θ 0)

where gn(θ 0) = n−1∑n
i=1 gi(θ 0) is the average of the moment conditions. Thus the normalized

difference between the estimated and the population values of the parameters,
√

n
(
θ̂ −θ 0

)
is equal

to a scaled
(
−Gn

(
θ̄
)−1
)

random variable (
√

ngn(θ 0)) that has an asymptotic normal distribution.

By assumption
√

ngn(θ 0)
d→ N(0,Σ) and so

√
n
(
θ̂ −θ 0

) d→ N
(

0,G−1
Σ
(
G′
)−1
)

(2.31)

where Gn
(
θ̄
)

has been replaced with its limit as n→∞, G.

G = plimn→∞
∂gn (θ)

∂θ
′

∣∣∣∣
θ=θ 0

(2.32)

= plimn→∞n−1
n∑

i=1

∂gi (θ)

∂θ
′

∣∣∣∣
θ=θ 0

Since θ̂ is a consistent estimator, θ̂
p→ θ 0 and so θ̄

p→ θ 0 since it is between θ̂ and θ 0. This form of
asymptotic covariance is known as a “sandwich” covariance estimator.

2.4.1.1 Inference on the Mean and Variance

To estimate the mean and variance by the method of moments, two moment conditions are needed,

n−1
n∑

i=1

Xi = µ̂

n−1
n∑

i=1

(Xi− µ̂)2 = σ̂
2
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To derive the asymptotic distribution, begin by forming gi,

gi =

[
Xi−µ

(Xi−µ)2−σ2

]
Note that gi is mean 0 and a function of a single xi so that gi is also i.i.d.. The covariance of gi is given
by

Σ = E
[
gig′i
]
= E

[[
Xi−µ

(Xi−µ)2−σ2

][
Xi−µ (Xi−µ)2−σ2

]]
(2.33)

= E

 (Xi−µ)2 (Xi−µ)
(
(Xi−µ)2−σ2

)
(Xi−µ)

(
(Xi−µ)2−σ2

) (
(Xi−µ)2−σ2

)2


= E

[
(Xi−µ)2 (Xi−µ)3−σ2 (Xi−µ)

(Xi−µ)3−σ2 (Xi−µ) (Xi−µ)4−2σ2 (Xi−µ)2 +σ4

]

=

[
σ2 µ3
µ3 µ4−σ4

]
and the Jacobian is

G = plimn→∞ n−1
n∑

i=1

∂gi(θ)

∂θ
′

∣∣∣∣
θ=θ 0

= plimn→∞ n−1
n∑

i=1

[
−1 0

−2(Xi−µ) −1

]
.

Since plimn→∞n−1∑n
i=1 (Xi−µ) = plimn→∞x̄n−µ = 0,

G =

[
−1 0
0 −1

]
.

Thus, the asymptotic distribution of the method of moments estimator of θ =
(
µ,σ2)′ is

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 µ3
µ3 µ4−σ4

])
since G =−I2 and so G−1Σ

(
G−1)′ =−I2Σ(−I2) = Σ.

2.4.2 Maximum Likelihood

The steps to deriving the asymptotic distribution of an MLE are similar to those for a method of mo-
ments estimator. The key difference is that the score of the likelihood replaces the moment conditions.
The maximum likelihood estimator is defined as the maximum of the log-likelihood of the data with
respect to the parameters,
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θ̂ = argmax
θ

l(θ ;y). (2.34)

When the data are i.i.d., the log-likelihood can be factored into n log-likelihoods, one for each obser-
vation16,

l(θ ;y) =
n∑

i=1

li (θ ;yi) . (2.35)

It is useful to work with the average log-likelihood directly, and so define

l̄n(θ ;y) = n−1
n∑

i=1

li (θ ;yi) . (2.36)

The intuition behind the asymptotic distribution follows from the use of the average. Under some
regularity conditions, l̄n(θ ;y) converges uniformly in θ to E [l(θ ;yi)]. However, since the average
log-likelihood is becoming a good approximation for the expectation of the log-likelihood, the value
of θ that maximizes the log-likelihood of the data and its expectation are very close for n sufficiently
large. As a result,whenever the log-likelihood is differentiable and the range of yi does not depend on
any of the parameters in θ ,

E

[
∂ l̄n(θ ;yi)

∂θ

∣∣∣∣
θ=θ 0

]
= 0 (2.37)

where θ 0 are the parameters of the data generating process. This result follows since

∫
Sy

∂ l̄n(θ 0;y)
∂θ

∣∣∣∣
θ=θ 0

f (y;θ 0)dy =
∫
Sy

∂ f (y;θ 0)
∂θ

∣∣∣
θ=θ 0

f (y;θ 0)
f (y;θ 0)dy (2.38)

=

∫
Sy

∂ f (y;θ 0)

∂θ

∣∣∣∣
θ=θ 0

dy

=
∂

∂θ

∫
Sy

f (y;θ)

∣∣∣∣∣
θ=θ 0

dy

=
∂

∂θ
1

= 0

where Sy denotes the support of y. The scores of the average log-likelihood are

16Even when the data are not i.i.d., the log-likelihood can be factored into n log-likelihoods using conditional distribu-
tions for y2, . . . ,yi and the marginal distribution of y1,

l(θ ;y) =
N∑

n=2

li (θ ;yi |yi−1, . . . ,y1 )+ l1 (θ ;y1) .
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∂ l̄n(θ ;yi)

∂θ
= n−1

n∑
i=1

∂ li(θ ;yi)

∂θ
(2.39)

and when Yi is i.i.d. then the scores are i.i.d., and the average scores follow a law of large numbers for
θ close to θ 0.

n−1
n∑

i=1

∂ li(θ ;yi)

∂θ

a.s.→ E
[

∂ l(θ ;Yi)

∂θ

]
(2.40)

As a result, the population value of θ , θ 0, also solves the first-order condition (asymptotically). The
average scores are also the basis of the asymptotic normality of maximum likelihood estimators.
Under some further regularity conditions, the average scores follow a central limit theorem, and so

√
n∇θ l̄ (θ 0)≡

√
n

(
n−1

n∑
i=1

∂ l(θ ;yi)

∂θ

)∣∣∣∣∣
θ=θ 0

d→ N (0,J ) . (2.41)

Taking a mean value expansion around θ 0,

√
n∇θ l̄

(
θ̂
)
=
√

n∇θ l̄ (θ 0)+
√

n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)

0 =
√

n∇θ l̄ (θ 0)+
√

n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)

−√n∇
θθ
′ l̄
(
θ̄
)(

θ̂ −θ 0
)
=
√

n∇θ l̄ (θ 0)
√

n
(
θ̂ −θ 0

)
=
[
−∇

θθ
′ l̄
(
θ̄
)]−1√n∇θ l (θ 0)

where

∇
θθ
′ l̄
(
θ̄
)
≡ n−1

n∑
i=1

∂ 2l(θ ;yi)

∂θ∂θ
′

∣∣∣∣∣
θ=θ̄

(2.42)

and where θ̄ is a vector whose elements lie between θ̂ and θ 0. Since θ̂ is a consistent estimator of
θ 0, θ̄

p→ θ 0 and so functions of θ̄ converge to their value at θ 0, and the asymptotic distribution of the
maximum likelihood estimator is

√
n
(
θ̂ −θ 0

) d→ N
(
0,I−1J I−1) (2.43)

where

I =−E

[
∂ 2l(θ ;yi)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
(2.44)

and

J = E

[
∂ l(θ ;yi)

∂θ

∂ l(θ ;yi)

∂θ
′

∣∣∣∣
θ=θ 0

]
(2.45)

The asymptotic covariance matrix can be further simplified using the information matrix equality,
which states that I −J p→ 0 and so
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√
n
(
θ̂ −θ 0

) d→ N
(
0,I−1) (2.46)

or equivalently

√
n
(
θ̂ −θ 0

) d→ N
(
0,J −1) . (2.47)

The information matrix equality follows from taking the derivative of the expected score,

∂ 2l(θ 0;y)
∂θ∂θ

′ =
1

f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′ −

1
f (y;θ)2

∂ f (y;θ 0)

∂θ

∂ f (y;θ 0)

∂θ
′ (2.48)

∂ 2l(θ 0;y)
∂θ∂θ

′ +
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′ =

1
f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′

and so, when the model is correctly specified,

E
[

∂ 2l(θ 0;y)
∂θ∂θ

′ +
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′

]
=

∫
Sy

1
f (y;θ)

∂ 2 f (y;θ 0)

∂θ∂θ
′ f (y;θ)d y

=

∫
Sy

∂ 2 f (y;θ 0)

∂θ∂θ
′ d y

=
∂ 2

∂θ∂θ
′

∫
Sy

f (y;θ 0)d y

=
∂ 2

∂θ∂θ
′1

= 0.

and

E
[

∂ 2l(θ 0;y)
∂θ∂θ

′

]
=−E

[
∂ l(θ 0;y)

∂θ

∂ l(θ 0;y)
∂θ
′

]
.

A related concept, and one which applies to ML estimators when the information matrix equality
holds, at least asymptotically, is the Cramér-Rao lower bound.

Theorem 2.10 (Cramér-Rao Inequality). Let f (y;θ) be the joint density of y where θ is a k dimen-
sional parameter vector. Let θ̂ be a consistent estimator of θ with finite covariance. Under some
regularity condition on f (·)

avar
(
θ̂
)
≥ I−1(θ) (2.49)

where

I(θ) =−E

[
∂ 2 ln f (Yi;θ)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
. (2.50)
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The important implication of the Cramér-Rao theorem is that maximum likelihood estimators,
which are generally consistent, are asymptotically efficient.17 This guarantee makes a strong case for
using the maximum likelihood when available.

2.4.2.1 Inference in a Poisson MLE

Recall that the log-likelihood in a Poisson MLE is

l(λ ;y) =−nλ + ln(λ )
n∑

i=1

Yi−
yi∑

i=1

ln(i)

and that the first-order condition is

∂ l(λ ;y)
∂λ

=−n+λ
−1

n∑
i=1

Yi.

The MLE was previously shown to be λ̂ = n−1∑n
i=1 yi. To compute the variance, take the expectation

of the negative of the second derivative,

∂ 2l(λ ;Yi)

∂λ 2 =−λ
−2Yi

and so

I =−E
[

∂ 2l(λ ;Yi)

∂λ 2

]
=−E

[
−λ
−2Yi

]
=
[
λ
−2E [Yi]

]
=
[
λ
−2

λ
]

=

[
λ

λ 2

]
= λ

−1

and so
√

n
(

λ̂ −λ0

)
d→ N (0,λ ) since I−1 = λ .

Alternatively the covariance of the scores could be used to compute the parameter covariance,

J = V

[(
−1+

Yi

λ

)2
]

=
1

λ 2 V [Yi]

= λ
−1.

17The Cramér-Rao bound also applied in finite samples when θ̂ is unbiased. While most maximum likelihood esti-
mators are biased in finite samples, there are important cases where estimators are unbiased for any sample size and so
the Cramér-Rao theorem applies in finite samples. Linear regression is an important case where the Cramér-Rao theorem
applies in finite samples (under some strong assumptions).
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I ≡ J and so the IME holds when the data are Poisson distributed. If the data were not Poisson
distributed, then it would not normally be the case that E [Yi] = V [Yi] = λ , and so I and J would not
(generally) be equal.

2.4.2.2 Inference in the Normal (Gaussian) MLE

Recall that the MLE estimators of the mean and variance are

µ̂ = n−1
n∑

i=1

Yi

σ̂
2 = n−1

n∑
i=1

(Yi− µ̂)2

and that the log-likelihood is

l(θ ;y) =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

n∑
i=1

(Yi−µ)2

σ2 .

Taking the derivative with respect to the parameter vector, θ =
(
µ,σ2)′,

∂ l(θ ;y)
∂ µ

=
n∑

i=1

(Yi−µ)

σ2

∂ l(θ ;y)
∂σ2 =− n

2σ2 +
1
2

n∑
i=1

(Yi−µ)2

σ4 .

The second derivatives are

∂ 2l(θ ;y)
∂ µ∂ µ

=−
n∑

i=1

1
σ2

∂ 2l(θ ;y)
∂ µ∂σ2 =−

n∑
i=1

(Yi−µ)

σ4

∂ 2l(θ ;y)
∂σ2∂σ2 =

n
2σ4 −

2
2

n∑
i=1

(Yi−µ)2

σ6 .

The first does not depend on data and so no expectation is needed. The other two have expectations,
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E
[

∂ 2l(θ ;yi)

∂ µ∂σ2

]
= E

[
−(Yi−µ)

σ4

]
=−(E [Yi]−µ)

σ4

=−µ−µ

σ4

= 0

and

E
[

∂ 2l(θ ;yi)

∂σ2∂σ2

]
= E

[
1

2σ4 −
2
2
(Yi−µ)2

σ6

]

=
1

2σ4 −
E
[
(Yi−µ)2

]
σ6

=
1

2σ4 −
σ2

σ6

=
1

2σ4 −
1

σ4

=− 1
2σ4

Putting these together, the expected Hessian can be formed,

E
[

∂ 2l(θ ;yi)

∂θ∂θ
′

]
=

[ − 1
σ2 0
0 − 1

2σ4

]
and so the asymptotic covariance is

I−1 =−E
[

∂ 2l(θ ;yi)

∂θ∂θ
′

]−1

=

[ 1
σ2 0
0 1

2σ4

]−1

=

[
σ2 0
0 2σ4

]
The asymptotic distribution is then

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 0
0 2σ4

])
Note that this is different from the asymptotic variance for the method of moments estimator of the
mean and the variance. This is because the data have been assumed to come from a normal distribution
and so the MLE is correctly specified. As a result µ3 = 0 (the normal is symmetric) and the IME holds.
In general the IME does not hold and so the asymptotic covariance may take a different form which
depends on the moments of the data as in eq. (2.33).
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2.4.3 Quasi Maximum Likelihood

While maximum likelihood is an appealing estimation approach, it has one important drawback:
knowledge of f (y;θ). In practice the density assumed in maximum likelihood estimation, f (y;θ), is
misspecified for the actual density of y, g(y). This case has been widely studied, and estimators where
the distribution is misspecified are known as quasi-maximum likelihood (QML) estimators. QML
estimators generally lose all of the features that make maximum likelihood estimators so appealing:
they are generally inconsistent for the parameters of interest; the information matrix equality does not
hold; and they do not achieve the Cramér-Rao lower bound.

First, consider the expected score from a QML estimator,

Eg

[
∂ l (θ 0;y)

∂θ

]
=

∫
Sy

∂ l (θ 0;y)
∂θ

g(y)dy (2.51)

=

∫
Sy

∂ l (θ 0;y)
∂θ

f (y;θ 0)

f (y;θ 0)
g(y)dy

=

∫
Sy

∂ l (θ 0;y)
∂θ

g(y)
f (y;θ 0)

f (y;θ 0)dy

=

∫
Sy

h(y)
∂ l (θ 0;y)

∂θ
f (y;θ 0)dy

which shows that the QML estimator can be seen as a weighted average with respect to the density
assumed. These weights depend on the data, and so it is no longer be the case that the expectation of
the score at θ 0 is necessarily be 0. Instead QML estimators generally converge to another value of θ ,
θ
∗, that depends on both f (·) and g(·) and is known as the pseudo-true value of θ .

The other important consideration when using QML to estimate parameters is that the Information
Matrix Equality (IME) no longer holds, and so “sandwich” covariance estimators must be used, and
likelihood ratio statistics do not have standard χ2 distributions. An alternative interpretation of a QML
estimator is that of a method of moments estimator where the scores of l (θ ;y) are used to choose the
moments. With this interpretation, the distribution theory of the method of moments estimator applies
as long as the scores, evaluated at the pseudo-true parameters, follow a CLT.

2.4.3.1 The Effect of the Data Distribution on Estimated Parameters

Figure 2.4 contains three distributions (left column) and the asymptotic covariance of the mean and
the variance estimators, illustrated through joint confidence ellipses containing 80, 95, and 99% prob-
ability that the true value is within their bounds (right column).18 The ellipses were all derived from
the asymptotic covariance of µ̂ and σ̂2 where the data are i.i.d.and distributed according to a mixture
of normals distribution where

Yi =

{
µ1 +σ1Zi with probability p
µ2 +σ2Zi with probability 1− p

18The ellipses are centered at (0,0) since the population value of the parameters has been subtracted. Also, note that
even though the confidence ellipse for σ̂2 extended into the negative space, these must be divided by

√
n and re-centered

at the estimated value when used.
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p µ1 σ2
1 µ2 σ2

2

Standard Normal 1 0 1 0 1
Contaminated Normal .95 0 .8 0 4.8
Right Skewed Mixture .05 2 .5 -.1 .8

Table 2.1: Parameter values used in the mixtures of normals illustrated in figure 2.4.

where z is a standard normal. A mixture of normals is constructed from mixing draws from a finite
set of normals with possibly different means and variances and can take a wide variety of shapes. All
of the variables were constructed so that E [Yi] = 0 and V [Yi] = 1. This restriction requires

pµ1 +(1− p)µ2 = 0

and

p
(
µ

2
1 +σ

2
1
)
+(1− p)

(
µ

2
2 +σ

2
2
)
= 1.

The values used to produce the figures are listed in table 2.1. The first set is simply a standard normal
since p= 1. The second is known as a contaminated normal and is composed of a frequently occurring
(95% of the time) mean-zero normal with variance slightly smaller than 1 (.8), contaminated by a rare
but high variance (4.8) mean-zero normal. This mixture produces heavy tails but does not result
in a skewed distribution. The final example uses different means and variance to produce a right
(positively) skewed distribution.

The confidence ellipses illustrated in figure 2.4 are all derived from estimators produced assuming
that the data are normally distributed, but using the “sandwich” version of the covariance, I−1J I−1.
The top panel illustrates the correctly specified maximum likelihood estimator. Here the confidence
ellipse is symmetric about its center. This shape occurs when the parameters are uncorrelated – and
hence independent since they are asymptotically normal – but have different variances. The middle
panel has a similar shape but is elongated on the variance axis (x). This example illustrates that
the asymptotic variance of σ̂2 is affected by the heavy tails of the data (large 4th moment) of the
contaminated normal. The final confidence ellipse is rotated, reflecting that the mean and variance
estimators are no longer asymptotically independent. These final two cases are examples of QML;
the estimator is derived assuming a normal distribution, but the data are not. In these examples, the
estimators are still consistent but have different covariances.19

2.4.4 The Delta Method

Some theories make predictions about functions of parameters rather than on the parameters directly.
One typical example in finance is the Sharpe ratio, S, defined

19While these examples are consistent for the parameter of interest, it is not generally the case that the parameters
estimated using a misspecified likelihood (QML) are consistent for the quantities of interest.
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Data Generating Process and Asymptotic Covariance of Estimators
Standard Normal Standard Normal CI
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Figure 2.4: The six subplots illustrate how the data generating process, not the assumed model, de-
termine the asymptotic covariance of parameter estimates. In each row of panels, the left shows the
distribution of the data from a mixture of normals, yi = µ1+σ1zi with probability p and yi = µ2+σ2zi
with probability 1− p. The right depicts the asymptotic covariance of µ̂ and σ̂2. The parameters were
chosen so that E [yi] = 0 and V [yi] = 1. Different parameter configurations produce a standard normal
(top), a heavy tailed distribution known as a contaminated normal (middle) and a skewed distribution
(bottom).
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S =
E
[
R−R f

]√
V
[
R−R f

] (2.52)

where r is the return on a risky asset and r f is the risk-free rate – and so r− r f is the excess return on
the risky asset. While the quantities in both the numerator and the denominator are standard statistics,
the mean and the standard deviation, the ratio is not.

The delta method can be used to compute the covariance of functions of asymptotically normal
parameter estimates.

Definition 2.13 (Delta method). Let
√

n(θ̂−θ 0)
d→N

(
0,G−1Σ(G′)−1

)
where Σ is a positive definite

covariance matrix. Further, suppose that d(θ) is a m by 1 continuously differentiable vector function
of θ from Rk→ Rm. Then,

√
n(d(θ̂)−d(θ 0))

d→ N
(

0,D(θ 0)
[
G−1

Σ
(
G′
)−1
]

D(θ 0)
′
)

where

D(θ 0) =
∂d(θ)

∂θ
′

∣∣∣∣
θ=θ 0

. (2.53)

2.4.4.1 Variance of the Sharpe Ratio

The Sharpe ratio is estimated by “plugging in” the usual estimators of the mean and the variance,

Ŝ =
µ̂√
σ̂2

.

In this case d(θ 0) is a scalar function of two parameters, and so

d(θ 0) =
µ
√

σ
2

and

D(θ 0) =

[
1
σ

−µ

2σ3

]
Recall that the asymptotic distribution of the estimated mean and variance is

√
n
([

µ̂

σ̂2

]
−
[

µ

σ2

])
d→ N

([
0
0

]
,

[
σ2 µ3
µ3 µ4−σ4

])
.

The asymptotic distribution of the Sharpe ratio can be constructed by combining the asymptotic dis-
tribution of θ̂ =

(
µ̂, σ̂2)′ with the D(θ 0), and so

√
n
(
Ŝ−S

) d→ N

(
0,
[

1
σ

−µ

2σ3

][
σ2 µ3
µ3 µ4−σ4

][
1
σ

−µ

2σ3

]′)
which can be simplified to
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√
n
(
Ŝ−S

) d→ N

(
0,1− µµ3

σ4 +
µ2 (µ4−σ4)

4σ6

)
.

The asymptotic variance can be rearranged to provide some insight into the sources of uncertainty,

√
n
(
Ŝ−S

) d→ N
(

0,1−S× sk+
1
4

S2 (κ−1)
)
,

where sk is the skewness and κ is the kurtosis. This derivation shows that the variance of the Sharpe
ratio is higher when the data are negatively skewed or have a large kurtosis (heavy tails). These two
characteristics are both empirical regularities of asset pricing data. If asset returns were normally
distributed, and so sk = 0 and κ = 3, the expression of the asymptotic variance simplifies to

V
[√

n
(
Ŝ−S

)]
= 1+

S2

2
, (2.54)

which is an expression commonly used as the variance of the Sharpe ratio. As this example illustrates,
the expression in Eq. (2.54) is only correct if the skewness is 0 and returns have a kurtosis of 3 –
something that would only be expected if returns are normally distributed.

2.4.5 Estimating Covariances

The presentation of the asymptotic theory in this chapter does not provide a method to implement
hypothesis tests. The limiting distribution depends on the covariance of the scores and the expected
second derivative (or Jacobian) in the method of moments. Feasible testing requires estimates of
these. The usual method to estimate the covariance uses “plug-in” estimators. Recall that in the
notation of the method of moments,

Σ≡ avar

(
n−

1
2

n∑
i=1

gi (θ 0)

)
(2.55)

or in the notation of maximum likelihood,

J ≡ E

[
∂ l (θ ;Yi)

∂θ

∂ l (θ ;Yi)

∂θ
′

∣∣∣∣
θ=θ 0

]
. (2.56)

When the data are i.i.d., the scores or moment conditions should be i.i.d., so the variance of the
average is the average of the variances. The “plug-in” estimator for Σ uses the moment conditions
evaluated at θ̂ , and so the covariance estimator in method of moments applications with i.i.d.data is

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

gi
(
θ̂
)′

(2.57)

which is simply the average outer-product of the moment condition. The estimator of Σ in the maxi-
mum likelihood is identical replacing gi

(
θ̂
)

with ∂ l (θ ;yi)/∂θ evaluated at θ̂ ,

Ĵ = n−1
n∑

i=1

∂ l (θ ;Yi)

∂θ

∂ l (θ ;Yi)

∂θ
′

∣∣∣∣∣
θ=θ̂

. (2.58)
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The “plug-in” estimator for the second derivative of the log-likelihood or the Jacobian of the
moment conditions is similarly defined,

Ĝ = n−1
n∑

i=1

∂g(θ)
∂θ
′

∣∣∣∣∣
θ=θ̂

(2.59)

or for maximum likelihood estimators

Î = n−1
n∑

i=1

−∂ 2l (θ ;Yi)

∂θ∂θ
′

∣∣∣∣∣
θ=θ̂

. (2.60)

2.4.6 Estimating Covariances with Dependent Data

The estimators in eq. (2.57) and eq. (2.58) are only appropriate when the moment conditions or scores
are not correlated across i.20 If the moment conditions or scores are correlated across observations, the
covariance estimator (but not the Jacobian estimator) must be changed to account for the dependence.
Since Σ is defined as the variance of a sum, the estimator must account for both the sum of the
variances plus all of the covariances.

Σ≡ avar

(
n−

1
2

n∑
i=1

gi (θ 0)

)
(2.61)

= lim
n→∞

n−1

 n∑
i=1

E
[
gi (θ 0)gi (θ 0)

′]+ n−1∑
i=1

n∑
j=i+1

E
[
g j (θ 0)g j−i (θ 0)

′+g j−i (θ 0)g j (θ 0)
]

This expression depends on both the usual covariance of the moment conditions and the covariance
between the scores. When using i.i.d.data, the second term vanishes since the moment conditions
must be uncorrelated, and so cross-products must have expectation 0.

If the moment conditions are correlated across i, then the covariance estimator must be adjusted to
account for this. The obvious solution is to estimate the expectations of the cross terms in eq. (2.57)
with their sample analogs, which would result in the covariance estimator

Σ̂DEP = n−1

 n∑
i=1

gi
(
θ̂
)

gi
(
θ̂
)′
+

n−1∑
i=1

n∑
j=i+1

(
g j
(
θ̂
)

g j−i
(
θ̂
)′
+g j−i

(
θ̂
)

g j
(
θ̂
)′) . (2.62)

This estimator is always zero since Σ̂DEP = n−1 (∑n
i=1 gi

)(∑n
i=1 gi

)′and
∑n

i=1 gi = 0, and so Σ̂DEP

cannot be used in practice.21 One solution is to truncate the maximum lag to be something less than
20Since i.i.d. implies no correlation, the i.i.d.case is trivially covered.
21The scalar version of Σ̂DEP may be easier to understand. If gi is a scalar, then

σ̂
2
DEP = n−1

 n∑
i=1

g2
i
(
θ̂
)
+2

n−1∑
i=1

 n∑
j=i+1

g j
(
θ̂
)

g j−i
(
θ̂
) .

The first term is the usual variance estimator and the second term is the sum of the (n− 1) covariance estimators. The
more complicated expression in eq. (2.62) arises since order matters when multiplying vectors.
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n−1 (usually much less than n−1), although the truncated estimator is not guaranteed to be positive
definite. A better solution is to combine truncation with a weighting function (known as a kernel )
to construct an estimator that consistently estimates the covariance and is guaranteed to be positive
definite. The most common covariance estimator of this type is the Newey and West (1987) covariance
estimator. Covariance estimators for dependent data are examined in more detail in chapters 4 and 5.

2.5 Hypothesis Testing

Econometrics models are estimated to test hypotheses, for example, whether a financial theory is sup-
ported by data or to determine if a model with estimated parameters can outperform a naïveforecast.
Formal hypothesis testing begins by specifying the null hypothesis.

Definition 2.14 (Null Hypothesis). The null hypothesis, denoted H0, is a statement about the popu-
lation values of some parameters to be tested. The null hypothesis is also known as the maintained
hypothesis.

The null defines the conditions on the population parameters that are tested. A null can be either
simple, for example, H0 : µ = 0, or complicated, which allows for simultaneously testing multiple hy-
potheses. For example, it is common to test whether data exhibit any predictability using a regression
model

yi = θ1 +θ2x2,i +θ3x3,i + εi, (2.63)

and a composite null, H0 : θ2 = 0∩θ3 = 0, often abbreviated H0 : θ2 = θ3 = 0.22

Null hypotheses cannot be accepted; the data can either lead to rejection of the null or a failure to
reject the null. Neither option is “accepting the null”. The inability to accept the null arises since there
are important cases where the data are not consistent with either the null or its testing complement,
the alternative hypothesis.

Definition 2.15 (Alternative Hypothesis). The alternative hypothesis, denoted H1, is a complementary
hypothesis to the null and determines the range of values of the population parameter that should lead
to rejection of the null.

The alternative hypothesis specifies the population values of parameters for which the null should be
rejected. In most situations, the alternative is the natural complement to the null, and so the null and
alternative are exclusive of each other but inclusive of the range of the population parameter. For
example, when testing whether a random variable has mean 0, the null is H0 : µ = 0, and the usual
alternative is H1 : µ 6= 0.

In certain circumstances, usually motivated by theoretical considerations, one-sided alternatives
are desirable. One-sided alternatives only reject population parameter values on one side of zero,
and so tests using one-sided alternatives may not reject even if both the null and alternative are false.
Noting that a risk premium must be positive (if it exists), the null hypothesis of H0 : µ = 0 should be
tested against the alternative H1 : µ > 0. This alternative indicates the null should only be rejected
if there is compelling evidence that the mean is positive. These hypotheses further specify that data

22∩, the intersection operator, is used since the null requires both statements to be true.
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consistent with large negative values of µ should not lead to rejection. Directionally focusing the al-
ternative often leads to an increased probability of rejecting a false null since less evidence is required
to be convinced that the null is not valid.

Like null hypotheses, alternatives can be composite. The usual alternative to the null H0 : θ2 =
0∩θ3 = 0 is H1 : θ2 6= 0∪θ3 6= 0 and so the null should be rejected whenever any of the statements in
the null are false in other words if either or both θ2 6= 0 or θ3 6= 0. Alternatives can also be formulated
as lists of exclusive outcomes.23 When examining the relative precision of forecasting models, it
is common to test the null that the forecast performance is equal against a composite alternative.
The alternative contains separate cases superior forecasting from model A or from model B. If δ is
defined as the average forecast performance difference, then the null is H0 : δ = 0 and the composite
alternatives are HA

1 : δ > 0 and HB
1 : δ < 0. These alternatives indicate superior performance of models

A and B, respectively.
Once the null and the alternative have been formulated, a hypothesis test is used to determine

whether the data support the alternative.

Definition 2.16 (Hypothesis Test). A hypothesis test is a rule that specifies which values to reject H0
in favor of H1.

Hypothesis testing requires a test statistic, for example, an appropriately standardized mean, and
a critical value. The null is rejected when the test statistic is larger than the critical value.

Definition 2.17 (Critical Value). The critical value for a α-sized test, denoted Cα , is the value where
a test statistic, T , indicates rejection of the null hypothesis when the null is true.

The region where the test statistic is outside of the critical value is known as the rejection region.

Definition 2.18 (Rejection Region). The rejection region is the region where T >Cα .

An important event occurs when the null is correct but the hypothesis is rejected. This is known
as a Type I error.

Definition 2.19 (Type I Error). A Type I error is the event that the null is rejected when the null is
true.

A closely related concept is the size of the test. The size controls how often Type I errors should
occur.

Definition 2.20 (Size). The size or level of a test, denoted α , is the probability of rejecting the null
when the null is true. The size is also the probability of a Type I error.

Typical sizes include 1%, 5%, and 10%, although ideally, the selected size should reflect the decision
makers preferences over incorrectly rejecting the null. When the opposite occurs, the null is not
rejected when the alternative is true, a Type II error is made.

Definition 2.21 (Type II Error). A Type II error is the event that the null is not rejected when the
alternative is true.

Type II errors are closely related to the power of a test.

Definition 2.22 (Power). The power of the test is the probability of rejecting the null when the alter-
native is true. The power is equivalently defined as 1 minus the probability of a Type II error.
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Decision
Do not reject H0 Reject H0

Tr
ut

h

H0 Correct Type I Error
(Size)

H1 Type II Error Correct
(Power)

Table 2.2: Outcome matrix for a hypothesis test. The diagonal elements are both correct decisions.
The off diagonal elements represent Type I error, when the null is rejected but is valid, and Type II
error, when the null is not rejected and the alternative is true.

The two error types, size, and power, are summarized in table 2.2.
A perfect test would have unit power against any alternative. In other words, whenever the alterna-

tive is valid, it would reject immediately. A test’s power depends on the sample size and the distance
between the population value of a parameter and its value under the null. A test is said to be consistent
if the test’s power goes to 1 as n→∞ whenever the population value lies in the area defined by the
alternative hypothesis. Consistency is an essential characteristic of a test, but it is usually considered
more important to have the correct size than to have high power. Power can always be increased by
distorting the size, and so it is more useful to consider a related measure known as the size-adjusted
power. The size-adjusted power examines the power of a test above the size of the test. Since a test
should reject at size even when the null is true, it is useful to examine the probability the test rejects
in excess of the probability it should reject when the null is true.

One useful summary of a test statistic is its p-value.

Definition 2.23 (p-value). The p-value is the probability of observing a value as large as the observed
test statistic given the null is true. The p-value is also:

• the largest size (α) where the null hypothesis cannot be rejected; and

• the smallest size where the null hypothesis can be rejected.

The primary advantage of a p-value is that it immediately demonstrates which test sizes would lead
to rejection: anything above the p-value. Reporting a p-value also improves the common practice of
reporting the test statistic alone; p-values can be interpreted without knowledge of the test statistic’s
distribution or critical value. However, since it incorporates information about a specific test statistic
and its associated distribution, the formula used to compute the p-value is problem specific.
A related representation is the confidence interval for a parameter.

Definition 2.24 (Confidence Interval). A confidence interval for a scalar parameter is the range of
values, θ0 ∈ (Cα ,Cα) where the null H0 : θ = θ0 cannot be rejected for a size of α .

The formal definition of a confidence interval is not usually sufficient to uniquely identify the con-
fidence interval. Suppose that a

√
n(θ̂ − θ0)

d→ N(0,σ2). The common 95% confidence interval is

23The ∪ symbol indicates the union of the two alternatives.
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(θ̂ − 1.96σ , θ̂ +1.96σ). This set is known as the symmetric confidence interval and is formally de-
fined as points (Cα ,Cα) where Pr(θ0)∈ (Cα ,Cα) = 1−α and Cα−θ = θ−Cα) . An alternative, but
still valid, confidence interval can be defined as (−∞, θ̂ +1.645σ2). This would also contain the true
value with probability 95%. In general, symmetric confidence intervals should be used, especially
for asymptotically normal parameter estimates. In rare cases where symmetric confidence intervals
are not appropriate, other options for defining a confidence interval include shortest interval, so that
the confidence interval is defined as values (Cα ,Cα) where Pr(θ0) ∈ (Cα ,Cα) = 1−α subject to
Cα−Cα chosen to be as small as possible, or symmetric in probability, so that the confidence interval
satisfies Pr(θ0) ∈ (Cα , θ̂) = Pr(θ0) ∈ (θ̂ ,Cα) = 1/2−α/2. When constructing confidence internals
for parameters that are asymptotically normal, these three definitions coincide.

2.5.1 Size and Power of a Test of the Mean with Normal Data

Suppose n i.i.d.normal random variables have unknown mean µ but known variance σ2 and so the
sample mean, ȳ = n−1∑n

i=1 yi, is then distributed N(µ,σ2/N). When testing a null that H0 : µ = µ0
against an alternative H1 : µ 6= µ0, the size of the test is the probability that the null is rejected
when it is true. Since the distribution under the null is N(µ0,σ

2/N) and the size can be set to α

by selecting points where Pr
(
µ̂ ∈

(
Cα ,Cα

)
|µ = µ0

)
= 1−α . Since the distribution is normal, one

natural choice is to select the points symmetrically so that Cα = µ0 +
σ√
N

Φ−1 (α/2) and Cα = µ0 +
σ√
N

Φ−1 (1−α/2) where Φ(·) is the cdf of a standard normal.
The power of the test is defined as the probability the null is rejected when the alternative is

true. This probability depends on the population mean, µ1, the sample size, the test size and mean
specified by the null hypothesis. When testing using an α-sized test, rejection occurs when µ̂ <
µ0+

σ√
N

Φ−1 (α/2) or µ̂ > µ0+
σ√
N

Φ−1 (1−α/2). Since under the alternative µ̂ is N
(
µ1,σ

2), these
probabilities are

Φ

(
µ0 +

σ√
N

Φ−1 (α/2)−µ1
σ√
N

)
= Φ

(
Cα −µ1

σ√
N

)
and

1−Φ

(
µ0 +

σ√
N

Φ−1 (1−α/2)−µ1
σ√
N

)
= 1−Φ

(
Cα −µ1

σ√
N

)
.

The total probability that the null is rejected is known as the power function,

Power(µ0,µ1,σ ,α,N) = Φ

(
Cα −µ1

σ√
N

)
+1−Φ

(
Cα −µ1

σ√
N

)
.

A graphical illustration of the power is presented in figure 2.5. The null hypothesis is H0 : µ = 0
and the alternative distribution was drawn at µ1 = .25. The variance σ2 = 1, n = 5, and the size was
set to 5%. The highlighted regions indicate the power: the area under the alternative distribution, and
hence the probability, which is outside of the critical values. The bottom panel illustrates the power
curve for the same parameters allowing n to range from 5 to 1,000. When n is small, the power is low
even for alternatives far from the null. As n grows, the power increases. When n = 1,000, the power
of the test is close to unity for alternatives greater than 0.1.
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Figure 2.5: The top panel illustrates the power. The distribution of the mean under the null and
alternative hypotheses were derived under that assumption that the data are i.i.d.normal with means
µ0 = 0 and µ1 = .25, variance σ2 = 1, n = 5 and α = .05. The bottom panel illustrates the power
function, in terms of the alternative mean, for the same parameters when n = 5, 10, 100 and 1,000.

2.5.2 Statistical and Economic Significance

While testing can reject hypotheses and provide meaningful p-values, statistical significance is differ-
ent from economic significance. Economic significance requires a more detailed look at the data than
a simple hypothesis test. Establishing the statistical significance of a parameter is the first and easy
step. The more difficult step is to determine whether the effect is economically important. Consider a
simple regression model

yi = θ1 +θ2x2,i +θ3x3,i + εi (2.64)

and suppose that the estimates of both θ2 and θ3 are statistically different from zero. This can happen
for various reasons, including having an economically small impact accompanied by a substantial
sample. Other statistics, such as the percentage of the variation that can be explained by either variable
alone or the variability of the X values, should be considered when assessing relative contributions.

Another critical aspect of assessing economic significance is that rejection of a hypothesis, while
formally as a “yes” or “no” question, should be treated more continuously. The p-value of a test
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statistic is a useful tool that can provide a more in-depth insight into the strength of the rejection. A
p-value of .00001 is not the same as a p-value of .09999 even though a 10% test would reject for
either.

2.5.3 Specifying Hypotheses

Formalized in terms of θ , a null hypothesis is

H0 : R(θ) = 0 (2.65)

where R(·) is a function from Rk to Rm, m ≤ k, where m represents the number of hypotheses in a
composite null. While this specification of hypotheses is very flexible, testing non-linear hypothe-
ses raises some subtle but important technicalities, and further discussion is reserved for chapter 6.
Initially, the exposition focuses on a subset of all hypotheses in the linear equality restriction (LER)
class. Hypotheses in the LER class

H0 : Rθ − r = 0 (2.66)

where R is a m by k matrix and r is a m by 1 vector. All hypotheses in the LER class can be written
as weighted sums of model parameters,


R11θ1 +R12θ2 . . .+R1kθk = r1
R21θ1 +R22θ2 . . .+R2kθk = r2

...
Rm1θ1 +Rm2θ2 . . .+Rmkθk = ri.

 (2.67)

Each linear hypothesis is represented as a row in the above set of equations. Linear equality con-
straints can be used to test parameter restrictions on θ = (θ1,θ2,θ3,θ4)

′ such as

θ1 = 0 (2.68)
3θ2 +θ3 = 1

4∑
j=1

θ j = 0

θ1 = θ2 = θ3 = 0.

For example, the hypotheses in eq. (2.68) can be described in terms of R and r as
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[1pt]H0 R r

θ1 = 0
[

1 0 0 0
]

0

3θ2 +θ3 = 1
[

0 3 1 0
]

1∑k
j=1 θ j = 0

[
1 1 1 1

]
0

θ1 = θ2 = θ3 = 0

 1 0 0 0
0 1 0 0
0 0 1 0

 [
0 0 0

]′
[1pt]

When using linear equality constraints, alternatives are generally formulated as H1 : Rθ − r 6=
0. Once both the null the alternative hypotheses have been postulated, it is necessary to determine
whether the data are consistent with the null hypothesis using one of the many tests.

2.5.4 The Classical Tests

Three classes of test statistics are commonly used to test hypotheses: Wald, Lagrange Multiplier,
and Likelihood Ratio. Wald tests are perhaps the most intuitive: they directly test whether Rθ̂ − r,
the value under the null, is close to zero by exploiting the asymptotic normality of the estimated
parameters. Lagrange Multiplier tests incorporate the constraint into the estimation problem using
a Lagrangian. If the constraint has a small effect on the objective function’s value, the Lagrange
multipliers, often described as the shadow price of a constraint in an economic application, should
be close to zero. The magnitude of the scores forms the basis of the LM test statistic. Finally,
likelihood ratios test whether the data are less likely under the null than under the alternative. If these
restrictions are not statistically meaningful, this ratio should be close to one since the difference in
the log-likelihoods should be small.

2.5.5 Wald Tests

Wald test statistics are possibly the most natural method to test a hypothesis and are often the sim-
plest to compute since only the unrestricted model must be estimated. Wald tests directly exploit the
asymptotic normality of the estimated parameters to form test statistics with asymptotic χ2

m distribu-
tions. Recall that a χ2

ν random variable is defined to be the sum of ν independent standard normals
squared,

∑ν

i=1 z2
i where zi

i.i.d.∼ N(0,1). Recall that if z is a m-dimension normal vector with mean µ

and covariance Σ,

z∼ N(µ,Σ) (2.69)

then the standardized version of z can be constructed as

Σ
− 1

2 (z−µ)∼ N(0,I). (2.70)
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Defining w = Σ
− 1

2 (z− µ) ∼ N (0,I), it is easy to see that w′w =
∑M

m=1 w2
m ∼ χ2

m. In the usual
case, the method of moments estimator, which nests ML and QML estimators as special cases, is
asymptotically normal

√
n
(
θ̂ −θ 0

) d→ N
(

0,G−1
Σ
(
G−1)′) . (2.71)

If null hypothesis, H0 : Rθ = r is true, it follows directly that

√
n
(
Rθ̂ − r

) d→ N
(

0,RG−1
Σ
(
G−1)′R′) . (2.72)

This allows a test statistic to be formed

W = n
(
Rθ̂ − r

)′(RG−1
Σ
(
G−1)′R′)−1 (

Rθ̂ − r
)

(2.73)

which is the sum of the squares of m random variables, each asymptotically uncorrelated standard
normal and so W is asymptotically χ2

m distributed. A hypothesis test with size α can be conducted
by comparing W against Cα = F−1 (1−α) where F (·) is the cdf of a χ2

m. If W ≥Cα then the null is
rejected.

There is one problem with the definition of W in eq. (2.73): it is infeasible since it depends on G
and Σ which are unknown. The usual practice is to replace the unknown elements of the covariance
matrix with consistent estimates to compute a feasible Wald statistic,

W = n
(
Rθ̂ − r

)′(RĜ−1
Σ̂
(
Ĝ−1)′R′)−1 (

Rθ̂ − r
)
. (2.74)

which has the same asymptotic distribution as the infeasible Wald test statistic.

2.5.5.1 t-tests

A t-test is a special case of a Wald that can only be applied in tests involving a single hypothesis.
Suppose the null is

H0 : Rθ − r = 0

where R is 1 by k, and so

√
n
(
Rθ̂ − r

) d→ N(0,RG−1
Σ
(
G−1)′R′).

The studentized version can be formed by subtracting the mean and dividing by the standard devia-
tion,

t =
√

n
(
Rθ̂ − r

)√
RG−1Σ(G−1)

′R′
d→ N(0,1). (2.75)

and the test statistic can be compared to the critical values from a standard normal to conduct a
hypothesis test. t-tests have an important advantage over the broader class of Wald tests – they can
be used to test one-sided null hypotheses. A one-sided hypothesis takes the form H0 : Rθ ≥ r or H0 :
Rθ ≤ r which are contrasted with one-sided alternatives of H1 : Rθ < r or H1 : Rθ > r, respectively.
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When using a one-sided test, rejection occurs when R− r is statistically different from zero and when
Rθ < r or Rθ > r as specified by the alternative.

t-tests are also used in commonly encountered test statistic, the t-stat, a test of the null that a
parameter is 0 against an alternative that it is not. The t-stat is popular because most models are
written in such a way that if a parameter θ = 0 then it has no impact.

Definition 2.25 (t-stat). The t-stat of a parameter θ j is the t-test value of the null H0 : θ j = 0 against
a two-sided alternative H1 : θ j 6= 0.

t-stat≡ θ̂ j

σ
θ̂

(2.76)

where

σ
θ̂
=

√
e jG−1Σ(G−1)

′ e′j
n

(2.77)

and where e j is a vector of 0s with 1 in the jth position.
Note that the t-stat is identical to the expression in eq. (2.75) when R = e j and r = 0. R = e j
corresponds to a hypothesis test involving only element j of θ and r = 0 indicates that the null is
θ j = 0.

A closely related measure is the standard error of a parameter. Standard errors are essentially
standard deviations – square-roots of variance – except that the expression “standard error” is ap-
plied when describing the estimation error of a parameter while “standard deviation” is used when
describing the variation in the data or population.

Definition 2.26 (Standard Error). The standard error of a parameter θ is the square root of the param-
eter’s variance,

s.e.
(
θ̂
)
=
√

σ2
θ̂

(2.78)

where

σ
2
θ̂
=

e jG−1Σ
(
G−1)′ e′j

n
(2.79)

and where e j is a vector of 0s with 1 in the jth position.

2.5.6 Likelihood Ratio Tests

Likelihood ratio tests examine how “likely” the data are under the null and the alternative. If the
hypothesis is valid, then the data should be (approximately) equally likely under each. The LR test
statistic is defined as

LR =−2
(
l
(
θ̃ ;y
)
− l
(
θ̂ ;y
))

(2.80)

where θ̃ is defined

θ̃ =argmax
θ

l(θ ;y) (2.81)

subject to Rθ − r = 0
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and θ̂ is the unconstrained estimator,

θ̂ =argmax
θ

l(θ ;y). (2.82)

Under the null H0 : Rθ − r = 0, the LR d→ χ2
m. The intuition behind the asymptotic distribution of the

LR can be seen in a second order Taylor expansion around parameters estimated under the null, θ̃ .

l(y; θ̃) = l(y; θ̂)+
(
θ̃ − θ̂

)′ ∂ l(y; θ̂)

∂θ
+

1
2
√

n
(
θ̃ − θ̂

)′ 1
n

∂ 2l(y; θ̂)

∂θ∂θ
′
√

n
(
θ̃ − θ̂

)
+R3 (2.83)

where R3 is a remainder term that is vanishing as n→∞. Since θ̂ is an unconstrained estimator of
θ 0,

∂ l(y; θ̂)

∂θ
= 0

and

−2
(
l(y; θ̃)− l(y; θ̂)

)
≈√n

(
θ̃ − θ̂

)′(−1
n

∂ 2l(y; θ̂)

∂θ∂θ
′

)
√

n
(
θ̃ − θ̂

)
(2.84)

Under some mild regularity conditions, when the MLE is correctly specified

−1
n

∂ 2l(y; θ̂)

∂θ∂θ
′

p→−E
[

∂ 2l(y;θ 0)

∂θ∂θ
′

]
= I,

and

√
n
(
θ̃ − θ̂

) d→ N(0,I−1).

Thus,

√
n
(
θ̃ − θ̂

)′ 1
n

∂ 2l(y; θ̂)

∂θ∂θ
′
√

n
(
θ̂ − θ̂

) d→ χ
2
m (2.85)

and so 2
(
l(y; θ̂)− l(y; θ̂)

) d→ χ2
m. The only difficultly remaining is that the distribution of this

quadratic form is a χ2
m an not a χ2

k since k is the dimension of the parameter vector. While for-
mally establishing this is tedious, the intuition follows from the number of restrictions. If θ̃ were
unrestricted then it must be the case that θ̃ = θ̂ since θ̂ is defined as the unrestricted estimators. Ap-
plying a single restriction leave k−1 free parameters in θ̃ and thus it should be close to θ̂ except for
this one restriction.

When models are correctly specified LR tests are very powerful against point alternatives (e.g.,
H0 : θ = θ 0 against H1 : θ = θ 1). Another important advantage of the LR is that the parameters’
covariance does not need to be estimated. In many problems, accurate parameter covariances may
be difficult to estimate, and imprecise covariance estimators produce adverse consequences for test
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statistics, such as size distortions so that a test with a desired size of 5% reject substantially more
often than 5% when the null is true.

It is also important to note that the likelihood ratio does not have an asymptotic χ2
m when the

assumed likelihood f (y;θ) is misspecified. When this occurs, the information matrix equality fails
to hold, and the LR’s asymptotic distribution is a mixture of χ2 distribution. In practice, the assumed
error distribution is often misspecified, and so the distributional assumptions used to estimate θ must
be verified before using a likelihood ratio test.

Likelihood ratio tests are not available for method of moments estimators since no distribution
function is assumed.24

2.5.7 Lagrange Multiplier, Score and Rao Tests

Lagrange Multiplier (LM), Score, and Rao test are all the same statistic. While the Lagrange Multi-
plier test may be the most appropriate description, its alternative moniker score test directly illustrates
the test’s construction. Score tests exploit the first-order condition to test whether a null hypothesis is
compatible with the data. Using the unconstrained estimator of θ , θ̂ , the scores must be zero,

∂ l (θ ;y)
∂θ

∣∣∣∣
θ=θ̂

= 0. (2.86)

The score test examines whether the scores are “close” to zero – in a statistically meaningful way
– when evaluated using the parameters estimated subject to the null restriction, θ̃ . Define

si
(
θ̃
)
=

∂ li (θ ;yi)

∂θ

∣∣∣∣
θ=θ̃

(2.87)

as the ith score, evaluated at the restricted estimator. If the null hypothesis is correct, then

√
n

(
n−1

n∑
i=1

si
(
θ̃
)) d→ N (0,Σ) . (2.88)

24It is possible to construct a likelihood ratio-type statistic for method of moments estimators. Define

gn (θ) = n−1
n∑

i=1

gi (θ)

to be the average moment conditions evaluated at a parameter θ . The likelihood ratio-type statistic for method of moments
estimators is defined as

LM = ng′n
(
θ̃
)

Σ̂
−1gn

(
θ̃
)
−ng′n

(
θ̂
)

Σ̂
−1gn

(
θ̂
)

= ng′n
(
θ̃
)

Σ̂
−1gn

(
θ̃
)

where the simplification is possible since gn
(
θ̂
)
= 0 and where

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

gi
(
θ̂
)′

is the sample covariance of the moment conditions evaluated at the unrestricted parameter estimates. This test statistic
only differs from the LM test statistic in eq. (2.90) via the choice of the covariance estimator, and it should be similar in
performance to the adjusted LM test statistic in eq. (2.92).
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This limiting distribution forms the basis of the score test, which is computed as

LM = ns̄
(
θ̃
)′

Σ
−1s̄
(
θ̃
)

(2.89)

where s̄
(
θ̃
)
= n−1∑n

i=1 si
(
θ̃
)
. While this version is not feasible since it depends on Σ, the standard

practice is to replace Σ with a consistent estimator and to compute the feasible score test,

LM = ns̄
(
θ̃
)′

Σ̂
−1s̄
(
θ̃
)

(2.90)

where the estimator of Σ depends on the assumptions made about the scores. In the case where the
scores are i.i.d. (usually because the data are i.i.d.),

Σ̂ = n−1
n∑

i=1

si
(
θ̃
)

si
(
θ̃
)′

(2.91)

is a consistent estimator since E
[
si
(
θ̃
)]

= 0 if the null is true. In practice, a more powerful version
of the LM test can be formed by subtracting the mean from the covariance estimator and using

Σ̃ = n−1
n∑

i=1

(
si
(
θ̃
)
− s̄
(
θ̃
))(

si
(
θ̃
)
− s̄
(
θ̃
))′

(2.92)

which must be smaller (in the matrix sense) than Σ̂, although asymptotically, if the null is true, these
two estimators converges to the same limit. Like the Wald and the LR, the LM follows an asymptotic
χ2

m distribution, and an LM test statistic is rejected if LM > Cα where Cα is the 1−α quantile of a
χ2

m distribution.
Scores test can be used with method of moments estimators by simply replacing the score of the

likelihood with the moment conditions evaluated at the restricted parameter,

si
(
θ̃
)
= gi

(
θ̃
)
,

and then evaluating eq. (2.90) or (2.92).

2.5.8 Comparing and Choosing the Tests

All three of the classic tests, the Wald, likelihood ratio, and Lagrange multiplier, have the same
limiting asymptotic distribution. In addition to all being asymptotically distributed as a χ2

m, they are
all asymptotically equivalent, and so they all have an identical asymptotic distribution, and if one test
rejects, the others also reject, at least in large samples. As a result, there is no asymptotic argument
that one should be favored over the other.

The simplest justifications for choosing one over the others are practical considerations. Wald
requires estimation under the alternative – the unrestricted model – and require an estimate of the
asymptotic covariance of the parameters. LM tests require estimation under the null – the restricted
model – and require an estimate of the asymptotic covariance of the scores evaluated at the restricted
parameters. LR tests require both forms to be estimated but do not require any covariance estimates.
On the other hand, Wald and LM tests can easily be made robust to many forms of misspecifica-
tion by using the “sandwich” covariance estimator, G−1Σ

(
G−1)′ for moment-based estimators or
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I−1J I−1 for QML estimators. LR tests cannot be easily corrected and instead follow a non-standard
distribution known as a mixture of χ2.

Models that are substantially easier to estimate under the null or alternative lead to a natural choice
of test statistic. An LM test is a good choice when a model is easy to estimate in its restricted form
but not in its unrestricted form. If estimation under the alternative is simpler than under the null, then
Wald tests are reasonable. If they are equally simple to estimate, and the distributional assumptions
used in ML estimation are plausible, LR tests are likely the best choice. Empirically a relationship
exists where W ≈ LR ≥ LM. LM is often smaller and hence less likely to reject the null since it
estimates the covariance of the scores under the null. When the null may be restrictive, the scores
have larger variances when evaluated using the restricted parameters. The larger variances lower the
value of LM since the score covariance is inverted in the statistic. A simple method to correct this is
to use the adjusted LM computed using the modified covariance estimator in eq. (2.92).

2.6 The Bootstrap and Monte Carlo

The bootstrap is an alternative technique for estimating parameter covariances and conducting infer-
ence. The name bootstrap is derived from the expression “to pick oneself up by one’s bootstraps”
– a seemingly impossible task. When initially proposed, the bootstrap was treated as an equally
impossible feat, although it is now widely used. In some estimators, the bootstrap also is the pre-
ferred method for covariance estimation. At its core, the bootstrap is a simulation technique and so
is similar to Monte Carlo. However, unlike Monte Carlo, which requires a complete data-generating
process, the bootstrap uses the observed data to simulate the data – hence the similarity to the original
turn-of-phrase.

Monte Carlo is an integration technique that uses simulation to approximate the underlying dis-
tribution of a known function of random variables. Suppose Yi

i.i.d.∼ F (θ) where F is some distribution,
and that interest is in the E [g(Y )]. Further suppose it is possible to simulate from F (θ) so that a
sample {yi} can be constructed. Then

n−1
n∑

i=1

g(Yi)
p→ E [g(Y )]

as long as this expectation exists since the simulated data are i.i.d.by construction. The convergence
of the Monte Carlo expectation to the population value follows from Kolmogorov’s Strong Law of
Large numbers.

The observed data can be used to compute the empirical cdf.

Definition 2.27 (Empirical cdf). The empirical cdf is defined

F̂ (c) = n−1
n∑

i=1

I[yi<c].

The empirical cdf can be used to simulate random variables, and if F̂ is close to F then the
simulated data from the empirical cdf should have similar statistical properties (e.g., moments and
quantiles) to data simulated from the population cdf. The empirical cdf is a coarse step function, and
so only values which have been observed can be simulated. Simulating from the empirical cdf of
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Standard Normal cdf and Empirical cdfs for n = 20 and 1,000
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Figure 2.6: These three lines represent the population cdf of a standard normal, and two empirical
cdfs constructed form simulated data. The very coarse empirical cdf is based on 20 observations and
clearly highlights the step-nature of empirical cdfs. The other empirical cdf, which is based on 1,000
observations, appear smoother but is still a step function.

the data is identical to resampling the original data, and so the observed data can be directly used to
simulate the from the underlying (unknown) cdf. The relationship between the emprical cdf and the
population cdf is the basis of the bootstrap.

Figure 2.6 shows the population cdf for a standard normal and two empirical cdfs, one estimated
using n = 20 observations and the other using n = 1,000. The coarse empirical cdf highlights the
step-like features of an empirical cdf. This structure restricts the random numbers generated from the
empirical cdf to coincide with the values used to compute the empirical cdf.

The bootstrap can be used for a variety of purposes. The most common application of the bootstrap
is to estimate parameter covariance matrices. This procedure is an alternative to the usual plug-in type
estimator and is simple to implement when the parameter estimator has a closed form.

Algorithm 2.1 (i.i.d.Nonparametric Bootstrap Covariance).

1. Repeat a total of B times.

(a) Generate a set of n i.i.d.uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

y ji
}

.

(c) Estimate the parameters of interest using
{

y ji
}

, and denote the estimate θ̃ b.

2. Estimate the variance of θ̂ using

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ j− θ̂

)(
θ̃ j− θ̂

)′
.

or alternatively

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ j− θ̃

)(
θ̃ j− θ̃

)′
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where θ̃ = B−1∑B
b=1 θ̃ b.

The variance estimator that comes from the bootstrap is directly compared comparable to the
asymptotic covariance estimator. The bootstrap covariance is converging to 0 as the sample size
increases since the resampled data is more like the original data when n is large. If

√
n
(
θ̂ −θ 0

) d→ N (0,Σ) ,

then the bootstrap covariance estimator is comparable to Σ̂/n. Or equivalently, rescaling the bootstrap
covariance estimate by

√
n should produce an estimate similar to Σ̂. Note that when using a condi-

tional model, the data [yi x′i]′ should be jointly bootstrapped. Aside from this small modification to
step 2, the remainder of the procedure remains valid.

The nonparametric bootstrap is closely related to the residual bootstrap, at least when it is possible
to appropriately define a residual. For example, when Yi|Xi∼N

(
β
′xi,σ

2), the residual can be defined

ε̂i = yi− β̂
′
xi. Alternatively if Yi|Xi ∼ Scaled− χ2

ν

(
exp
(
β
′xi
))

, then ε̂i = yi/

√
β̂
′
x . The residual

bootstrap can be used whenever it is possible to express yi = g(θ ,εi,xi) for some known function g.

Algorithm 2.2 (i.i.d.Residual Bootstrap Covariance).

1. Repeat a total of B times.

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

ε̂ ji,x ji
}

and define ỹi = g
(
θ̂ , ε̃i, x̃i

)
where ε̃i = ε̂ ji and

x̃i = x ji .
25

(c) Estimate the parameters of interest using {ỹi, x̃i}, and denote the estimate θ̃ b.

2. Estimate the variance of θ̂ using

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

or alternatively

V̂
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̃

)(
θ̃ b− θ̃

)′
.

It is important to emphasize that the bootstrap is not, generally, a better estimator of parameter
covariance than standard plug-in estimators.26 Asymptotically both are consistent and can be used
equivalently to perform hypothesis tests or construct confidence intervals. Additionally, i.i.d.bootstraps
can only be applied to (conditionally) i.i.d.data. When data have dependence it is necessary to use
an alternative bootstrap scheme. Using an inappropriate bootstrap that doesn’t capture important
dependence in the data produces an inconsistent covariance estimator.

25In some models, it is possible to use independent indices on ε̂ and x, such as in a linear regression when the data are
conditionally homoskedastic (See chapter 3). In general it is not possible to explicitly break the link between εi and xi,
and so these should usually be resampled using the same indices.

26There are some problem-dependent bootstraps that are more accurate than plug-in estimators in an asymptotic sense.
These are rarely encountered in financial economic applications.
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When the interest lies in confidence intervals, an alternative procedure that directly uses the em-
pirical quantiles of the bootstrap parameter estimates can be constructed (known as the percentile
method).

Algorithm 2.3 (i.i.d.Nonparametric Bootstrap Confidence Interval).

1. Repeat a total of B times:

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample
{

y ji
}

.

(c) Estimate the parameters of interest using
{

y ji
}

, and denote the estimate θ̃ b.

2. Estimate the 1−α confidence interval of θ̂k using[
qα/2

({
θ̃k
})

,q1−α/2
({

θ̃k
})]

where qα

({
θ̃k
})

is the empirical α quantile of the bootstrap estimates. 1-sided lower confi-
dence intervals can be constructed as[

R(θk),q1−α

({
θ̃k
})]

and 1-sided upper confidence intervals can be constructed as

[
qα

({
θ̃k
})

,R(θk)
]

where R(θk) and R(θk) are the lower and upper extremes of the range of θk (possibly ±∞).

The percentile method can also be used directly to compute p-values of test statistics. This requires
enforcing the null hypothesis on the data and so is somewhat more involved. For example, suppose
the null hypothesis is E [Yi] = 0. This can be enforced by replacing the original data with Ỹi = Yi− Ȳ
in step 2 of the algorithm.

Algorithm 2.4 (i.i.d.Nonparametric Bootstrap p-value).

1. Repeat a total of B times.

(a) Generate a set of n uniform integers { ji}n
i=1 on [1,2, . . . ,n].

(b) Construct a simulated sample using data where the null hypothesis is true,
{

ỹ ji
}

.

(c) Compute the test statistic of interest using
{

ỹ ji
}

, and denote the statistic T
(
θ̃ b
)
.

2. Compute the bootstrap p-value using

P̂− val = B−1
B∑

b=1

I[T(θ̂)≤T(θ̃ b)]

for 1-sided tests where the rejection region is for large values (e.g., a Wald test). When using
2-sided tests, compute the bootstrap p-value using

P̂− val = B−1
B∑

b=1

I[|T(θ̂)|≤|T(θ̃ b)|]
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The test statistic may depend on a covariance matrix. When this is the case, the covariance matrix
is usually estimated from the bootstrapped data using a plug-in method. Alternatively, it is possible
to use any other consistent estimator (when the null is true) of the asymptotic covariance, such as one
based on an initial (separate) bootstrap.

When models are maximum likelihood based, so that a complete model for the data is specified, it
is possible to use a parametric form of the bootstrap to estimate covariance matrices. This procedure
is virtually identical to standard Monte Carlo except that the initial estimate θ̂ based on the observed
data is used in the simulation.

Algorithm 2.5 (i.i.d.Parametric Bootstrap Covariance (Monte Carlo)).

1. Repeat a total of B times:

(a) Simulate a set of n i.i.d.draws {ỹi} from F
(
θ̂
)
.

(b) Estimate the parameters of interest using {ỹi}, and denote the estimates θ̃ b.

2. Estimate the variance of θ̂ using

V
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

or alternatively

V
[
θ̂
]
= B−1

B∑
b=1

(
θ̃ b− θ̃

)(
θ̃ b− θ̃

)′
.

When models use conditional maximum likelihood, it is possible to use parametric bootstrap as
part of a two-step procedure. First, apply a nonparametric bootstrap to the conditioning data{xi}, and
then, using the bootstrapped conditioning data, simulate Yi ∼ F

(
θ̂ |X̃i

)
. This is closely related to the

residual bootstrap, only the assumed parametric distribution F is used in place of the data-derived
residuals.

2.7 Inference on Financial Data

Inference is covered in greater detail in conjunction with specific estimators and models, such as
linear regression or ARCH models. These examples examine simple hypotheses to illustrate the steps
needed to test a hypothesis.

2.7.1 Testing the Market Premium

Testing the market premium is a cottage industry. While current research is more interested in pre-
dicting the market premium, testing whether the market premium is significantly different from zero
is a natural application of the tools introduced in this chapter. Let λ denote the market premium and
let σ2 be the variance of the return. Since the market is a traded asset, it must be the case that the
premium for holding market risk is the same as the mean of the market return. Monthly data for the
Value Weighted Market (V W M) and the risk-free rate (R f ) was available between January 1927 and
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October 2020. Data for the V W M was drawn from CRSP, and data for the risk-free rate was available
from Ken French’s data library. Excess returns on the market are defined as the return to holding the
market minus the risk-free rate, V W Me

i =V W Mi−R fi. The excess returns and a kernel density plot
are presented in figure 2.7. Excess returns are both negatively skewed and heavy-tailed – October
1987 is 5 standard deviations from the mean.

The mean and variance can be computed using the method of moments as detailed in section 2.1.4,
and the covariance of the mean and the variance can be computed using the estimators described in
section 2.4.1. The estimates were calculated according to

[
λ̂

σ̂2

]
=

[
n−1∑n

i=1V W Me
i

n−1∑n
i=1

(
V W Me

i − λ̂

)2

]

and, defining ε̂i =VWMe
i − λ̂ , the covariance of the moment conditions was estimated by

Σ̂ = n−1

[ ∑n
i=1 ε̂2

i
∑n

i=1 ε̂i
(
ε̂2

i − σ̂2)∑n
i=1 ε̂i

(
ε̂2

i − σ̂2) ∑n
i=1
(
ε̂2

i − σ̂2)2

]
.

Since the plim of the Jacobian is −I2, the parameter covariance is also Σ̂. Combining these two
results with a Central Limit Theorem (assumed to hold), the asymptotic distribution is

√
n
[
θ − θ̂

] d→ N (0,Σ)

where θ =
(
λ ,σ2)′. These produce the results in the first two rows of table 2.3.

These estimates can also be used to make inference on the standard deviation, σ =
√

σ2 and
the Sharpe ratio, S = λ/σ . The derivation of the asymptotic distribution of the Sharpe ratio was
presented in 2.4.4.1 and the asymptotic distribution of the standard deviation can be determined in a
similar manner where d(θ) =

√
σ2 and so

D(θ) =
∂d(θ)

∂θ
′ =

[
0

1

2
√

σ2

]
.

Combining this expression with the asymptotic distribution for the estimated mean and variance, the
asymptotic distribution of the standard deviation estimate is

√
n(σ̂ −σ)

d→ N
(

0,
µ4−σ4

4σ2

)
.

which was computed by dividing the [2,2] element of the parameter covariance by 4σ̂2.

2.7.1.1 Bootstrap Implementation

The bootstrap can be used to estimate parameter covariance, construct confidence intervals – either
used the estimated covariance or the percentile method, and to tabulate the p-value of a test statistic.
Estimating the parameter covariance is simple – the data is resampled to create a simulated sample
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with n observations and the mean and variance are estimated. This is repeated 10,000 times and the
parameter covariance is estimated using

Σ̂ = B−1
B∑

b=1

([
µ̃b
σ̃2

b

]
−
[

µ̂

σ̂2

])([
µ̃b
σ̃2

b

]
−
[

µ̂

σ̂2

])′

= B−1
B∑

b=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

The percentile method can be used to construct confidence intervals for the parameters as esti-
mated and for functions of parameters such as the Sharpe ratio. Constructing the confidence intervals
for a function of the parameters requires constructing the function of the estimated parameters using
each simulated sample and then computing the confidence interval using the empirical quantile of
these estimates. Finally, the test p-value for the statistic for the null H0 : λ = 0 can be computed
directly by transforming the returns so that they have mean 0 using r̃i = ri− r̄i. The p-value can be
tabulated using

P̂−val = B−1
B∑

b=1

I[r̄≤r̃b]

where r̃b is the average from bootstrap replication b. I[r̄≤r̃b] is one whenever the sample average return
is less than the average return from the bootstrap sample average created from demeaned returns. If
this rarely happens, then the mean is unlikely to be zero, and the p-value is small. Table 2.4 contains
the bootstrap standard errors, confidence intervals based on the percentile method and the bootstrap
p-value for testing whether the mean return is 0. The standard errors are virtually identical to those
estimated using the plug-in method, and the confidence intervals are similar to θ̂k±1.96s.e.(θk). The
null that the average return is 0 is also strongly rejected.

The bootstrap can also be used to directly estimate the covariance of parameters and their transfor-
mations. Table 2.4 also contains bootstrap standard errors and confidence intervals for the variance,
the standard deviation and the Sharpe ratio. The covariance of these three statistics (and the mean)
can be computed using the bootstrap

Σ̂ = B−1
B∑

b=1




µ̃b
σ̃2

b
σ̃b

µ̃b/σ̃b

−


µ̂

σ̂2

σ̂

µ̂/σ̂






µ̃b
σ̃2

b
σ̃b

µ̃b/σ̃b

−


µ̂

σ̂2

σ̂

µ̂/σ̂



′

where σ̂b =
√

σ̂2 and σ̃b =
√

σ̃2
b . This direct calculation is an alternative to computing the covariance

of just the mean and variance and then using the delta method to estimate the standard error of the
transformations.27

27These estimates all use the i.i.d.bootstrap. This bootstrap is not appropriate for bootstrapping the variance of finan-
cial returns since the variance is correlated across time. There are alternative bootstrap methods that can account for
dependence in data. A more reasonable approach uses a bootstrap known as the Circular Block Bootstrap. This bootstrap
resamples contiguous blocks of observations when building the bootstrap sample. The block size is a parameter of the
bootstrap. The table below uses the CBB with a window size of bn1/2c. The standard error of the mean (risk premium) is
virtually unchanged, while the standard errors of the variance, the standard deviation, and to a lesser degree, the Sharpe
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Parameter Estimate Std. Error t-stat

λ 8.086 1.909 4.236
σ2 343.0 31.67 10.83
σ 18.52 0.855 10.83
λ

σ
0.437 0.104 4.200

Table 2.3: Parameter estimates and standard errors for the market premium (λ ), the variance of the
excess return (σ2), the standard deviation of the excess return (σ ) and the Sharpe ratio ( λ

σ
). Estimates

and variances were computed using the method of moments. The standard errors for σ and λ

σ
were

computed using the delta method.

Bootstrap Confidence Interval
Parameter Estimate Std. Error Lower Upper

λ 8.086 1.905 4.339 11.85
σ2 343.0 31.87 284.3 407.8
σ 18.52 0.858 16.86 20.19
λ

σ
0.437 0.104 0.234 0.642

H0 : λ = 0
p-value 2.198×10−5

Table 2.4: Parameter estimates, bootstrap standard errors and confidence intervals (based on the per-
centile method) for the market premium (λ ), the variance of the excess return (σ2), the standard
deviation of the excess return (σ ) and the Sharpe ratio ( λ

σ
). Estimates were computed using the

method of moments. The standard errors for σ and λ

σ
were computed using the delta method using

the bootstrap covariance estimator.

2.7.2 Is the NASDAQ Riskier than the S&P 100?

A second application examines the riskiness of the NASDAQ and the S&P 100. Both of these indices
are value-weighted and contain 100 companies. The NASDAQ 100 contains only companies that
trade on the NASDAQ, while the S&P 100 contains large companies that trade on either the NYSE or
the NASDAQ.

The null hypothesis is that the variances are the same, H0 : σ2
SP = σ2

ND, and the alternative is that

ratio, are larger.

Standard Error
Parameter Estimate Circular Block IID Bootstrap

λ 8.086 1.925 1.905
σ2 343.0 77.82 31.87
σ 18.52 2.065 0.858
λ

σ
0.437 0.127 0.104
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CRSP Value Weighted Market (VWM) Excess Returns
CRSP VWM Excess Returns
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Figure 2.7: These two plots contain the returns on the VWM (top panel) in excess of the risk free rate
and a kernel estimate of the density (bottom panel). While the mode of the density (highest peak)
appears to be clearly positive, excess returns exhibit strong negative skew and are heavy tailed.

the variance of the NASDAQ is larger, H1 : σ2
ND > σ2

SP.28 The null and alternative can be reformulated
as a test that δ = σ2

ND−σ2
SP is equal to zero against an alternative that it is greater than zero. The

estimation of the parameters can be formulated as a method of moments problem,


µ̂SP
σ̂2

SP
µ̂ND
σ̂2

ND

= n−1
n∑

i=1


rSP,i(

rSP,i− µ̂SP
)2

rND,i

(rND,i− µ̂ND)
2


Inference can be performed by forming the moment vector using the estimated parameters, gi,

28It may also be interesting to test against a two-sided alternative that the variances are unequal, H1 : σ2
ND 6= σ2

SP.
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Daily Data
Estimate Std. Error/Correlation

µSP 10.11 3.162 -0.162 0.825 -0.037
σSP 18.76 -0.162 0.476 -0.088 0.666
µND 16.90 0.825 -0.088 4.440 0.025
σND 26.34 -0.037 0.666 0.025 0.447

Test Statistic

δ 1.36 σ̂δ 0.07 t-stat 19.33

Monthly Data
Estimate Std. Error/Correlation

µSP 9.52 2.583 -0.337 0.843 -0.246
σSP 15.32 -0.337 0.729 -0.278 0.681
µND 16.33 0.843 -0.278 4.034 -0.192
σND 23.92 -0.246 0.681 -0.192 1.127

Test Statistic

δ 28.14 σ̂δ 3.50 t-stat 8.04

Table 2.5: Estimates, standard errors and correlation matrices for the S&P 100 and NASDAQ 100.
The top panel uses daily return data between January 3, 1983, and December 31, 2007 (6,307 days)
to estimate the parameter values in the left-most column. The rightmost 4 columns contain the pa-
rameter standard errors (diagonal elements) and the parameter correlations (off-diagonal elements).
The bottom panel contains estimates, standard errors, and correlations from monthly data between
January 1983 and December 2007 (300 months). Parameter and covariance estimates have been
annualized. The test statistics (and related quantities) were performed and reported on the original
(non-annualized) values.

gi =


rSP,i−µSP(

rSP,i−µSP
)2−σ2

SP
rND,i−µND

(rND,i−µND)
2−σ2

ND


and recalling that the asymptotic distribution is given by

√
n
(
θ̂ −θ

) d→ N
(

0,G−1
Σ
(
G′
)−1
)
.

Using the set of moment conditions,
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G = plimn→∞ n−1
n∑

i=1


−1 0 0 0

−2
(
rSP,i−µSP

)
−1 0 0

0 0 −1 0
0 0 −2(rND,i−µND) −1


=−I4.

Σ can be estimated using the moment conditions evaluated at the estimated parameters, gi
(
θ̂
)
,

Σ̂ = n−1
n∑

i=1

gi
(
θ̂
)

g′i
(
θ̂
)
.

Noting that the (2,2) element of Σ is the variance of σ̂2
SP, the (4,4) element of Σ is the variance of σ̂2

ND
and the (2,4) element is the covariance of the two, the variance of δ̂ = σ̂2

ND− σ̂2
SP can be computed as

the sum of the variances minus two times the covariance, Σ[2,2]+Σ[4,4]−2Σ[2,4]. Finally a one-sided
t-test can be performed to test the null.

Data was taken from Yahoo! finance between January 2010 and December 2019 at both the daily
and monthly frequencies. Parameter estimates are presented in table 2.5. The table also contains the
parameter standard errors – the square-root of the asymptotic covariance divided by the number of
observations (

√
Σ[i,i]/n) – along the diagonal and the parameter correlations – Σ[i, j]/

√
Σ[i,i]Σ[ j, j] – in

the off-diagonal positions. The top panel contains results for daily data, while the bottom contains
results for monthly data. Returns scaled by 100 were used in both panels.

All parameter estimates are reported in annualized form, which requires multiplying daily (monthly)
mean estimates by 252 (12), and daily (monthly) volatility estimated by

√
252

(√
12
)

. Additionally,
the delta method was used to adjust the standard errors on the volatility estimates since the actual
parameter estimates were the means and variances. Thus, the reported parameter variance covariance
matrix has the form

D
(
θ̂
)

Σ̂D
(
θ̂
)
=


252 0 0 0
0

√
252

2σSP
0 0

0 0 252 0
0 0 0

√
252

2σND

 Σ̂


252 0 0 0
0

√
252

2σSP
0 0

0 0 252 0
0 0 0

√
252

2σND

 .
In both cases δ is positive with a t-stat greater than 6, indicating a strong rejection of the null in favor
of the alternative. Since this was a one-sided test, the 95% critical value would be 1.645 (Φ(.95)).

This test could also have been implemented using an LM test, which requires estimating the two
mean parameters but restricting the variances to be equal. One θ̃ is estimated, the LM test statistic is
computed as

LM = ngn
(
θ̃
)

Σ̂
−1g′n

(
θ̃
)

where

gn
(
θ̃
)
= n−1

n∑
i=1

gi
(
θ̃
)

and where µ̃SP = µ̂SP, µ̃ND = µ̂ND (unchanged) and σ̃2
SP = σ̃2

ND =
(
σ̂2

SP + σ̂2
ND
)
/2.
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Daily Data
Estimate Bootstrap Std. Error/Correlation

µSP 10.11 3.161 -0.163 0.828 -0.027
σSP 18.76 -0.163 0.476 -0.080 0.664
µND 16.90 0.828 -0.080 4.498 0.039
σND 26.34 -0.027 0.664 0.039 0.445

Monthly Data
Estimate Bootstrap Std. Error/Correlation

µSP 9.52 2.579 -0.335 0.845 -0.237
σSP 15.32 -0.335 0.729 -0.285 0.677
µND 16.33 0.845 -0.285 3.992 -0.186
σND 23.92 -0.237 0.677 -0.186 1.137

Table 2.6: Estimates and bootstrap standard errors and correlation matrices for the S&P 100 and
NASDAQ 100. The top panel uses daily return data between January 3, 1983, and December 31,
2007 (6,307 days) to estimate the parameter values in the left-most column. The rightmost 4 columns
contain the bootstrap standard errors (diagonal elements) and the correlations (off-diagonal elements).
The bottom panel contains estimates, bootstrap standard errors and correlations from monthly data
between January 1983 and December 2007 (300 months). All parameter and covariance estimates
have been annualized.

2.7.2.1 Bootstrap Covariance Estimation

The bootstrap is an alternative to the plug-in covariance estimators. The bootstrap was implemented
using 10,000 resamples where the data were assumed to be i.i.d.. In each bootstrap resample, the full 4
by 1 vector of parameters was computed. These were combined to estimate the parameter covariance
using

Σ̂ = B−1
B∑

i=1

(
θ̃ b− θ̂

)(
θ̃ b− θ̂

)′
.

Table 2.6 contains the bootstrap standard errors and correlations. The parameter estimates and co-
variance are annualized, and volatility rather than variance is reported. The bootstrap covariance
estimates are virtually indistinguishable from those computed using the plug-in estimator. This simi-
larity highlights that the bootstrap is not (generally) a better estimator but is merely an alternative.29

2.7.3 Testing Factor Exposure

Suppose excess returns were conditionally normal with mean µi = β
′xi and constant variance σ2.

This type of model is commonly used to explain cross-sectional variation in returns, and when the
conditioning variables include only the market variable, the model is known as the Capital Asset

29In this particular application, as the bootstrap and the plug-in estimators are identical as B→∞ for fixed n. This
identity is not generally the case.
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Pricing Model (CAP-M, Sharpe (1964) and Lintner (1965)). Multi-factor models allow for additional
conditioning variables such as the size and value factors (Ross, 1976; Fama and French, 1992; Fama
and French, 1993). The size factor is the return on a portfolio, which is long small-cap stocks and
short large-cap stocks. The value factor is the return on a portfolio that is long high book-to-market
stocks (value) and short low book-to-market stocks (growth).

This example estimates a 3 factor model where the conditional mean of excess returns on individ-
ual assets is modeled as a linear function of the excess return to the market, the size factor and the
value factor. This leads to a model of the form

ri− r f
i = β0 +β1

(
rm,i− r f

i

)
+β2rs,i +β3rv,i + εi

re
i = β

′xi + εi

where r f
i is the risk-free rate (short term government rate), rm,i is the return to the market portfolio,

rs,i is the return to the size portfolio and rv,i is the return to the value portfolio. εi is a residual which
is assumed to have a N

(
0,σ2) distribution.

Factor models can be formulated as a conditional maximum likelihood problem,

l (r|X;θ) =−1
2

n∑
i=1

{
ln(2π)+ ln

(
σ

2)+ (ri−β
′xi
)2

σ2

}

where θ =
[
β
′
σ2]′. The MLE can be found using the first order conditions, which are

∂ l (r;θ)

∂β
=

1
σ̂2

n∑
i=1

xi

(
ri− β̂

′
xi

)
= 0

⇒ β̂ =

(
n∑

i=1

xix′i

)−1 n∑
j=1

xiri

∂ l (r;θ)

∂σ2 = −1
2

n∑
i=1

1
σ̂2 −

(
ri− β̂

′
xi

)2

σ̂4 = 0

⇒ σ̂
2 = n−1

n∑
i=1

(
ri− β̂

′
xi

)2

The vector of scores is

∂ l (ri|xi;θ)

∂θ
=

[
1

σ2 xiεi

− 1
2σ2 +

ε
2
i

2σ4

]
=

[ 1
σ2 0
0 1

2σ4

][
xiεi

σ2− ε2
i

]
= S

[
xiεi

σ2− ε2
i

]

where εi = ri−β
′xi. The second form is used to simplify estimating the parameters covariance. The

Hessian is
∂ 2l (ri|xi;θ)

∂θ∂θ
′ =

[
− 1

σ2 xix′i − 1
σ4 xiεi

− 1
σ4 xiεi

1
2σ4 − ε

2
i

σ6

]
,
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and the information matrix is

I = −E

[
− 1

σ2 xix′i − 1
σ4 xiεi

− 1
σ4 xiεi

1
2σ4 − ε

2
i

σ6

]

=

[ 1
σ2 E [xix′i] − 1

σ4 E [xiE [εi|X]]

− 1
σ4 E [xiE [εi|X]] E

[
1

2σ4

] ]

=

[ 1
σ2 E [xix′i] 0

0 1
2σ4

]
.

The covariance of the scores is

J = E

[
S

[
ε2

i xix′i σ2xiεi−xiε
3
i

σ2x′iεi−x′iε3
i

(
σ2− ε2

i
)2

]
S

]

= S

[
E
[
ε2

i xix′i
]

E
[
σ2xiεi−xiε

3
i
]

E
[
σ2x′iεi−x′iε3

i
]

E
[(

σ2− ε2
i
)2
] ]

S

= S

[
E
[
E
[
ε2

i |X
]

xix′i
]

E
[
σ2x′iE [εi|X]−x′iE

[
ε3

i |X
]]

E
[
E
[
σ2x′iεi−x′iε3

i |X
]]

E
[(

σ2− ε2
i
)2
] ]

S

= S
[

σ2E [xix′i] 0
0 2σ4

]
S =

[ 1
σ2 E [xix′i] 0

0 1
2σ4

]
The estimators of the covariance matrices are

Ĵ = n−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
xiε̂i

σ̂2− ε̂2
i

][
x′iε̂i σ̂2− ε̂2

i
][ 1

σ̂2 0
0 1

2σ̂4

]

= n−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

][ 1
σ̂2 0
0 1

2σ̂4

]
and

Î = −1×n−1
n∑

i=1

[
− 1

σ̂2 xix′i − 1
σ̂4 xiεi

− 1
σ̂4 xiεi

1
2σ̂4 − ε

2
i

σ̂6

]

= −1×n−1
n∑

i=1

[
− 1

σ̂2 xix′i 0

0 1
2σ̂4 − σ̂

2

σ̂6

]

= −1×n−1
n∑

i=1

[ − 1
σ̂2 xix′i 0

0 − 1
2σ̂4

]
= n−1

n∑
i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
xix′i 0

0 1

]
Note that the off-diagonal term in J , σ̂2x′iε̂i−x′iε̂3

i , is not necessarily 0 when the data may be condi-
tionally skewed. Combined, the QMLE parameter covariance estimator is then

Î−1Ĵ Î−1 =

(
n−1

n∑
i=1

[
xix′i 0

0 1

])−1[
n−1

n∑
i=1

[
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

]]

×
(

n−1
n∑

i=1

[
xix′i 0

0 1

])−1
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where the identical scaling terms have been canceled. Additionally, when returns are conditionally
normal,

plim Ĵ = plimn−1
n∑

i=1

[ 1
σ̂2 0
0 1

2σ̂4

][
ε̂2

i xix′i σ̂2xiε̂i−xiε̂
3
i

σ̂2x′iε̂i−x′iε̂3
i

(
σ̂2− ε̂2

i
)2

][ 1
σ̂2 0
0 1

2σ̂4

]
=

[ 1
σ2 0
0 1

2σ4

][
σ2xix′i 0

0 2σ4

][ 1
σ2 0
0 1

2σ4

]
=

[ 1
σ2 xix′i 0

0 1
2σ4

]
and

plim Î = plimn−1
n∑

i=1

[ 1
σ̂2 xix′i 0

0 1
2σ̂4

]
=

[ 1
σ2 xix′i 0

0 1
2σ4

]
,

and so the IME, plim Ĵ − Î = 0, holds when returns are conditionally normal. Moreover, when
returns are not normal, all of the terms in J typically differ from the limits above, and the IME does
not hold.

2.7.3.1 Data and Implementation

Three assets are used to illustrate hypothesis testing: Exxon Mobil (XOM), Alphabet Inc. (GOOG),
and the SPDR Gold Trust ETF (GLD). The data used to construct the individual equity returns were
downloaded from Yahoo! Finance and span from January 2010 to December 2019. The market
portfolio is the CRSP value-weighted market, a composite based on all listed US equities. The size
and value factors were constructed using portfolio sorts and are made available by Ken French. All
returns were scaled by 100.

2.7.3.2 Wald tests

Wald tests make use of the parameters and estimated covariance to assess the evidence against the null.
When testing whether the size and value factor are relevant for an asset, the null is H0 : β2 = β3 = 0.
This problem can be set up as a Wald test using

R =

[
0 0 1 0
0 0 0 1

]
, r =

[
0
0

]
and

W = n
(
Rθ̂ − r

)′ [RÎ−1J Î−1R′
]−1 (

Rθ̂ − r
)
.

The Wald test has an asymptotic χ2
2 distribution since the null imposes 2 restrictions.

t-stats can similarly be computed for individual parameters

t j =
√

n
β̂ j√
̂
V
[
β̂ j

]
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where
̂
V
[
β̂ j

]
is the jth diagonal element of the estimated parameter covariance matrix. Table 2.7

contains the parameter estimates from the models, t-stats for the coefficients and the Wald test statis-
tics for the null H0 : β2 = β3 = 0. The t-stats and the Wald tests were implemented using both the
sandwich covariance estimator (QMLE) and the maximum likelihood covariance estimator. The two
sets of test statistics differ in magnitude since the assumption of normality is violated in the data, and
so only the QMLE-based test statistics should be considered reliable.

2.7.3.3 Likelihood Ratio tests

Likelihood ratio tests are simple to implement when parameters are estimated using MLE. The likeli-
hood ratio test statistic is

LR =−2
(
l
(
r|X; θ̃

)
− l
(
r|X; θ̂

))
where θ̃ is the null-restricted estimator of the parameters. The likelihood ratio has an asymptotic χ2

2
distribution since there are two restrictions. Table 2.7 contains the likelihood ratio test statistics for
the null H0 : β2 = β3 = 0. Caution is needed when interpreting likelihood ratio test statistics since the
asymptotic distribution is only valid when the model is correctly specified – in this case, when returns
are conditionally normal, which is not plausible.

2.7.3.4 Lagrange Multiplier tests

Lagrange Multiplier tests are somewhat more involved in this problem. The key to computing the LM
test statistic is to estimate the score using the restricted parameters,

s̃i =

[
1

σ2 xiε̃i

− 1
2σ̃2 +

ε̃
2
i

2σ̃4

]
,

where ε̃i = ri− β̃
′
xi and θ̃ =

[
β̃
′
σ̃2
]′

is the vector of parameters estimated when the null is imposed.
The LM test statistic is then

LM = ns̃S̃−1s̃

where

s̃ = n−1
n∑

i=1

s̃i, and S̃ = n−1
n∑

i=1

s̃is̃′i.

The improved version of the LM can be computed by replacing S̃ with a covariance estimator based
on the scores from the unrestricted estimates,

Ŝ = n−1
n∑

i=1

ŝiŝ′i.

Table 2.7 contains the LM test statistics for the null H0 : β2 = β3 = 0 using the two covariance estima-
tors. LM test statistics are naturally robust to violations of the assumed normality since Ŝ and S̃ are
directly estimated from the scores and not based on properties of the assumed normal distribution.
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2.7.3.5 Discussion of Test Statistics

Table 2.7 contains all test statistics for the three series. The test statistics based on the MLE and
QMLE parameter covariances differ substantially in all three series, although the conclusions do not
differ. The difference between the two sets of results from an implicit rejection of the assumption that
returns are conditionally normally distributed with constant variance. The MLE-based Wald and the
LR tests have similar magnitudes for all three series. The QMLE-based Wald test statistics are larger
than the LM-based test statistics. This difference reflects the covariance’s estimation under the null
(LM) or the alternative (Wald).

Exercises

Exercise 2.1. What influences the power of a hypothesis test?

Exercise 2.2. Let Yi be i.i.d.Exponential(λ ) with pdf f (yi) = λ exp(−λyi), λ > 0. Derive the MLE
of λ where there are n observations.

Exercise 2.3. If n observations of Yi
i.i.d.∼ Bernoulli(p) are observed, what is the MLE of p? The pdf of

a single Bernoulli is
py (1− p)1−y .

Exercise 2.4. When performing a hypothesis test, what are Type I and Type II Errors?

Exercise 2.5. The distribution of a discrete random variable X depends on a discretely valued param-
eter θ ∈ {1,2,3} according to

x f (x|θ = 1) f (x|θ = 2) f (x|θ = 3)

1 1
2

1
3 0

2 1
3

1
4 0

3 1
6

1
3

1
6

4 0 1
12

1
12

5 0 0 3
4

Find the MLE of θ if one value from X has been observed. Note: The MLE is a function that returns
an estimate of θ given the data that has been observed. In the case where both the observed data and
the parameter are discrete, a “function” takes the form of a table.

Exercise 2.6. Let X1, . . . ,Xn be an i.i.d. sample from a gamma(α ,β ) distribution. The density of a
gamma(α ,β ) is

f (x;α,β ) =
1

Γ(α)β α
xα−1 exp(−x/β )

where Γ(z) is the gamma-function evaluated at z. Find the MLE of β assuming α is known.

Exercise 2.7. Let X1, . . . ,Xn be an i.i.d. sample from the pdf

f (x|θ) = θ

xθ+1 , 1≤ x <∞,θ > 1

1. What is the MLE of θ?
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Exxon Mobil Corporation
Parameter Estimate t (MLE) t (QMLE)

β0 -0.023 −1.499
(0.134)

−1.50
(0.133)

Wald (MLE) 277.75
(<0.001)

β1 0.892 51.617
(<0.001)

42.47
(<0.001)

Wald (QMLE) 206.15
(<0.001)

β2 -0.290 −9.105
(<0.001)

−8.09
(<0.001)

LR 263.86
(<0.001)

β3 0.405 13.021
(<0.001)

11.33
(<0.001)

LM (S̃) 161.35
(<0.001)

LM (Ŝ) 207.25
(<0.001)

SPDR Gold Shares
Parameter Estimate t (MLE) t (QMLE)

β0 0.017 0.892
(0.372)

0.88
(0.379)

Wald (MLE) 10.15
(0.006)

β1 -0.031 −1.443
(0.149)

−1.01
(0.314)

Wald (QMLE) 7.73
(0.021)

β2 0.104 2.616
(0.009)

2.29
(0.022)

LR 10.14
(0.006)

β3 -0.061 −1.558
(0.119)

−1.42
(0.156)

LM (S̃) 7.61
(0.022)

LM (Ŝ) 7.73
(0.021)

Alphabet Inc.
Parameter Estimate t (MLE) t (QMLE)

β0 0.006 0.248
(0.804)

0.25
(0.802)

Wald (MLE) 193.43
(<0.001)

β1 1.098 43.189
(<0.001)

41.63
(<0.001)

Wald (QMLE) 124.95
(<0.001)

β2 -0.241 −5.140
(<0.001)

−4.87
(<0.001)

LR 186.64
(<0.001)

β3 -0.611 −13.357
(<0.001)

−10.72
(<0.001)

LM (S̃) 101.48
(<0.001)

LM (Ŝ) 128.25
(<0.001)

Table 2.7: Parameter estimates, t-statistics (both MLE and QMLE-based), and tests of the exclusion
restriction that the size and value factors have no effect (H0 : β2 = β3 = 0) on the returns of the Exxon
Mobil, Alphabet Inc. (Google) and SPDR Gold Trust ETF.
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2. What is E[X j]?

3. How can the previous answer be used to compute a method of moments estimator of θ?

Exercise 2.8. Let X1, . . . ,Xn be an i.i.d. sample from the pdf

f (x|θ) = 1
θ
, 0≤ x≤ θ ,θ > 0

1. What is the MLE of θ? [This is tricky]

2. What is the method of moments Estimator of θ?

3. Compute the bias and variance of each estimator.

Exercise 2.9. Let X1, . . . ,Xn be an i.i.d. random sample from the pdf

f (x|θ) = θxθ−1, 0≤ x≤ 1,0 < θ <∞

1. What is the MLE of θ?

2. What is the variance of the MLE?

3. Show that the MLE is consistent.

Exercise 2.10. Let X1, . . . ,Xi be an i.i.d. sample from a Bernoulli(p).

1. Show that X̄ achieves the Cramér-Rao lower bound.

2. What do you conclude about using X̄ to estimate p?

Exercise 2.11. Suppose you witness a coin being flipped 100 times with 56 heads and 44 tails. Is
there evidence that this coin is unfair?

Exercise 2.12. Let X1, . . . ,Xi be an i.i.d. sample with mean µ and variance σ2.

1. Show X̃ =
∑N

i=1 wiXi is unbiased if and only if
∑N

i=1 wi = 1.

2. Show that the variance of X̃ is minimized if wi =
1
n for i = 1,2, . . . ,n.

Exercise 2.13. Suppose {Xi} in i.i.d. sequence of normal variables with unknown mean µ and known
variance σ2.

1. Derive the power function of a 2-sided t-test of the null H0 : µ = 0 against an alternative H1 :
µ 6= 0? The power function should have two arguments, the mean under the alternative, µ1 and
the number of observations n.

2. Sketch the power function for n = 1,4,16,64,100.

3. What does this tell you about the power as n→∞ for µ 6= 0?
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Exercise 2.14. Let X1 and X2 are independent and drawn from a Uniform(θ ,θ +1) distribution with
θ unknown. Consider two test statistics for the null H0 : θ = 0,

T1 : Reject if X1 > .95

and
T2 : Reject if X1 +X2 >C

1. What is the size of T1?

2. What value must C take so that the size of T2 is equal to T1

3. Sketch the power curves of the two tests as a function of θ . Which is more powerful?

Exercise 2.15. Suppose {yi} are a set of transaction counts (trade counts) over 5-minute intervals
which are believed to be i.i.d.distributed from a Poisson with parameter λ . Recall the probability
density function of a Poisson is

f (yi;λ ) =
λ yie−λ

yi!

1. What is the log-likelihood for this problem?

2. What is the MLE of λ?

3. What is the variance of the MLE?

4. Suppose that λ̂ = 202.4 and that the sample size was 200. Construct a 95% confidence interval
for λ .

5. Use a t-test to test the null H0 : λ = 200 against H1 : λ 6= 200 with a size of 5%

6. Use a likelihood ratio to test the same null with a size of 5%.

7. What happens if the assumption of i.i.d.data is correct but that the data does not follow a Poisson
distribution?

Upper tail probabilities
for a standard normal z

Cut-off c Pr(z > c)
1.282 10%
1.645 5%
1.96 2.5%
2.32 1%

5% Upper tail cut-off for χ2
q

Degree of Freedom q Cut-Off
1 3.84
2 5.99

199 232.9
200 234.0
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Exercise 2.16. Suppose Yi|Xi = xi
i.i.d.∼ N

(
β0 +β1xi,σ

2)
1. Write down the log-likelihood for this problem.

2. Find the MLE of the unknown parameters.

3. What is the asymptotic distribution of the parameters?

4. Describe two classes tests to test the null H0 : β1 = 0 against the alternative H0 : β1 6= 0.

5. How would you test whether the errors in the model were conditionally heteroskedastic?

6. Suppose Xi
i.i.d.∼ N

(
µX ,σ

2
X
)

and the X variables are independent of the shocks in the model. What
are the values of:

(a) E [Yi]

(b) E
[
Y 2

i
]

(c) V [Yi]

(d) Cov [Xi,Yi]

Note: If Y ∼ N
(
µ,σ2) , then the pdf of Y is

f
(
y; µ,σ2)= 1√

2πσ2
exp

(
−(y−µ)2

2σ2

)

Exercise 2.17. Suppose Yi
i.i.d.∼ Exponential(λ ), so that E [Yi] = λ .

1. Write down the log-likelihood for this problem.

2. Find the MLE of the unknown parameter.

3. What is the asymptotic distribution of the parameter estimate?

4. Suppose n = 10,
∑

yi = 19. Test the null H0 : λ = 1 against a 2-sided alternative with a size of
5% test using a t-test.

5. Suppose n = 10,
∑

yi = 19. Test the null H0 : λ = 1 against a 2-sided alternative with a size of
5% test using a likelihood-ratio.

6. When are sandwich covariance estimators needed in MLE problems?

7. Discuss the important considerations for building models using cross-sectional data?

Notes:

• If Y ∼ Exponential(λ ) , then the pdf of Y is

f (y;λ ) =
1
λ

exp
(
− y

λ

)
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• The 5% critical value for a χ2
1 is 3.8415, for a χ2

2 is 5.9915 and for a χ2
3 is 7.8147.

Exercise 2.18. Suppose yi|xi ∼ Exponential(xiβ ) where xi > 0 and β > 0. This can be equivalently
written yi ∼ Exponential(λi) where λi = xiβ . The PDF of an exponential random variance with
parameter λ is

fY (y) = λ exp(−λy) .

Assume n pairs of observations on (yi,xi) are observed

1. What is the log-likelihood of the data?

2. Compute the maximum likelihood estimator β̂ .

3. What is the asymptotic distribution of
√

n
(

β̂ −β

)
?

4. Suppose the following quantities are observed

n = 20
n∑

i=1

xi = 16.58

n∑
i=1

yi = 128.47

n∑
i=1

xiyi = 11.23

Perform a test for the null H0 : β = 1.5 against the alternative H1 : β 6= 1.5 using a t-test.

5. Explain how you would perform a likelihood-ratio test for the same null and alternative.

Exercise 2.19. Suppose
√

n
(
σ̂2−σ2) d→ N

(
0,µ4−σ4). What is the asymptotic distribution of:

1. ln
(
σ̂2)

2. σ−2

Exercise 2.20. Suppose two parameter estimators are jointly normally distributed with asymptotic
distribution [

θ̂1
θ̂2
− θ1

θ2

]
d→ N

([
0
0

]
,

[
σ11 σ12
σ12 σ22

])
.

What is the asymptotic distribution of

1. θ̂1− θ̂2

2. θ̂1/θ̂2

3. ln θ̂1/θ̂2 = ln θ̂1− ln θ̂2
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Chapter 3

Analysis of Cross-Sectional Data

Note: The primary reference text for these notes is Hayashi (2000). Other comprehensive treatments
are available in Greene (2007) and Davidson and MacKinnon (2003).

Linear regression is the foundation of modern econometrics. While the importance
of linear regression in financial econometrics has diminished in recent years, it is
still widely employed. More importantly, the theory behind least-squares estima-
tors is useful in broader contexts, and many results of this chapter are special cases
of more general estimators presented in subsequent chapters. This chapter covers
model specification, estimation, small- and large-sample inference, and model se-
lection.

Linear regression is an essential tool of any econometrician and is widely used throughout finance
and economics. Linear regression’s success is owed to two key features: the availability of simple,
closed-form estimators, and the ease and directness of interpretation. However, despite the regression
estimator’s superficial simplicity, the concepts presented in this chapter will reappear in the chapters
on time series, panel data, Generalized Method of Moments (GMM), event studies, and volatility
modeling.

3.1 Model Description

Linear regression expresses a dependent variable as a linear function of independent variables, possi-
bly random, and an error.

Yi = β1X1,i +β2X2,i + . . .+βkXk,i + εi, (3.1)

where Yi is known as the regressand, dependent variable or simply the left-hand-side variable. The k
variables, X1,i, . . . ,Xk,i are known as the regressors, independent variables or right-hand-side variables.
β1, β2, . . ., βk are the regression coefficients, εi is known as the innovation, shock or error and
i = 1,2, . . . ,n index the observation. While this representation clarifies the relationship between Yi
and the Xs, matrix notation will generally be used to compactly describe models:



130 Analysis of Cross-Sectional Data


Y1
Y2
...

Yn

=


X11 X12 . . . X1k
X21 X22 . . . X2k

...
...

...
...

Xn1 Xn2 . . . Xnk




β1
β2
...

βk

+


ε1
ε2
...

εn

 (3.2)

y = Xβ + ε (3.3)

where X is an n by k matrix, β is a k by 1 vector, and both y and ε are n by 1 vectors.
Two vector notations will occasionally be used: row,

Y1 = X1β +ε1
Y2 = X2β +ε2
...

...
...

Yn = Xnβ +εn

 (3.4)

and column,

y = β1x1 +β2x2 + . . .+βkxk + ε. (3.5)

Linear regression allows coefficients to be interpreted, all things being equal. Specifically, the
effect of a change in one variable can be examined without changing the others. Regression analysis
also allows for models that contain all of the information relevant for determining Yi, whether these
quantities are of primary interest or not. This feature provides the mechanism to interpret the coef-
ficient on a regressor as the unique effect of that regressor (under certain conditions), a feature that
makes linear regression very attractive.

3.1.1 What is a model?

What constitutes a model is a difficult question to answer. One view of a model is that of the data
generating process (DGP). For instance, if a model postulates

Yi = β1Xi + εi

then one interpretation is that the regressand, Yi, is wholly determined by Xi and some random shock.
The alternative view is that Xi is the only relevant variable available to the econometrician that explains
variation in Yi. Everything else that determines Yi cannot be measured and, in the usual case, cannot
be placed into a framework that would allow the researcher to formulate a model.

Consider monthly returns on the S&P 500, a value-weighted index of 500 large firms in the United
States. Equity holdings and returns are generated by individuals based on their beliefs and prefer-
ences. If one were to take a (literal) data generating process view of the return on this index, data on
individual investors’ preferences and beliefs would need to be collected and formulated into a model
for market returns. Collecting data and building this model would be a substantial challenge.

On the other hand, a model can be built to explain the variation in the market based on observ-
able quantities (such as oil price changes or macroeconomic news announcements) without explicitly
collecting information on beliefs and preferences. In a model of this type, explanatory variables can
be viewed as inputs individuals consider when forming their beliefs and, subject to their preferences,
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taking actions that ultimately affect the price of the S&P 500. The model allows the relationships
between the regressand and regressors to be explored and is meaningful even though the model is not
plausibly the data generating process.

In the context of time-series data, models often postulate that a series’s past values are useful in
predicting future values. Consider building a model of monthly returns on the S&P 500 using past
returns to explain future returns. Treated as a DGP, this model implies that average returns in the
future are determined by returns in the immediate past. Alternatively, if treated as an approximation,
then one interpretation postulates that changes in risk aversion, beliefs, or other variables that influ-
ence holdings of assets change slowly (possibly in an unobservable manner). These slowly changing
“factors” produce predictability in returns. Of course, there are other interpretations, but these should
come from finance theory rather than data. The model as a proxy interpretation is additionally use-
ful as it allows models to be specified, which are only loosely coupled with theory but that capture
essential features of a theoretical model.

Careful consideration of what defines a model is a crucial step in the development of an econo-
metrician, and one should always consider which assumptions and beliefs are needed to justify any
specification.

3.1.2 Example: Cross-section regression of returns on factors

The concepts of linear regression will be explored in the context of a cross-section regression of
returns on a set of factors thought to capture systematic risk. Cross-sectional regressions in financial
econometrics date back at least to the Capital Asset Pricing Model (CAPM, Markowitz (1959), Sharpe
(1964) and Lintner (1965)), a model formulated as a regression of individual asset’s excess returns on
the excess return of the market. More general specifications with multiple regressors are motivated by
the Intertemporal CAPM (ICAPM, Merton (1973)) and Arbitrage Pricing Theory (APT, Ross (1976)).

The basic model postulates that excess returns are linearly related to a set of systematic risk
factors. The factors can be returns on other assets, such as the market portfolio, or any other variable
related to intertemporal hedging demands, such as interest rates, shocks to inflation, or consumption
growth.

Ri−R f
i = fiβ + εi

or more compactly,

re
i = fiβ + εi

where Re
i = Ri−R f

i is the excess return on the asset and fi = [F1,i, . . . ,Fk,i] are returns on factors that
explain systematic variation.

Linear factors models have been used in countless studies, the most well known by Fama and
French (Fama and French (1992) and Fama and French (1993)) who use returns on specially con-
structed portfolios as factors to capture specific types of risk. The data set contains the variables listed
in table 3.1.

Monthly data from July 1963 until January 2020 is used in the examples. Except for the interest
rates, all return data are from the CRSP database. Returns are calculated as 100 times the logarithmic
price difference (Ri = 100(ln(Pi)− ln(Pi−1))). Portfolios were constructed by sorting the firms into
categories based on market capitalization, Book Equity to Market Equity (BE/ME), or past returns
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Variable Description

VWM Returns on a value-weighted portfolio of all NYSE, AMEX and NASDAQ
stocks

SMB Returns on the Small minus Big factor, a zero investment portfolio that
is long small market capitalization firms and short big caps.

HML Returns on the High minus Low factor, a zero investment portfolio that
is long high BE/ME firms and short low BE/ME firms.

MOM Returns on a portfolio that is long winners and short losers as defined
by their performance over the past 12 months, excluding the last month.
Includes the large and small cap stocks but excludes mid-cap stocks.

SL Returns on a portfolio of small cap and low BE/ME firms.
SM Returns on a portfolio of small cap and medium BE/ME firms.
SH Returns on a portfolio of small cap and high BE/ME firms.
BL Returns on a portfolio of big cap and low BE/ME firms.

BM Returns on a portfolio of big cap and medium BE/ME firms.
BH Returns on a portfolio of big cap and high BE/ME firms.
RF Risk free rate (Rate on a 3 month T-bill).

DAT E Date in format YYYYMM.

Table 3.1: Variable description for the data available in the Fama-French data-set used throughout this
chapter.

over the previous year. For further details on the construction of portfolios, see Fama and French
(1993) or Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.

A general model for the BH portfolio can be specified

BHi−RFi = β1 +β2(VWMi−RFi)+β3SMBi +β4HMLi +β5MOMi + εi

or, in terms of the excess returns,

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi.

The coefficients in the model can be interpreted as the effect of a change in one variable holding
the other variables constant. For example, β3 captures the effect of a change in the SMBi risk factor
holding VWMe

i , HMLi and MOMi constant. Table 3.2 contains some descriptive statistics of the
factors and the six portfolios included in this data set.

3.2 Functional Form

A linear relationship is fairly specific and, in some cases, restrictive. It is important to distinguish
specifications that can be examined in the linear regression framework from those that cannot. Linear

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Mean Std. Dev. Skewness Kurtosis

VWMe 6.66 15.42 -0.54 4.91
SMB 2.17 10.52 0.43 7.83
HML 3.06 9.95 0.01 5.41
MOM 7.95 14.52 -1.28 13.20
SLe 6.54 23.55 -0.39 4.74
SMe 10.21 18.93 -0.54 5.81
SHe 11.23 19.69 -0.53 6.80
BLe 6.78 15.94 -0.34 4.84
BMe 6.47 14.87 -0.48 5.39
BHe 8.22 17.20 -0.62 6.23

Table 3.2: Descriptive statistics of the six portfolios that will be used throughout this chapter. The
data consist of monthly observations from January 1927 until June 2008 (n = 978).

regressions require two key features of any model: each term on the right-hand side must have only
one coefficient that enters multiplicatively, and the error must enter additively.1 Most specifications
satisfying these two requirements can be treated using the tools of linear regression.2 Other forms of
“nonlinearities” are permissible. Any regressor or the regressand can be nonlinear transformations of
the original observed data.

Double log (also known as log-log) specifications, where both the regressor and the regressands
are log transformations of the original (positive) data, are frequently used.

lnYi = β1 +β2 lnXi + εi.

In the parlance of linear regression, the model is specified

Ỹi = β1 +β2X̃i + εi

where Ỹi = ln(Yi) and X̃i = ln(Xi). The usefulness of the double log specification can be illustrated by
a Cobb-Douglas production function subject to a multiplicative shock

Yi = β1Kβ2
i Lβ3

i εi.

Using the production function directly, it is not obvious that, given values for output (Yi), capital (Ki)
and labor (Li) of firm i, the model is consistent with a linear regression. However, taking logs,

lnYi = lnβ1 +β2 lnKi +β3 lnLi + lnεi

the model can be reformulated as a linear regression on the transformed data. Other forms, such as
semi-log (either log-lin, where the regressand is logged but the regressors are unchanged, or lin-log,
which logs only the regressor), are often useful to describe nonlinear relationships.

1A third but obvious requirement is that neither Yi nor any of the X j,i may be latent (unobservable), j = 1,2, . . . ,k,
i = 1,2, . . . ,n.

2There are further requirements on the data, both the regressors and the regressand, to ensure that estimators of the
unknown parameters are reasonable, but these are treated in subsequent sections.
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Linear regression does, however, rule out specifications that may be of interest. Linear regression
is not an appropriate framework to examine a model of the form Yi = β1Xβ2

1,i + β3Xβ4
2,i + εi. Fortu-

nately, more general frameworks, such as the generalized method of moments (GMM) or maximum
likelihood estimation (MLE), topics of subsequent chapters, can be applied.

Two other transformations of the original data, dummy variables and interactions, are commonly
used to generate nonlinear (in regressors) specifications. A dummy variable is a special class of re-
gressor that takes the value 0 or 1. In finance, dummy variables (or dummies) are used to model
calendar effects, leverage (where the magnitude of a coefficient depends on the sign of the regressor),
or group-specific effects. Variable interactions parameterize nonlinearities into a model through prod-
ucts of regressors. Common interactions include powers of regressors (X2

1,i,X
3
1,i, . . .), cross-products

of regressors (X1,iX2,i) and interactions between regressors and dummy variables. Variable transfor-
mations add significant flexibility to the linear regression models.

The use of nonlinear transformations also changes the interpretation of the regression coefficients.
If only unmodified regressors are included,

Yi = xiβ + εi

then ∂Yi
∂Xk,i

= βk. Suppose a specification includes both Xi and X2
i as regressors,

Yi = β1Xi +β2X2
i + εi

In this specification, ∂Yi
∂Xi

= β1 +β2Xi and the level of the variable enters its partial effect. Similarly,
in a simple double log model

lnYi = β1 lnXi + εi,

and

β1 =
∂ lnYi

∂ lnXi
=

∂Y
Y

∂X
X

=
%∆Y
%∆X

Thus, β1 corresponds to the elasticity of Yi with respect to Xi. In general, the coefficient on a variable
that enters the model in in levels corresponds to the effect of a one-unit change in that variable. The
coefficient on a variable that appears logged corresponds to the effect of a one percent change in that
variable. For example, in a semi-log model where only the regressor is logged,

Yi = β1 lnXi + εi,

β1 will correspond to a unit change in Yi for a % change in Xi. Finally, in the case of discrete regressors,
where there is no differential interpretation of coefficients, β represents the effect of a whole unit
change, such as a dummy going from 0 to 1.

3.2.1 Example: Dummy variables and interactions in cross-section re-
gressions

The January and the December effects are seasonal phenomena that have been widely studied in
finance. Simply put, the December effect hypothesizes that returns in December are unusually low
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due to tax-induced portfolio rebalancing, mostly to realized losses, while the January effect stipulates
returns are abnormally high as investors return to the market. To model excess returns on a portfolio
(BHe

i ) as a function of the excess market return (VWMe
i ), a constant, and the January and December

effects, a model can be specified

BHe
i = β1 +β2VWMe

i +β3I1i +β4I12i + εi

where I1i = 1 if the return was generated in January and I12i = 1 in December. The model can be
reparameterized into three cases:

BHe
i = (β1 +β3)+β2VWMe

i + εi January
BHe

i = (β1 +β4)+β2VWMe
i + εi December

BHe
i = β1 +β2VWMe

i + εi Otherwise

Dummy interactions can be used to produce models that have both different intercepts and different
slopes in January and December,

BHe
i = β1 +β2VWMe

i +β3I1i +β4I12i +β5I1iVWMe
i +β6I12iVWMe

i + εi.

If excess returns on a portfolio were nonlinearly related to returns on the market, a simple model
could be specified

BHe
i = β1 +β2VWMe

i +β3(VWMe
i )

2 +β4(VWMe
i )

3 + εi.

Dittmar (2002) proposed a similar model to explain the cross-sectional dispersion of expected returns.

3.3 Estimation

Linear regression is also known as ordinary least squares (OLS) or simply least squares. The least-
squares estimator minimizes the squared distance between the fit line (or plane if there are multiple
regressors) and the regressand. The parameters are estimated as the solution to

min
β

(y−Xβ )′(y−Xβ ) = min
β

n∑
i=1

(Yi−xiβ )
2. (3.6)

First-order conditions of this optimization problem are

−2X′(y−Xβ ) =−2
(
X′y−X′Xβ

)
=−2

n∑
i=1

xi(Yi−xiβ ) = 0 (3.7)

and rearranging, the least-squares estimator for β can be analytically derived.

Definition 3.1 (OLS Estimator). The ordinary least-squares estimator, denoted β̂ , is defined

β̂ = (X′X)−1X′y. (3.8)
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This estimator is only reasonable if X′X is invertible, which is equivalent to the condition that
rank(X) = k. This requirement states that no column of X can be exactly expressed as a combination
of the k−1 remaining columns and that the number of observations is at least as large as the number
of regressors (n ≥ k). This is a weak condition and is trivial to verify in most econometric software
packages: using a less than full rank matrix will generate a warning or error.

Dummy variables create one further issue worthy of special attention. Suppose dummy variables
corresponding to the four quarters of the year, I1i, . . . , I4i, are constructed from a quarterly data set of
portfolio returns. Consider a simple model with a constant and all four dummies

Ri = β1 +β2I1i +β3I2i +β4I3i +β5I4i + εi.

It is not possible to estimate this model with all four dummy variables and the constant because
the constant is a perfect linear combination of the dummy variables, and so the regressor matrix
would be rank deficient. The solution is to exclude either the constant or one of the dummy variables.
The choice of variable to exclude makes no difference in estimation, and only the interpretation of
the estimated coefficients changes. In the case where the constant is excluded, the coefficients on
the dummy variables are directly interpretable as quarterly average returns. If one of the dummy
variables is excluded, for example, the first quarter dummy variable, the interpretation changes. In
this parameterization,

Ri = β1 +β2I2i +β3I3i +β4I4i + εi,

β1 is the average return in Q1, while β1 +β j is the average return in Q j.
It is also important that any regressor, other than the constant, be nonconstant. Suppose a regres-

sion that included the number of years since public floatation is fitted on a data set that contains only
assets that have been trading for exactly 10 years. Including both this regressor and a constant results
in perfect collinearity, but, more importantly, without variability in a regressor, it is impossible to
determine whether changes in the regressor (years since float) results in a change in the regressand
or whether the effect is simply constant across all assets. The role that that variability of regressors
plays in estimating model parameters will be revisited when studying the statistical properties of β̂ .

The second derivative matrix of the minimization,

2X′X,

ensures that the solution must be a minimum as long as X′X is positive definite, which is equivalent
to a condition that rank(X) = k.

Once the regression coefficients have been estimated, it is useful to define the fit values, ŷ =
Xβ̂ and sample residuals ε̂ = y− ŷ = y−Xβ̂ . Rewriting the first-order condition in terms of the
explanatory variables and the residuals provides insight into the numerical properties of the residuals.
An equivalent first-order condition to eq. (3.7) is

X′ε̂ = 0. (3.9)

This set of linear equations is commonly referred to as the normal equations or orthogonality con-
ditions. This set of conditions requires that ε̂ is outside the span of the columns of X. Moreover,
considering the columns of X separately, X′jε̂ = 0 for all j = 1,2, . . . ,k. When a column contains a
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constant (an intercept in the model specification), ι ′ε̂ = 0 (
∑n

i=1 ε̂i = 0), and the mean of the residuals
will be exactly 0.3

The OLS estimator of the residual variance, σ̂2, can be defined.4

Definition 3.2 (OLS Variance Estimator). The OLS residual variance estimator, denoted σ̂2, is de-
fined

σ̂
2 =

ε̂
′
ε̂

n− k
(3.10)

Definition 3.3 (Standard Error of the Regression). The standard error of the regression is defined as

σ̂ =
√

σ̂2 (3.11)

The least-squares estimator has two final noteworthy properties. First, nonsingular transforma-
tions of X and non-zero scalar transformations of Y have deterministic effects on the estimated re-
gression coefficients. Suppose A is a k by k nonsingular matrix, and c is a non-zero scalar. The
coefficients of a regression of cYi on xiA are

β̃ = [(XA)′(XA)]−1(XA)′(cy) (3.12)

= c(A′X′XA)−1A′X′y
= cA−1(X′X)−1A′−1A′X′y
= cA−1(X′X)−1X′y

= cA−1
β̂ .

Second, as long as the model contains a constant, the regression coefficients on all terms except
the intercept are unaffected by adding an arbitrary constant to either the regressor or the regressands.
Consider transforming the standard specification,

Yi = β1 +β2X2,i + . . .+βkXk,i + εi

to

Ỹi = β1 +β2X̃2,i + . . .+βkX̃k,i + εi

where Ỹi = Yi + cy and X̃ j,i = X j,i + cx j . This model is identical to

Yi = β̃1 +β2X2,i + . . .+βkXk,i + εi

where β̃1 = β1 + cy−β2cx2− . . .−βkcxk .

3ι is an n by 1 vector of 1s.
4The choice of n− k in the denominator will be made clear once the properties of this estimator have been examined.
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Constant VWMe SMB HML MOM σ̂

SLe -0.15 1.09 1.02 -0.26 -0.03 0.99
SMe 0.08 0.96 0.82 0.35 -0.00 0.77
SHe 0.05 1.00 0.87 0.69 -0.00 0.56
BLe 0.12 0.99 -0.15 -0.28 -0.00 0.69
BMe -0.05 0.98 -0.13 0.31 -0.00 1.15
BHe -0.09 1.08 0.00 0.76 -0.04 1.06

Table 3.3: Estimated regression coefficients from the model Rpi
i = β1 + β2VWMe

i + β3SMBi +
β4HMLi +β5MOMi + εi, where Rpi

i is the excess return on one of the six size and value sorted port-
folios. The final column contains the standard error of the regression.

3.3.1 Estimation of Cross-Section regressions of returns on factors

Table 3.3 contains the estimated regression coefficients as well as the standard error of the regression
for the six portfolios in the Fama-French data set in a specification that includes all four factors
and a constant. There has been a substantial decrease in the magnitude of the standard error of the
regression relative to the standard deviation of the original data. The next section will formalize how
this reduction is interpreted.

3.4 Assessing Fit

Once the parameters have been estimated, the next step is to determine whether the model fits the data.
The minimized sum of squared errors, the optimization’s objective, is an obvious choice to assess fit.
However, there is an important drawback to using the sum of squared errors: changes in the scale of
Yi alter the minimized sum of squared errors without changing the fit. It is necessary to distinguish
between the portions of y explained by X from those that are not to construct a scale-free metric.

The projection matrix, PX, and the annihilator matrix, MX, are useful when decomposing the
regressand into the explained component and the residual.

Definition 3.4 (Projection Matrix). The projection matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the space spanned by X, denoted PX, is defined

PX = X(X′X)−1X′ (3.13)

Definition 3.5 (Annihilator Matrix). The annihilator matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the null space of X′, denoted MX, is defined

MX = In−X(X′X)−1X′. (3.14)

These two matrices have some desirable properties. Both the fited value of y (ŷ) and the estimated
errors, ε̂ , can be expressed in terms of these matrices as ŷ = PXy and ε̂ = MXy, respectively. These
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matrices are also idempotent: PXPX = PX and MXMX = MX and orthogonal: PXMX = 0. The pro-
jection matrix returns the portion of y that lies in the linear space spanned by X, while the annihilator
matrix returns the portion of y in the null space of X. In essence, MX annihilates any portion of y
explainable by X, leaving only the residuals.

Decomposing y using the projection and annihilator matrices,

y = PXy+MXy

which follows since PX +MX = In. The squared observations can be decomposed

y′y = (PXy+MXy)′(PXy+MXy)
= y′PXPXy+y′PXMXy+y′MXPXy+y′MXMXy
= y′PXy+0+0+y′MXy
= y′PXy+y′MXy

noting that PX and MX are idempotent and PXMX = 0n. These three quantities are often referred to
as5

y′y =
n∑

i=1

Y 2
i Uncentered Total Sum of Squares (TSSU ) (3.15)

y′PXy =
n∑

i=1

(xiβ̂ )
2 Uncentered Regression Sum of Squares (RSSU) (3.16)

y′MXy =
n∑

i=1

(Yi−xiβ̂ )
2 Uncentered Sum of Squared Errors (SSEU). (3.17)

Dividing through by y′y

y′PXy
y′y

+
y′MXy

y′y
= 1

or

RSSU

TSSU
+

SSEU

TSSU
= 1.

This identity expresses the scale-free total variation in y that is captured by X (y′PXy) and that
which is not (y′MXy). The portion of the total variation explained by X is known as the uncentered
R2 (R2

U),

5There is no consensus about the names of these quantities. In some texts, the component capturing the fit portion
is known as the Regression Sum of Squares (RSS) while in others, it is known as the Explained Sum of Squares (ESS),
while the portion attributable to the errors is known as the Sum of Squared Errors (SSE), the Sum of Squared Residuals
(SSR), the Residual Sum of Squares (RSS) or the Error Sum of Squares (ESS). The choice to use SSE and RSS in this
text was to ensure the reader that SSE must be the component of the squared observations relating to the error variation.



140 Analysis of Cross-Sectional Data

Definition 3.6 (Uncentered R2(R2
U)). The uncentered R2, which is used in models that do not include

an intercept, is defined

R2
U =

RSSU

TSSU
= 1− SSEU

TSSU
(3.18)

While R2
U is scale-free, it suffers from one shortcoming. Suppose a constant is added to y so that

the TSSU changes to (y+ c)′(y+ c). The identity still holds, and so (y+ c)′(y+ c) must increase
(for a sufficiently large c). In turn, one of the right-hand side variables must also grow larger. In the
usual case where the model contains a constant, the increase will occur in the RSSU (y′PXy), and as c
becomes arbitrarily large, uncentered R2 will asymptote to one. A centered measure computed using
deviations from the mean rather than on levels overcomes this limitation.

Let ỹ = y− ȳ = Mιy where Mι = In− ι(ι ′ι)−1ι ′ is matrix which subtracts the mean from a vector
of data. Then

y′MιPXMιy+y′MιMXMιy = y′Mιy
y′MιPXMιy

y′Mιy
+

y′MιMXMιy
y′Mιy

= 1

or more compactly

ỹ′PXỹ
ỹ′ỹ

+
ỹ′MXỹ

ỹ′ỹ
= 1.

Centered R2 (R2
C) is defined analogously to uncentered replacing the uncentered sums of squares

with their centered counterparts.

Definition 3.7 (Centered R2(R2
C)). The uncentered R2, used in models that include an intercept, is

defined
R2

C =
RSSC

TSSC
= 1− SSEC

TSSC
(3.19)

where

y′Mιy =

n∑
i=1

(Yi− Ȳ )2 Centered Total Sum of Squares (TSSC) (3.20)

y′MιPXMιy =

n∑
i=1

(xiβ̂ − x̄β̂ )2 Centered Regression Sum of Squares (RSSC) (3.21)

y′MιMXMιy =
n∑

i=1

(Yi−xiβ̂ )
2 Centered Sum of Squared Errors (SSEC). (3.22)

and where x̄ = n−1∑n
i=1 xi.

The expressions R2, SSE, RSS, and TSS should be assumed to correspond to the centered version
unless further qualified. With two versions of R2 available that generally differ, which should be
used? Centered should be used if the model is centered (contains a constant), and uncentered should
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be used when it does not. Failing to select the correct R2 can lead to incorrect conclusions about the
model’s fit, and mixing the definitions can lead to a nonsensical R2 that falls outside of [0,1]. For
instance, computing R2 using the centered version when the model does not contain a constant often
results in a negative value when

R2 = 1− SSEC

TSSC
.

Most software will return centered R2, and caution is warranted if a model is fit without a constant.
R2 does have some caveats. First, adding an additional regressor will always (weakly) increase

the R2 since the sum of squared errors cannot increase by the inclusion of an additional regressor.
This renders R2 useless in discriminating between two models where one is nested within the other.
One solution to this problem is to use the degree of freedom adjusted R2.

Definition 3.8 (Adjusted R2
(

R̄2
)

). The adjusted R2, which adjusts for the number of estimated
parameters, is defined

R̄2
= 1−

SSE
n−k
TSS
n−1

= 1− SSE
TSS

n−1
n− k

. (3.23)

R̄2 will increase if the reduction in the SSE is large enough to compensate for a loss of one degree of
freedom, captured by the n− k term. However, if the SSE does not change, R̄2 will decrease. R̄2 is
preferable to R2 for comparing models, although the topic of model selection will be more formally
considered at the end of this chapter. R̄2, like R2, should be constructed from the appropriate versions
of the RSS, SSE, and TSS (either centered or uncentered).

Second, R2 is not invariant to changes in the regressand. A frequent mistake is to use R2 to
compare the fit from two models with different regressands, for instance, Yi and ln(Yi). These numbers
are incomparable, and this type of comparison must be avoided. Moreover, R2 is even sensitive to
more benign transformations. Suppose a simple model is postulated,

Yi = β1 +β2Xi + εi,

and a model logically consistent with the original model,

Yi−Xi = β1 +(β2−1)Xi + εi,

is estimated. The R2s from these models will generally differ. For example, suppose the original
coefficient on xi was 1. Subtracting xi will reduce the explanatory power of xi to 0, rendering it
useless and resulting in a R2 of 0 irrespective of the R2 in the original model.

3.4.1 Example: R2 and R̄2 in Cross-Sectional Factor models

To illustrate the use of R2, consider alternative models of BHe that include one or more risk factors.
The R2 values in the top half of Table 3.4 show that R2 never declines as additional variables are
added. Note that the adjusted measure of fit, R̄2

U, also never declines, although it grows more slowly.
The monotonic pattern occurs since the adjustment penalty is small when the sample size n is large,
as is the case here. The table only shows the correct version of the R2 – centered for models that
contain a constant and uncentered for those that do not.
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Regressand Regressors R2
U R̄2

U R2
C R̄2

C

BHe 1, V MEe 0.7620 0.7616 – –
BHe 1, V MEe, SMB 0.7644 0.7637 – –
BHe 1, V MEe, SMB, HML 0.9535 0.9533 – –
BHe 1, V MEe, SMB, HML, MOM 0.9543 0.9541 – –
BHe VWMe – – 0.7656 0.7653
10+BHe 1, V MEe 0.7620 0.7616 – –
10+BHe V MEe – – 0.2275 0.2264
10×BHe 1, V MEe 0.7620 0.7616 – –
10×BHe V MEe – – 0.7656 0.7653
BHe−V MEe 1, V MEe 0.0024 0.0009 – –∑

Y BHe 1,
∑

Y V MEe 0.6800 0.6743 – –

Table 3.4: Centered and uncentered R2 and R̄2 from models with regressor or regressand changes.
Only the correct version of the R2 is shown – centered for models that contain a constant as indicated
by 1 in the regressor list, or uncentered for models that do not. The top rows demonstrate how R2 and
its adjusted version change as additional variables are added. The bottom two rows demonstrate how
changes in the regressand – the left-hand-side variable – affect the R2.

The bottom half of the table shows how R2 changes when the regressand changes. The R2 in
models that include a constant are invariant to constant shifts in the regressand. The R2

U of the model
that regresses 10+BHe on a constant and the excess market is identical to the same model only using
BHe. This relationship does not hold for models that do not contain a constant and R2

C changes when
10 is added to the return. Both measures are invariant to multiplicative adjustments. The penultimate
line shows that R2 is not invariant to changes in the regressand that do not fundamentally alter the
interpretation of the model. In this model, the difference in returns, BHe−V MW e, is regressed on a
constant and the excess market. The coefficient on the excess market, γ̂2, in this model

BHe
i −VWMe = γ1 + γ2VWMe

i + εi.

will be exactly 1 less than the coefficient in the model

BHe
i = β1 +β2VWMe

i + εi.

While these two models are conceptually identical and describe the same relationship between BHe,
the R2 changes. In this example, the coefficient on VWMein near zero since the coefficient in the
original specification is near 1. The R2 of the return difference is near 0 even though the market is
an important determinant of the the Big-High portfolio’s return. The final line shows the regression
coefficient of the annual return of BHe (

∑
Y BHe) on the annual return on the market (

∑
Y VWMe).

This type of aggregation also changes the R2. These final two results highlight a common form of
misuse of R2: do not compare the values of R2 in models with different regressands.
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3.5 Assumptions

Thus far, all of the derivations and identities presented are purely numerical. They do not indicate
whether β̂ is a reasonable way to estimate β . It is necessary to make some assumptions about the
innovations and the regressors to provide a statistical interpretation of β̂ . Two broad classes of as-
sumptions can be used to analyze the behavior of β̂ : the classical framework (also known as the
small-sample or finite-sample framework) and asymptotic analysis (also known as the large-sample
framework).

Neither method is ideal. The small-sample framework is precise in that the exact distribution of
regressors and test statistics are known. This precision comes at the cost of many restrictive assump-
tions – assumptions not usually plausible in financial applications. On the other hand, asymptotic
analysis requires few restrictive assumptions and is broadly applicable to financial data, although the
results are only exact if the number of observations is infinite. Asymptotic analysis is still useful for
examining the behavior in finite samples when the sample size is large enough for the asymptotic
distribution to approximate the finite-sample distribution reasonably well.

This leads to the most important question of asymptotic analysis: How large does n need to be
before the approximation is reasonable? Unfortunately, the answer to this question is “it depends”. In
simple cases, where residuals are independent and identically distributed, as few as 30 observations
may be sufficient for the asymptotic distribution to be a good approximation to the finite-sample
distribution. In more complex cases, anywhere from 100 to 1,000 may be needed, while in the extreme
cases, where the data is heterogenous and highly dependent, an asymptotic approximation may be
poor with more than 1,000,000 observations.

The properties of β̂ will be examined under both sets of assumptions. While the small-sample
results are not generally applicable, it is important to understand these results as the lingua franca of
econometrics, as well as the limitations of tests based on the classical assumptions, and to be able
to detect when a test statistic may not have the intended asymptotic distribution. Six assumptions
are required to examine the finite-sample distribution of β̂ and establish the optimality of the OLS
procedure( although many properties only require a subset).

Assumption 3.1 (Linearity). Yi = xiβ + εi

This assumption states the obvious condition necessary for least squares to be a reasonable method
to estimate the β . It further imposes a less obvious condition, that xi must be observed and measured
without error. Many applications in financial econometrics include latent variables. Linear regression
is not applicable in these cases and a more sophisticated estimator is required. In other applications,
the true value of xk,i is not observed and a noisy proxy must be used, so that x̃k,i = xk,i+νk,i where νk,i
is an error uncorrelated with xk,i. When this occurs, ordinary least-squares estimators are misleading
and a modified procedure (two-stage least squares (2SLS) or instrumental variable regression (IV))
must be used.

Assumption 3.2 (Conditional Mean). E[εi|X] = 0, i = 1,2, . . . ,n

This assumption states that the mean of each εi is zero given any Xk,i, any function of any Xk,i
or combinations of these. It is stronger than the assumption used in the asymptotic analysis and is
not valid in many applications (e.g., time-series data). When the regressand and regressor consist of
time-series data, this assumption may be violated and E[εi|xi+ j] 6= 0 for some j. This assumption also
implies that the correct form of Xk,i enters the regression, that E[εi] = 0 (through a simple application
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of the law of iterated expectations), and that the innovations are uncorrelated with the regressors, so
that E[εi′x j,i] = 0, i′ = 1,2, . . . ,n, i = 1,2, . . . ,n, j = 1,2, . . . ,k.

Assumption 3.3 (Rank). The rank of X is k with probability 1.

This assumption is needed to ensure that β̂ is identified and can be estimated. In practice, it
requires that the no regressor is perfectly co-linear with the others, that the number of observations
is at least as large as the number of regressors (n ≥ k) and that variables other than a constant have
non-zero variance.

Assumption 3.4 (Conditional Homoskedasticity). V[εi|X] = σ2

Homoskedasticity is rooted in homo (same) and skedannumi (scattering) and in modern English
means that the residuals have identical variances. This assumption is required to establish the opti-
mality of the OLS estimator and it specifically rules out the case where the variance of an innovation
is a function of a regressor.

Assumption 3.5 (Conditional Correlation). E[εiε j|X] = 0, i = 1,2, . . . ,n, j = i+1, . . . ,n

Assuming the residuals are conditionally uncorrelated is convenient when coupled with the ho-
moskedasticity assumption, and the residuals covariance is σ2In. Like homoskedasticity, this assump-
tion is needed for establishing the optimality of the least-squares estimator.

Assumption 3.6 (Conditional Normality). ε|X∼ N(0,Σ)

Assuming a specific distribution is very restrictive – results based on this assumption will only be
correct is the errors are actually normal – but this assumption allows for precise statements about the
finite-sample distribution of β̂ and test statistics. This assumption, when combined with assumptions
3.4 and 3.5, provides a simple distribution for the innovations: εi|X d→ N(0,σ2).

3.6 Small-Sample Properties of OLS estimators

Using these assumptions, many useful properties of β̂ can be derived. Recall that β̂ = (X′X)−1X′y.

Theorem 3.1 (Bias of β̂ ). Under assumptions 3.1 - 3.3

E[β̂ |X] = β . (3.24)

While unbiasedness is a desirable property, it is not particularly meaningful without further quali-
fication. For instance, an estimator which is unbiased, but does not increase in precision as the sample
size increases is generally not desirable. Fortunately, β̂ is not only unbiased, it has a variance that
goes to zero.

Theorem 3.2 (Variance of β̂ ). Under assumptions 3.1 - 3.5

V[β̂ |X] = σ
2(X′X)−1. (3.25)
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Under the conditions necessary for unbiasedness for β̂ , plus assumptions about homoskedasticity
and the conditional correlation of the residuals, the form of the variance is simple. Consistency
follows since

(X′X)−1 =

(
n
∑n

i=1 x′ixi

n

)−1

(3.26)

≈ 1
n

E
[
x′ixi
]−1

will be declining as the sample size increases.
However, β̂ has an even stronger property under the same assumptions. It is BLUE: Best L inear

Unbiased Estimator. Best, in this context, means that it has the lowest variance among all other linear
unbiased estimators. While this is a strong result, a few words of caution are needed to properly
interpret this result. The class of Linear Unbiased Estimators (LUEs) is small in the universe of all
unbiased estimators. Saying OLS is the “best” is akin to a one-armed boxer claiming to be the best
one-arm boxer. While possibly true, she probably would not stand a chance against a two-armed
opponent.

Theorem 3.3 (Gauss-Markov Theorem). Under assumptions 3.1-3.5, β̂ is the minimum variance
estimator among all linear unbiased estimators. That is V[β̃ |X] - V[β̂ |X] is positive semi-definite
where β̃ = Cy, E[β̃ ] = β and C 6= (X′X)

−1 X′.
Letting β̃ be any other linear, unbiased estimator of β , it must have a larger covariance. However,

many estimators, including most maximum likelihood estimators, are nonlinear and so are not neces-
sarily less efficient. Finally, making use of the normality assumption, it is possible to determine the
conditional distribution of β̂ .

Theorem 3.4 (Distribution of β̂ ). Under assumptions 3.1 – 3.6,

β̂ |X∼ N(β ,σ2(X′X)−1) (3.27)

Theorem 3.4 should not be surprising. β̂ is a linear combination of (jointly) normally distributed
random variables and thus is also normally distributed. Normality is also useful for establishing the
relationship between the estimated residuals ε̂ and the estimated parameters β̂ .

Theorem 3.5 (Conditional Independence of ε̂ and β̂ ). Under assumptions 3.1 - 3.6, ε̂ is independent
of β̂ , conditional on X.

One implication of this theorem is that Cov(ε̂i, β̂ j|X) = 0 i= 1,2, . . . ,n, j = 1,2, . . . ,k. As a result,
functions of ε̂ will be independent of functions of β̂ , a property useful in deriving distributions of test
statistics that depend on both. Finally, in the small-sample setup, the exact distribution of the sample
error variance estimator, σ̂2 = ε̂

′
ε̂/(n− k), can be derived.

Theorem 3.6 (Distribution of σ̂2).

(n− k)
σ̂2

σ2 ∼ χ
2
n−k

where σ̂2 = y′MXy
n−k = ε̂

′
ε̂

n−k .

Since ε̂i is a normal random variable, once it is standardized and squared, it should be a χ2
1 . The

change in the divisor from n to n− k reflects the loss in degrees of freedom due to the k estimated
parameters.
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3.7 Maximum Likelihood

Once the assumption that the innovations are conditionally normal has been made, conditional max-
imum likelihood is an obvious method to estimate the unknown parameters (β ,σ2). Conditioning
on X, and assuming the innovations are normal, homoskedastic, and conditionally uncorrelated, the
likelihood is given by

f (y|X;β ,σ2) = (2πσ
2)−

n
2 exp

(
−(y−Xβ )′(y−Xβ )

2σ2

)
(3.28)

and, taking logs, the log likelihood

l(β ,σ2;y|X) =−n
2

log(2π)− n
2

log(σ2)− (y−Xβ )′(y−Xβ )

2σ2 . (3.29)

Recall that the logarithm is a monotonic, strictly increasing transformation, and the extremum points
of the log-likelihood and the likelihood will occur at the same parameters. Maximizing the likelihood
with respect to the unknown parameters, there are k+1 first-order conditions

∂ l(β ,σ2;y|X)

∂β
=

X′(y−Xβ̂ )

σ2 = 0 (3.30)

∂ l(β ,σ2;y|X)

∂ σ̂2 =− n
2σ̂2 +

(y−Xβ̂ )′(y−Xβ̂ )

2σ̂4 = 0. (3.31)

The first set of conditions is identical to the first-order conditions of the least-squares estimator ignor-
ing the scaling by σ2, assumed to be greater than 0. The solution is

β̂
MLE

= (X′X)−1X′y (3.32)

σ̂
2 MLE = n−1(y−Xβ̂ )′(y−Xβ̂ ) = n−1

ε̂
′
ε̂. (3.33)

The regression coefficients are identical under maximum likelihood and OLS, although the divisor in
σ̂2 and σ̂2 MLE differ.

It is important to note that the derivation of the OLS estimator does not require an assumption of
normality. Moreover, the unbiasedness, variance, and BLUE properties do not rely on the conditional
normality of residuals. However, if the innovations are homoskedastic, uncorrelated and normal, the
results of the Gauss-Markov theorem can be strengthened using the Cramer-Rao lower bound.

Theorem 3.7 (Cramer-Rao Inequality). Let f (z;θ) be the joint density of z where θ is a k dimensional
parameter vector Let θ̂ be an unbiased estimator of θ 0 with finite covariance. Under some regularity
condition on f (·)

V[θ̂ ]≥ I−1(θ 0)

where

I =−E

[
∂ 2 ln f (z;θ)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
(3.34)



3.7 Maximum Likelihood 147

and

J = E

[
∂ ln f (z;θ)

∂θ

∂ ln f (z;θ)

∂θ
′

∣∣∣∣
θ=θ 0

]
(3.35)

and, under some additional regularity conditions,

I(θ 0) = J (θ 0).

The last part of this theorem is the information matrix equality (IME) and when a model is correctly
specified in its entirety, the expected covariance of the scores is equal to negative of the expected
hessian.6 The IME will be revisited in later chapters. The second order conditions,

∂ 2l(β ,σ2;y|X)

∂β∂β
′ =−X′X

σ̂2 (3.36)

∂ 2l(β ,σ2;y|X)

∂β∂σ2 =−X′(y−Xβ )

σ4 (3.37)

∂ 2l(β ,σ2;y|X)

∂ 2σ2 =
n

2σ4 −
(y−Xβ )′(y−Xβ )

σ6 (3.38)

are needed to find the lower bound for the covariance of the estimators of β and σ2. Taking expecta-
tions of the second derivatives,

E
[

∂ 2l(β ,σ2;y|X)

∂β∂β
′

]
=−X′X

σ2 (3.39)

E
[

∂ 2l(β ,σ2;y|X)

∂β∂σ2

]
= 0 (3.40)

E
[

∂ 2l(β ,σ2;y|X)

∂ 2σ2

]
=− n

2σ4 (3.41)

and so the lower bound for the variance of β̂ = β̂
MLE

is σ2(X′X)−1. Theorem 3.2 show that σ2(X′X)−1

is also the variance of the OLS estimator β̂ and so the Gauss-Markov theorem can be strengthened in
the case of conditionally homoskedastic, uncorrelated normal residuals.

Theorem 3.8 (Best Unbiased Estimator). Under assumptions 3.1 - 3.6, β̂ = β̂
MLE

is the best unbiased
estimator of β .

The difference between this theorem and the Gauss-Markov theorem is subtle but important. The
class of estimators is no longer restricted to include only linear estimators and so this result is both
broad and powerful: MLE (or OLS) is an ideal estimator under these assumptions (in the sense that
no other unbiased estimator, linear or not, has a lower variance). This results does not extend to the
variance estimator since E[σ̂2 MLE] = n

n−k σ2 6=σ2, and so the optimality of σ̂2 MLE cannot be established
using the Cramer-Rao theorem.

6There are quite a few regularity conditions for the IME to hold, but discussion of these is beyond the scope of this
course. Interested readers should see White (1996) for a thorough discussion.
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3.8 Small-Sample Hypothesis Testing

Most regressions are estimated to test implications of economic or finance theory. Hypothesis testing
is the mechanism used to determine whether data and theory are congruent. Formalized in terms of
β , the null hypothesis (also known as the maintained hypothesis) is formulated as

H0 : R(β )− r = 0 (3.42)

where R(·) is a function from Rk to Rm, m ≤ k and r is an m by 1 vector. Initially, a subset of all
hypotheses, those in the linear equality hypotheses class, formulated

H0 : Rβ − r = 0 (3.43)

will be examined where R is a m by k matrix. In subsequent chapters, more general test specifications
including nonlinear restrictions on the parameters will be considered. All hypotheses in this class can
be written as weighted sums of the regression coefficients,

R11β1 +R12β2 . . .+R1kβk = r1
R21β1 +R22β2 . . .+R2kβk = r2

...
Rm1β1 +Rm2β2 . . .+Rmkβk = ri

Each constraint is represented as a row in the above set of equations. Linear equality constraints can
be used to test parameter restrictions such as

β1 = 0 (3.44)
3β2 +β3 = 1

k∑
j=1

β j = 0

β1 = β2 = β3 = 0.

For instance, if the unrestricted model is

Yi = β1 +β2X2,i +β3X3,i +β4X4,i +β5X5,i + εi

the hypotheses in eq. (3.44) can be described in terms of R and r as

H0 R r

β1 = 0
[

1 0 0 0 0
]

0

3β2 +β3 = 1
[

0 3 1 0 0
]

1∑k
j=1 β j = 0

[
0 1 1 1 1

]
0

β1 = β2 = β3 = 0

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

  0
0
0


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When using linear equality constraints, alternatives are specified as H1 : Rβ − r 6= 0. Once both
the null and the alternative hypotheses have been postulated, it is necessary to discern whether the
data are consistent with the null hypothesis. Three classes of statistics will be described to test these
hypotheses: Wald, Lagrange Multiplier and Likelihood Ratio. Wald tests are perhaps the most intu-
itive: they directly test whether Rβ − r is close to zero. Lagrange Multiplier tests incorporate the
constraint into the least-squares problem using a Lagrangian. If the constraint has a small effect on
the minimized sum of squares, the Lagrange multipliers, often described as the shadow price of the
constraint in economic applications, should be close to zero. The magnitude of these forms the basis
of the LM test statistic. Finally, likelihood ratios test whether the data are less likely under the null
than they are under the alternative. If the null hypothesis is not restrictive this ratio should be close to
one and the difference in the log-likelihoods should be small.

3.8.1 t-tests

T-tests can be used to test a single hypothesis involving one or more coefficients,

H0 : Rβ = r

where R is a 1 by k vector and r is a scalar. Recall from theorem 3.4, β̂−β ∼N(0,σ2(X′X)−1). Under
the null, R(β̂ −β ) = Rβ̂ −Rβ = Rβ̂ − r and applying the properties of normal random variables,

Rβ̂ − r ∼ N(0,σ2R(X′X)−1R′).

A simple test can be constructed

z =
Rβ̂ − r√

σ2R(X′X)−1R′
, (3.45)

where z∼ N(0,1). To perform a test with size α , the value of z can be compared to the critical values
of the standard normal and rejected if |z| >Cα where Cα is the 1−α quantile of a standard normal.
However, z is an infeasible statistic since it depends on an unknown quantity, σ2. The natural solution

is to replace the unknown parameter with an estimate. Dividing z by
√

s2

σ2 and simplifying,

t =
z√

s2

σ2

(3.46)

=

Rβ̂−r√
σ2R(X′X)−1R′√

s2

σ2

=
Rβ̂ − r√

s2R(X′X)−1R′
.

Note that the denominator (n− k) s2

σ2 ∼ χ2
n−k, and so t is the ratio of a standard normal to the square

root of a χ2
ν normalized by it standard deviation. As long as the standard normal in the numerator and

the χ2
v are independent, this ratio will have a Student’s t distribution.
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Definition 3.9 (Student’s t distribution). Let z ∼ N(0,1) (standard normal) and let w ∼ χ2
ν where z

and w are independent. Then
z√w

ν

∼ tν . (3.47)

2

The independence of β̂ and s2 – which is only a function of ε̂ – follows from 3.5, and so t has a
Student’s t distribution.

Theorem 3.9 (t-test). Under assumptions 3.1 - 3.6,

Rβ̂ − r√
s2R(X′X)−1R′

∼ tn−k. (3.48)

As ν →∞, the Student’s t distribution converges to a standard normal. As a practical matter,
when ν > 30, the T distribution is close to a normal. While any single linear restriction can be tested
with a t-test , the expression t-stat has become synonymous with a specific null hypothesis.

Definition 3.10 (t-stat). The t-stat of a coefficient, βk, is the t-test value of a test of the null H0 : βk = 0
against the alternative H1 : βk 6= 0, and is computed

β̂k√
s2(X′X)−1

[kk]

(3.49)

where (X′X)−1
[kk] is the kth diagonal element of (X′X)−1.

The previous examples were all two-sided; the null would be rejected if the parameters differed
in either direction from the null hypothesis. The T-test is also unique among these three main classes
of test statistics in that it can easily be applied against both one-sided alternatives and two-sided
alternatives.7

However, there is often a good argument to test a one-sided alternative. For instance, in tests of the
market premium, theory indicates that it must be positive to induce investment. Thus, when testing
the null hypothesis that a risk premium is zero, a two-sided alternative could reject in cases which are
not theoretically interesting. More importantly, a one-sided alternative, when appropriate, will have
more power than a two-sided alternative since the direction information in the null hypothesis can
be used to tighten confidence intervals. The two types of tests involving a one-sided hypothesis are
upper tail tests which test nulls of the form H0 : Rβ ≤ r against alternatives of the form H1 : Rβ > r,
and lower tail tests which test H0 : Rβ ≥ r against H1 : Rβ < r.

Figure 3.1 contains the rejection regions of a t10 distribution. The dark gray region corresponds
to the rejection region of a two-sided alternative to the null that H0 : β̂ = β 0 for a 10% test. The
light gray region, combined with the upper dark gray region corresponds to the rejection region of
a one-sided upper tail test, and so test statistic between 1.372 and 1.812 would be rejected using a
one-sided alternative but not with a two-sided one.

Algorithm 3.1 (t-test).
7Wald, LM, and LR tests can be implemented against one-sided alternatives with considerably more effort.
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Rejection regions of a t10
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Figure 3.1: Rejection region for a t-test of the nulls H0 : β = β 0 (two-sided) and H0 : β ≤ β 0. The two-
sided rejection region is indicated by dark gray while the one-sided (upper) rejection region includes
both the light and dark gray areas in the right tail.

1. Estimate β̂ using least squares.

2. Compute s2 = (n− k)−1∑n
i=1 ε̂2

i and s2(X′X)−1.

3. Construct the restriction matrix, R, and the value of the restriction, r from the null hypothesis.

4. Compute t = Rβ̂−r√
s2R(X′X)−1R′

.

5. Compare t to the critical value, Cα , of the tn−k distribution for a test size with α . In the case of
a two tailed test, reject the null hypothesis if |t|> Ftν (1−α/2) where Ftν (·) is the CDF of a tν -
distributed random variable. In the case of a one-sided upper-tail test, reject if t > Ftν (1−α)
or in the case of a one-sided lower-tail test, reject if t < Ftν (α).

3.8.2 Wald Tests

Wald test directly examines the distance between Rβ and r. Intuitively, if the null hypothesis is true,
then Rβ −r≈ 0. In the small-sample framework, the distribution of Rβ −r follows directly from the
properties of normal random variables. Specifically,
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Rβ − r∼ N(0,σ2R(X′X)−1R′)

Thus, to test the null H0 : Rβ − r = 0 against the alternative H0 : Rβ − r 6= 0, a test statistic can be
based on

WInfeasible =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)

σ2 (3.50)

which has a χ2
m distribution.8 However, this statistic depends on an unknown quantity, σ2, and to

operationalize W , σ2 must be replaced with an estimate, s2.

W =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)/m

σ2
σ2

s2 =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)/m

s2
(3.51)

The replacement of σ2 with s2 has an effect on the distribution of the estimator which follows
from the definition of an F distribution.

Definition 3.11 (F distribution). Let z1 ∼ χ2
ν1

and let z2 ∼ χ2
ν2

where z1 and z2 are independent. Then

z1
ν1
z2
ν2

∼ Fν1,ν2 (3.52)

The conclusion that W has a Fm,n−k distribution follows from the independence of β̂ and ε̂ , which
in turn implies the independence of β̂ and s2.

Theorem 3.10 (Wald test). Under assumptions 3.1 - 3.6,

(Rβ − r)′
[
R(X′X)−1R′

]−1
(Rβ − r)/m

s2 ∼ Fm,n−k (3.53)

Analogous to the tν distribution, an Fν1,ν2 distribution converges to a scaled χ2 in large samples
(χ2

ν1
/ν1 as ν2→∞). Figure 3.2 contains failure to reject (FTR) regions for some hypothetical Wald

tests. The shape of the region depends crucially on the correlation between the hypotheses being
tested. For instance, panel (a) corresponds to testing a joint hypothesis where the tests are independent
and have the same variance. In this case, the FTR region is a circle. Panel (d) shows the FTR region
for highly correlated tests where one restriction has a larger variance.

Once W has been computed, the test statistic should be compared to the critical value of an Fm,n−k
and rejected if the test statistic is larger. Figure 3.3 contains the pdf of an F5,30 distribution. Any
W > 2.049 would lead to rejection of the null hypothesis using a 10% test.

The Wald test has a more common expression in terms of the SSE from both the restricted and
unrestricted models. Specifically,

8The distribution can be derived noting that
[
R(X′X)−1R′

]− 1
2 (Rβ−r)∼N

(
0,
[

Im 0
0 0

])
where the matrix square

root makes use of a generalized inverse. A more complete discussion of reduced rank normals and generalized inverses is
beyond the scope of this course.
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Bivariate F distributions
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Figure 3.2: Bivariate plot of an F distribution. The four panels contain the failure-to-reject regions
corresponding to 20, 10 and 1% tests. Panel (a) contains the region for uncorrelated tests. Panel (b)
contains the region for tests with the same variance but a correlation of 0.5. Panel (c) contains the
region for tests with a correlation of -.8 and panel (d) contains the region for tests with a correlation
of 0.5 but with variances of 2 and 0.5 (The test with a variance of 2 is along the x-axis).

W =
SSER−SSEU

m
SSEU
n−k

=
SSER−SSEU

m
s2 . (3.54)

where SSER is the sum of squared errors of the restricted model.9 The restricted model is the original
model with the null hypothesis imposed. For example, to test the null H0 : β2 = β3 = 0 against an
alternative that H1 : β2 6= 0 or β3 6= 0 in a bivariate regression,

Yi = β1 +β2X1,i +β3X2,i + εi (3.55)

9The SSE should be the result of minimizing the squared errors. The centered should be used if a constant is included
and the uncentered versions if no constant is included.
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the restricted model imposes the null,

Yi = β1 +0X1,i +0X2,i + εi

= β1 + εi.

The restricted SSE, SSER is computed using the residuals from this model while the unrestricted
SSE, SSEU, is computed from the general model that includes both X variables (eq. (3.55)). While
Wald tests usually only require the unrestricted model to be estimated, the difference of the SSEs is
useful because it can be computed from the output of any standard regression package. Moreover, any
linear regression subject to linear restrictions can be estimated using OLS on a modified specification
where the constraint is directly imposed. Consider the set of restrictions, R, in an augmented matrix
with r

[R r]
By transforming this matrix into row-echelon form,[

Im R̃ r̃
]

a set of m restrictions can be derived. This also provides a direct method to check whether a set of
constraints is logically consistent and feasible or if it contains any redundant restrictions.

Theorem 3.11 (Restriction Consistency and Redundancy). If
[
Im R̃ r̃

]
is [R r] in reduced ech-

elon form, then a set of restrictions is logically consistent if rank(R̃) = rank(
[
Im R̃ r̃

]
). Addition-

ally, if rank(R̃) = rank(
[
Im R̃ r̃

]
) = m, then there are no redundant restrictions.

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = Ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute W =
SSER−SSEU

m
SSEU
n−k

.

4. Compare W to the critical value, Cα , of the Fm,n−k distribution at size α . Reject the null
hypothesis if W >Cα .

Finally, in the same sense that the t-stat is a test of the null H0 : βk = 0 against the alternative
H1 : βk 6= 0, the F-stat of a regression tests whether all coefficients are zero (except the intercept)
against an alternative that at least one is non-zero.

Definition 3.12 (F-stat of a Regression). The F-stat of a regression is the value of a Wald test that
all coefficients are zero except the coefficient on the constant (if one is included). Specifically, if the
unrestricted model is

Yi = β1 +β2X2,i + . . .βkXk,i + εi,

the F-stat is the value of a Wald test of the null H0 : β2 = β3 = . . . = βk = 0 against the alternative
H1 : β j 6= 0, for j = 2, . . . ,k and corresponds to a test based on the restricted regression

Yi = β1 + εi.
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Rejection region of a F5,30 distribution
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Figure 3.3: Rejection region for a F5,30 distribution when using a test with a size of 10%. If the null
hypothesis is true, the test statistic should be relatively small (would be 0 if exactly true). Large test
statistics lead to rejection of the null hypothesis. In this example, a test statistic with a value greater
than 2.049 would lead to a rejection of the null at the 10% level.

3.8.3 Example: T and Wald Tests in Cross-Sectional Factor models

Returning to the factor regression example, the t-stats in the 4-factor model can be computed

t j =
β̂ j√

s2(X′X)−1
[ j j]

.

For example, consider a regression of BHe on the set of four factors and a constant,

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi

The fit coefficients, t-stats and p-values are contained in table 3.5.

Definition 3.13 (P-value ). The p-value is the smallest test size (α) where the null hypothesis may be
rejected. The p-value can be equivalently defined as the largest size where the null hypothesis cannot
be rejected.
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P-values have the advantage that they are independent of the distribution of the test statistic. For
example, when using a 2-sided t-test, the p-value of a test statistic t is 2(1−Ftν (|t|)) where Ftν (| · |)
is the CDF of a t-distribution with ν degrees of freedom. In a Wald test, the p-value is 1−Ffν1,ν2

(W )
where Ffν1,ν2

(·) is the CDF of an fν1,ν2 distribution.
The critical value, Cα , for a 2-sided 10% t-test with 973 degrees of freedom (n−5) is 1.645, and

so if |t| >Cα the null hypothesis should be rejected, and the results indicate that the null hypothesis
that the coefficients on the constant and SMB are zero cannot be rejected the 10% level. The p-values
indicate the null that the constant was 0 could be rejected at a α of 14% but not one of 13%.

Table 3.5 also contains the Wald test statistics and p-values for a variety of hypotheses, some
economically interesting, such as the set of restrictions that the four factor model reduces to the
CAPM, β j = 0, j = 1,3, . . . ,5. Only one regression, the completely unrestricted regression, was
needed to compute all of the test statistics using Wald tests,

W =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)

s2

where R and r depend on the null being tested. For example, to test whether a strict CAPM was
consistent with the observed data,

R =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and r =


0
0
0
0

 .
All of the null hypotheses save one are strongly rejected with p-values of 0 to three decimal places.

The sole exception is H0 : β1 = β3 = 0, which produced a Wald test statistic of 2.05. The 5% critical
value of an F2,973 is 3.005, and so the null hypothesis would be not rejected at the 5% level. The
p-value indicates that the test would be rejected at the 13% level but not at the 12% level. One further
peculiarity appears in the table. The Wald test statistic for the null H0 : β5 = 0 is exactly the square of
the t-test statistic for the same null. This should not be surprising since W = t2 when testing a single
linear hypothesis. Moreover, if z∼ tν , then z2 ∼ F1,ν . This can be seen by inspecting the square of a
tν and applying the definition of an F1,ν -distribution.

3.8.4 Likelihood Ratio Tests

Likelihood Ratio (LR) test are based on the relative probability of observing the data if the null is
valid to the probability of observing the data under the alternative. The test statistic is defined

LR =−2ln

(
maxβ ,σ2 f (y|X;β ,σ2) subject to Rβ = r

maxβ ,σ2 f (y|X;β ,σ2)

)
(3.56)

Letting β̂ R denote the constrained estimate of β , this test statistic can be reformulated



3.8 Small-Sample Hypothesis Testing 157

t-Tests
β̂ s.e.

(
β̂

)
t-stat p-value

Constant -0.086 0.042 -2.04 0.042
VWMe 1.080 0.010 108.7 0.000
SMB 0.002 0.014 0.13 0.893
HML 0.764 0.015 50.8 0.000
MOM -0.035 0.010 -3.50 0.000

Wald Tests
Null Alternative W M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 3558.8 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 956.5 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 10.1 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.08 2 0.126
β5 = 0 β5 6= 0 12.3 1 0.000

Table 3.5: The upper panel contains t-stats and p-values for the regression of Big-High excess returns
on the four factors and a constant. The lower panel contains test statistics and p-values for Wald tests
of the reported null hypothesis. Both sets of tests were computed using the small-sample assumptions
and may be misleading since the residuals are both non-normal and heteroskedastic.

LR =−2ln

(
f (y|X; β̂ R, σ̂

2
R)

f (y|X; β̂ , σ̂2)

)
(3.57)

=−2[l(β̂ R, σ̂
2
R;y|X;)− l(β̂ , σ̂2;y|X)]

= 2[l(β̂ , σ̂2;y|X)− l(β̂ R, σ̂
2
R;y|X)]

In the case of the normal log likelihood, LR can be further simplified to10

LR =−2ln

(
f (y|X; β̂ R, σ̂

2
R)

f (y|X; β̂ , σ̂2)

)

=−2ln

(2πσ̂2
R)
− n

2 exp(− (y−Xβ̂ R)
′(y−Xβ̂ R)

2σ̂2
R

)

(2πσ̂2)−
n
2 exp(− (y−Xβ )′(y−Xβ )

2σ̂2 )


=−2ln

(
(σ̂2

R)
− n

2

(σ̂2)−
n
2

)

=−2ln
(

σ̂2
R

σ̂2

)− n
2

10Note that σ̂2
R and σ̂2 use n rather than a degree-of-freedom adjustment since they are MLE estimators.
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= n
[
ln(σ̂2

R)− ln(σ̂2)
]

= n [ln(SSER)− ln(SSEU)]

Finally, the distribution of the LR statistic can be determined by noting that

LR = n ln
(

SSER

SSEU

)
= N ln

(
σ̂2

R

σ̂2
U

)
(3.58)

and that

n− k
m

[
exp
(

LR
n

)
−1
]
=W. (3.59)

The transformation between W and LR is monotonic so the transformed statistic has the same distri-
bution as W , a Fm,n−k.

Algorithm 3.2 (Small-Sample Wald Test).

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = Ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute LR = n ln
(

SSER
SSEU

)
.

4. Compute W = n−k
m

[
exp
(LR

n

)
−1
]
.

5. Compare W to the critical value, Cα , of the Fm,n−k distribution at size α . Reject the null
hypothesis if W >Cα .

3.8.5 Example: LR Tests in Cross-Sectional Factor models

LR tests require estimating the model under both the null and the alternative. In all examples here,
the alternative is the unrestricted model with four factors while the restricted models (where the null
is imposed) vary. The simplest restricted model corresponds to the most restrictive null, H0 : β j = 0,
j = 1, . . . ,5, and is specified

Yi = εi.

To compute the likelihood ratio, the conditional mean and variance must be estimated. In this
simple specification, the conditional mean is ŷR = 0 (since there are no parameters) and the conditional
variance is estimated using the MLE with the mean, σ̂2

R = y′y/n (the sum of squared regressands). The
mean under the alternative is ŷU = x′iβ̂ and the variance is estimated using σ̂2

U =(y−x′iβ̂ )′(y−x′iβ̂ )/n.
Once these quantities have been computed, the LR test statistic is calculated

LR = n ln
(

σ̂2
R

σ̂2
U

)
(3.60)
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LR Tests
Null Alternative LR M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 3558.8 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 956.5 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 10.1 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.08 2 0.126
β5 = 0 β5 6= 0 12.3 1 0.000

LM Tests
Null Alternative LM M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 163.4 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 184.3 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 9.85 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.07 2 0.127
β5 = 0 β5 6= 0 12.1 1 0.001

Table 3.6: The upper panel contains test statistics and p-values using LR tests for using a regression
of excess returns on the big-high portfolio on the four factors and a constant. In all cases the null was
tested against the alternative listed. The lower panel contains test statistics and p-values for LM tests
of same tests. Note that the LM test statistics are uniformly smaller than the LR test statistics which
reflects that the variance in a LM test is computed from the model estimated under the null, a value
that must be larger than the estimate of the variance under the alternative which is used in both the
Wald and LR tests. Both sets of tests were computed using the small-sample assumptions and may be
misleading since the residuals are non-normal and heteroskedastic.

where the identity σ̂
2
R

σ̂2
U
= SSER

SSEU
has been applied. Finally, LR is transformed by n−k

m

[
exp
(LR

n

)
−1
]

to
produce the test statistic, which is numerically identical to W . This can be seen by comparing the
values in table 3.6 to those in table 3.5.

3.8.6 Lagrange Multiplier Tests

Consider minimizing the sum of squared errors subject to a linear hypothesis.

min
β

(y−Xβ )′(y−Xβ ) subject to Rβ − r = 0.

This problem can be formulated in terms of a Lagrangian,

L(β ,λ ) = (y−Xβ )′(y−Xβ )+(Rβ − r)′λ

and the problem is

max
λ

{
min

β

L(β ,λ )
}
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The first-order conditions correspond to a saddle point,

∂L
∂β

=−2X′(y−Xβ )+R′λ = 0

∂L
∂λ

= Rβ − r = 0

pre-multiplying the top FOC by R(X′X)−1 (which does not change the value, since it is 0),

2R(X′X)−1(X′X)β −2R(X′X)−1X′y+R(X′X)−1R′λ = 0

⇒ 2Rβ −2Rβ̂ +R(X′X)−1R′λ = 0

where β̂ is the usual OLS estimator. Solving,

λ̃ = 2
[
R(X′X)−1R′

]−1
(Rβ̂ − r) (3.61)

β̃ = β̂ − (X′X)−1R′
[
R(X′X)−1R′

]−1
(Rβ̂ − r) (3.62)

These two solutions provide some insight into the statistical properties of the estimators. β̃ , the
constrained regression estimator, is a function of the OLS estimator, β̂ , and a step in the direction
of the constraint. The size of the change is influenced by the distance between the unconstrained
estimates and the constraint (Rβ̂ − r). If the unconstrained estimator happened to exactly satisfy the
constraint, there would be no step.11

The Lagrange multipliers, λ̃ , are weighted functions of the unconstrained estimates, β̂ , and will be
near zero if the constraint is nearly satisfied (Rβ̂ − r≈ 0). In microeconomics, Lagrange multipliers
are known as shadow prices since they measure the magnitude of the change in the objective function
would if the constraint was relaxed a small amount. Note that β̂ is the only source of randomness
in λ̃ (like β̃ ), and so λ̃ is a linear combination of normal random variables and will also follow a
normal distribution. These two properties combine to provide a mechanism for testing whether the
restrictions imposed by the null are consistent with the data. The distribution of λ̂ can be directly
computed and a test statistic can be formed.

There is another method to derive the LM test statistic that is motivated by the alternative name of
LM tests: Score tests. Returning to the first-order conditions and plugging in the parameters,

R′λ = 2X′(y−Xβ̃ )

R′λ = 2X′ε̃

where β̃ is the constrained estimate of β and ε̃ are the corresponding estimated errors (ε̃ = y−Xβ̃ ).
Thus R′λ has the same distribution as 2X′ε̃ . However, under the small-sample assumptions, ε̃ are
linear combinations of normal random variables and so are also normal,

2X′ε̃ ∼ N(0,4σ
2X′X)

11Even if the constraint is valid, the constraint will never be exactly satisfied.



3.8 Small-Sample Hypothesis Testing 161

and

X′ε̃ ∼ N(0,σ2X′X). (3.63)

A test statistic that the scores are zero can be constructed in the same manner as a Wald test:

LMInfeasible =
ε̃
′X(X′X)−1X′ε̃

σ2 . (3.64)

However, like a Wald test this statistic is not feasible since σ2 is unknown. Using the same
substitution, the LM test statistic is given by

LM =
ε̃
′X(X′X)−1X′ε̃

s̃2 (3.65)

and has a Fm,n−k+m distribution where s̃2 is the estimated error variance from the constrained re-
gression. This is a different estimator than was used in constructing a Wald test statistic, where the
variance was computed from the unconstrained model. Both estimates are consistent under the null.
However, since SSER ≥ SSEU, s̃2 is likely to be larger than s2.12 LM tests are usually implemented
using a more convenient – but equivalent – form,

LM =
SSER−SSEU

m
SSER

n−k+m

. (3.66)

To use the Lagrange Multiplier principle to conduct a test:

Algorithm 3.3 (Small-Sample LM Test).

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute LM =
SSER−SSEU

m
SSER

n−k+m

.

4. Compare LM to the critical value, Cα , of the Fm,n−k+m distribution at size α . Reject the null
hypothesis if LM >Cα .

Alternatively, the scores can be directly tested.

Algorithm 3.4 (Alternative Small-Sample LM Test).

1. Estimate the restricted model, Ỹi = x̃iβ + εi.

2. Compute LM =
ε̃
′X(X′X)−1X′ ε̃

m
s2 where X is n by k the matrix of regressors from the unconstrained

model and s2 =
∑n

i=1 ε̃
2
i

n−k+m .

3. Compare LM to the critical value, Cα , of the Fm,n−k+m distribution at size α . Reject the null
hypothesis if LM >Cα .

12Note that since the degree-of-freedom adjustment in the two estimators is different, the magnitude estimated variance
is not directly proportional to SSER and SSEU.
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3.8.7 Example: LM Tests in Cross-Sectional Factor models

Table 3.6 also contains values from LM tests. LM tests have a slightly different distributions than
the Wald and LR and do not produce numerically identical results. While the Wald and LR tests
require estimation of the unrestricted model (estimation under the alternative), LM tests only require
estimation of the restricted model (estimation under the null). For example, in testing the null H0 :
β1 = β5 = 0 (that the MOM factor has no explanatory power and that the intercept is 0), the restricted
model is estimated from

BHe
i = γ1VWMe

i + γ2SMBi + γ3HMLi + εi.

The two conditions, that β1 = 0 and that β5 = 0 are imposed by excluding these regressors. Once the
restricted regression is fit, the residuals estimated under the null, ε̃i = Yi−xiβ̃ are computed and the
LM test is calculated from

LM =
ε̃
′X(X′X)−1X′ε̃

s2

where X is the set of explanatory variables from the unrestricted regression (in the case, xi = [1
VWMe

i SMBi HMLi MOMi]). Examining table 3.6, the LM test statistics are considerably smaller
than the Wald test statistics. This difference arises since the variance used in computing the LM
test statistic, σ̃2, is estimated under the null. For instance, in the most restricted case (H0 = β j = 0,
j = 1, . . . ,k), the variance is estimated by y′y/N (since k = 0 in this model) which is very different
from the variance estimated under the alternative (which is used by both the Wald and LR). Despite
the differences in the test statistics, the p-values in the table would result in the same inference. For
the one hypothesis that is not completely rejected, the p-value of the LM test is slightly larger than
that of the LR (or W). However, .130 and .129 should never make a qualitative difference (nor should
.101 and .099, even when using a 10% test). These results highlight a general feature of LM tests:
test statistics based on the LM-principle are smaller than Likelihood Ratios and Wald tests, and so
less likely to reject.

3.8.8 Comparing the Wald, LR, and LM Tests

With three tests available to test the same hypothesis, which is the correct one? In the small-sample
framework, the Wald is the obvious choice because W ≈ LR and W is larger than LM. However, the
LM has a slightly different distribution, so it is impossible to make an absolute statement. The choice
among these three tests reduces to user preference and ease of computation. Since computing SSEU

and SSER is simple, the Wald test is likely the simplest to implement.
These results are no longer true when nonlinear restrictions and/or nonlinear models are estimated.

Further discussion of the factors affecting the choice between the Wald, LR, and LM tests will be
reserved until then. Figure 3.4 contains a graphical representation of the three test statistics in the
context of a simple regression, Yi = βXi+εi.13 The Wald test measures the magnitude of the constraint
Rβ − r at the unconstrained estimator β̂ . The LR test measures how much of the sum of squared
errors has changed between β̂ and β̃ . Finally, the LM test measures the magnitude of the gradient,
X′(y−Xβ ) at the constrained estimator β̃ .

13Magnitudes of the lines is not to scale, so the magnitude of the test statistics cannot be determined from the picture.
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Location of the three test statistics

Wald

LR

LM

2X′ (y− Xβ )

SSE= (y− Xβ )′ (y− Xβ )

Rβ − r = 0

Figure 3.4: Graphical representation of the three major classes of tests. The Wald test measures
the magnitude of the constraint, Rβ − r, at the OLS parameter estimate, β̂ . The LM test measures
the magnitude of the score at the restricted estimator (β̃ ) while the LR test measures the difference
between the SSE at the restricted estimator and the SSET at the unrestricted estimator. Note: Only
the location of the test statistic, not their relative magnitudes, can be determined from this illustration.

3.9 Large-Sample Assumption

While the small-sample assumptions allow the exact distribution of the OLS estimator and test statis-
tics to be derived, these assumptions are not realistic in applications using financial data. Asset returns
are non-normal (both skewed and leptokurtic), heteroskedastic, and correlated. The large-sample
framework allows for inference on β without making strong assumptions about the distribution or
error covariance structure. However, the generality of the large-sample framework comes at the loss
of the ability to say anything exact about the estimates in finite samples.

Four new assumptions are needed to analyze the asymptotic behavior of the OLS estimators.

Assumption 3.7 (Stationary Ergodicity). {(xi,εi)} is a strictly stationary and ergodic sequence.

This is a technical assumption needed for consistency and asymptotic normality. It implies two
properties about the joint density of {(xi,εi)}: the joint distribution of {(xi,εi)} and {(xi+ j,εi+ j)}
depends on the time between observations ( j) and not the observation index (i) and that averages will
converge to their expected value (as long as they exist). There are a number of alternative assumptions
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that could be used in place of this assumption, although this assumption is broad enough to allow for
i.i.d. , i.d.n.d (independent not identically distributed, including heteroskedasticity), and some n.i.n.i.d.
data, although it does rule out some important cases. Specifically, the regressors cannot be trending
or otherwise depend on the observation index, an important property of some economic time series
such as the level of a market index or aggregate consumption. Stationarity will be considered more
carefully in the time-series chapters.

Assumption 3.8 (Rank). E[x′ixi] = ΣXX is nonsingular and finite.

This assumption, like assumption 3.3, is needed to ensure identification.

Assumption 3.9 (Martingale Difference). {x′iεi,Fi} is a martingale difference sequence,

E
[(

X j,iεi
)2
]
<∞, j = 1,2, . . . ,k, i = 1,2 . . .

and S = V[n−
1
2 X′ε] is finite and non singular.

A martingale difference sequence has the property that its mean is unpredictable using the information
contained in the information set (Fi ).

Definition 3.14 (Martingale Difference Sequence). Let {Zi} be a vector stochastic process and Fi be
the information set corresponding to observation i containing all information available when observa-
tion i was collected except Zi. {Zi,Fi} is a martingale difference sequence if

E[Zi|Fi] = 0

In the context of the linear regression model, it states that the current score is not predictable by
any of the previous scores, that the mean of the scores is zero (E[X′iεi] = 0), and there is no other
variable in Fi which can predict the scores. This assumption is sufficient to ensure that n−1/2X′ε will
follow a Central Limit Theorem, and it plays a role in consistency of the estimator. A m.d.s. is a fairly
general construct and does not exclude using time-series regressors as long as they are predetermined,
meaning that they do not depend on the process generating εi. For instance, in the CAPM, the return
on the market portfolio can be thought of as being determined independently of the idiosyncratic
shock affecting individual assets.

Assumption 3.10 (Moment Existence). E[X4
j,i]<∞, i = 1,2, . . ., j = 1,2, . . . ,k and E[ε2

i ] = σ2 <∞,
i = 1,2, . . ..

This final assumption requires that the fourth moment of any regressor exists and the variance
of the errors is finite. This assumption is needed to derive a consistent estimator of the parameter
covariance.

3.10 Large-Sample Properties

These assumptions lead to two theorems that describe the asymptotic behavior of β̂ : it is consistent
and asymptotically normally distributed. First, some new notation is needed. Let

β̂ n =

(
X′X

n

)−1(X′y
n

)
(3.67)

be the regression coefficient using n realizations from the stochastic process {xi,εi}.
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Theorem 3.12 (Consistency of β̂ ). Under assumptions 3.1 and 3.7 - 3.9

β̂ n
p→ β

Consistency is a weak property of the OLS estimator, but it is important. This result relies crucially
on the implication of assumption 3.9 that n−1X′ε p→ 0, and under the same assumptions, the OLS
estimator is also asymptotically normally distributed.

Theorem 3.13 (Asymptotic Normality of β̂ ). Under assumptions 3.1 and 3.7 - 3.9

√
n(β̂ n−β )

d→ N(0,Σ−1
XX SΣ

−1
XX ) (3.68)

where ΣXX = E[x′ixi] and S = V[n−1/2X′ε]

Asymptotic normality provides the basis for hypothesis tests on β . However, using only theorem
3.13, tests are not feasible since ΣXX and S are unknown, and so must be estimated.

Theorem 3.14 (Consistency of OLS Parameter Covariance Estimator). Under assumptions 3.1 and
3.7 - 3.10,

Σ̂XX =n−1X′X p→ ΣXX

Ŝ =n−1
n∑

i=1

e2
i x′ixi

p→ S

=n−1 (X′ÊX
)

and
Σ̂
−1
XX ŜΣ̂

−1
XX

p→ Σ
−1
XX SΣ

−1
XX

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

Combining these theorems, the OLS estimator is consistent, asymptotically normal, and the asymp-
totic variance can be consistently estimated. These three properties provide the tools necessary to
conduct hypothesis tests in the asymptotic framework. The usual estimator of the residual variance is
also consistent for the variance of the innovations under the same conditions.

Theorem 3.15 (Consistency of OLS Variance Estimator). Under assumptions 3.1 and 3.7 - 3.10 ,

σ̂
2
n = n−1

ε̂
′
ε̂

p→ σ
2

Further, if homoskedasticity is assumed, then the parameter covariance estimator can be simpli-
fied.

Theorem 3.16 (Homoskedastic Errors). Under assumptions 3.1, 3.4, 3.5 and 3.7 - 3.10,

√
n(β̂ n−β )

d→ N(0,σ2
Σ
−1
XX )

Combining the result of this theorem with that of theorems 3.14 and 3.15, a consistent estimator
of σ2Σ

−1
XX is given by σ̂2

n Σ̂
−1
XX .
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3.11 Large-Sample Hypothesis Testing

All three test types, Wald, LR, and LM, have large-sample equivalents that exploit the estimated
parameters’ asymptotic normality. While these tests are only asymptotically exact, the use of the
asymptotic distribution is justified as an approximation to the finite-sample distribution, although the
quality of the CLT approximation depends on how well behaved the data are.

3.11.1 Wald Tests

Recall from Theorem 3.13,

√
n(β̂ n−β )

d→ N(0,Σ−1
XX SΣ

−1
XX ). (3.69)

Applying the properties of a normal random variable, if z∼ N(µ,Σ), c′z∼ N(c′µ,c′Σc) and that

if w∼ N(µ,σ2) then (w−µ)2

σ2 ∼ χ2
1 . Using these two properties, a test of the null

H0 : Rβ − r = 0

against the alternative

H1 : Rβ − r 6= 0

can be constructed.
Following from Theorem 3.13, if H0 : Rβ − r = 0 is true, then

√
n(Rβ̂ n− r) d→ N(0,RΣ

−1
XX SΣ

−1
XX R′) (3.70)

and

Γ
− 1

2
√

n(Rβ̂ n− r) d→ N(0,Ik) (3.71)

where Γ = RΣ
−1
XX SΣ

−1
XX R′. Under the null that H0 : Rβ − r = 0,

n(Rβ̂ n− r)′
[
RΣ
−1
XX SΣ

−1
XX R′

]−1
(Rβ̂ n− r) d→ χ

2
m (3.72)

where m is the rank(R). This estimator is not feasible since Γ is not known and must be estimated.
Fortunately, Γ can be consistently estimated by applying the results of Theorem 3.14

Σ̂XX = n−1X′X

Ŝ = n−1
n∑

i=1

e2
i x′ixi

and so

Γ̂ = Σ̂
−1
XX ŜΣ̂

−1
XX .

The feasible Wald statistic is defined
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W = n(Rβ̂ n− r)′
[
RΣ̂
−1
XX ŜΣ̂

−1
XX R′

]−1
(Rβ̂ n− r) d→ χ

2
m. (3.73)

Test statistic values can be compared to the critical value Cα from a χ2
m at the α-significance level

and the null is rejected if W is greater than Cα . The asymptotic t-test (which has a normal distribution)
is defined analogously,

t =
√

n
Rβ̂ n− r√

RΓ̂R′
d→ N(0,1), (3.74)

where R is a 1 by k vector. Typically R is a vector with 1 in its jth element, producing statistic

t =
√

n
β̂ jN√
[Γ̂] j j

d→ N(0,1)

where [Γ̂] j j is the jth diagonal element of Γ̂.
The n term in the Wald statistic (or

√
n in the t-test) may appear strange at first, although these

terms are also present in the classical tests. Recall that the t-stat (null H0 : β j = 0) from the classical
framework with homoskedastic data is given by

t1 =
β̂ j√

σ̂2[(X′X)−1] j j
.

The t-stat in the asymptotic framework is

t2 =
√

n
β̂ jN√

σ̂2[Σ̂
−1
XX ] j j

.

If t1 is multiplied and divided by
√

n, then

t1 =
√

n
β̂ j√

n
√

σ̂2[(X′X)−1] j j
=
√

n
β̂ j√

σ̂2[(X′X
n )−1] j j

=
√

n
β̂ j√

σ̂2[Σ̂
−1
XX ] j j

= t2,

and these two statistics have the same value since X′X differs from Σ̂XX by a factor of n.

Algorithm 3.5 (Large-Sample Wald Test).

1. Estimate the unrestricted model Yi = Xiβ + εi.

2. Estimate the parameter covariance using Σ̂
−1
XX ŜΣ̂

−1
XX where

Σ̂XX = n−1
n∑

i=1

x′ixi, Ŝ = n−1
n∑

i=1

ε̂
2
i x′ixi

3. Construct the restriction matrix, R, and the value of the restriction, r, from the null hypothesis.

4. Compute W = n(Rβ̂ n− r)′
[
RΣ̂
−1
XX ŜΣ̂

−1
XX R′

]−1
(Rβ̂ n− r).

5. Reject the null if W >Cα where Cα is the critical value from a χ2
m using a size of α .



168 Analysis of Cross-Sectional Data

3.11.2 Lagrange Multiplier Tests

Recall that the first-order conditions of the constrained estimation problem require

R′λ̂ = 2X′ε̃

where ε̃ are the residuals estimated under the null H0 : Rβ − r = 0. The LM test examines whether
λ is close to zero. In the large-sample framework, λ̂ , like β̂ , is asymptotically normal and R′λ̂ will
only be close to 0 if λ̂ ≈ 0. The asymptotic version of the LM test can be compactly expressed if s̃ is
defined as the average score of the restricted estimator, s̃ = n−1X′ε̃ . In this notation,

LM = ns̃′S−1s̃ d→ χ
2
m. (3.75)

If the model is correctly specified, n−1X′ε̃ , which is a k by 1 vector with jth element n−1∑n
i=1 x j,iε̃i,

should be a mean-zero vector with asymptotic variance S by assumption 3.7. Thus,
√

n(n−1X′ε̃) d→
N(0,S) implies

√
nS−

1
2 s̃ d→ N

(
0,
[

Im 0
0 0

])
(3.76)

and so ns̃′S−1s̃ d→ χ2
m. This version is infeasible and the feasible version of the LM test must be used,

LM = ns̃′S̃−1s̃ d→ χ
2
m. (3.77)

where S̃ = n−1∑n
i=1 ε̃2

i x′ixi is the estimator of the asymptotic variance computed under the null. This
means that S̃ is computed using the residuals from the restricted regression, ε̃ , and that it will differ
from the usual estimator Ŝ which is computed using residuals from the unrestricted regression, ε̂ . Un-
der the null, both S̃ and Ŝ are consistent estimators for S and using one or the other has no asymptotic
effect.

If the residuals are homoskedastic, the LM test can also be expressed in terms of the R2 of the
unrestricted model when testing a null that the coefficients on all explanatory variables except the
intercept are zero. Suppose the regression fit was

Yi = β0 +β1X1,i +β2X2,i + . . .+βkXkn.

To test the H0 : β1 = β2 = . . .= βk = 0 (where the excluded β1 corresponds to a constant),

LM = nR2 d→ χ
2
k (3.78)

is equivalent to the test statistic in eq. (3.77). This expression is useful as a simple tool to test whether
the explanatory variables in a regression appear to explain any variation in the dependent variable. If
the residuals are heteroskedastic, the nR2 form of the LM test does not have standard distribution and
should not be used.

Algorithm 3.6 (Large-Sample LM Test).

1. Form the unrestricted model, Yi = Xiβ + εi.

2. Impose the null on the unrestricted model and estimate the restricted model, Ỹi = X̃iβ + εi.
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3. Compute the residuals from the restricted regression, ε̃i = Ỹi− x̃iβ̃ .

4. Construct the score using the residuals from the restricted regression from both models, s̃i = xiε̃i
where xi are the regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,

s̃ = n−1
n∑

i=1

s̃i, S̃ = n−1
n∑

i=1

s̃′is̃i (3.79)

6. Compute the LM test statistic as LM = ns̃S̃−1s̃′.

7. Reject the null if LM >Cα where Cα is the critical value from a χ2
m using a size of α .

3.11.3 Likelihood Ratio Tests

A critical distinction between small-sample and large-sample hypothesis testing is the omission of
assumption 3.6. Without this assumption, the distribution of the errors is left unspecified. Based on
the ease of implementing the Wald and LM tests their asymptotic framework, it may be tempting to
think the likelihood ratio is asymptotically valid. It is not. The technical details are complicated,
and the validity of the asymptotic distribution of the LR relies crucially on the Information Matrix
Equality holding. If the shocks are heteroskedastic, then the IME will generally not hold, and the
distribution of LR tests will be nonstandard.14

There is, however, a feasible likelihood-ratio like test available. The motivation for this test will
be clarified in the GMM chapter. For now, the functional form will be given with only minimal
explanation,

LR = ns̃′S−1s̃ d→ χ
2
m, (3.80)

where s̃ = n−1X′ε̃ is the average score vector when the estimator is computed under the null. This
statistic is similar to the LM test statistic, although there are two differences. First, one term has been
left out of this expression, and the formal definition of the asymptotic LR is

LR = ns̃′S−1s̃− ŝ′S−1ŝ d→ χ
2
m (3.81)

where ŝ = n−1X′ε̂ are the average scores from the unrestricted estimator. Recall from the first-order
conditions of OLS (eq. (3.7)) that ŝ = 0 and the second term in the general expression of the LR will
always be zero. The second difference between LR and LM exists only in the feasible versions. The
feasible version of the LR is given by

LR = ns̃′Ŝ−1s̃ d→ χ
2
m. (3.82)

where Ŝ is estimated using the scores of the unrestricted model (under the alternative),

Ŝ−1 =
1
n

n∑
i=1

ε̂
2
i x′ixi. (3.83)

14In this case, the LR will converge to a weighted mixture of m independent χ2
1 random variables where the weights

are not 1. The resulting distribution is not a χ2
m.
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The feasible LM, ns̃′S̃−1s̃, uses a covariance estimator (S̃)based on the scores from the restricted
model, s̃.

In models with heteroskedasticity, it is impossible to determine a priori whether the LM or the LR
test statistic will be larger, although folk wisdom states that LR test statistics are larger than LM test
statistics (and hence the LR will be more powerful). If the data are homoskedastic, and homoskedastic
estimators of Ŝ and S̃ are used (σ̂2(X′X/n)−1 and σ̃2(X′X/n)−1, respectively), then it must be the
case that LM < LR. This ordering of the two test statistic occurs since σ̂2 must be smaller than σ̃2

because OLS minimizes the squared residuals. The LR is guaranteed to have more power in this case.

Algorithm 3.7 (Large-Sample LR Test).

1. Estimate the unrestricted model Yi = Xiβ + εi.

2. Impose the null on the unrestricted model and estimate the restricted model, Ỹi = X̃iβ + εi.

3. Compute the residuals from the restricted regression, ε̃i = Ỹi− x̃iβ̃ , and from the unrestricted
regression, ε̂i = Yi−xiβ̂ .

4. Construct the score from both models, s̃i = xiε̃i and ŝi = xiε̂i, where in both cases xi are the
regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,

s̃ = n−1
n∑

i=1

s̃i, Ŝ = n−1
n∑

i=1

ŝ′iŝi (3.84)

6. Compute the LR test statistic as LR = ns̃Ŝ−1s̃′.

7. Reject the null if LR >Cα where Cα is the critical value from a χ2
m using a size of α .

3.11.4 Revisiting the Wald, LM, and LR tests

The previous tests can now be revisited while allowing for heteroskedasticity in the data. Tables
3.7 and 3.8 contain t-tests, Wald tests, LM tests, and LR tests that compare large-sample versions
of these test statistics to their small-sample framework equivalents. There is a clear direction in
the difference between the small-sample and large-sample test statistics: the large-sample statistics
are smaller than the small-sample statistics, often substantially. Examining table 3.7, 4 out of 5 of
the t-stats have decreased. Since the estimator of β̂ is the same in both the small-sample and the
large-sample frameworks, all of the difference is attributable to changes in the standard errors, which
typically increased by 50%. When t-stats differ dramatically under the two covariance estimators, the
likely cause is heteroskedasticity.

Table 3.8 shows that the Wald, LR, and LM test statistics also changed by large amounts.15 The
heteroskedasticity-robust Wald statistics decreased by up to a factor of 2, and the robust LM test
statistics decreased by up to 5 times. The LR test statistic values were generally larger than those

15The statistics based on the small-sample assumptions have fm,t−k or fm,t−k+m distributions while the statistics based
on the large-sample assumptions have χ2

m distributions, and so the values of the small-sample statistics must be multiplied
by m to be compared to the large-sample statistics.
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Homoskedasticity Heteroskedasticity
β̂ s.e.(β̂ ) t-stat p-value s.e.(β̂ ) t-stat p-value

Constant -0.086 0.042 -2.04 0.042 0.043 -1.991 0.046
VWMe 1.080 0.010 108.7 0.000 0.012 93.514 0.000
SMB 0.002 0.014 0.13 0.893 0.017 0.110 0.912
HML 0.764 0.015 50.8 0.000 0.021 36.380 0.000
MOM -0.035 0.010 -3.50 0.000 0.013 -2.631 0.009

Table 3.7: Comparing small and large-sample t-stats. The small-sample statistics in the left panel of
the table overstate the precision of the estimates. The heteroskedasticity robust standard errors are
larger for 4 out of 5 parameters, and one variable which was significant at the 15% level is insignifi-
cant.

of the corresponding Wald or LR test statistics. The relationship between the robust versions of the
Wald and LR statistics is not clear, and for models that are grossly misspecified, the Wald and LR
test statistics are substantially larger than their LM counterparts. However, when the value of the test
statistics is smaller, the three are virtually identical, and the decision taken using any of these three
tests is the same. All nulls except H0 : β1 = β3 = 0 are rejected using standard sizes (5-10%).

These changes should serve as a warning to conducting inference using covariance estimates based
on homoskedasticity. In most applications to financial time-series, heteroskedasticity robust covari-
ance estimators (and often HAC (Heteroskedasticity and Autocorrelation Consistent), which will be
defined in the time-series chapter) are automatically applied without testing for heteroskedasticity.

3.12 Violations of the Large-Sample Assumptions

The large-sample assumptions are just that: assumptions. While this set of assumptions is far more
general than the finite-sample setup, they may be violated in a number of ways. This section examines
the consequences of certain violations of the large-sample assumptions.

3.12.1 Omitted and Extraneous Variables

Suppose that the model is linear but misspecified, and a subset of the relevant regressors are excluded.
The model can be specified

Yi = β 1X1,i +β 2X2,i + εi (3.85)

where X1,i is 1 by k1 vector of included regressors and X2,i is a 1 by k2 vector of excluded but relevant
regressors. Omitting x2,i from the fit model, the least-squares estimator is

β̂ 1n =

(
X′1X1

n

)−1 X′1y
n

. (3.86)

This misspecified estimator is biased, and the bias depends on the magnitude of the coefficients on
the omitted variables and the correlation between the omitted and excluded regressors.
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Wald Tests
Small Sample Large Sample

Null Alternative M W p-value W p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 3558.8 0.000 2661.2 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 956.5 0.000 583.2 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 10.1 0.000 7.35 0.001
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.08 0.126 2.04 0.131
β5 = 0 β5 6= 0 1 12.3 0.000 6.92 0.009

LR Tests
Small Sample Large Sample

Null Alternative M LR p-value LR p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 3558.8 0.000 2696.4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 956.5 0.000 589.3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 10.1 0.000 8.11 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.08 0.126 2.13 0.119
β5 = 0 β5 6= 0 1 12.3 0.000 7.40 0.007

LM Tests
Small Sample Large Sample

Null Alternative M LM p-value LM p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 163.4 0.000 34.8 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 184.3 0.000 31.9 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 9.85 0.000 7.82 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.07 0.127 2.11 0.121
β5 = 0 β5 6= 0 1 12.1 0.001 6.50 0.011

Table 3.8: Comparing large- and small-sample Wald, LM, and LR test statistics. The large-sample
test statistics are smaller than their small-sample counterparts due to the the heteroskedasticity present
in the data. While the decisions of these tests are unaffected by the choice of covariance estimator,
this will not always be the case.

Theorem 3.17 (Misspecified Regression). Under assumptions 3.1 and 3.7 - 3.9 through , if X can be
partitioned [X1 X2] where X1 correspond to included variables while X2 correspond to excluded
variables with non-zero coefficients, then

β̂ 1n
p→ β 1 +Σ

−1
X1X1

ΣX1X2β 2 (3.87)

β̂ 1
p→ β 1 +δβ 2

where

ΣXX =

[
ΣX1X1 ΣX1X2
Σ
′
X1X2

ΣX2X2

]
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The bias term, δβ 2 is composed of two elements. The first, δ , is a matrix of regression coefficients
where the jth column is the probability limit of the least-squares estimator in the regression

X2 j = X1δ j +ν ,

where X2 j is the jth column of X2. The second component of the bias term is the original regression
coefficients. As should be expected, larger coefficients on omitted variables lead to larger bias.

β̂ 1n
p→ β 1 under one of three conditions:

1. δ̂ n
p→ 0

2. β 2 = 0

3. The product δ̂ nβ 2
p→ 0.

β 2 has been assumed to be non-zero (if β 2 = 0 the model is correctly specified). δ n
p→ 0 only if the

regression coefficients of X2 on X1 are zero, which requires that the omitted and included regressors to
be uncorrelated (X2 lies in the null space of X1). This assumption should be considered implausible in
most applications and β̂ 1n is biased and inconsistent, in general. Note that certain classes of regressors
that are mutually orthogonal by design and can be safely omitted.16 Finally, if both δ and β 2 are non-
zero, the product could be zero, although, without a very peculiar specification and a careful selection
of regressors, this possibility should be considered unlikely.

Alternatively, consider the case where some irrelevant variables are included. The correct model
specification is

Yi = X1,iβ 1 + εi

and the model estimated is

Yi = X1,iβ 1 +X2,iβ 2 + εi

As long as the assumptions of the asymptotic framework are satisfied, the least-squares estimator is
consistent under theorem 3.12 and

β̂ n
p→
[

β 1
β 2

]
=

[
β 1
0

]
If the errors are homoskedastic, the variance of

√
n(β̂ n− β ) is σ2Σ

−1
XX where X = [X1 X2]. The

variance of β̂ 1n is the upper left k1 by k1 block of σ2Σ
−1
XX . Using the partitioned inverse,

Σ
−1
XX =

[
Σ
−1
X1X1

+Σ
−1
X1X1

ΣX1X2M1Σ
′
X1X2

Σ
−1
X1X1

−Σ
−1
X1X1

ΣX1X2M1

M1Σ
′
X1X2

Σ
−1
X1X1

Σ
−1
X2X2

+Σ
−1
X2X2

Σ
′
X1X2

M2ΣX1X2Σ
−1
X2X2

]
16Safely in terms of consistency of estimated parameters. Omitting variables will cause the estimated variance to be

inconsistent.
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where

M1 = lim
n→∞

X′2MX1X2

n

M2 = lim
n→∞

X′1MX2X1

n

and so the upper left block of the variance, Σ
−1
X1X1

+ Σ
−1
X1X1

ΣX1X2M1Σ
′
X1X2

Σ
−1
X1X1

, must be larger than
Σ
−1
X1X1

because the second term is a quadratic form and M1 is positive semi-definite.17 Noting that σ̂2

is consistent under both the correct specification and the expanded specification, the cost of including
extraneous regressors is an increase in the asymptotic variance.

In finite samples, there is a bias-variance trade-off. Fewer regressors included in a model leads
to more precise estimates. Models containing more variables tend to produce coefficient estimated
with less bias. Additionally, if relevant variables are omitted then σ̂2 is larger than it would be if all
relevant variables are included, and so the estimated parameter variance, σ̂2(X′X)−1 is also larger.
Asymptotically, only the bias remains as it is of a higher order than variance (scaling β̂ n−β by

√
n,

the bias is exploding while the variance is constant), and so when the sample size is large and estimates
are precise, a larger model should be preferred to a smaller model. In cases where the sample size
is small, there is a justification for omitting a variable to enhance the precision of those remaining,
particularly when the effect of the omitted variable is not of interest or when the excluded variable is
highly correlated with one or more included variables.

3.12.2 Errors Correlated with Regressors

Bias can arise from sources other than omitted variables. Consider the case where X is measured with
noise and define X̃i = Xi+η i where X̃i is a noisy proxy for Xi, the “true” (unobserved) regressor, and
η i is an i.i.d.mean 0 noise process which is independent of X and ε with finite second moments Σηη .
The OLS estimator,

β̂ n =

(
X̃′X̃

n

)−1 X̃′y
n

(3.88)

=

(
(X+η)′ (X+η)

n

)−1
(X+η)′ y

n
(3.89)

=

(
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1
(X+η)′ y

n
(3.90)

=

(
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1(X′y
n

+
η ′y
n

)
(3.91)

will be biased downward. To understand the source of the bias, consider the behavior, under the
asymptotic assumptions, of

17Both M1 and M2 are covariance matrices of the residuals of regressions of x2 on x1 and x1 on x2 respectively.
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X′X
n

p→ ΣXX

X′η
n

p→ 0

η ′η

n
p→ Σηη

X′y
n

p→ ΣXXβ

η ′y
n

p→ 0

so (
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1
p→ (ΣXX +Σηη)

−1

and

β̂ n
p→ (ΣXX +Σηη)

−1
ΣXXβ .

If Σηη 6= 0, then β̂ n
p9 β and the estimator is inconsistent.

The OLS estimator is also biased in the case where n−1X′ε p9 0k, which arises in situations with
endogeneity. In these cases, xi and εi are simultaneously determined and correlated. This correlation
results in a biased estimator since β̂ n

p→ β +Σ
−1
XXΣXε where ΣXε is the limit of n−1X′ε . The classic

example of endogeneity is simultaneous equation models although many situations exist where the
innovation may be correlated with one or more regressors; omitted variables can be considered a
special case of endogeneity by reformulating the model.

The solution to this problem is to find an instrument, zi, which is correlated with the endogenous
variable, xi, but uncorrelated with εi. Intuitively, the endogenous portions of xi can be annihilated by
regressing xi on zi and using the fit values. This procedure is known as instrumental variable (IV)
regression in the case where the number of zi variables is the same as the number of xi variables and
two-stage least squares (2SLS) when the size of zi is larger than k.

Define zi as a vector of exogenous variables where zi may contain any of the variables in xi
which are exogenous. However, all endogenous variables – those correlated with the error – must be
excluded.

First, a few assumptions must be reformulated.

Assumption 3.11 (IV Stationary Ergodicity). {(Zi,Xi,εi)} is a strictly stationary and ergodic se-
quence.

Assumption 3.12 (IV Rank). E[Z′iXi] = ΣZX is nonsingular and finite.

Assumption 3.13 (IV Martingale Difference). {Z′iεi,Fi} is a martingale difference sequence,

E
[(

Z j,iεi
)2
]
<∞, j = 1,2, . . . ,k , i = 1,2 . . .

and S = V[n−
1
2 Z′ε] is finite and non singular.
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Assumption 3.14 (IV Moment Existence). E[X4
ji] <∞ and E[Z4

ji] <∞, j = 1,2, . . . ,k, i = 1,2, . . .
and E[ε2

i ] = σ2 <∞, i = 1,2, . . ..

These four assumptions are nearly identical to the four used to establish the asymptotic normality
of the OLS estimator. The IV estimator is defined

β̂
IV

n =

(
Z′X

n

)−1 Z′y
n

(3.92)

where the n term is present to describe the number of observations used in the IV estimator. The
asymptotic properties are easy to establish and are virtually identical to those of the OLS estimator.

Theorem 3.18 (Consistency of the IV Estimator). Under assumptions 3.1 and 3.11-3.13, the IV esti-
mator is consistent,

β̂
IV

n
p→ β

and asymptotically normal √
n(β̂

IV

n −β )
d→ N(0,Σ−1

ZX S̈Σ
−1
ZX ) (3.93)

where ΣZX = E[x′izi] and S̈ = V[n−1/2Z′ε].

Additionally, consistent estimators are available for the components of the asymptotic variance.

Theorem 3.19 (Asymptotic Normality of the IV Estimator). Under assumptions 3.1 and 3.11 - 3.14,

Σ̂ZX = n−1Z′X p→ ΣZX (3.94)

ˆ̈S = n−1
n∑

i=1

ε
2
i z′izi

p→ S̈ (3.95)

and
Σ̂
−1
ZX

ˆ̈SΣ̂
′−1
ZX

p→ Σ
−1
ZX S̈Σ

′−1
ZX (3.96)

The asymptotic variance can be easily computed from

Σ̂
−1
ZX

ˆ̈SΣ̂
−1
ZX =N

(
Z′X

)−1
(

n∑
i=1

ε̂
2
i z′izi

)(
X′Z

)−1 (3.97)

=N
(
Z′X

)−1 (Z′ÊZ
)(

X′Z
)−1

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

IV estimators have one further complication beyond those of OLS. Assumption 3.8 requires the
rank of Z′X to be full (k), and so zi must be correlated with xi. Moreover, since the asymptotic
variance depends on Σ

−1
ZX , even variables with non-zero correlation may produce imprecise estimates,

especially if the correlation is low. Instruments must be carefully chosen, although substantially
deeper treatment is beyond the scope of this course. Fortunately, IV estimators are infrequently
needed in financial econometrics.
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3.12.3 Monte Carlo: The effect of instrument correlation

While IV estimators are not often needed with financial data18, the problem of endogeneity is severe
and it is important to be aware of the consequences and pitfalls of using IV estimators.19 To under-
stand this problem, consider a simple Monte Carlo. The regressor (Xi), the instrument (Zi) and the
error are all drawn from a multivariate normal with the covariance matrix, Xi

Zi
εi

∼ N

0,

 1 ρxz ρxε

ρxz 1 0
ρxε 0 1

 .

Throughout the experiment, ρxε = 0.4 and ρxz is varied from 0 to .9. 200 data points were generated
from

Yi = β1Xi + εi

where β1 = 1. It is straightforward to show that E[β̂ ] = 1+ρxε and that β̂ IV
n

p→ 1 as long as ρxz 6= 0.
10,000 replications were generated and the IV estimators were computed

β̂
IV
n = (Z′X)−1(Z′y).

Figure 3.5 contains kernel density plots of the instrumental variable estimator for ρxz of .2, .4,
.6 and .8. When the correlation between the instrument and X is low, the distribution is dispersed
(exhibiting a large variance). As the correlation increases, the variance decreases and the distribution
become increasingly normal. This experiment highlights two fundamental problems with IV estima-
tors: they have large variance when no “good instruments” – highly correlated with xi by uncorrelated
with εi – are available and the finite-sample distribution of IV estimators may be poorly approximated
a normal.

3.12.4 Heteroskedasticity

Assumption 3.7 does not require data to be homoskedastic, which is useful since heteroskedasticity
is the rule rather than the exception in financial data. If the data are homoskedastic, the asymptotic
covariance of β̂ can be consistently estimated by

Ŝ = σ̂
2
(

X′X
n

)−1

Heteroskedastic errors require the use of a more complicated covariance estimator, and the asymptotic
variance can be consistently estimated using

18IV estimators are most common in corporate finance when examining executive compensation and company perfor-
mance.

19The intuition behind IV estimators is generally applicable to 2SLS.
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Effect of correlation on the variance of β̂
IV

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
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ρ = 0.8

ρ = 0.8

ρ = 0.8

Figure 3.5: Kernel density of the instrumental variable estimator β̂ IV
n with varying degrees of corre-

lation between the endogenous variable and the instrument. Increasing the correlation between the
instrument and the endogenous variable leads to a large decrease in the variance of the estimated
parameter (β = 1). When the correlation is small (.2), the distribution has a large variance and is not
well approximated by a normal random variable.

Σ̂
−1
XX ŜΣ̂

−1
XX =

(
X′X

n

)−1(∑n
i=1 ε̂2

i x′ixi

n

)(
X′X

n

)−1

(3.98)

= n
(
X′X

)−1
(

n∑
i=1

ε̂
2
i x′ixi

)(
X′X

)−1

= n
(
X′X

)−1 (X′ÊX
)(

X′X
)−1

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

Faced with two covariance estimators, one which is consistent under minimal assumptions and one
which requires an additional, often implausible assumption, it may be tempting use rely exclusively on
the robust estimator. This covariance estimator is known as the White heteroskedasticity consistent
covariance estimator and standard errors computed using eq. (3.98) are called heteroskedasticity
robust standard errors or White standard errors (White, 1980). Using a heteroskedasticity-consistent
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estimator when not needed (homoskedastic data) results in test statistics that have worse small-sample
properties. In small samples, hypothesis tests are more likely to have size distortions and so using 5%
critical values may lead to rejection of the null 10% or more of the time when the null is true. On the
other hand, using an inconsistent estimator of the parameter covariance – assuming homoskedasticity
when the data are not – produces tests with size distortions, even asymptotically.

White (1980)also provides a test to determine if a heteroskedasticity robust covariance estimator
is required. Each term in the heteroskedasticity-consistent estimator takes the form

ε
2
i x′ixi =


ε2

i x2
1,i ε2

i x1,ix2,i . . . ε2
i x1,ixkn

ε2
i x1,ix2,i ε2

i x2
2,i . . . ε2

i x2,ixkn
...

... . . .
...

ε2
i x1,ixkn ε2

i x2,ixkn . . . ε2
i x2

kn

 ,
and so, if E[ε2

i x jnxln] = E[ε2
i ]E[x jnxln], for all j and l, then the heteroskedasticity robust and the stan-

dard estimator will both consistently estimate the asymptotic variance of β̂ . White’s test is formulated
as a regression of squared estimated residuals on all unique squares and cross products of xi. Suppose
the original regression specification is

Yi = β1 +β2X1,i +β3X2,i + εi.

White’s test uses an auxiliary regression of ε̂2
i on the squares and cross-produces of all regressors,

{1, X1,i, X2,i, X2
1,i, X2

2,i, X1,iX2,i}:

ε̂
2
i = δ1 +δ2X1,i +δ3X2,i +δ4X2

1,i +δ5X2
2,i +δ6X1,iX2,i +ηi. (3.99)

The null hypothesis tested is H0 : δ j = 0, j > 1, and the test statistic can be computed using nR2

where the centered R2 is from the model in eq. (3.99). Recall that nR2 is an LM test of the null
that all coefficients except the intercept are zero and has an asymptotic χ2

ν where ν is the number of
restrictions – the same as the number of regressors excluding the constant. If the null is rejected, a
heteroskedasticity robust covariance estimator is required.

Algorithm 3.8 (White’s Test).

1. Fit the model Yi = Xiβ + εi

2. Construct the fit residuals ε̂i = Yi−Xiβ̂

3. Construct the auxiliary regressors Zi where the k(k+ 1)/2 elements of zi are computed from
Xi,oXi,p for o = 1,2, . . . ,k, p = o,o+1, . . . ,k.

4. Estimate the auxiliary regression ε̂2
i = Ziγ +ηi

5. Compute White’s Test statistic as nR2 where the R2 is from the auxiliary regression and compare
to the critical value at size α from a χ2

k(k+1)/2−1.
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3.12.5 Example: White’s test on the FF data

White’s heteroskedasticity test is implemented using the estimated residuals, ε̂i =Yi−x′iβ̂ , by regress-
ing the estimated residuals squared on all unique cross products of the regressors. The primary model
fit is

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi.

and the auxiliary model is specified

ε̂
2
i = δ1 +δ2VWMe

i +δ3SMBi +δ4HMLi +δ5MOMi +δ6 (VWMe
i )

2 +δ7VWMe
i SMBi

+δ8VWMe
i HMLi +δ9VWMe

i MOMi +δ10SMB2
i +δ11SMBiHMLi

+δ12SMBiMOMi +δ13HML2
i +δ14HMLiMOMi +δ15MOM2

i +ηi

Estimating this regression produces an R2 of 10.9% and nR2 = 74.8, which has an asymptotic χ2
14

distribution (14 regressors, excluding the constant). The p-value of this test statistic is 0.000, and the
null of homoskedasticity is strongly rejected.

3.12.6 Generalized Least Squares

An alternative to modeling heteroskedastic data is to transform the data so that it is homoskedastic
using generalized least squares (GLS). GLS extends OLS to allow for arbitrary weighting matrices.
The GLS estimator of β is defined

β̂
GLS

= (X′W−1X)−1X′W−1y, (3.100)

for some positive definite matrix W. Without any further assumptions or restrictions on W, β̂
GLS

is
unbiased under the same conditions as β̂ , and the variance of β̂ can be easily shown to be

(X′W−1X)−1(X′W−1VW−1X)(X′W−1X)−1

where V is the n by n covariance matrix of ε .
The full value of GLS is only realized when W is wisely chosen. Suppose that the data are

heteroskedastic but not serial correlated,20 and so

y = Xβ + ε (3.101)

where V[εi|X] = σ2
i and therefore heteroskedastic. Further, assume σ2

i is known. Returning to the
small-sample assumptions, choosing W∝ V(ε|X)21, the GLS estimator will be efficient.

Assumption 3.15 (Error Covariance). V = V[ε|X]

Setting W = V, the GLS estimator is BLUE.

20Serial correlation is ruled out by assumption 3.9.
21∝ is the mathematical symbol for “proportional to”.
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Theorem 3.20 (Variance of β̂
GLS

). Under assumptions 3.1 - 3.3 and 3.15,

V[β̂
GLS|X] = (X′V−1X)−1

and V[β̂
GLS|X]≤ V[β̃ |X] where β̃ = Cy is any other linear unbiased estimator with E[β̃ ] = β

To understand the intuition behind this result, note that the GLS estimator can be expressed as an
OLS estimator using transformed data. Returning to the model in eq. (3.101), and pre-multiplying by
W−

1
2 ,

W−
1
2 y = W−

1
2 Xβ +W−

1
2 ε

ỹ = X̃β + ε̃

and so

β̂ =
(
X̃′X̃

)
X̃′ỹ

=
(

X′W−
1
2 W−

1
2 X
)

X′W−
1
2 W−

1
2 y

=
(
X′W−1X

)
X′W−1y

= β̂
GLS

.

In the original model, W = V[ε|X], and so V[W−
1
2 ε|X] = W−

1
2 WW−

1
2 = In. ε̃ is homoskedastic

and uncorrelated and the transformed model satisfies the assumption of the Gauss-Markov theorem
(theorem 3.3).

This result is only directly applicable under the small-sample assumptions and then only if V[ε|X]
is known a priori. In practice, neither is true: data are not congruent with the small-sample as-
sumptions and V[ε|X] is never known. The feasible GLS (FGLS) estimator solves these two issues,
although the efficiency gains of FGLS have only asymptotic justification. Suppose that V[ε|X] =
ω1 +ω2x1,i + . . .+ωk+1xkn where ω j are unknown. The FGLS procedure provides a method to esti-
mate these parameters and implement a feasible GLS estimator.

The FGLS procedure is described in the following algorithm.

Algorithm 3.9 (Feasible GLS Estimation).

1. Estimate β̂ using OLS.

2. Using the estimated residuals, ε̂ = y−Xβ̂ , estimate an auxiliary model by regressing the
squared residual on the variables of the variance model.

3. Using the estimated variance model parameters ω̂ , produce a fit variance matrix, V̂.

4. Compute ỹ = V̂−
1
2 y and X̃ = V̂−

1
2 X compute β̂

FGLS
using the OLS estimator on the transformed

regressors and regressand.
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Hypothesis testing can be performed on β̂
FGLS

using the standard test statistics with the FGLS
variance estimator,

σ̃
2(X′V̂−1X)−1 = σ̃

2 (X̃′X̃)−1

where σ̃2 is the sample variance of the FGLS regression errors (ε̃ = ỹ− X̃β̂
FGLS

).
While FGLS is only formally asymptotically justified, FGLS estimates are often much more pre-

cise in finite samples, especially if the data is very heteroskedastic. Estimator accuracy improves the
most when some observations have a vastly larger variance than others. The OLS estimator gives these
observations too much weight, inefficiently exploiting the information in the remaining observations.
FGLS, even when estimated with a diagonal weighting matrix that may be slightly misspecified, can
produce substantially more precise estimates.22

3.12.6.1 Monte Carlo: A simple GLS

A simple Monte Carlo was designed to demonstrate the gains of GLS. The observed data are generated
according to

Yi = Xi +Xα
i εi

where Xi is i.i.d.U(0,1) and εi is standard normal. α takes the values of 0.8, 1.6, 2.8 and 4. When
α is low the data are approximately homoskedastic. As α increases the data are increasingly het-
eroskedastic and the probability of producing a few residuals with small variances increases. The
OLS and (infeasible) GLS estimators were fit to the data and figure 3.6 contains kernel density plots
of β̂ and β̂ GLS.

When α is small, the OLS and GLS parameter estimates have similar variances, indicated by the
similarity in distribution. As α increases, the GLS estimator becomes very precise which is due to
GLS’s reweighing of the data by the inverse of its variance. In effect, observations with the smallest
errors become very influential in determining β̂ . This is the general principle behind GLS: let the data
points which are most precise about the unknown parameters have the most influence.

3.12.7 Example: GLS in the Factor model

Even if it is unreasonable to assume that the entire covariance structure of the residuals can be cor-
rectly specified in the auxiliary regression, GLS estimates are often much more precise than OLS
estimates. Consider the regression of BHe on the four factors and a constant. The OLS estimates are
identical to those previously presented and the GLS estimates will be computed using the estimated
variances from White’s test. Define

V̂ = diag
(
σ̂

2
1 , σ̂

2
2 , . . . , σ̂

2
n
)

where σ̂2
i is the fit value from the auxiliary regression in White’s test that included only the squares

of the explanatory variables. Coefficients were estimated by regressing ỹ on X̃ where

ỹ = V̂−
1
2 y

22If the model for the conditional variance of εi is misspecified in an application of FGLS, the resulting estimator is not
asymptotically efficient and a heteroskedasticity robust covariance estimator is required.



3.12 Violations of the Large-Sample Assumptions 183

Gains of using GLS
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Figure 3.6: The four plots show the gains to using the GLS estimator on heteroskedastic data. The
data were generated according to Yi = Xi +Xα

i εi where Xi is i.i.d.uniform and εi is standard normal.
For large α , the GLS estimator is substantially more efficient than the OLS estimator. However, the
intuition behind the result is not that high variance residuals have been down-weighted, but that low
variance residuals, some with very low variances, have been up-weighted to produce an accurate fit.

X̃ = V̂−
1
2 X

and β̂
GLS

= (X̃′X̃)−1X̃′ỹ. ε̂
GLS = y−Xβ̂

GLS
are computed from the original data using the GLS

estimate of β , and the variance of the GLS estimator can be computed using

(X̃′X̃)−1(X̃′ ̂̃EX̃)−1(X̃′X̃)−1.

where ̂̃E is a diagonal matrix with the estimated residuals squared,
(
ε̂GLS

i
)2

, from the GLS procedure
along its diagonal. Table 3.9 contains the estimated parameters, t-stats and p-values using both the
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OLS GLS
β̂ s.e.(β̂ ) t-stat p-values β̂ GLS s.e.(β̂ GLS) t-stats p-values

Constant -0.09 0.04 -1.99 0.05 -0.09 0.04 -2.26 0.02
VWMe 1.08 0.01 93.5 0.00 1.08 0.01 101.6 0.00
SMB 0.00 0.02 0.11 0.91 -0.00 0.02 -0.19 0.85
HML 0.76 0.02 36.4 0.00 0.73 0.02 39.3 0.00
MOM -0.04 0.01 -2.63 0.01 -0.04 0.01 -3.06 0.00

Table 3.9: OLS and GLS parameter estimates and t-stats. t-stats indicate that the GLS parameter
estimates are more precise.

OLS and the GLS estimates. The GLS estimation procedure appears to provide more precise estimates
and inference. The difference in precision is particularly large for SMB.

3.13 Model Selection and Specification Checking

Econometric problems often begin with a variable whose dynamics are of interest and a relatively
large set of candidate explanatory variables. The process by which the set of regressors is reduced is
known as model selection or building.

Model building inevitably reduces to balancing two competing considerations: congruence and
parsimony. A congruent model is one that captures all of the variation in the data explained by
the regressors. Obviously, including all of the regressors and all functions of the regressors should
produce a congruent model. However, this is also an infeasible procedure since there are infinitely
many functions of even a single regressor. Parsimony dictates that the model should be as simple
as possible and so models with fewer regressors are favored. The ideal model is the parsimonious
congruent model that contains all variables necessary to explain the variation in the regressand and
nothing else.

Model selection is as much a black art as science and some lessons can only be taught through
experience. One principle that should be universally applied when selecting a model is to rely on
economic theory and, failing that, common sense. The simplest method to select a poorly performing
model is to try any and all variables, a process known as data snooping that is capable of producing
a model with an arbitrarily high R2 even if there is no relationship between the regressand and the
regressors.

There are a few variable selection methods which can be examined for their properties. These
include:

• General to Specific modeling (GtS)

• Specific to General modeling (StG)

• Information criteria (IC)

• Cross-validation
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3.13.1 Model Building

3.13.1.1 General to Specific

General to specific (GtS) model building begins by estimating the largest model that can be justified
by economic theory (and common sense). This model is then pared down to produce the smallest
model that remains congruent with the data. The simplest version of GtS begins with the complete
model. If any coefficients have individual p-values less than some significance level α (usually 5 or
10%), the least significant regressor is dropped from the regression. The procedure is repeated using
the remaining included regressors until all coefficients are statistically significant. In each step, the
least significant regressor is removed from the model.

One drawback to this simple procedure is that variables that are correlated but relevant are often
dropped. This is due to a problem known as multicollinearity and individual t-stats will be small but
joint significance tests that all coefficients are simultaneously zero will strongly reject. This suggests
using joint hypothesis tests to pare the general model down to the specific one. While theoretically
attractive, the scope the of possible joint hypothesis tests is vast even in a small model, and so using
joint test is impractical.

GtS suffers from two additional issues. First, it will include an irrelevant variable with positive
probability (asymptotically) but will never exclude a relevant variable. Second, test statistics do not
have standard distributions when they are used sequentially (as is the case with any sequential model
building procedure). The only viable solution to the second problem is to fit a single model, make
variable inclusions and exclusion choices, and live with the result. This practice is not typically
followed and most econometricians use an iterative procedure despite the problems of sequential
testing.

3.13.1.2 Specific to General

Specific to General (StG) model building begins by estimating the smallest model, usually including
only a constant. Variables are then added sequentially based on maximum t-stat until there is no
excluded variable with a significant t-stat at some predetermined α (again, usually 5 or 10%). StG
suffers from the same issues as GtS. First it will asymptotically include all relevant variables and
some irrelevant ones and second, tests implemented sequentially do not have correct size. Choosing
between StG and GtS is mainly user preference, although they rarely select the same model. One
argument in favor of using a GtS approach is that the variance is consistently estimated in the first
step of the general specification while the variance estimated in the first step of the an StG selection
is too large. The leads StG processes to have t-stats that are smaller than GtS t-stats and so StG
generally selects a smaller model than GtS.

3.13.1.3 Information Criteria

The third method of model selection uses Information Criteria (IC). Information Criteria reward the
model for producing smaller SSE while punishing it for the inclusion of additional regressors. The two
most frequently used are the Akaike Information Criterion (AIC) and Schwarz Information Criterion
(SIC) or Bayesian Information Criterion (BIC).23 Most Information Criteria are of the form

23The BIC and SIC are the same. BIC is probably the most common name but SIC or S/BIC are also frequently
encountered.
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−2l +P

where l is the log-likelihood value at the parameter estimates and P is a penalty term. In the case of
least squares, where the log-likelihood is not known (or needed), IC’s take the form

ln σ̂
2 +P

where the penalty term is divided by n.

Definition 3.15 (Akaike Information Criterion (AIC)). For likelihood-based models the AIC is de-
fined

AIC =−2l +2k (3.102)

and in its least squares application,

AIC = ln σ̂
2 +

2k
n

(3.103)

Definition 3.16 (Schwarz/Bayesian Information Criterion (S/BIC)). For likelihood-based models the
BIC (SIC) is defined

BIC =−2l + k lnn (3.104)

and in its least squares applications

BIC = ln σ̂
2 + k

lnn
n

(3.105)

The obvious difference between these two IC is that the AIC has a constant penalty term while
the BIC has a penalty term that increases with the number of observations. The effect of the sharper
penalty in the S/BIC is that for larger data sizes, the marginal increase in the likelihood (or decrease
in the variance) must be greater. This distinction is subtle but important: using the BIC to select from
a finite set of regressors leads to the correct model being chosen while the AIC asymptotically selects
a model that includes irrelevant regressors.

Using an IC to select a model is similar to either a GtS or StG search. For example, to use
an StG selection method, begin with the smallest model (usually a constant) and compute the IC
for this model. Next, consider all possible univariate regressions. If any reduce the IC, extend the
specification to include the variable that produced the smallest IC. Now, beginning from the selected
univariate regression, estimate all bivariate regressions. Again, if any decrease the IC, choose the one
which produces the smallest value. Repeat this procedure until the marginal contribution to the IC of
adding any additional variable is positive (i.e., when comparing an L and L+ 1 variable regression,
including and additional variables increase the IC).

As an alternative, if the number of regressors is sufficiently small (less than 20) it is possible to
try every possible combination and choose the smallest IC. This requires 2L regressions where L is
the number of available regressors (220 is about 1,000,000).

3.13.1.4 Cross-validation

Cross-validation uses pseudo-out-of-sample prediction performance to assess model specification. It
is most commonly used to select a preferred model from a set of candidate models, for example, the
collection of models visited as part of a GtS or StG model selection process. Variables with robust
predictive power should be useful both in- and out-of-sample. Cross-validation estimates parameters
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using a random subset of the data and then computes the pseudo-out-of-sample SSE on the obser-
vations that were not used in estimation. This criterion rewards models include variables with good
predictive power and exclude models that incorporate variables with small coefficients that do not
improve out-of-sample prediction.

The mutually exclusive and exhaustive subsets used for estimation and evaluation are randomly
chosen. This randomization selection is then repeatedly applied to assess the out-of-sample fit of all
data points. The most common form of cross-validation used in cross-sectional analysis is as k-fold
cross-validation. This method splits the data into k-equal-sized blocks where block assignment is
random. Model parameters are then estimated using the data in k−1 blocks, and the predictive power
is evaluated on the excluded block. This leave-one-block-out strategy is then repeated for each of the
remaining k−1 blocks. The overall cross-validated SSE is computed from the SSE values calculated
on each block held out of the estimation.

Algorithm 3.10 (k-fold Cross-validation).

1. Split the data randomly into k-equal-sized bins

2. For each model m = 1, . . . ,M under consideration

(a) For i = 1, . . . ,k

i. Estimate model parameters excluding the the observations in block i,

β̂ m,i = argminβ m,i

n∑
j=1, j/∈Bi

(
Yj−xm, jβ m,i

)2

where xm,· are the regressors included in model m and Bi is the set of observation
indices in block i.

ii. Compute the block i SSE as SSEm,i =
∑

j∈Bi

(
Yj−xm, jβ̂ m,i

)2
.

(b) Compute the overall cross-validated SSE as SSEm,CV =
∑k

i=1 SSEm,i.

3. Select the model that produces the smallest cross-validates SSE.

3.13.2 Specification Checking

Once a model has been selected, the final step is to examine the specification, where a number of
issues may arise. For example, a model may have neglected some nonlinear features in the data, a few
outliers may be determining the parameter estimates, or the data may be heteroskedastic. Residuals
for the basis of most specification checks, although the first step in assessing model fit is always to
plot the residuals. A simple residual plot often reveals problems with a model, such as large (and
generally influential) residuals or correlation among the residuals in time-series applications.

Residual Plots and Nonlinearity Plot, plot, plot. Plots of both data and residuals, while not
perfect, are effective methods to detect specification problems. Most data analysis should include a
plot of the initial unfiltered data where large observation or missing data are easily detected. Once
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Neglected Nonlinearity and Residual Plots
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Figure 3.7: The top panel contains data generated according to Yi = Xi +X2
i + εi and a fit from a

model Yi = β1 +β2Xi + εi. The nonlinearity should be obvious, but is even clearer in the ordered (by
Xi) residual plot where a distinct “U” shape can be seen (bottom panel).

a model has been estimated the residuals should be plotted, usually by sorting them against the or-
dered regressors when using cross-sectional data or against time (the observation index) in time-series
applications.

To see the benefits of plotting residuals, suppose the data were generated by Yi =Xi+X2
i +εi where

Xi and εi are i.i.d. standard normal, but an affine specification, Yi = β1 +β2Xi + εi was fit. Figure 3.7
contains plots of the data and fit lines (top panel) and errors (bottom panel). It is obvious from the
data and fit line that the model is misspecified and the residual plot makes this clear. Residuals should
have no discernible pattern in their mean when plotted against any variable (or function of variables)
in the data set.

One statistical test for detecting neglected nonlinearity is Ramsey’s RESET test. Suppose the
model

Yi = Xiβ + εi

is fit and one desires to test whether there is a neglected nonlinearity present. The RESET test uses
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powers of the fit data, Ŷi as additional regressors to test whether there is evidence of nonlinearity in
the data.

Definition 3.17 (Ramsey’s RESET Test). The RESET test is a test of the null the null H0 : γ1 = . . .=
γR = 0 in an auxiliary regression,

Yi = Xiβ + γ1Ŷ 2
i + γ2Ŷ 3

i + . . .+ γRŶ R−1
i εi

where Ŷi are the fit values of Yi generated in the initial regression. The test statistic has an asymptotic
χ2

R distribution.

R is typically 1 or 2 since higher powers may produce numerical problems, imprecise estimates,
and size distortions. The biggest difficulty of using a RESET test is that rejection of the null is not
informative about the changes needed to the original specification.

3.13.2.1 Parameter Stability

Parameter instability is a common problem in actual data. For example, recent evidence suggests that
the market β in a CAPM may be differ across up and down markets Ang, Chen, and Xing (2006). A
model fit assuming the strict CAPM would be misspecified since the parameters are not constant.

There is a simple procedure to test for parameter stability if the point where the parameters
changes is known. The test is specified by including a dummy for any parameter that may change and
testing the coefficient on the dummy variables for constancy.

Returning to the CAPM example, the standard specification is

Re
i = β1 +β2(RM

i −R f
i )+ εi

where RM
i is the return on the market, R f

i is the return on the risk free asset and Re
i is the excess return

on the dependent asset. To test whether the slope is different when (RM
i −R f

i ) < 0, define a dummy
Ii = I

[(RM
i −R f

i )<0] and perform a standard test of the null H0 : β3 = 0 in the regression

Re
i = β1 +β2(RM

i −R f
i )+β3Ii(RM

i −R f
i )+ εi.

If the breakpoint is not known a priori, it is necessary to test whether there is a break in the pa-
rameter at any point in the sample. This test can be implemented by testing at every point and then
examining the largest test statistic. While this is a valid procedure, the distribution of the largest test
statistic is no longer χ2 and so inference based on standard tests (and their corresponding distribu-
tions) will be misleading. This type of problem is known as a nuisance parameter problem. If the
null hypothesis (that there is no break) is correct, then the value of regression coefficients after the
break is not well defined. In the example above, if there is no break, then β3 is not identified (and
is a nuisance). Treatment of the issues surrounding nuisance parameters is beyond the scope of this
course, but interested readers should start see Andrews and Ploberger (1994).

3.13.2.2 Rolling and Recursive Parameter Estimates

Rolling and recursive parameter estimates are useful tools for detecting parameter instability in cross-
section regression of time-series data (e.g., asset returns). Rolling regression estimates use a fixed-
length sample of data to estimate β and then “roll” the sampling window to produce a sequence of
estimates.
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Definition 3.18 (m-sample Rolling Regression Estimates). The m-sample rolling regression estimates
are defined as the sequence

β̂ j =

 j+m−1∑
i= j

x′ixi

−1

x′iYi (3.106)

for j = 1,2, . . . ,n−m+1.

The rolling window length should be large enough so that parameter estimates in each window are rea-
sonably well approximated by a CLT but not so long as to smooth out any variation in β . 60-months is
a common window length in applications using monthly asset price data and window lengths ranging
between 3-months and 2-year are common when using daily data. The rolling regression coefficients
can be visually inspected for evidence of instability, and approximate confidence intervals (based on
an assumption of parameter stability) can be constructed by estimating the parameter covariance on
the full sample of n observations and then scaling by n/m so that the estimated covariance is appro-
priate for a sample of m observations. The parameter covariance can alternatively be estimated by
averaging the n−m+1 covariance estimates corresponding to each sample, Σ̂

−1
XX, jŜ jΣ̂

−1
XX, j, where

Σ̂XX, j = m−1
j+m−1∑

i= j

x′ixi (3.107)

and

Ŝ j = m−1
j+m−1∑

i= j

ε̂i, jx′ixi (3.108)

where ε̂i, j = Yi− x′iβ̂ j, and if the parameters are stable these methods for estimating the parameter
covariance should produce similar confidence intervals.

60-month rolling regressions of the BH portfolio in the 4-factor model are presented in figure
3.8 where approximate confidence intervals were computed using the re-scaled full-sample parameter
covariance estimate. While these confidence intervals cannot directly be used to test for parameter
instability, the estimate of the loadings on the market, SMB and HML vary more than their intervals
indicate these parameters should were they stable.

An alternative to rolling regressions is to recursively estimate parameters which uses an expanding
window of observations to estimate β̂ .

Definition 3.19 (Recursive Regression Estimates). Recursive regression estimates are defined as the
sequence

β̂ j =

( j∑
i=1

x′ixi

)−1

x′iYi (3.109)

for j = l,2, . . . ,n where l > k is the smallest window used.

Approximate confidence intervals can be computed either by re-scaling the full-sample parameter
covariance or by directly estimating the parameter covariance in each recursive sample. Documenting
evidence of parameter instability using recursive estimates is often more difficult than with rolling, as
demonstrated in figure 3.9
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Rolling Parameter Estimates in the 4-Factor Model
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Figure 3.8: 60-month rolling parameter estimates from the model BHe
i = β1 +β2VWMe

i +β3SMBi +
β4HMLi+β5MOMi+εi. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. These rolling estimates indicate that the market loading of the Big-High
portfolio varied substantially at the beginning of the samplefixed-length sample and that the loadings
on both SMB and HML may be time-varying.
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Recursive Parameter Estimates in the 4-Factor Model
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Figure 3.9: Recursive parameter estimates from the model BHe
i = β1 + β2VWMe

i + β3SMBi +
β4HMLi+β5MOMi+εi. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. While less compelling than the rolling window estimates, these recursive
estimates indicate that the loading on the market and on HML may not be constant throughout the
sample.



3.13 Model Selection and Specification Checking 193

3.13.2.3 Normality

Normality may be a concern if the validity of the small-sample assumptions is important. The standard
method to test for normality of estimated residuals is the Jarque-Bera (JB) test which is based on two
higher order moments (skewness and kurtosis) and tests whether they are consistent with those of a
normal distribution. In the normal, the skewness is 0 (it is symmetric) and the kurtosis is 3. Let ε̂i be
the estimated residuals. Skewness and kurtosis are defined

ŝk =
n−1∑n

i=1 ε̂3
i

(σ̂2)
3
2

κ̂ =
n−1∑n

i=1 ε̂4
i

(σ̂2)2

The JB test is computed

JB =
n
6

(
sk2 +

1
4
(κ−3)2

)
and is distributed χ2

2 . If sk ≈ 0 and κ ≈ 3, then the JB should be small and normality should not be
rejected. To use the JB test, compute JB and compare it to Cα where Cα is the critical value from a
χ2

2 . If JB >Cα , reject the null of normality.

3.13.2.4 Heteroskedasticity

Heteroskedasticity is a problem if neglected. See section 3.12.4.

3.13.2.5 Influential Observations

Influential observations are those which have a large effect on the estimated parameters. Data, partic-
ularly data other than asset price data, often contain errors.24 These errors, whether a measurement
problem or a typo, tend to make β̂ unreliable. One method to assess whether any observation has an
undue effect on the sample is to compute the vector of “hat” matrices,

hi = xi(X′X)−1x′i.

This vector (which is the diagonal of PX) summarizes the influence of each observation on the es-
timated parameters and is known as the influence function. Ideally, these should be similar and no
observation should dominate.

Consider a simple specification where Yi = Xi + εi where Xi and εi are i.i.d. standard normal. In
this case the influence function is well behaved. Now suppose one xi is erroneously increased by 100.
In this case, the influence function shows that the contaminated observation (assume it is Xn) has a
large impact on the parameter estimates. Figure 3.10 contains four panels. The two left panels show
the original data (top) and the data with the error (bottom) while the two right panels contain the
influence functions. The influence function for the non-contaminated data is well behaved and each
observation has less than 10% influence. In the contaminated data, one observation (the big outlier),
has an influence greater than 98%.

24And even some asset price data, such as TAQ prices.



194 Analysis of Cross-Sectional Data

Influential Observations
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Figure 3.10: The two left panels contain realizations from the data generating process Yi = Xi +
εi where a single Xi has been contaminated (bottom left panel). The two right panels contain the
influence functions of the Xi. If all data points were uniformly influential, the distribution of the
influence function should be close to uniform (as is the case in the top left panel). In the bottom right
panel, it is clear that the entire fit is being driven by a single Xi which has an influence greater than
.98.

Plotting the data would have picked up this problem immediately. However, it may be difficult to
determine whether an observation is influential when using multiple regressors because the regressors
for an observation may be “large” in many dimensions.

3.13.3 Improving estimation in the presence of outliers

Data may contain outliers for many reasons: someone entered an incorrect price on an electronic
exchange, a computer glitch multiplied all data by some large constant or a CEO provided an answer
out-of-line with other answers due to misunderstanding a survey question. The standard least-squares
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estimator is non-robust in the sense that large observations can have a potentially unbounded effect
on the estimated parameters. A number of techniques have been developed to produce “robust”
regression estimates that use weighted least squares to restrict the influence of any observation.

For clarity of exposition, consider the problem of estimating the mean using data that may be
contaminated with a small number of large errors. The usual estimator will be heavily influenced
by these outliers, and if outliers occur with any regularity in the data (suppose, for example, 1% of
data is contaminated), the effect of outliers can result in an estimator that is biased and in some cases
inconsistent. The simplest method to robustly estimate the mean is to use an α-trimmed mean where
α represents a quantile of the empirical distribution of the data.

Definition 3.20 (α-Trimmed Mean). The α-quantile trimmed mean is

µ̂α =

∑n
i=1YiI[CL≤Yi≤CU ]

n∗
(3.110)

where n∗ = n(1−α) =
∑n

i=1 I[−C<Yi<C] is the number of observations used in the trimmed mean.25

Usually α is chosen to be between .90 and .99. To use an α-trimmed mean estimator, first compute CL
the α/2-quantile and CU the 1−α/2-quantile of the of y. Using these values, compute the trimmed
mean as

A closely related estimator to the trimmed mean is the Winsorized mean. The sole difference
between an α-trimmed mean and a Winsorized mean is the method for addressing the outliers. Rather
than dropping extreme observations below CL and CU , a Winsorized mean truncates the data at these
points.

Definition 3.21 (Winsorized mean). Let Y ∗i denote a transformed version of Yi,

Y ∗i = max(min(Yi,CU),CL)

where CL and CU are the α/2 and 1−α/2 quantiles of Y . The Winsorized mean is defined

µ̂W =

∑n
i=1Y ∗i
n

. (3.111)

While the α-trimmed mean and the Winsorized mean are “robust” to outliers, they are not robust to
other assumptions about the data. For example, both mean estimators are biased unless the distribution
is symmetric, although “robust” estimators are often employed as an ad-hoc test that results based on
the standard mean estimator are not being driven by outliers.

Both of these estimators are in the family of linear estimators (L-estimators). Members of this
family can always be written as

µ̂
∗ =

n∑
i=1

wiYi

for some set of weights wi where the data, Yi, are ordered such that Yj−1 ≤ Yj for j = 2,3, . . . ,N.
This class of estimators obviously includes the sample mean by setting wi =

1
n for all i, and it also

includes the median by setting wi = 0 for all i except wm = 1 where m = (n+ 1)/2 (n is odd) or
wm = wm+1 = 1/2 where m = n/2 (n is even). The trimmed mean estimator can be constructed by

25This assumes that nα is an integer. If this is not the case, the second expression is still valid.
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setting wi = 0 if n≤ s or i≥ n− s and wi =
1

n−2s otherwise where s = nα is assumed to be an integer.
The Winsorized mean sets wi = 0 if n ≤ s or n ≥ N− s, wi =

s+1
n if n = s+ 1 or n = n− s− 1 and

wi =
1
n otherwise. Examining the weights between the α-trimmed mean and the Winsorized mean,

the primary difference is on the weights wk+1 and wn−k−1. In the trimmed mean, the weights on
these observation are the same as the weights on the data between these points. In the Winsorized
mean estimator, the weights on these observations are k+1

n reflecting the censoring that occurs at these
observations.

3.13.3.1 Robust regression-based estimators

Like the mean estimator, the least-squares estimator is not “robust” to outliers. To understand the
relationship between L-estimators and linear regression, consider decomposing each observation into
its mean and an additive error,

µ̂
∗ =

n∑
i=1

wiYi

=
n∑

i=1

wi (µ + εi)

=
n∑

i=1

wiµ +
n∑

i=1

wiεi

A number of properties can be discerned from this decomposition. First, in order for µ∗ to be unbiased
it must be the case that

∑n
i=1 wi = 1 and

∑n
i=1 E[wiεi] = 0. All of the linear estimators satisfy the

first condition although the second will depend crucially on the distribution of the errors. If the
distribution of the errors is symmetric then the Winsorized mean, the α-trimmed mean or even median
are unbiased estimators of the mean. However, if the error distribution is not symmetric, then these
estimators are likely to be biased. Unlike the usual case where E[wiεi] = wiE[εi], the weights are
functions of the errors and the expectation of the product of the expectations is not the expectation of
the product. Second, weights on the observations (Yi) are the same as weights on the errors, εi. This
relationship follows from noticing that if Yj ≤ Yj+1, then it must be the case that ε j ≤ ε j+1.

Robust estimators in linear regression models require a two-step or iterative procedure. The dif-
ference between robust mean estimators and robust regression arises since if Yi has a relationship to a
set of explanatory variables xi, then orderings based on Yi will not be the same as orderings based on
the residuals, εi. For example, consider the simple regression

Yi = βXi + εi.

Assuming β > 0, the largest Yi are those which correspond either the largest Xi or εi. Simple trimming
estimators will not only trim large errors but will also trim Yi that have large values of Xi. The left
panels of figure 3.11 illustrate the effects of Windsorization and trimming on the raw data. In both
cases, the regression coefficient is asymptotically biased (as indicated by the dotted line) since trim-
ming the raw data results in an error that is correlated with the regressor. For example, observations
with the largest Xi values and with positive εi more likely to be trimmed. Similarly, observations for
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the smallest Xi values and with negative εi are more likely to be trimmed. The result of the trimming
is that the remaining εi are negatively correlated with the remaining Xi.

To avoid this issue, a two-step or iterative procedure is needed. The first step is used to produce
a preliminary estimate of β̂ . OLS is commonly used in this step although some other weighted least-
squares estimator may be used instead. Estimated residuals can be constructed from the preliminary
estimate of β (ε̂i =Yi−xiβ̂ ), and the trimming or Windsorizing is done on these preliminary residuals.
In the case of α-trimming, observations with the largest errors (in absolute value) are dropped, and
the α-trimmed regression is estimated using only the observations with CL < ε̂i <CU .

Winsorized regression also uses the first step regression to estimate ε̂ , but, rather than dropping
observations, errors larger than CU are set to ε̂U and errors smaller than CL are set to ε̂L. Using these
modified errors,

ε̂
?
i = max(min(ε̂i,CU),CL)

a transformed set of dependent variables is created, Y ?
i = xiβ̂ + ε?i . The Winsorized regression co-

efficients are then estimated by regressing Y ?
i on xi. The correct application of α-trimming and

Windsorization are illustrated in the bottom two panels of figure 3.11. In the α-trimming exam-
ples, observations marked with an x were trimmed, and in the Windsorization example, observations
marked with a • were reduced from their original value to either CU or CL. It should be noted that
while both of these estimators are unbiased, this result relies crucially on the symmetry of the errors.

In addition to the two-step procedure illustrated above, an iterative estimator can be defined by

starting with some initial estimate of β̂ denoted β̂
(1)

and then trimming (or Windsorization) the data

to estimate a second set of coefficients, β̂
(2)

. Using β̂
(2)

and the original data, a different set of

estimated residuals can be computed ε̂i = Yi− xiβ̂
(2)

and trimmed (or Winsorized). Using the new

set of trimmed observations, a new set of coefficients, β̂
(3)

, can be estimated. This procedure can be

repeated until it converges – max
∣∣∣∣β̂ (i)− β̂

(i−1)
∣∣∣∣.26

Both α-trimmed and Winsorized regression are special cases of a broader class of “robust” regres-
sion estimators. Many of these robust regression estimators can be implemented using an iterative
procedure known as Iteratively Re-weighted Least Squares (IRWLS) and, unlike trimmed or Win-
sorized least squares, are guaranteed to converge. For more on these estimators, see Huber (2004) or
Rousseeuw and Leroy (2003).

3.13.3.2 Ad-hoc “Robust” Estimators

It is not uncommon to see papers that use Windsorization (or trimming) in the academic finance
literature as a check that the findings are not being driven by a small fraction of outlying data. This
is usually done by directly Windsorizing the dependent variable and the regressors. While there is no
theoretical basis for these ad-hoc estimators, they are a useful tool to ensure that results and parameter
estimates are valid for “typical” observations as well as for the full sample. However, if this is the goal,
other methods, such as visuals inspections of residuals or residuals sorted by explanatory variables,
are equally valid and often more useful in detecting problems in a regression.

26These iterative procedures may not converge due to cycles in {β̂ ( j)}.
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Correct and incorrect use of “robust” estimators
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Figure 3.11: These four panels illustrate correct and incorrect α-trimming (left) and Windsorization
(right). In both cases, the DGP was Yi = Xi + εi where Xi and εi were independent standard normal
random variables. The top panels show incorrect trimming based on the unmodified data, and the
bottom panels show correct trimming based on an initial estimate of the slope.

3.13.3.3 Inference on “Robust” Estimators

It may be tempting to use OLS or White heteroskedasticity robust standard errors in “robust” regres-
sions. These regressions (and most L-estimators) appear similar to standard least-squares estimators.
However, there is an additional term in the asymptotic covariance of the estimated regression coef-
ficients since the trimming or Windsorization point must be estimated. This term is related to the
precision of the trimming point and is closely related to the uncertainty affecting the estimation of a
quantile. Fortunately, bootstrapping can be used (under some mild conditions) to estimate the covari-
ance of the regressors.
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3.14 Machine Learning

Machine learning approaches to regression, also known as supervised learning, address two key chal-
lenges:

• Variable selection when the number of candidate variables is large. In machine learning, vari-
ables are often called features, and the collection of all features is called the feature space. Most
machine learning algorithms are capable of modeling data sets where the number of variables
exceeds the number of observations available.

• Optimizing model parameters to perform well in out-of-sample prediction. In most applica-
tions, this optimization makes an explicit trade-off between bias and variance, and most ML
approaches to regression use biased estimators that have lower parameter variance than vanilla
OLS. This reduction in variance, especially for parameters that have a small effect relative to
their uncertainty, improves out-of-sample prediction at the cost of some bias.

ML approaches achieve these goals using cross-validation to select models and parameter values that
perform well both in- and out-of-sample. These alternative approaches generally provide methods to
jointly select relevant variables and estimate parameters. Some methods make use of bootstrapping to
improve the reliability of the models in out-of-sample data. Ultimately these approaches all produce
a standard linear regression model where the coefficients are not usually estimated using standard
OLS. The most useful strategies tend to introduce a limited amount of bias by shrinking regression
coefficients toward 0 to mitigate the cost of parameter uncertainty.

3.14.1 Best Subset Regression

Best Subset Regression is the simplest method to construct a model given a set of predictors. Sup-
pose you have p candidate variables X1,i, . . . ,Xp,i. Best Subset Regression finds the combination of
variables in this set that optimizes the model’s fit according to some criteria, for example, the cross-
validated SSE or BIC. Best Subset Regression begins by finding the model that produces the smallest
in-sample SSE, or equivalently the largest R2, using k of the p variables. Let this model be denoted

Mk. This step involves fitting
(

p
k

)
distinct models. The best model is selected for each possible

value of k = 1,2, . . . , p. The initial inputs are a set of p+1 distinct modelsM0,M1, . . . ,Mp where
M0 is a model that contains no predictors. The Best Subset Regression is chosen by comparing the
performance of these p+ 1 models using some criterion, for example, the cross-validated SSE, and
selecting the model that performs the best. There are two important issues with Best Subset Regres-
sion. First, it can only be used when the set of candidate predictors p is moderate (≤ 30) since there
are 2p− 1 distinct models that must be estimated. Second, the coefficients of the best model are es-
timated by OLS. OLS estimates always overfit the sample used to estimate the parameters, and the
in-sample overfitting reduces the out-of-sample performance of the models.

Algorithm 3.11 (Best Subset Regression).

1. For k ∈ {0,1, . . . , p} estimate each of the
(

p
k

)
distinct models containing k variables, saving

the model that produces the smallest SSE asM j, j = 0, . . . , p .
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2. Select the Best Subset Regression as the model from the set {M0,M1, . . . ,Mp} that minimizes
some criterion such as the cross-validated SSE.

3.14.2 Forward, Backward, and Hybrid Stepwise Regression

Best Subset Regression cannot be used when p is large. Stepwise model building is an alternative
the builds the models M0,M1, . . . ,Mp sequentially. Forward stepwise regression begins with no
variables selected. Each of the excluded variables, p in total, are tried one at a time, and the regressor
that produces the best fit is retained inM1. The second model,M2, is then selected by adding each
of the p−1 variables that were not included inM1 and is defined as the model that produces the best
in-sample fit. This process is repeated so thatM j+1 adds one of the p− j variables toM j that were
not included inM j. The output of the first step is a set of p+1 modelsM0,M1, . . .Mp where larger
models always nest smaller models. The final model is selected from the set of candidate models by
optimizing some criterion such as the cross-validated SSE.

Algorithm 3.12 (Forward Stepwise Regression).

1. Begin with the empty model,M0.

2. For j ∈ {0, . . . , p−1}, construct modelM j+1 as the model the minimizes the SSE by adding
each of the p− j variables to the variables included in modelM j.

3. Select the Forward Stepwise Regression as the model from the set {M0,M1, . . . ,Mp} that
minimizes some criterion such as the cross-validated SSE.

Backward stepwise regression operates in the opposite direction. Begin with the model that con-
tains all variables Mp. The next smaller model, Mp−1 is defined as the model that minimizes the
SSE considering each of the p models that drops a single variable fromMp. This process continues
where M j is defined as the model that maximizes the in-sample fit using j of the j + 1 variables
included inM j+1. Like forward stepwise regression, backward stepwise regression produces a set of
p+1 modelsM0,M1, . . .Mp. The best model is then selected from this set of candidate models by
optimizing some criterion function.

Algorithm 3.13 (Backward Stepwise Regression).

1. Begin with the complete model,Mp.

2. For j ∈ {p−1, p−2, . . . ,0}, construct modelM j as the model the minimizes the SSE by re-
moving each of the j variables, one at a time, of the variables included in modelM j+1.

3. Select the Backward Stepwise Regression as the model from the set {M0,M1, . . . ,Mp} that
minimizes some criterion such as the cross-validated SSE.

Hybrid approaches combine the two. For example, suppose forward stepwise regression is used to
selectMk where k < p. Backward stepwise regression can be used on the k included regressors inMk
to produce a new sequence of modelsMk

j for j = k−1,k−2, . . .1. This sequence may be distinct from
what forward or backward stepwise regression would arrive at alone. The hybrid approach generally
produces a larger set of candidate models while remaining computationally tractable as long as the
number of direction switches is small. This larger set of candidate models has an increased chance
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of including the Best Subset Regression than either forward or backward stepwise regression alone.
The primary challenge of the hybrid approach is determining the number of direction reversals to use,
although, in practice, this is often dictated by the computational time available. Like both forward and
backward stepwise regression, the final model is selected from the enlarged pool of candidate models
by optimizing some criteria.

3.14.3 Ridge Regression

Ridge regression differs from best subset and stepwise regression in two ways: it does not select
variables, and coefficients are not estimated using standard OLS.

Definition 3.22 (Ridge Regression).
The ridge regression estimator with tuning parameter ω is defined as the solution to

argmin
β

(y−Xβ )′ (y−Xβ ) subject to
k∑

j=1

β
2
j ≤ ω. (3.112)

This constrained problem is equivalent to the unconstrained problem

argmin
β

(y−Xβ )′ (y−Xβ )+λ

k∑
j=1

β
2
j (3.113)

where ω and λ take different values and have an inverse relationship (i.e., large values of ω corre-
spond to small values of λ ). The solution to this optimization problem is

β̂
Ridge

=
(
X′X+λ Ik

)−1 X′y (3.114)

where k is the number of regressors included in the model.
Recall that the OLS estimator is β̂ = (X′X)

−1 X′y. The effect of the ridge penalty is simple to
deduce from eq. (3.114) since λ > 0. The term X′X+λ Ik must always be larger, in a matrix sense,
than X′X since λ Ik is a diagonal matrix with positive values along its diagonal. It must then be the
case that (X′X+λ Ik)

−1 is smaller than X′X, again in a matrix sense, and so the ridge coefficient

estimates β̂
Ridge

are always closer to 0 than the OLS estimates β̂ . Ridge regression is known as a
shrinkage estimator since the parameter estimates pull the parameters towards the shrinkage target of
0. In practice shrinkage introduces some bias in the coefficient but reduces their variance, and ridge
regression often outperforms OLS in out-of-sample applications.

Ridge regression depends on a single tuning parameter, λ , which controls how bias and variance
are traded off. The optimal value is determined by trying several different values and selecting the
value λ ? that produces the smallest cross-validated SSE. Note that ridge regression does not provide
any guidance as to which variables to include in the model, and so some form of model selection is
usually needed. The optimal choice of λ depends on the number of regressors included in the model,
and so it must be re-optimized in each distinct model. There are many variants of ridge regression
that change the penalty structure. For example, one variant allows the shrinkage to be applied to
only a subset of the included variables. This penalization structure can be useful if some variables
are strong predictors, while others are less useful. This penalty structure can be further generalized to
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apply different amounts of shrinkage to distinct groups of regressors or even to impose cross-regressor
shrinkage where the total magnitude of a set of the regressors in the model is affected.27

3.14.4 LASSO, Forward Stagewise Regression, and LARS

LASSO (least absolute shrinkage and selection operator), Forward Stagewise Regression, and LARS
(Least Angle Regression) are relatively new methods the embed both variable selection and shrinkage
into a unified approach (Tibshirani, 1996; Efron, Hastie, Johnstone, and Tibshirani, 2004). LASSO is
similar to ridge regression and can be written as a constrained least square problem.

Definition 3.23 (LASSO). The LASSO estimator with tuning parameter ω is defined as the solution
to

argmin
β

(y−Xβ )′ (y−Xβ ) subject to
k∑

j=1

∣∣β j
∣∣< ω (3.115)

The key difference is that the constraint is on the sum of the absolute value of the coefficients and
not their squared values. The LASSO estimator adds an additional constraint to the least-squares
problem that limits the magnitude of regression coefficients that produces an interpretable model.
Regressors that have little explanatory power will have coefficients exactly equal to 0 (and hence are
excluded). This means that LASSO both estimates parameters and selects variables – any variable
with a coefficient that is exactly 0 is effectively removed from the model.

The LASSO constrained minimization problem is dual to a penalized least-squares problem,

argmin
β

(y−Xβ )′ (y−Xβ )+λ

k∑
j=1

∣∣β j
∣∣ (3.116)

where ω and λ have an inverse relationship. While LASSO has a closed form solution for any value
of λ ,the estimator is not simple to describe in a single equation.

Forward Stagewise Regression is closely related to LASSO and illustrates the fundamental prin-
ciple used in variable selection. Estimation begins with a model that contains no regressors. The
algorithm then uses an iterative method to build the regression in small steps by expanding the regres-
sion coefficients (small enough that the coefficient expansions should be virtually continuous).

27The complete formulation of a ridge regression is

argmin
β

(y−Xβ )(y−Xβ )+(β −β 0)
′
Λ(β −β 0)

where β 0 is the shrinkage target and Λ is a positive definite matrix that controls the amount of shrinkage. This form
nests the classic specification when Λ = λ Ik and β 0 = 0. If Λ is not diagonal, then the estimator will apply cross-variable
penalties. The solution to the general problem is

β̂
Ridge

= (X′X+Λ)
−1

(X′y+Λβ 0) .

This shows that the OLS solution is recovered when Λ = 0. If Λ is very large, then β̂
Ridge ≈ Λ

−1
Λβ 0 = β 0 and the

estimate depends only on the shrinkage target β 0.
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Algorithm 3.14 (Forward Stagewise Regression). The Forward Stagewise Regression (FSR) estima-
tor is defined as the sample paths of β̂ defined by

1. Begin with β̂
(0)

= 0, and errors ε(0) = y

2. Compute the correlations of the residual at iteration i with the regressors, c(i) = Corr
[
X,ε(i)

]
3. Define j to be the index of the largest element of |c(i)| (the absolute value of the correlations),

and update the coefficients where β̂
(i+1)
j = β̂

(i)
j +η · sign

(
c j
)

and β̂
(i+1)
l = β̂

(i)
l for l 6= j where

η is a small number (should be much smaller than c j).28

4. Compute ε(i+1) = y−Xβ̂
(i+1)

5. Repeat steps 2 – 4 until all correlations are 0 (if ε(i) = 0 than all correlations are 0 by defini-
tion).

The coefficients of FSR are determined by taking a small step in the direction of the highest
correlation between the regressors and the current error, and so the algorithm will always take a step
in the direction of the regressor that has the most (local) explanatory power over the regressand. The
final stage FSR coefficients will be equal to the OLS estimates as long as the number of regressors
under consideration is smaller than the number of observations. The LASSO estimate is usually
computed using the LARS algorithm, which simplifies FSR by finding the exact step size needed
before the next variable enters the regression.

Algorithm 3.15 (Least Angle Regression). The Least Angle Regression (LARS) estimator is defined
as the sample paths of β̂ defined by:

1. Begin with β̂
(0)

= 0, and errors ε(0) = ỹ where

ỹ =
y− ȳ

σ̂y
(3.117)

and

x̃i =
xi− x̄i

σ̂x
(3.118)

are studentized versions of the original data.29

2. Compute the correlations of the residual at state i with the regressors, c(i)=Corr
[
X̃(i),ε(i)

]
and

define j to be the index of the largest element of |c(i)| (the absolute value of the correlations).

3. Define the active set of regressors X̃(1) = x̃ j.

28η should be larger than some small value to ensure the algorithm completes in finitely many steps, but should always
be weakly smaller than |c j|.

29LARS can be implemented on non-studentized data be replacing correlation with c(i) = X(i)′ε(i).
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4. Move β̂
(1)

= β̂ j towards the least squares estimate of regressing ε(0) on X̃(1) until the correla-

tion between ε(1) = ỹ− X̃(1)β̂
(1)

and some other x̃k is equal to the correlation between ε(1) and
x̃ j.

5. Add x̃k to the active set of regressors so X̃(2) =
[
x̃ j, x̃k

]
.

6. Move β̂
(2)

=
[
β̂ j β̂k

]
towards the least squares estimate of regressing ε(1) on X̃(2) until the

correlation between ε(2) = ỹ− X̃(2)β̂
(2)

and some other x̃l is equal to the correlation between
ε(2) and X̃(2).

7. Repeat steps 5 – 6 by adding regressors to the active set until all regressors have been added or
n steps have been taken, whichever occurs first.

The algorithm of LARS describes the statistical justification for the procedure – variables are
added as soon as they have the largest correlation. Once the active set contains two or more regres-
sors, the maximum correlation between the error and all regressors will be the same since regression
coefficients are expanded in a manner that keeps the correlation identical between the error and any
regressors in the active set. Efron, Hastie, et al. (2004) proposes a new algorithm that allows the
entire path of LASSO, FSR, and LARS estimates to be quickly computed in models that contain a
large number of candidate regressors. LASSO differs from LARS in one technical aspect, although
they are very similar in practice.

These models are deeply related as shown Efron, Hastie, et al. (2004) and Hastie et al. (2007). All
three can be used for model selection once a stopping rule (FSR, LARS) or the penalty (λ , LASSO)
has been selected. k-fold cross-validation is commonly used to choose these values. Note that the
usual standard OLS errors and t-stats are no longer correct since these estimators are constrained
versions of least squares. Tibshirani (1996) proposes a bootstrap method that can be used to compute
standard errors and make inference on LASSO estimators.30

Figure 3.12 illustrates how ridge regression and LASSO estimate parameters. Both show the
OLS estimate β̂ surrounded by ellipsoids the trace iso-SSE curves – that is, values of β1 and β2 that
produce the same regression fit. The estimators are defined as the point where the smallest SSE is
just tangent to the constraint. The ridge regression shrinks the estimate towards zero in a non-uniform
way. This happens since the regressors are correlated. Ridge regression produces an estimate where
both coefficients are non-zero. LASSO, on the other hand, estimates β2 to be exactly. This happens
since non-zero β1provides a larger reduction in the SSE than β2, at least near the point (0,0) . In
general, ridge regression will never estimate any coefficients to be exactly 0 except when the OLS
coefficient is exactly 0. LASSO frequently estimates coefficients to be zero since the cost of adding a
small amount of a coefficient near zero is linear in β while the gain in terms of the SSE is quadratic
in β (i.e., ∝ β 2).

Figure 3.13 shows that paths of both the ridge regression and LASSO estimators are the restriction
parameter ω is reduced. The model estimated regresses the return on the Big-High portfolio on the
four factors, VWMe, SMB, HML, and MOM. The paths begin with ω = 0. As the constraint is
relaxed, the parameters converge towards the OLS estimates, which limit cases as ω increases. There

30The standard errors subsequent to a selection procedure using GtS, StG, or IC are also not correct since tests have
been repeated. In this regard, the bootstrap procedure should be more accurate since it accounts for the variation due to
the selection, something not usually done in traditional model selection procedures.
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Figure 3.12: The left panel shows the ridge regression restriction for a specific value of ω along with
three lines that trace combinations of β1 and β2 that produce the same model SSE. The ridge estimate
is defined as the point where the SSE is just tangent to a restriction. The right shows the LASSO
constraint along with the iso-SSE curves for the same data generating process.

is one clear distinction between the two paths. The paths from ridge regression evolve smoothly as ω

increases. All coefficients except SMB are different from zero once ω > 1/8. The LASSO paths have
a distinct kinked shape. These kinks are points where the correlation between one excluded regressor
and the included regressor(s) equalize so that the active set of regressors increases. The market is the
strongest predictor, followed by the value factor. Momentum enters the model for small values of the
penalty parameter, and size has a non-zero coefficient only at the OLS estimate (and then very small).
The dashed line in each plot indicates that optimal choice ω? selected using 5-fold cross-validation.
The cross-validated penalty parameter suggests that little shrinkage is needed. This occurs since the
sample size is large enough that parameters, even small values, are precisely estimated.

3.14.5 Regression Trees and their Refinements

Regression Trees build models using only dummy variables. Constructing a regression tree begins by
splitting the data into two groups using the values in regressors as possible split values. The model is
constructed by splitting the observations into two groups using on all possible values of each regressor.
The split that minimizes the SSE is retained, and the two groups are called leaves. The algorithm is
then rerun on each leaf again, splitting on all possible values in each of the variables included in the
model. This process of splitting into two leaves continues until either the homogeneity in the group
as measures by the within-group MSE is sufficiently low, or the number of observations in a leaf falls
below some prespecified value.

Figure 3.14 shows the first three levels of a model for the returns on the Big-High portfolio on
the four factor portfolios. Splitting the data first on the market produced the largest gains, and the
optimal split value was very near zero. The two leaves were then split according to the market into
four groups corresponding to very low market returns (≤ −7.17), negative market returns (−7.17 <
V MW ≤ −0.81), positive market returns (−0.81 < V MW ≤ 3.78), and very high market returns
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Figure 3.13: The top panel shows the path of the ridge regression estimates from the four factor model
BHe = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi. The penalty parameter ω is increased
from zero to the value that produces the OLS estimate. The bottom panel contains the path of the
LASSO estimates as the restriction is decreased. The kinks indicate points where a parameter switches
from being exactly zero to a non-zero value.
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V W M e <= -12.82
mse = 34.75

samples = 36

V W M e <= -2.27
mse = 5.96

samples = 204

H M L <= 1.12
mse = 5.12

samples = 294

V W M e <= 8.07
mse = 10.86

samples = 152

V W M e <= -7.17
mse = 17.09

samples = 240

V W M e <= 3.78
mse = 11.22

samples = 446

V W M e <= -0.81
mse = 24.61

samples = 686

Figure 3.14: A regression tree where the left-hand-side variable is the return on the Big-High portfolio
and the model is built using the four factors: VWMe, SMB, HML, and MOM. The first and second
splits used the market portfolio to bin the returns into four regions ranging from very low to very high.
The final level splits used different variables so that the terminal leaves depend on both the market
and the size factor.

(> 3.78%). If the tree was stopped at this node, the regression selected would be

BHe = β1I[VWMe
i ≤−7.17] +β2I[−7.17<VWMe

i ≤−0.81] +β3I[−0.81<VWMe
i ≤3.78] +β4I[VWMe>3.78]+ εi

The estimates of the parameters are simply the within-group means. The final level further splits
the data into eight leaves (not shown). Three of the final level splits used the market return to split
the negative returns further and to define an extreme positive return leaf. The other split preferred
to use value. This final regression model would have eight terms constructed using combinations of
restrictions on the return on the market factor and the return of the value factor.

Regression trees have step-function like behavior and frequently are not well suited to analyz-
ing continuous-valued variables using continuously values regressors. While plain regression threes
should usually be avoided, four refinements, pruning, Random Forests, bagging, and boosting all pro-
duce improvements in regression-tree models. Figure 3.15 compares a 2-level tree with OLS when
modeling the return of the Big-High portfolio using the excess market return. The tree approximates
the regression line as a step function. While this fit is not a terrible description of the data near 0,
there are obvious deficiencies in the tails.

3.14.5.1 Improving Regression Trees

Three techniques are commonly used to improve regression trees: pruning, bagging, boosting, and
Random Forests. Pruning a tree removes nodes that make a negligible improvement to the in-sample
fit and often decrease out-of-sample fit. Pruning is implemented by optimizing the modified objective
function
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Figure 3.15: The regression tree implied by the first two splits and the OLS fit of the excess returns
on the Big-High portfolio on the market.

n∑
i=1

(
Yi− f̂ (xi)

)2
+α |T |

where f̂ (xi) is the predicted value for a given tree and |T |is the number of terminal nodes in the tree.
Pruning starts with a large tree with T0nodes that is only terminated when either the number of nodes
hits some threshold, the maximum number of levels is reached, or a SSE-based stopping criterion is
met. For values of α on a grid of plausible values

{
α1 < α2 < .. . < αq

}
the tree that minimizes the

modified objective function is selected. The preferred value of α̂ is chosen from this grid using k-fold
cross-validation. Finally, the pruned tree is estimated by minimizing the modified objective function
using α̂ on the original sample.

Bagging makes use of B bootstrap samples to the parameters of multiple trees. Each tree can
then be used to generate predictions for any value of the regressor x. These predictions are then be
averaged to produce the bagged forecast. Note that each tree may have both a different structure and
parameter values. While the forecasts will tend to be similar, they are not perfectly correlated, and
the average forecast has a lower variance than any of the individual forecasts.

Algorithm 3.16 (Bagging Regression Trees). A bagged prediction from a regression tree is con-
structed following:

1. For i = 1,2, . . . ,B generate a bootstrap sample from (Yi,xi) and fit a regression tree to the
bootstrapped sample.

2. Using the B trees, construct the forecast as

f̂ (x) = 1/B

B∑
i=1

f̂i (x)

where fi (x) is the prediction from the tree estimated using bootstrap sample i.

Random Forests make use of randomization by selecting a subset of the available regressors when
estimating a tree. When the number of regressors p is large, most trees will tend to have a very
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similar structure even when fit to bootstrapped samples. This structure arises since strong predictors
will always be selected in the first levels of the tree. The Random Forest solution is to estimate a tree
using a bootstrap sample that also random selects ≈ √p regressors. This fitting of trees to random
subsamples of the data is repeated many times, and the Random Forecast forecast is the average of
forecasts of these models. The distinct trees tend to have low correlation, which translates into large
gains from averaging.

Algorithm 3.17 (Random Forests). A Random Forest of regression trees is constructed following:

1. For i = 1,2, . . . ,B generate a bootstrap sample of the data with a random subset of k ≈ √p
regressors and fit a regression tree using the selected subset of the regressors.

2. Using the B trees, construct the forecast as

f̂ (x) = 1/B

B∑
i=1

f̃i (x)

where f̃i is the prediction using random regressor subset i.

Note that a Random Forest is identical to a bagged regression tree when k = p regressors are used
to build each tree.

Boosting also fits multiple trees, only sequentially to the same data. A boosted tree begins by
fitting a small tree with d nodes to the data and computing the residuals. It then fits a new tree to the
residuals. This is repeated many times. The trees are then combined using a tuning parameter λ as

f̂ (x) = 1/B

B∑
i=1

λ f̈i (x)

where f̈1is the tree fit to the original data and f̈ j, j ≥ 2 is the prediction from the tree estimated using
the residuals of the form

ε̂i, j = ε̂i, j−1−λ f j−1 (xi)

where ε̂i,0 = Yi.

Algorithm 3.18 (Bagging Regression Trees). Begin with ε̂i,0 = Ỹi where Ỹi is the standardized version
of Yi. For j = 1, . . . ,B :

1. Fit a regression tree using
(
εi, j−1,xi

)
with d splits and generate ε̂i, j = ε̂i, j−1−λ f̈ j (xi) where

f̈ jis the tree fit in iteration j.

2. Produce the boosted forecast as

f̂ (x) = 1/B

B∑
i=1

λ f̈i (X) .

Boosting makes uses of three tuning parameters, λ , d, and B. λ is usually set to some small
value in the range (0.001,0.10). Small values of λ slow the learning since much of the forecast is
down-weighted. d, the number of terminal nodes in a tree, is also set to some small number, often
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1. d determines the maximum number of interactions allowed between the regressors when building
the dummy-variable representation of a regression tree. Finally, B is usually set to some large value,
often in the range of 1,000 – 10,000. These three parameters all interact and are substitutes – increases
in one should usually be matched by decreases in the others when building optimal predictions. All
three can be selected using a grid of values and k-fold cross-validation.

3.15 Projection

Least squares has one further justification: it is the best linear predictor of a dependent variable where
best is interpreted to mean that it minimizes the mean square error (MSE). Suppose f (x) is a function
of only x and not Y . Mean squared error is defined

E[(Y − f (x))2].

Assuming that it is permissible to differentiate under the expectations operator, the solution is

E[Y − f (x)] = 0,

and, using the law of iterated expectations,

f (x) = E[y|x].
If f (x) is restricted to include only linear functions of x then the problem simplifies to choosing β to
minimize the MSE,

E[(Y −xβ )2]

and differentiating under the expectations (again, when possible),

E[x′(Y −xβ )] = 0

and β̂ = E[x′x]−1E[x′y]. In the case where x contains a constant, this allows the best linear predictor
to be expressed in terms of the covariance matrix of y and x̃ where the˜indicates the constant has been
excluded (i.e., x = [1 x̃]), and so

β̂ = Σ
−1
XX ΣXy

where the covariance matrix of [Y x̃] can be partitioned

Cov([Y x̃]) =
[

ΣXX ΣXy

Σ
′
Xy Σyy

]
Recall from assumptions 3.7 that {xi,εi} is a stationary and ergodic sequence and from assumption

3.8 that it has finite second moments and is of full rank. These two assumptions are sufficient to justify
the OLS estimator as the best linear predictor of Y . Further, the OLS estimator can be used to make
predictions for out of sample data. Suppose Yn+1 was an out-of-sample data point. Using the OLS
procedure, the best predictor of Yn+1 (again, in the MSE sense), denoted Ŷn+1 is xn+1β̂ .
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Weights of an S&P 500 tracking portfolio

M
aterials

E
n

ergy

Fin
an

cials

In
d

u
strials

Tech
n

o
lo

gy

Stap
les

U
tilities

H
ealth

C
are

D
iscretio

n
ary

0.00

0.05

0.10

0.15

0.20

0.25

Po
rt

fo
lio

W
ei

gh
t

Figure 3.16: Plot of the optimal tracking portfolio weights. The optimal tracking portfolio is long all
asset and no weight is greater than 25%.

3.15.1 Tracking Error Minimization

Consider the problem of setting up a portfolio that would generate returns as close as possible to the
return on some index, for example, the FTSE 100. One option would be to buy the entire portfolio
and perfectly replicate the portfolio. For other indices, such as the Wilshire 5000, which consists of
many small and illiquid stocks, complete replication is impossible, and a tracking portfolio consisting
of many fewer stocks must be created. One method to create the tracking portfolios is to find the best
linear predictor of the index using a set of individual shares.

Let xi be the returns on a set of assets and let Yi be the return on the index. The tracking error
problem is to minimize the

E[(Yi−Xiw)2]

where w is a vector of portfolio weights. Portfolio tracking has the same structure as the best linear
predictor and the optimal weights are ŵ = (X′X)−1X′y.

Data between January 5, 2010, and December 31, 2019, was used, a total of 2,515 trading days.
The regression specification is simple: the return on the S&P is regressed on the returns on the sector
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ETF returns,

RSP500
i =

30∑
j=1

w jRi j + εi

where the portfolios are ordered alphabetically (not that this matters). The portfolio weights (which
need not sum to 1) are presented in figure 3.16. All funds have positive weights, and the maximum
just under 25%. More importantly, this portfolio has a correlation of 99.5% with the return on the
S&P 500. Its return tracks the return of the S&P to within 1.4% per year. The tracking error variance
is much smaller than the 14.7% annualized volatility of the S&P over this period.

While the regression estimates provide the solution to the unconditional tracking error problem,
this estimator ignores two important considerations: how should stocks be selected, and how condi-
tioning information (such as time-varying covariance) can be used. The first issue, which stocks to
choose, is difficult and is typically motivated by the cost of trading and liquidity. The second issue
will be re-examined using Multivariate GARCH and related models in a later chapter.

3.A Selected Proofs

Theorem 3.1.

E
[
β̂ |X

]
= E

[(
X′X

)−1 X′y|X
]

= E
[(

X′X
)−1 X′Xβ +

(
X′X

)−1 X′ε|X
]

= β +E
[(

X′X
)−1 X′ε|X

]
= β +

(
X′X

)−1 X′E [ε|X]

= β

Theorem 3.2.

V
[
β̂ |X

]
= E

[(
β̂ −E

[
β̂ |X

])(
β̂ −E

[
β̂ |X

])′
|X
]

= E
[(

β̂ −β

)(
β̂ −β

)′
|X
]

= E
[(

X′X
)−1 X′εε

′X
(
X′X

)−1 |X
]

=
(
X′X

)−1 X′E
[
εε
′|X
]

X
(
X′X

)−1

= σ
2 (X′X)−1 X′InX

(
X′X

)−1

= σ
2 (X′X)−1 X′X

(
X′X

)−1

= σ
2 (X′X)−1
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Theorem 3.3. Without loss of generality C = (X′X)
−1 X+D′ where D′ must satisfy D′X = 0 and

E [D′ε|X] = 0 since

E
[
β̃ |X

]
= E [Cy|X]

= E
[((

X′X
)−1 X′+D′

)
(Xβ + ε) |X

]
= β +D′Xβ +E

[
D′ε|X

]
and by assumption Cy is unbiased and so E [Cy|X] = β .

V
[
β̃ |X

]
= E

[((
X′X

)−1 X′+D′
)

εε
′
(

D+X
(
X′X

)−1
)
|X
]

= E
[(

X′X
)−1 X′εε

′X
(
X′X

)−1 |X
]
+E

[
D′εε

′D|X
]
+E

[
D′εεX

(
X′X

)−1 |X
]
+E

[(
X′X

)−1 X′εεD|X
]

= σ
2 (X′X)−1

+σ
2D′D+σ

2D′X
(
X′X

)−1 |X+σ
2 (X′X)−1 X′D

= V
[
β̂ |X

]
+σ

2D′D+0+0

= V
[
β̂ |X

]
+σ

2D′D

and so the variance of β̃ is equal to the variance of β̂ plus a positive semi-definite matrix, and so

V
[
β̃ |X

]
−V

[
β̂ |X

]
= σ

2D′D≥ 0

where the inequality is strict whenever D 6= 0.

Theorem 3.4.
β̂ = β +

(
X′X

)−1 X′ε

and so β̂ is a linear function of normal random variables ε , and so it must be normal. Applying the
results of Theorems 3.1 and 3.2 completes the proof.

Theorem 3.5.

β̂ −β = (X′X)
−1 X′ε and ε̂ = y−X(X′X)

−1 X′y = MXy = MXε , and so

E
[(

β̂ −β

)
ε̂
′|X
]
= E

[(
X′X

)−1 X′εε
′MX|X

]
=
(
X′X

)−1 X′E
[
εε
′|X
]

MX

= σ
2 (X′X)−1 X′MX

= σ
2 (X′X)−1

(MXX)′

= σ
2 (X′X)−1 0

= 0

since MXX = 0 by construction. β̂ and ε̂ are jointly normally distributed since both are linear func-
tions of ε , and since they are uncorrelated they are independent.31

31Zero correlation is, in general, insufficient to establish that two random variables are independent. However, when
two random variables are jointly normally distribution, they are independent if and only if they are uncorrelated.
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Theorem 3.6. σ̂2 = ε̂
′
ε̂

n−k and so (n− k) σ̂2 = ε̂
′
ε̂ . ε̂ =MXε , so (n− k) σ̂2 = ε ′MX

′MXε and (n− k) σ̂
2

σ2 =
ε
′MXε

σ2 = ε

σ

′MX
ε

σ
= z′MXz since MX is idempotent (and hence symmetric) where z is a n by 1 mul-

tivariate normal vector with covariance In. Finally, applying the result in Lemma 3.1, z′MXz ∼∑n
i=1 λiχ

2
1,i where {λi}, i = 1,2, . . . ,n are the eigenvalues of MX and χ2

1,i, i = 1,2, . . . ,n are indepen-
dent χ2

1 random variables. Finally, note that MX is a rank n− k idempotent matrix, so it must have
n− k eigenvalues equal to 1, λi = 1 for i = 1,2, . . . ,n− k and k eigenvalues equal to 0, λi = 0 for
i = n− k+1, . . . ,n, and so the distribution is a χ2

n−k.

Lemma 3.1 (Quadratic Forms of Multivariate Normals). Suppose z ∼ N (0,Σ) where Σ is a n by n
positive semi-definite matrix, and let W be a n by n positive semi-definite matrix, then

z′Wz∼ N2 (0,Σ;W)≡
n∑

i=1

λiχ
2
1,i

where λi are the eigenvalues of Σ
1
2 WΣ

1
2 and N2 (·) is known as a type-2 normal..

This lemma is a special case of Baldessari (1967) as presented in White (Lemma 8.2, 1996).

Theorem 3.8. The OLS estimator is the BUE estimator since it is unbiased by Theorem 3.1 and it
achieves the Cramer-Rao lower bound (Theorem 3.7).

Theorem 3.9. Follows directly from the definition of a Student’s t by applying Theorems 3.4, 3.5, and
3.2.

Theorem 3.10. Follows directly from the definition of a Fν1,ν2 by applying Theorems 3.4, 3.5, and
3.2.

Theorem 3.12.

β̂ n−β =
(
X′X

)−1 X′ε

=

(
n∑

i=1

x′ixi

)−1 n∑
i=1

x′iε i

=

(∑n
i=1 x′ixi

n

)−1 ∑n
i=1 x′iεi

n

Since E[x′ixi] is positive definite by Assumption 3.8, and {xi} is stationary and ergodic by Assump-

tion 3.7, then
∑n

i=1 x′ixi
n will be positive definite for n sufficiently large, and so β̂ n exists. Apply-

ing the Ergodic Theorem (Theorem 3.21),
∑n

i=1 x′ixi
n

a.s.→ ΣXX and
∑n

i=1 x′iεi
n

a.s.→ 0 and by the Continu-
ous Mapping Theorem (Theorem 3.22) combined with the continuity of the matrix inverse function,(∑n

i=1 x′ixi
n

)−1 a.s.→ Σ
−1
XX , and so

β̂ n−β =

(∑n
i=1 x′ixi

n

)−1 ∑n
i=1 x′iεi

n
a.s.→ Σ

−1
XX ·0

a.s.→ 0.
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Finally, almost sure convergence implies convergence in probability and so β̂ n− β
p→ 0 or β̂ n

p→
β .

Theorem 3.21 (Ergodic Theorem). If {zt} is ergodic and its rth moment, µr, is finite, then

T−1
T∑

t=1

zr
t

a.s.→ µr

.

Theorem 3.22 (Continuous Mapping Theorem). Given g : Rk→ Rl , and any sequence of random k
by 1 vectors {zn} such that zn

a.s.→ z where z is k by 1, if g is continuous at z, then g(zn)
a.s.→ g(z).

Theorem 3.13. See White (Theorem 5.25, 2000).

Theorem 3.15.

ε̂
′
ε̂

n
=

(
y−Xβ̂ n

)′(
y−Xβ̂ n

)
n

=

(
y−Xβ̂ n

)′(
y−Xβ̂ n

)
n

=

(
y−Xβ̂ n +Xβ −Xβ

)′(
y−Xβ̂ n +Xβ −Xβ

)
n

=

(
y−Xβ +X

(
β − β̂ n

))′(
y−Xβ +X

(
β − β̂ n

))
n

=

(
ε +X

(
β − β̂ n

))′(
ε +X

(
β − β̂ n

))
n

=
ε ′ε

n
+2

(
β − β̂ n

)′
X′ε

n
+

(
β − β̂ n

)′
X′X

(
β − β̂ n

)
n

By the Ergodic Theorem and the existence of E[ε2
i ] (Assumption 3.10), the first term converged to

σ2. The second term(
β − β̂ n

)′
X′ε

n
=
(

β − β̂ n

)′∑
i=1 X′ε

n
p→ 0′0 = 0

since β̂ n is consistent and E[xiεi] = 0 combined with the Ergodic Theorem. The final term(
β − β̂ n

)′
X′X

(
β − β̂ n

)
n

=
(

β − β̂ n

)′ X′X
n

(
β − β̂ n

)
p→ 0′ΣXX0 = 0

and so the variance estimator is consistent.
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Theorem 3.17.

β̂ 1n =

(
X′1X1

n

)−1 X′1y
n(

X′1X1

n

)−1 X′1 (X1 +X2 + ε)

n
=

(
X′1X1

n

)−1 X′1X1

n
+

(
X′1X1

n

)−1 X′1X2

n
+

(
X′1X1

n

)−1 X′1ε

n
p→ β 1 +Σ

−1
X1X1

ΣX1X2β 2 +Σ
−1
X1X1

0

= β 1 +Σ
−1
X1X1

ΣX1X2β 2

where
(

X′1X1
n

)−1 p→ Σ
−1
X1X1

and X′1X1
n

p→ ΣX1X2 by the Ergodic and Continuous Mapping Theorems
(Theorems 3.21 and 3.22). Finally note that(

X′1X1

n

)−1 X′1X2

n
=

(
X′1X1

n

)−1 [
X1x2,1 X1x2,2 . . . X1x2,k2

]
=

[(
X′1X1

n

)−1

X1x2,1

(
X′1X1

n

)−1

X1x2,2 . . .

(
X′1X1

n

)−1

X1x2,k2

]
=
[
δ̂ 1n δ̂ 2n . . . δ̂ k2n

]
where δ j is the regression coefficient in x2, j = Xδ j +η j.

Theorem 3.18. See White (Theorem 6.3, 2000).

Theorem 3.19. See White (Theorem 6.4, 2000).

Theorem 3.20. By Assumption 3.15,

V−
1
2 y = V−

1
2 Xβ +V−

1
2 ε

and V
[
V−

1
2 ε

]
= σ2In, uncorrelated and homoskedastic, and so Theorem 3.3 can be applied.

Shorter Problems

Problem 3.1. Derive the OLS estimator for the model Yi = α + εi.

Problem 3.2. Derive the OLS estimator for the model Yi = βXi + εi.

Problem 3.3. What are information criteria and how are they used?

Problem 3.4. Outline the steps to compute the bootstrap variance estimator for a regression when the
data are heteroskedastic.

Problem 3.5. Discuss White’s covariance estimator, and in particular when should White’s covari-
ance estimator be used? What are the consequences to using White’s covariance estimator when it is
not needed? How can one determine if White’s covariance estimator is needed?

Problem 3.6. Suppose Zi = a+ bXi, and two models are estimated using OLS: Yi = β0 +β1Xi + εi
and Yi = γ0 + γ1Zi +ηi, What the relationship between γ and β and between ε̂i and η̂i?

Problem 3.7. Describe the steps to implement k-fold cross-validation in a regression to select a model.
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Longer Exercises

Exercise 3.1. Imagine you have been given the task of evaluating the relationship between the return
on a mutual fund and the number of years its manager has been a professional. You have a panel data
set which covers all of the mutual funds returns in the year 1970-2005. Consider the regression

Ri,t = α +βexper i,t + εi,t

where rit is the return on fund i in year t and exper it is the number of years the fund manager has held
her job in year t. The initial estimates of β and α are computed by stacking all of the observations
into a vector and running a single OLS regression (across all funds and all time periods).

1. What test statistic would you use to determine whether experience has a positive effect?

2. What are the null and alternative hypotheses for the above test?

3. What does it mean to make a type I error in the above test? What does it mean to make a type
II error in the above test?

4. Suppose that experience has no effect on returns but that unlucky managers get fired and thus
do not gain experience. Is this a problem for the above test? If so, can you comment on its
likely effect?

5. Could the estimated β̂ ever be valid if mutual funds had different risk exposures? If so, why?
If not, why not?

6. If mutual funds do have different risk exposures, could you write down a model which may be
better suited to testing the effect of managerial experience than the initial simple specification?
If it makes your life easier, you can assume there are only 2 mutual funds and 1 risk factor to
control for.

Exercise 3.2. Consider the linear regression

Yt = βXt + εt

1. Derive the least-squares estimator. What assumptions are you making in the derivation of the
estimator?

2. Under the classical assumptions, derive the variance of the estimator β̂ .

3. Suppose the errors εt have an AR(1) structure where εt = ρεt−1 +ηt where ηt
d→ N(0,1) and

|ρ|< 1. What is the variance of β̂ now?

4. Now suppose that the errors have the same AR(1) structure but the xt variables are i.i.d.. What
is the variance of β̂ now?

5. Finally, suppose the linear regression is now

Yt = α +βXt + εt

where εt has an AR(1) structure and that xt is i.i.d.. What is the covariance of [α β ]′?
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Exercise 3.3. Consider the simple regression model Yi = βX1,i+εi where the random error terms are
i.i.d. with mean zero and variance σ2 and are uncorrelated with the X1,i.

1. Show that the OLS estimator of β is consistent.

2. Is the previously derived OLS estimator of β still consistent if Yi = α +βX1,i + εi? Show why
or why not.

3. Now suppose the data generating process is

Yi = β1X1,i +β2X2,i + εi

Derive the OLS estimators of β1 and β2.

4. Derive the asymptotic covariance of this estimator using the method of moments approach.

(a) What are the moment conditions?

(b) What is the Jacobian?

(c) What does the Jacobian limit to? What does this require?

(d) What is the covariance of the moment conditions. Be as general as possible.

In all of the above, clearly state any additional assumptions needed.

Exercise 3.4. Let Ŝ be the sample covariance matrix of z= [y X], where X does not include a constant

Ŝ = n−1
n∑

i=1

(zi− z̄)′(zi− z̄)

Ŝ =

[
ŝyy ŝ′xy
ŝxy Ŝxx

]
and suppose n, the sample size, is known (Ŝ is the sample covariance estimator). Under the small-
sample assumptions (including homoskedasticity and normality if needed), describe one method, us-
ing only Ŝ, X̄ (the 1 by k−1 sample mean of the matrix X, column-by-column), ȳ and n, to

1. Estimate β̂1, . . . , β̂k from a model

Yi = β1 +β2X2,i + . . .+βkXk,i + εi

2. Estimate s, the standard error of the regression

3. Test H0 : β j = 0, j = 2, . . . ,k

Exercise 3.5. Consider the regression model

Yi = β1 +β2Xi + εi

where the random error terms are i.i.d. with mean zero and variance σ2 and are uncorrelated with the
xi. Also assume that xi is i.i.d.with mean µx and variance σ2

x , both finite.
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1. Using scalar notation, derive the OLS estimators of β1 and β2.

2. Show these estimators are consistent. Are any further assumptions needed?

3. Show that the matrix expression for the estimator of the regression parameters, β̂ =(X′X)
−1 X′y,

is identical to the estimators derived using scalar notation.

Exercise 3.6. Let xmβ be the best linear projection of Ym. Let εm be the prediction error.

1. What is the variance of a projected Y ?

2. What is the variance if the β s are estimated using regressors that do not include observation m
(and hence not xm or εm)? Hint: You can use any assumptions in the notes, just be clear what
you are assuming.

Exercise 3.7. Are Wald tests of linear restrictions in a linear regression invariant to linear reparame-
terizations? Hint: Let F be an invertible matrix. Parameterize W in the case where H0 : Rβ − r = 0
and H0 : F(Rβ − r) = FRβ −Fr = 0.

1. Are they the same?

2. Show that n ·R2 has an asymptotic χ2
k−1 distribution under the classical assumptions when the

model estimated is
Yi = β1 +β2X2,i + . . .+βkXk,i + εi

Hint: What is the does the distribution of c/ν converge to as ν →∞ when c∼ χ2
ν .

Exercise 3.8. Suppose an unrestricted model is

Yi = β1 +β2X1,i +β3X2,i +β4X3,i + εi

1. Sketch the steps required to test a null H0 : β2 = β3 = 0 in the large-sample framework using a
Wald test and an LM test.

2. Sketch the steps required to test a null H0 : β2 + β3 + β4 = 1 in the small-sample framework
using a Wald test, a t-test, an LR test, and an LM test.

In the above questions be clear what the null and alternative are, which regressions must be estimated,
how to compute any numbers that are needed and the distribution of the test statistic.

Exercise 3.9. Let Yi and Xi conform to the small-sample assumptions and let Yi = β1 + β2Xi + εi.
Define another estimator

β̆2 =
ȲH− ȲL

X̄H− X̄L

where X̄H is the average value of Xi given Xi > median(x), and ȲH is the average value of Yi for n
such that Xi > median(x). X̄L is the average value of Xi given Xi ≤median(x), and ȲL is the average
value of Yi for n such that Xi ≤ median(x) (both X̄ and Ȳ depend on the order of Xi, and not Yi). For
example, suppose the Xi were ordered such that X1 < X2 < X3 < .. . < Xi and n is even. Then,

X̄L =
2
n

n/2∑
i=1

Xi
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and

X̄H =
2
n

n∑
i=n/2+1

Xi

1. Is β̆2 unbiased, conditional on X?

2. Is β̆2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

3. What is the variance of β̆2, conditional on X?

Exercise 3.10. Suppose
Yi = β1 +β2xi + εi

and that variable Zi is available where V [Zi] = σ2
z > 0, Corr(Xi,Zi) = ρ 6= 0 and E [εi|z] = 0, n =

1, . . . ,N. Further suppose the other assumptions of the small-sample framework hold. Rather than the
usual OLS estimator,

β̈2 =

∑n
i=1 (Zi− Z̄)Yi∑n
i=1 (Zi− Z̄)Xi

is used.

1. Is β̈2 a reasonable estimator for β2?

2. What is the variance of β̈2, conditional on x and z?

3. What does the variance limit to (i.e., not conditioning on x and z)?

4. How is this estimator related to OLS, and what happens to its variance when OLS is used (Hint:
What is Corr(Xi,Xi)?)

Exercise 3.11. Let {Yi}n
i=1 and {Xi}n

i=1 conform to the small-sample assumptions and let Yi = β1 +
β2Xi + εi. Define the estimator

β̆2 =
ȲH− ȲL

X̄H− X̄L

where X̄H is the average value of Xi given Xi > median(x), and ȲH is the average value of Yi for i
such that Xi > median(x). X̄L is the average value of Xi given Xi ≤median(x), and ȲL is the average
value of Yi for i such that Xi ≤ median(x) (both X̄ and Ȳ depend on the order of Xi, and not Yi). For
example, suppose the Xi were ordered such that X1 < X2 < X3 < .. . < Xn and n is even. Then,

X̄L =
2
n

n/2∑
i=1

Xi

and

X̄H =
2
n

n∑
i=n/2+1

Xi

1. Is β̆2 unbiased, conditional on X?
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2. Is β̆2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

3. What is the variance of β̆2, conditional on X?

Next consider the estimator

β̈2 =
Ȳ
X̄

where Ȳ and X̄ are sample averages of {Yi} and {Xi}, respectively.

4. Is β̈2 unbiased, conditional on X?

5. Is β̈2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

6. What is the variance of β̈2, conditional on X?

Exercise 3.12. Suppose an unrestricted model is

Yi = β1 +β2X1,i +β3X2,i +β4X3,i + εi

1. Discuss which features of estimators each of the three major tests, Wald, Likelihood Ratio, and
Lagrange Multiplier, utilize in testing.

2. Sketch the steps required to test a null H0 : β2 = β3 = 0 in the large-sample framework using
Wald, LM, and LR tests.

3. What are type I & II errors?

4. What is the size of a test?

5. What is the power of a test?

6. What influences the power of a test?

7. What is the most you can say about the relative power of a Wald, LM, and LR test of the same
null?

Exercise 3.13. Consider the regression model

Yi = β1 +β2Xi + εi

where the random error terms are i.i.d. with mean zero and variance σ2 and are uncorrelated with the
Xi. Also assume that Xi is i.i.d.with mean µx and variance σ2

x , both finite.

1. Using scalar notation, derive the OLS estimators of β1 and β2.

2. Why are these estimators are consistent? Are any further assumptions needed?

3. Show that the matrix expression for the estimator of the regression parameters, β̂ =(X′X)
−1 X′y,

is identical to the estimators derived using scalar notation.



222 Analysis of Cross-Sectional Data

4. Suppose instead
Yi = γ1 + γ2 (Xi− X̄)+ εi

was fit to the data. How are the estimates of the γs related to the β s?

5. What can you say about the relationship between the t-statistics of the γs and the β s?

6. How would you test for heteroskedasticity in the regression?

7. Since the errors are i.i.d. there is no need to use White’s covariance estimator for this regression.
What are the consequences of using White’s covariance estimator if it is not needed?

Exercise 3.14. Suppose Yi = α +βXi + εi where E [εi|X ] = 0 and V [εi] = σ2 for all i .

1. Derive the OLS estimators of α and β .

2. Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, σ̂2Σ

−1
XX , and White’s parameter covariance estimator, Σ

−1
XX SΣ

−1
XX ?

3. Describe a procedure to formally test whether White’s covariance estimator is required.

4. Suppose the true model is as above, but instead the model Yi = γ + εi is fit. What is the most
you can say about the the OLS estimate of γ̂?

5. What is Windsorization in the context of a regression, and how is it useful?

Exercise 3.15. Consider the APT regression

Re
t = α +βmRe

m,t +βsRsmb,t +βvRhml,t + εt

where Re
m,t is the excess return on the market, Rsmb,t is the return on the size factor, Rhml,t is the return

on value factor and Re
t is an excess return on a portfolio of assets. Using the information provided in

the tables below below, answer the following questions:

1. Is there evidence that this portfolio is market neutral?

2. Are the size and value factors needed in this portfolio to adequately capture the cross-sectional
dynamics?

3. Is there evidence of conditional heteroskedasticity in this model?

4. What are the trade-offs for choosing a covariance estimator for making inference on this model?

5. Define the size and power of a statistical test.

6. What factors affect the power of a statistical test?

7. Outline the steps to implement the correct bootstrap covariance estimator for these parameters.
Justify the method you chose using the information provided.
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Notes: All models were estimated on n = 100 data points. Models 1 and 2 correspond to the
specification above. In model 1 Rsmb and Rhml have been excluded. Model 3, 4 and 5 are all
version of

ε̂
2
t = γ0 + γ1Re

m,t + γ2Rsmb,t + γ3Rhml,t + γ4
(
Re

m,t
)2

+ γ5Re
m,tRsmb,t

+ γ6Re
m,tRhml,t + γ7R2

smb,t + γ8Rsmb,tRhml,t + γ9R2
hml,t +ηt

ε̂t was computed using Model 1 for the results under Model 3, and using model 2 for the results
under Models 4 and 5. R2 is the R-squared and n is the number of observations.
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Parameter Estimates

Model 1 Model 2 Model 3 Model 4 Model 5

α 0.128 0.089 γ0 0.984 0.957 0.931
βm 1.123 0.852 γ1 -0.779 -0.498
βsmb 0.600 γ2 -0.046
βhml -0.224 γ3 0.124

γ4 0.497 0.042 0.295
γ5 0.049
γ6 0.684
γ7 0.036 -0.149
γ8 -0.362
γ9 -0.005 0.128

R2 0.406 0.527 0.134 0.126 0.037
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Parameter Covariance Estimates

The estimated covariance matrices from the asymptotic distribution

√
n
(

β̂ − β̂ 0

)
d→ N (0,C)

are below where C is either σ̂2Σ̂
−1
XX or Σ̂

−1
XX ŜΣ̂

−1
XX .

CAP-M

σ̂
2
Σ̂
−1
XX

α βm

α 1.365475 0.030483
βm 0.030483 1.843262

Σ̂
−1
XX ŜΣ̂

−1
XX

α βm

α 1.341225 -0.695235
βm -0.695235 2.747142

Fama-French Model

σ̂
2
Σ̂
−1
XX

α βm βsmb βhml

α 1.100680 0.103611 -0.088259 -0.063529
βm 0.103611 1.982761 -0.619139 -0.341118
βsmb -0.088259 -0.619139 1.417318 -0.578388
βhml -0.063529 -0.341118 -0.578388 1.686200

Σ̂
−1
XX ŜΣ̂

−1
XX

α βm βsmb βhml

α 1.073227 -0.361618 -0.072784 0.045732
βm -0.361618 2.276080 -0.684809 0.187441
βsmb -0.072784 -0.684809 1.544745 -1.074895
βhml 0.045732 0.187441 -1.074895 1.947117
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χ2
m critical values

Critical value for a 5% test when the test statistic has a χ2
m distribution.

m 1 2 3 4 8 9 10
Crit Val. 3.84 5.99 7.81 9.48 15.50 16.91 18.30

m 90 91 98 99 100
Crit Val. 113.14 114.26 122.10 123.22 124.34

Matrix Inverse

The inverse of a 2 by 2 matrix [
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]

Exercise 3.16. Suppose Yi = α +βXi + εi where E [εi|X ] = 0 and V [εi] = σ2 for all i.

1. Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, σ̂2Σ

−1
XX , and White’s parameter covariance estimator, Σ

−1
XX SΣ

−1
XX ?

2. Describe a procedure to formally test whether White’s covariance estimator is required.

3. Suppose the true model is as above, but instead the model Yi = γ + εi is fit. What is the most
you can say about the the OLS estimate of γ̂?

4. Define the size and power of a statistical test.

5. What factors affect the power of a statistical test?

6. What is Windsorization in the context of a regression, and how is it useful?



Chapter 4

Analysis of a Single Time Series

Note: The primary reference for these notes is Enders (2004). An alternative and more technical
treatment can be found in Hamilton (1994).

Most data used in financial econometrics occur sequentially through time. Interest
rates, asset returns, and foreign exchange rates are all examples of time series. This
chapter introduces time-series econometrics and focuses primarily on linear mod-
els, although some common non-linear models are described in the final section.
The analysis of time-series data begins by defining two key concepts in the analysis
of time series: stationarity and ergodicity. The chapter next turns to Autoregres-
sive Moving Average models (ARMA) and covers the structure of these models,
stationarity conditions, model selection, estimation, inference, and forecasting. Fi-
nally, The chapter concludes by examining nonstationary time series.

4.1 Stochastic Processes

A stochastic process is an arbitrary sequence of random data and is denoted

{Yt} (4.1)

where {·} is used to indicate that the ys form a sequence. The simplest non-trivial stochastic process
specifies that Yt

i.i.d.∼ D for some distribution D, for example, normal. Another simple stochastic process
is the random walk,

Yt = Yt−1 + εt

where εt is an i.i.d.process.

4.2 Stationarity, Ergodicity, and the Information Set

Stationarity is a probabilistically meaningful measure of regularity. This regularity can be exploited
to estimate unknown parameters and characterize the dependence between observations across time.
If the data generating process frequently changed, then constructing a meaningful model would be
difficult or impossible.
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Stationarity exists in two forms, strict stationarity, and covariance (also known as weak) station-
arity. Covariance stationarity is important when modeling the mean of a process, although strict
stationarity is useful in more complicated settings, such as non-linear models.

Definition 4.1 (Strict Stationarity). A stochastic process {Yt} is strictly stationary if the joint distri-
bution of {Yt ,Yt+1, . . . ,Yt+h} only depends only on h and not on t.

Strict stationarity requires that the joint distribution of a stochastic process does not depend on
time and so the only factor affecting the relationship between two observations is the gap between
them. Strict stationarity is weaker than i.i.d. since the process may be dependent, but it is a strong
assumption and implausible for many time series, including both financial and macroeconomic data.

Covariance stationarity, on the other hand, only imposes restrictions on the first two moments of
a stochastic process.

Definition 4.2 (Covariance Stationarity). A stochastic process {Yt} is covariance stationary if

E [Yt ] = µ for t = 1,2, . . . (4.2)

V [Yt ] = σ
2 <∞ for t = 1,2, . . .

E [(Yt−µ)(Yt−s−µ)] = γs for t = 1,2, . . . ,s = 1,2, . . . , t−1.

Covariance stationarity requires that both the unconditional mean and unconditional variance are
finite and do not change with time. Note that covariance stationarity only applies to unconditional
moments and not conditional moments, and so a covariance process may have a varying conditional
mean (i.e. be predictable).

These two types of stationarity are related, although neither nests the other. If a process is strictly
stationary and has finite second moments, then it is covariance stationary. If a process is covariance
stationary and the joint distribution of the studentized residuals (demeaned and standardized by their
standard deviation) does not depend on time, then the process is strictly stationary. However, one
type can occur without the other, both can occur, or neither may apply to a particular time series. For
example, if a process has higher-order moments which depend on time (e.g., time-varying kurtosis),
it may be covariance stationary but not strictly stationary. Alternatively, a sequence of i.i.d.Student’s
t random variables with 2 degrees of freedom is strictly stationary but not covariance stationary since
the variance of a t2 is infinite.

γs = E [(Yt−µ)(Yt−s−µ)] is the covariance of Yt with itself at a different point in time, known as
the sth autocovariance. γ0 is the lag-0 autocovariance, the same quantity as the long-run variance of
Yt (i.e. γ0 = V [Yt ]).1

Definition 4.3 (Autocovariance). The autocovariance of a covariance stationary scalar process {Yt}
is defined

γs = E [(Yt−µ)(Yt−s−µ)] (4.3)

where µ = E [Yt ]. Note that γ0 = E [(Yt−µ)(Yt−µ)] = V [Yt ].

Ergodicity is another important concept in the analysis of time series and is one form of asymptotic
independence.

1The use of long-run variance is used to distinguish V[Yt ] from the innovation variance, V[εt ], also known as the
short-run variance.
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Definition 4.4 (Ergodicity). Let {Yt} be a stationary sequence. {Yt} is ergodic if for any two bounded
functions f : Rk→ R g : Rl → R

lim
j→∞

∣∣E[ f (Yt , . . . ,Yt+k)g
(
Yt+ j, . . . ,Yt+l+ j

)]∣∣ (4.4)

= |E [ f (Yt , . . . ,Yt+k)]|
∣∣E[g(Yt+ j, . . . ,Yt+l+ j

)]∣∣
In essence, if an ergodic stochastic process is sampled at two points far apart in time, these samples

will be independent. The ergodic theorem provides a practical application of ergodicity.

Theorem 4.1 (Ergodic Theorem). If {Yt} is ergodic and its rth moment µr is finite, then T−1∑T
t=1Y r

t
p→

µr.

The ergodic theorem states that averages will converge to their expectation provided the expecta-
tion exists. The intuition for this results follows from the definition of ergodicity since samples far
apart in time are (effectively) independent, and so errors average across time.

Not all series are ergodic. Let Yt = η + εt where η ∼ N(0,1), εt
i.i.d.∼ N(0,1) and η and εt are

independent for any t. Note that η is drawn only once (not every t). Clearly, E [Yt ] = 0. However,
T−1∑T

t=1Yt
p→ η 6= 0, and so even though the average converges it does not converge to E[Yt ] since

the effect of the initial draw of η is present in every observation of {Yt}.
The third important building block of time-series models is white noise. White noise generalizes

i.i.d.noise and allows for dependence in a series as long as three conditions are satisfied: the series is
mean zero, uncorrelated and has finite second moments.

Definition 4.5 (White Noise). A process {εt} is known as white noise if

E [εt ] = 0 for t = 1,2, . . . (4.5)

V [εt ] = σ
2 <∞ for t = 1,2, . . .

E
[
εtεt− j

]
= Cov(εt ,εt− j) = 0 for t = 1,2, . . . , j 6= 0.

An i.i.d. series with finite second moments is trivially white noise, but other important processes,
such as residuals following an ARCH (Autoregressive Conditional Heteroskedasticity) process, may
also be white noise although not independent since white noise only requires linear independence.2

A white noise process is also covariance stationary since it satisfies all three conditions: the mean,
variance, and autocovariances are all finite and do not depend on time.

The final important concepts are conditional expectation and the information set. The information
set at time t is denoted Ft and contains all time t measurable events3, and so the information set
includes realization of all variables which have occurred on or before t. For example, the information
set for January 3, 2020 contains all stock returns up to an including those which occurred on January
3. It also includes everything else known at this time such as interest rates, foreign exchange rates
or the scores of recent football games. Many expectations will often be made conditional on the
time-t information set, expressed E [Yt+h|Ft ], or in abbreviated form as Et [Yt+h]. The conditioning
information set matters when taking expectations and E [Yt+h], Et [Yt+h] and Et+h [Yt+h] are not the
same. Conditional variance is similarly defined, V [Yt+h|Ft ] = Vt [Yt+h] = Et

[
(Yt+h−Et [Yt+h])

2].
2Residuals generated from an ARCH process have dependence in conditional variances but not mean.
3A measurable event is any event that can have probability assigned to it at time t. In general this includes any observed

variable but can also include time t beliefs about latent (unobserved) variables such as volatility or the final revision of the
current quarter’s GDP.
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4.3 ARMA Models

Autoregressive moving average (ARMA) processes form the core of time-series analysis. The ARMA
class can be decomposed into two smaller classes, autoregressive (AR) processes and moving average
(MA) processes.

4.3.1 Moving Average Processes

The 1storder moving average, written MA(1), is the simplest non-degenerate time-series process,

Yt = φ0 +θ1εt−1 + εt

where φ0 and θ1 are parameters and εt a white noise series. This process stipulates that the current
value of Yt depends on both a new shock and the previous shock. For example, if θ is negative, the
current realization will “bounce back” from the previous shock.

Definition 4.6 (First Order Moving Average Process). A first order Moving Average process (MA(1))
has dynamics which follow

Yt = φ0 +θ1εt−1 + εt (4.6)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

It is simple to derive both the conditional and unconditional means in this process. The conditional
mean is

Et−1 [Yt ] = Et−1 [φ0 +θ1εt−1 + εt ] (4.7)
= φ0 +θ1Et−1 [εt−1]+Et−1 [εt ]

= φ0 +θ1εt−1 +0
= φ0 +θ1εt−1

where Et−1 [εt ] = 0 follows by assumption that the shock is unpredictable using the time-t−1 infor-
mation set, and since εt−1 is in the time-t − 1 information set (εt−1 ∈ Ft−1), it passes through the
time-t−1 conditional expectation. The unconditional mean is

E [Yt ] = E [φ0 +θ1εt−1 + εt ] (4.8)
= φ0 +θ1E [εt−1]+E [εt ]

= φ0 +θ10+0
= φ0.

Comparing these two results, the unconditional mean of Yt , E [Yt ], is φ0 while the conditional mean
Et−1 [Yt ] = φ0 + θ1εt−1. This difference reflects the persistence of the previous shock in the current
period. The variances can be similarly derived,
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V [Yt ] = E
[
(φ0 +θ1εt−1 + εt−E [φ0 +θ1εt−1 + εt ])

2
]

(4.9)

= E
[
(φ0 +θ1εt−1 + εt−φ0)

2
]

= E
[
(θ1εt−1 + εt)

2
]

= θ
2
1 E
[
ε

2
t−1
]
+E

[
ε

2
t
]
+2θ1E [εt−1εt ]

= σ
2
θ

2
1 +σ

2 +0

= σ
2 (1+θ

2
1
)

where E [εt−1εt ] follows from the white noise assumption. The conditional variance is

Vt−1 [Yt ] = Et−1

[
(φ0 +θ1εt−1 + εt−Et−1 [φ0 +θ1εt−1 + εt ])

2
]

(4.10)

= Et−1

[
(φ0 +θ1εt−1 + εt−φ0−θ1εt−1)

2
]

= Et−1
[
ε

2
t
]

= σ
2
t

where σ2
t is the conditional variance of εt . White noise does not have to be homoskedastic, although

if εt is homoskedastic then Vt−1 [Yt ] = E
[
σ2

t
]
= σ2. Like the mean, the unconditional variance and

the conditional variance are different. The unconditional variance is unambiguously larger than the
average conditional variance which reflects the extra variability introduced by the moving average
term.

Finally, the autocovariance can be derived

E [(Yt−E [Yt ]) (Yt−1−E [Yt−1])] = E [(φ0 +θ1εt−1 + εt−φ0)(φ0 +θ1εt−2 + εt−1−φ0)] (4.11)

= E
[
θ1ε

2
t−1 +θ1εtεt−2 + εtεt−1 +θ

2
1 εt−1εt−2

]
= θ1E

[
ε

2
t−1
]
+θ1E [εtεt−2]+E [εtεt−1]+θ

2
1 E [εt−1εt−2]

= θ1σ
2 +0+0+0

= θ1σ
2

E [(Yt−E [Yt ]) (Yt−2−E [Yt−2])] = E [(φ0 +θ1εt−1 + εt−φ0)(φ0 +θ1εt−3 + εt−2−φ0)] (4.12)
= E [(θ1εt−1 + εt)(θ1εt−3 + εt−2)]

= E
[
θ1εt−1εt−2 +θ1εt−3εt + εtεt−2 +θ

2
1 εt−1εt−3

]
= θ1E [εt−1εt−2]+θ1E [εt−3εt ]+E [εtεt−2]+θ

2
1 E [εt−1εt−3]

= 0+0+0+0
= 0

By inspection of eq. (4.12) it follows that γs = E [(Yt−E [Yt ])(Yt−s−E [Yt−s])] = 0 for s≥ 2.
The MA(1) can be generalized into the class of MA(Q) processes by including additional lagged

errors.
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Definition 4.7 (Moving Average Process of Order Q). A Moving Average process of order Q, abbre-
viated MA(Q), has dynamics which follow

Yt = φ0 +

Q∑
q=1

θqεt−q + εt (4.13)

where εt is white noise series with the additional property that Et−1 [εt ] = 0.

The following properties hold in higher order moving averages:

• E [Yt ] = φ0

• V [Yt ] = (1+
∑Q

q=1 θ 2
q )σ

2

• E [(Yt−E [Yt ])(Yt−s−E [Yt−s])] = σ2∑Q−s
i=0 θiθi+s for s≤ Q where θ0 = 1.

• E [(Yt−E [Yt ])(Yt−s−E [Yt−s])] = 0 for s > Q

4.3.2 Autoregressive Processes

The other subclass of ARMA processes is the autoregressive process.

Definition 4.8 (First Order Autoregressive Process). A first order autoregressive process, abbreviated
AR(1), has dynamics which follow

Yt = φ0 +φ1Yt−1 + εt (4.14)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

Unlike the MA(1) process, y appears on both sides of the equation. However, this is only a
convenience and the process can be recursively substituted to provide an expression that depends
only on the errors, εt and an initial condition.

Yt = φ0 +φ1Yt−1 + εt

Yt = φ0 +φ1 (φ0 +φ1Yt−2 + εt−1)+ εt

Yt = φ0 +φ1φ0 +φ
2
1Yt−2 + εt +φ1εt−1

Yt = φ0 +φ1φ0 +φ
2
1 (φ0 +φ1Yt−3 + εt−2)+ εt +φ1εt−1

Yt = φ0 +φ1φ0 +φ
2
1 φ0 +φ

3
1Yt−3 + εt +φ1εt−1 +φ

2
1 εt−2

...
...

Yt =

t−1∑
i=0

φ
i
1φ0 +

t−1∑
i=0

φ
i
1εt−i +φ

t
1Y0

Using backward substitution, an AR(1) can be expressed as an MA(t). In many cases, the initial
condition is unimportant, and the AR process can be assumed to have begun long ago in the past.
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As long as |φ1| < 1, limt→∞φ tY0→ 0 and the effect of an initial condition will be small. Using the
“infinite history” version of an AR(1), and assuming |φ1|< 1, the solution simplifies to

Yt = φ0 +φ1Yt−1 + εt

Yt =
∞∑

i=0

φ
i
1φ0 +

∞∑
i=0

φ
i
1εt−i

Yt =
φ0

1−φ1
+
∞∑

i=0

φ
i
1εt−i (4.15)

where the identity
∑∞

i=0 φ i
1 = (1− φ1)

−1 is used in the final solution. This expression of an AR
process is known as an MA(∞) representation and it is useful for deriving standard properties.

The unconditional mean of an AR(1) is

E [Yt ] = E

[
φ0

1−φ1
+
∞∑

i=0

φ
i
1εt−i

]
(4.16)

=
φ0

1−φ1
+
∞∑

i=0

φ
i
1E [εt−i]

=
φ0

1−φ1
+
∞∑

i=0

φ
i
10

=
φ0

1−φ1
.

The unconditional mean can be alternatively derived noting that, as long as {Yt} is covariance
stationary, that E [Yt ] = E [Yt−1] = µ , and so

E [Yt ] = E [φ0 +φ1Yt−1 + εt−1] (4.17)
E [Yt ] = φ0 +φ1E [Yt−1]+E [εt−1]

µ = φ0 +φ1µ +0
µ−φ1µ = φ0

µ (1−φ1) = φ0

E [Yt ] =
φ0

1−φ1

The Ft−1-conditional expectation is

Et−1 [Yt ] = Et−1 [φ0 +φ1Yt−1 + εt ] (4.18)
= φ0 +φ1Et−1 [Yt−1]+Et−1 [εt ]

= φ0 +φ1Yt−1 +0
= φ0 +φ1Yt−1
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since Yt−1 ∈ Ft−1. The unconditional and conditional variances are

V [Yt ] = E
[
(Yt−E [Yt ])

2
]

(4.19)

= E

( φ0

1−φ1
+

∞∑
i=0

φ
i
1εt−i−

φ0

1−φ1

)2


= E

( ∞∑
i=0

φ
i
1εt−i

)2


= E

 ∞∑
i=0

φ
2i
1 ε

2
t−i +

∞∑
i=0

∞∑
j=0,i6= j

φ
i+ j
1 εt−iεt− j


= E

[ ∞∑
i=0

φ
2i
1 ε

2
t−i

]
+E

 ∞∑
i=0

∞∑
j=0,i6= j

φ
i+ j
1 εt−iεt− j


=
∞∑

i=0

φ
2i
1 E
[
ε

2
t−i
]
+
∞∑

i=0

∞∑
j=0,i 6= j

φ
i+ j
1 E

[
εt−iεt− j

]
=
∞∑

i=0

φ
2i
1 σ

2 +
∞∑

i=0

∞∑
j=0,i6= j

φ
i+ j
1 0

=
σ2

1−φ 2
1

where the expression for the unconditional variance uses the identity that
∑∞

i=0 φ 2i
1 = 1

1−φ 2
1

and

E[εt−iεt− j] = 0 follows from the white noise assumption. Again, assuming covariance stationarity
and so V[Yt ] = V[Yt−1], the variance can be directly computed,

V [Yt ] = V [φ0 +φ1Yt−1 + εt ] (4.20)
V [Yt ] = V [φ0]+V [φ1Yt−1]+V [εt ]+2Cov [φ1Yt−1,εt ]

V [Yt ] = 0+φ
2
1 V [Yt−1]+σ

2 +2 ·0
V [Yt ] = φ

2
1 V [Yt ]+σ

2

V [Yt ]−φ
2
1 V [Yt ] = σ

2

V [Yt ] (1−φ
2
1 ) = σ

2

V [Yt ] =
σ2

1−φ 2
1

where Cov [Yt−1,εt ] = 0 follows from the white noise assumption since Yt−1 is a function of εt−1,εt−2, . . ..
The conditional variance is
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Vt−1 [Yt ] = Et−1

[
(φ1Yt−1 + εt−φ1Yt−1)

2
]

(4.21)

= Et−1
[
ε

2
t
]

= σ
2
t

Again, the unconditional variance is uniformly larger than the average conditional variance (E
[
σ2

t
]
=

σ2) and the variance explodes as |φ1| approaches 1 or -1. Finally, the autocovariances can be derived,

E [(Yt−E[Yt ])(Yt−s−E[Yt−s])] = E

[(
φ0

1−φ1
+

∞∑
i=0

φ
i
1εt−i−

φ0

1−φ1

)
(4.22)

×
(

φ0

1−φ1
+

∞∑
i=0

φ
i
1εt−s−i−

φ0

1−φ1

)]
(4.23)

= E

[( ∞∑
i=0

φ
i
1εt−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]

= E

[(
s−1∑
i=0

φ
i
1εt−i +

∞∑
i=s

φ
i
1εt−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]

= E

[(
s−1∑
i=0

φ
i
1εt−i +

∞∑
i=0

φ
s
1φ

i
1εt−s−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]

= E

[(
s−1∑
i=0

φ
i
1εt−i

)( ∞∑
i=0

φ
i
1εt−s−i

)

+ φ
s
1

( ∞∑
i=0

φ
i
1εt−s−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]
(4.24)

= E

[(
s−1∑
i=0

φ
i
1εt−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]

+E

[
φ

s
1

( ∞∑
i=0

φ
i
1εt−s−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]
(4.25)

= 0+φ
s
1E

[( ∞∑
i=0

φ
i
1εt−s−i

)( ∞∑
i=0

φ
i
1εt−s−i

)]
= 0+φ

s
1V [Yt−s]

= φ
s
1

σ2

1−φ 2
1

An alternative approach to deriving the autocovariance is to note that Yt − µ =
∑s−i

i=0 φ i
1εt−i +

φ s(Yt−s−µ) where µ = E[Yt ] = E[Yt−s]. Using this identify, the autocovariance can be derived
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E [(Yt−E[Yt ])(Yt−s−E[Yt−s])] = E

[(
s−i∑
i=0

φ
i
1εt−i +φ

s(Yt−s−µ)

)
(Yt−s−µ)

]
(4.26)

= E

[(
s−i∑
i=0

φ
i
1εt−i

)
(Yt−s−µ)+(φ s(Yt−s−µ)(Yt−s−µ))

]

= E

[(
s−i∑
i=0

φ
i
1εt−i

)
(Yt−s−µ)

]
+E [(φ s(Yt−s−µ)(Yt−s−µ))]

= 0+φ
sE [((Yt−s−µ)(Yt−s−µ))]

= φ
sV [Yt−s]

= φ
s
1

σ2

1−φ 2
1

where the white noise assumption is used to ensure that E [εt−u (Yt−s−µ)] = 0 when u > s.
The AR(1) can be extended to the AR(P) class by including additional lags of Yt .

Definition 4.9 (Autoregressive Process of Order P). An Autoregressive process of order P (AR(P))
has dynamics which follow

Yt = φ0 +
P∑

p=1

φpYt−p + εt (4.27)

where εt is white noise series with the additional property that Et−1 [εt ] = 0.

Some of the more useful properties of general AR process are:

• E[Yt ] =
φ0

1−
∑P

p=1 φp

• V[Yt ] =
σ

2

1−
∑P

p=1 φpρp
where ρp is the pth autocorrelation.

• V[Yt ] is infinite if
∑P

p=1 φp ≥ 1

• E [(Yt−E[Yt ])(Yt−s−E[Yt−s])] 6= 0 for any s (in general, although certain parameterizations may
produce some 0 autocovariances).

These four properties point to some important regularities of AR processes. First, the mean is only
finite if

∑P
p=1 φp < 1. Second, the autocovariances are (generally) not zero, unlike those of an MA

processes (γs = 0 for |s|> Q). This difference in the behavior of the autocovariances plays an impor-
tant role in model building. Explicit expressions for the variance and autocovariance of higher order
AR processes can be found in appendix 4.A.
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4.3.3 Autoregressive-Moving Average Processes

Putting these two processes together yields the complete class of ARMA processes.

Definition 4.10 (Autoregressive-Moving Average Process). An Autoregressive Moving Average pro-
cess with orders P and Q (ARMA(P,Q)) has dynamics which follow

Yt = φ0 +
P∑

p=1

φpYt−p +

Q∑
q=1

θqεt−q + εt (4.28)

where εt is a white noise process with the additional property that Et−1 [εt ] = 0.

Again, consider the simplest ARMA(1,1) process that includes a constant term,

Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt

To derive the properties of this model it is useful to convert the ARMA(1,1) into its infinite lag
representation using recursive substitution,

Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt (4.29)
Yt = φ0 +φ1 (φ0 +φYt−2 +θ1εt−2 + εt−1)+θ1εt−1 + εt

Yt = φ0 +φ1φ0 +φ
2
1Yt−2 +φ1θ1εt−2 +φ1εt−1 +θ1εt−1 + εt

Yt = φ0 +φ1φ0 +φ
2
1 (φ0 +φYt−3 +θ1εt−3 + εt−2)+φ1θ1εt−2 +φ1εt−1 +θ1εt−1 + εt

Yt = φ0 +φ1φ0 +φ
2
1 φ0 +φ

3
1Yt−3 +φ

2
1 θ1εt−3 +φ

2
1 εt−2 +φ1θ1εt−2 +φ1εt−1 +θ1εt−1 + εt

...
...

Yt =
∞∑

i=0

φ
i
1φ0 + εt +

∞∑
i=0

φ
i
1 (φ1 +θ1)εt−i−1

Yt =
φ0

1−φ1
+ εt +

∞∑
i=0

φ
i
1 (φ1 +θ1)εt−i−1.

Using the infinite lag representation, the unconditional and conditional means can be computed,

E [Yt ] = E

[
φ0

1−φ1
+ εt +

∞∑
i=0

φ
i
1 (φ1 +θ1)εt−i−1

]
(4.30)

=
φ0

1−φ1
+E [εt ]+

∞∑
i=0

φ
i
1 (φ1 +θ1)E [εt−i−1]

=
φ0

1−φ1
+0+

∞∑
i=0

φ
i
1 (φ1 +θ1)0

=
φ0

1−φ1
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and

Et−1 [Yt ] = Et−1 [φ0 +φ1Yt−1 +θ1εt−1 + εt ] (4.31)
= φ0 +φ1Et−1 [Yt−1]+θ1Et−1 [εt−1]+Et−1 [εt ]

= φ0 +φ1Yt−1 +θ1εt−1 +0
= φ0 +φ1Yt−1 +θ1εt−1

Since Yt−1 and εt−1 are in the time-t−1 information set, these variables pass through the condi-
tional expectation. The unconditional variance can be tediously derived (see appendix 4.A.2 for the
complete derivation)

V [Yt ] = σ
2
(

1+2φ1θ1 +θ 2
1

1−φ 2
1

)
(4.32)

The conditional variance is identical to that in the AR(1) or MA(1), Vt−1 [Yt ] = σ2
t , and, if εt is

homoskedastic, Vt−1 [Yt ] = σ2.
The unconditional mean of an ARMA is the same as an AR since the moving average terms, which

are all mean zero, do not contribute to the mean. The variance of an ARMA is more complicated than
that of an AR, and it may be larger or smaller than an AR(1) with the same autoregressive parameter
(φ1). The variance will only be smaller if φ1 and θ1 have opposite signs and 2φ1θ1 < θ 2

1 . Deriving
the autocovariance is straightforward but tedious and is presented in appendix 4.A.

4.4 Difference Equations

Before turning to the analysis of the stationarity conditions for ARMA processes, it is useful to de-
velop an understanding of the stability conditions in a setting without random shocks.

Definition 4.11 (Linear Difference Equation). An equation of the form

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P +Xt . (4.33)

is known as a Pth order linear difference equation where the series {Xt} is known as the driving
process.

Linear difference equation nest ARMA processes which can be seen by setting Xt equal to the shock
plus the moving average component of the ARMA process,

Xt = θ1εt−1 +θ2εt−2 + . . .+θQεt−Q + εt .

Stability conditions depend crucially on the solution to the linear difference equation.

Definition 4.12 (Solution). A solution to a linear difference equation expresses the linear difference
equation

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P +Xt . (4.34)

as a function of only {Xi}tt=1, a constant and, when Yt has finite history, an initial value Y0.
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Consider a first order linear difference equation

Yt = φ0 +φ1Yt−1 +Xt .

Starting from an initial value Y0,

Y1 = φ0 +φ1Y0 +X1

Y2 = φ0 +φ1(φ0 +φ1Y0 +X1)+X2

= φ0 +φ1φ0 +φ
2
1Y0 +X2 +φ1X1

Y3 = φ0 +φ1Y2 +X2

= φ0 +φ1(φ0 +φ1φ0 +φ
2
1Y0 +φ1X1 +X2)+X2

= φ0 +φ1φ0 +φ
2
1 φ0 +φ

3
1Y0 +X3 +φ1X2 +φ

2
1 X1

Continuing these iterations, a pattern emerges:

Yt = φ
t
1Y0 +

t−1∑
i=0

φ
i
1φ0 +

t−1∑
i=0

φ
i
1Xt−i (4.35)

This is a solution since it expresses Yt as a function of only {Xt}, Y0 and constants. When no initial
condition is given (or the series is assumed to be infinite), the solution can be found by solving
backward

Yt = φ0 +φ1Yt−1 +Xt

Yt−1 = φ0 +φ1Yt−2 +Xt−1⇒
Yt = φ0 +φ1(φ0 +φ1Yt−2 +Xt−1)+Xt

= φ0 +φ1φ0 +φ
2
1Yt−2 +Xt +φ1Xt−1

Yt−2 = φ0 +φ1Yt−3 +Xt−2⇒
Yt = φ0 +φ1φ0 +φ

2
1 (φ0 +φ1Yt−3 +Xt−2)+Xt +φ1Xt−1

= φ0 +φ1φ0 +φ
2
1 φ0 +φ

3
1Yt−3 +Xt +φ1Xt−1 +φ

2
1 Xt−2

which leads to the approximate solution

Yt =

s−1∑
i=0

φ
i
1φ0 +

s−1∑
i=0

φ
i
1Xt−i +φ

s
1Yt−s.

To understand the behavior of this solution, it is necessary to take limits. If |φ1| < 1, lims→∞φ s
1Yt−s

goes to zero (as long as Yt−s is bounded) and the solution simplifies to
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Yt = φ0

∞∑
i=0

φ
i
1 +

∞∑
i=0

φ
i
1Xt−i. (4.36)

Noting that, as long as |φ1|< 1,
∑∞

i=0 φ i
1 = 1/(1−φ1),

Yt =
φ0

1−φ1
+
∞∑

i=0

φ
i
1Xt−i (4.37)

is the solution to this problem with an infinite history. The solution concept is important because it
clarifies the relationship between observations in the distant past and the current observation, and if
lims→∞φ s

1Yt−s does not converge to zero then observations arbitrarily far in the past have an influence
on the value of y today.

When |φ1|> 1 then this system is said to be nonconvergent since φ t
1 diverges as t grows large and

values in the past are not only important, they will dominate when determining the current value. In
the particular case where φ1 = 1,

Yt = φ0t +
∞∑

i=0

Xt−i,

which is a random walk when {Xt} is a white noise process, and the influence of a single Xt never
diminishes. Direct substitution can be used to find the solution of higher-order linear difference
equations at the cost of more tedium. A simpler alternative focuses on the core component of a linear
difference equation, the linear homogeneous equation.

4.4.1 Homogeneous Difference Equations

When the number of lags grows large (3 or greater), solving linear difference equations by substitution
is tedious. The key to understanding linear difference equations is the study of the homogeneous
portion of the equation. In the general linear difference equation,

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P +Xt

the homogenous portion is defined as the terms involving only y,

Yt = φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P. (4.38)

The intuition behind studying this portion of the system is that given the sequence of {Xt}, all of the
dynamics and the stability of the system are determined by the relationship between contemporaneous
Yt and its lagged values. This relationship then allows the parameter values to be determined where
the system is stable. Again, consider the homogeneous portions of the simple 1storder system,

Yt = φ1Yt−1 +Xt

which has the homogeneous portion

Yt = φ1Yt−1.
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To find solutions to this equation, one can try trial and error: one obvious solution is 0 since 0 = φ ·0.
It is easy to show that

Yt = φ
t
1Y0

is also a solution by examining the solution to the linear difference equation in eq. (4.35). Any
solution of the form cφ t

1 for an arbitrary constant c since

Yt = cφ
t
1

Yt−1 = cφ
t−1
1

and

Yt = φ1Yt−1

Putting these two together shows that

Yt = φ1Yt−1

cφ
t
1 = φ1Yt−1

cφ
t
1 = φ1cφ

t−1
1

cφ
t
1 = cφ

t
1

and there are many solutions. However, from these, it is possible to discern when the solution will
converge to zero and when it will explode:

• If |φ1| < 1 the system converges to 0. If φ1 is also negative, the solution oscillates, while if φ1
is greater than 0, the solution decays exponentially.

• If |φ1|> 1 the system diverges, again oscillating if negative and growing exponentially if posi-
tive.

• If φ1 = 1, the system is stable and all values are solutions. For example 1 = 1 ·1, 2 = 1 ·2, etc.

• If φ1 = −1, the system is metastable. The values, in absolute terms, are unchanged, but it
oscillates between + and -.

These categories will play important roles in examining the dynamics of larger equations since they
determine how past shocks will affect current values of Yt . When the order is greater than 1, there is
an easier approach to examining the system’s stability. Consider the second-order linear difference
system,

Yt = φ0 +φ1Yt−1 +φ2Yt−2 +Xt

and again focus on the homogeneous portion,

Yt = φ1Yt−1 +φ2Yt−2.
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This equation can be rewritten

Yt−φ1Yt−1−φ2Yt−2 = 0

so any solution of the form

czt−φ1czt−1−φ2czt−2 = 0 (4.39)

czt−2 (z2−φ1z−φ2
)
= 0

will solve this equation.4 Dividing through by czt−2, this is equivalent to

z2−φ1z−φ2 = 0 (4.40)

and he solutions to this quadratic polynomial are given by the quadratic formula,

c1,c2 =
φ1±

√
φ 2

1 +4φ2

2
(4.41)

The roots of the equation, c1 and c2, play the same role as φ1 in the 1storder case.5 If |c1| < 1
and |c2|< 1, the system is convergent. With two roots both smaller than 1 there are three interesting
cases:

Case 1: Both roots are real and positive. In this case, the system will exponentially dampen and
not oscillate.

Case 2: Both roots are imaginary (of the form c+ di where i =
√
−1) and distinct, or real and

at least one negative. In this case, the absolute value of the roots (also called the modulus, defined
as
√

c2 +d2 for an imaginary number c+di) is less than 1, and so the system will be convergent but
oscillate.

Case 3: Real but the same. This occurs when φ 2
1 + 4φ2 = 0. Since there is only one root, the

system is convergent if it is less than 1 in absolute value, which require that |φ1|< 2.
If either root is greater than 1 in absolute terms, the system is divergent.

4.4.2 Lag Operators

Before proceeding to higher order models, it is necessary to define the lag operator. Lag operations
are a particularly useful tool in the analysis of time series and are nearly self-descriptive.6

Definition 4.13 (Lag Operator). The lag operator is denoted L and is defined as the operator that has

4The solution can only be defined up to a constant, c, since the right hand side is 0. Thus, multiplying both by a
constant, the solution will still be valid.

5In the first order case, Yt = φ1Yt−1, so Yt−φ1Yt−1 = 0. The solution has the property that zt−φ1zt−1 = 0 so z−φ1 = 0,
which has the single solution c = φ1.

6In some texts, the lag operator is known as the backshift operator, and L is replaced with B.
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the following properties:

LYt = Yt−1

L2Yt = Yt−2

LiYt = Yt−i

L(L(Yt)) = L(Yt−1) = Yt−2 = L2Yt

(1−L−L2)Yt = Yt−LYt−L2Yt = Yt−Yt−1−Yt−2

The last equation above is particularly useful when studying autoregressive processes. One additional
property of the lag operator is that the lag of a constant is just the constant, i.e. Lc = c.

4.4.3 Higher Order Linear Homogenous Equations

Stability analysis can be applied to higher order systems by forming the characteristic equation and
finding the characteristic roots.

Definition 4.14 (Characteristic Equation). Let Yt follow a Pth order linear difference equation

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P +Xt (4.42)

which can be rewritten as

Yt−φ1Yt−1−φ2Yt−2− . . .−φPYt−P = φ0 +Xt (4.43)

(1−φ1L−φ2L2− . . .−φPLP)Yt = φ0 +Xt

The characteristic equation of this process is

zP−φ1zP−1−φ2zP−2− . . .−φP−1z−φP = 0 (4.44)

The characteristic roots are the solutions to this equation and most econometric packages will
return the roots of the characteristic polynomial when an ARMA model is estimated.

Definition 4.15 (Characteristic Root). Let

zP−φ1zP−1−φ2zP−2− . . .−φP−1z−φP = 0 (4.45)

be the characteristic polynomial associated with a Pth order linear difference equation. The P charac-
teristic roots, c1,c2, . . . ,cP are defined as the solution to this polynomial

(z− c1)(z− c2) . . .(z− cP) = 0 (4.46)

The conditions for stability are the same for higher order systems as they were for first and second
order systems: all roots cp, p = 1,2, . . . ,P must satisfy |cp|< 1 (again, if complex, | · | means modu-
lus). If any |cp| > 1 the system is divergent. If one of more |cp| = 1 and none are larger, the system
will exhibit unit root (random walk) behavior.

These results are the key to understanding important properties of linear time-series models which
turn out to be stationary if the corresponding linear homogeneous system is convergent, i.e. |cp|< 1,
p = 1,2, . . . ,P.
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Dynamics of linear difference equations
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Figure 4.1: These six plots correspond to the dynamics of the six linear homogeneous systems de-
scribed in the text. All processes received a unit shock at t = 1 (X1 = 1) and no other shocks
(X j = 0, j 6= 1). Pay close attention to the roots of the characteristic polynomial and the behavior
of the system (exponential decay, oscillation and/or explosion).

4.4.4 Example: Characteristic Roots and Stability

Consider 6 linear difference equations, their characteristic equation, and the roots:

• Yt = 0.9Yt−1 +Xt

– Characteristic Equation: z-0.9=0

– Characteristic Root: z=0.9

• Yt =−0.5Yt−1 +Xt

– Characteristic Equation: z+0.5=0

– Characteristic Root: z=-0.5

• Yt = 0.5Yt−1 +0.4Yt−2 +Xt

– Characteristic Equation: z2−0.5z−0.4 = 0
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– Characteristic Roots: z = 0.93,−.43

• Yt = 0.64Yt−1−0.1024Yt−2 +Xt

– Characteristic Equation: z2−0.64z+0.1024 = 0

– Characteristic Roots: z = 0.32,0.32 (identical)

• Yt =−0.5Yt−1−0.4Yt−2 +Xt

– Characteristic Equation: z2 +0.5z+0.4 = 0

– Characteristic Roots (Modulus): z =−0.25+0.58i(0.63),−0.25−0.58i(0.63)

• Yt = 1.6Yt−1−0.5Yt−2 +Xt

– Characteristic Equation: z2−1.6z+0.5 = 0

– Characteristic Roots: z = 1.17,0.42

The plots in figure 4.1 show the effect of a unit (1) shock at t = 1 to the 6 linear difference systems
above (all other shocks are 0). The value of the root makes a dramatic difference in the observed
behavior of the series.

4.4.5 Stationarity of ARMA models

Stationarity conditions for ARMA processes can be determined using the results for the convergence
of linear difference equations. First, note that any ARMA process can be written using a lag polyno-
mial

Yt = φ0 +φ1Yt−1 + . . .+φPYt−P +θ1εt−1 + . . .+θQεt−Q + εt

Yt−φ1Yt−1− . . .−φPYt−P = φ0 +θ1εt−1 + . . .+θQεt−Q + εt

(1−φ1L−φ2L2− . . .−φPLP)Yt = φ0 +(1+θ1L+θ2L2 + . . .+θQLQ)εt

This is a linear difference equation, and the stability conditions depend on the roots of the character-
istic polynomial

zP−φ1zP−1−φ2zP−2− . . .−φP−1z−φP

An ARMA process driven by a white noise shock will be covariance stationary as long as the
characteristic roots are less than one in modulus. In the simple AR(1) case, this corresponds to
|z1| < 1. In the AR(2) case, the region is triangular with a curved bottom and corresponds to the
points (z1,z2) = (−2,−1),(1,0),(2,−2) (see figure 4.2). For higher-order models, stability must be
checked by numerically solving the characteristic equation.

All MA processes driven by covariance stationary shocks are stationary: the homogeneous por-
tions of an MA process have no roots and so cannot diverge.



246 Analysis of a Single Time Series

Stationarity of an AR(2)
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Figure 4.2: The triangular region corresponds to the values of the parameters in the AR(2) Yt =
φ1Yt−1 + φ2Yt−2 + εt . The dark region corresponds to real roots and the light region corresponds to
imaginary roots.

4.5 Data and Initial Estimates

Two series will be used throughout the stationary time-series analysis section: returns on the value-
weighted market and the spread between the average interest rates on portfolios of Aaa-rated and
Baa-rated corporate bonds, commonly known as the default spread or default premium. The VWM
returns were taken from CRSP and are available from July 2963 through October 2020, and the bond
yields are available from Moody’s via FRED II and are available from January 1919 until October
2020 . Both series are monthly.

Figure 4.3 contains plots of the two series. Table 4.1 contains parameter estimates for a model
with only a constant mean (ARMA(0,0)), an AR(1), an MA(1) and an ARMA(1,1) for each series.
The default spread exhibits a large autoregressive coefficient (.97) that is highly significant, but it also
contains a significant moving average term, and in an ARMA(1,1), both parameters are significant.
The market portfolio exhibits some predictability, although it is much less persistent than the default
spread.7

7For information on estimating an ARMA in MATLAB, see the MATLAB supplement to this course.
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Figure 4.3: Plots of the returns on the VWM and the default spread, the spread between the yield of
a portfolio of Baa-rated bonds and the yield of a portfolio of Aaa-rated bonds.

VWM Default
φ0 φ1 θ1 σ2 φ0 φ1 θ1 σ2

0.929
(0.000)

19.644 1.178
(0.000)

0.480

0.825
(0.000)

0.058
(0.073)

19.577 0.001
(0.005)

0.976
(0.000)

0.022

0.930
(0.000)

0.064
(0.053)

19.570 1.178
(0.000)

0.899
(0.000)

0.150

3.570
(0.000)

−0.960
(0.000)

0.998
(0.000)

19.283 0.001
(0.001)

0.966
(0.000)

0.241
(0.000)

0.021

Table 4.1: Parameter estimates and p-values from an a constant mean model (ARMA(0,0)), AR(1),
MA(1) and ARMA(1,1) for the VWM and Baa-Aaa spread.
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4.6 Autocorrelations and Partial Autocorrelations

Autoregressive processes, moving average processes, and ARMA processes all exhibit differences in
the patterns of their autocorrelations and partial autocorrelations. These differences can be exploited
to select a parsimonious model from the general class of ARMA processes.

4.6.1 Autocorrelations and the Autocorrelation Function

Autocorrelations are to autocovariances as correlations are to covariances. That is, the sth autocor-
relation is the sth autocovariance divided by the product of the variance of Yt and Yt−s, and when a
processes is covariance stationary, V[Yt ] = V[Yt−s], and so

√
V[Yt ]V[Yt−s] = V[Yt ].

Definition 4.16 (Autocorrelation). The autocorrelation of a covariance stationary scalar process is
defined

ρs =
γs

γ0
=

E[(Yt−E[Yt ])(Yt−s−E[Yt−s])]

V[Yt ]
(4.47)

where γs is the sth autocovariance.

The autocorrelation function (ACF) relates the lag length (s) and the parameters of the model to
the autocorrelation.

Definition 4.17 (Autocorrelation Function). The autocorrelation function (ACF), ρ(s), is a function
of the population parameters that defines the relationship between the autocorrelations of a process
and lag length.

The variance of a covariance stationary AR(1) is σ2(1− φ 2
1 )
−1 and the sth autocovariance is

φ sσ2(1−φ 2
1 )
−1, and so the ACF is

ρ(s) =
φ sσ2(1−φ 2)−1

σ2(1−φ 2)−1 = φ
s. (4.48)

Deriving ACFs of ARMA processes is a straightforward, albeit tedious, task. Further details on the
derivation of the ACF of stationary ARMA processes are presented in appendix 4.A.

4.6.2 Partial Autocorrelations and the Partial Autocorrelation Function

Partial autocorrelations are similar to autocorrelations with one important difference: the sth partial
autocorrelation still relates Yt and Yt−s but it eliminates the effects of Yt−1, Yt−2, . . ., Yt−(s−1).

Definition 4.18 (Partial Autocorrelation). The sth partial autocorrelation (ϕs) is defined as the popu-
lation value of the regression coefficient on φs in

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φs−1Yt−(s−1)+φsYt−s + εt .

Like the autocorrelation function, the partial autocorrelation function (PACF) relates the partial
autocorrelation to population parameters and lag length.



4.6 Autocorrelations and Partial Autocorrelations 249

Definition 4.19 (Partial Autocorrelation Function). The partial autocorrelation function (PACF), ϕ(s),
defines the relationship between the partial autocorrelations of a process and lag length. The PACF is
denoted.

The partial autocorrelations are directly interpretable as population regression coefficients. The
sth partial autocorrelations can be computed using s+ 1 autocorrelations. Recall that the population
values of φ1, φ2, . . ., φs in

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φs−1Yt−(s−1)+φsYt−s + εt

can be defined in terms of the covariance between Yt , Yt−1, Yt−2, . . ., Yt−s. Let Γ denote this covariance
matrix,

Γ =



γ0 γ1 γ2 γ3 . . . γs−1 γs
γ1 γ0 γ1 γ2 . . . γs−2 γs−1
γ2 γ1 γ0 γ1 . . . γs−3 γs−2
...

...
...

... . . .
...

...
γs−1 γs−2 γs−3 γs−4 . . . γ0 γ1
γs γs−1 γs−2 γs−3 . . . γ1 γ0


The matrix Γ is known as a Toeplitz matrix which reflects the special symmetry it exhibits which
follows from stationarity, and so E[(Yt −µ)(Yt−s−µ)] = γs = γ−s = E[(Yt −µ)(Yt+s−µ)]. Γ can be
decomposed in terms of γ0 (the long-run variance) and the matrix of autocorrelations,

Γ = γ0



1 ρ1 ρ2 ρ3 . . . ρs−1 ρs
ρ1 1 ρ1 ρ2 . . . ρs−2 ρs−1
ρ2 ρ1 1 ρ1 . . . ρs−3 ρs−2
...

...
...

... . . .
...

...
ρs−1 ρs−2 ρs−3 ρs−1 . . . 1 ρ1
ρs ρs−1 ρs−2 ρs−3 . . . ρ1 1


directly by applying the definition of an autocorrelation. The population regression parameters can be
computed by partitioning Γ into four blocks, γ0, the long-run variance of Yt , Γ01 = Γ

′
10, the vector of

covariances between Yt and Yt−1,Yt−2, . . . ,Yt−s, and Γ11, the covariance matrix of Yt−1,Yt−2, . . . ,Yt−s.

Γ =

[
γ0 Γ01

Γ10 Γ11

]
= γ0

[
1 R01

R10 R11

]
where R are vectors or matrices of autocorrelations. Using this formulation, the population regression
parameters φ = [φ1,φ2, . . . ,φs]

′ are defined as

φ = Γ
−1
11 Γ10 = γ

−1
0 R−1

11 γ0R10 = R−1
11 R10. (4.49)

The sth partial autocorrelation (ϕs) is the sth element in φ (when Γ is s by s), e′sR
−1
11 R10 where es is a

s by 1 vector of zeros with one in the sth position.
For example, in a stationary AR(1) model, Yt = φ1Yt−1 + εt , the PACF is
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ϕ(s) = φ
|s|
1 s = 0,1,−1

= 0 otherwise

That ϕ0 = φ 0 = 1 is obvious: the correlation of a variable with itself is 1. The first partial autocor-
relation is defined as the population parameter of φ1 in the regression Yt = φ0 + φ1Yt−1 + εt . Since
the data generating process is an AR(1), ϕ1 = φ1, the autoregressive parameter. The second partial
autocorrelation is defined as the population value of φ2 in the regression

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + ε2.

Since the DGP is an AR(1), once Yt−1 is included, Yt−2 has no effect on Yt and the population value
of both φ2 and the second partial autocorrelation, ϕ2, is 0. This argument holds for any higher order
partial autocorrelation.

Note that the first partial autocorrelation and the first autocorrelation are both φ1 in

Yt = φ0 +φ1Yt−1 + εt ,

and at the second (and higher) lag these differ. The autocorrelation at s = 2 is the population value of
φ2 in the regression

Yt = φ0 +φ2Yt−2 + ε

while the second partial autocorrelation is the population value of from φ2 in the regression

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + ε.

If the DGP were an AR(1), the second autocorrelation would be ρ2 = φ 2
1 while the second partial

autocorrelation would be ϕ2 = 0.

4.6.2.1 Examples of ACFs and PACFs

The key to understanding the value of ACFs and PACFs lies in the distinct behavior the autocorrela-
tions and partial autocorrelations of AR and MA processes exhibit.

• AR(P)

– ACF dies exponentially (may oscillate, referred to as sinusoidally)

– PACF is zero beyond P

• MA(Q)

– ACF is zero beyond Q

– PACF dies exponentially (may oscillate, referred to as sinusoidally)

Table 4.2 provides a summary of the ACF and PACF behavior of ARMA models and this difference
forms the basis of the Box-Jenkins model selection strategy.
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Process ACF PACF

White Noise All 0 All 0
AR(1) ρs = φ s 0 beyond lag 2
AR(P) Decays toward zero exponentially Non-zero through lag P, 0 thereafter
MA(1) ρ1 6= 0, ρs = 0, s > 1 Decays toward zero exponentially
MA(Q) Non-zero through lag Q, 0 thereafter Decays toward zero exponentially

ARMA(P,Q) Exponential Decay Exponential Decay

Table 4.2: Behavior that the ACF and PACF for various members of the ARMA family.

4.6.3 Sample Autocorrelations and Partial Autocorrelations

Sample autocorrelations are computed using sample analogues of the population moments in the
definition of an autocorrelation. Define Y ∗t =Yt− ȳ to be the demeaned series where ȳ = T−1∑T

t=1Yt .
The sth sample autocorrelation is defined

ρ̂s =

∑T
t=s+1Y ∗t Y ∗t−s∑T

t=1 (Y
∗

t )
2 (4.50)

although the small-sample corrected versions

ρ̂s =

∑T
t=s+1 Y∗t Y∗t−s

T−S∑T
t=1(Y

∗
t )2

T

(4.51)

or

ρ̂s =

∑T
t=s+1Y ∗t Y ∗t−s√∑T

t=s+1 (Y
∗

t )
2∑T−s

t=1 (Y ∗t )
2
. (4.52)

may be more accurate.

Definition 4.20 (Sample Autocorrelogram). A plot of the sample autocorrelations against the lag
index in known as a sample autocorrelogram.

Inference on estimated autocorrelation coefficients depends on the null hypothesis tested and
whether the data are homoskedastic. The most common assumptions are that the data are homoskedas-
tic and that all of the autocorrelations are zero. In other words, Yt−E [Yt ] is white noise process. Under
the null H0 : ρs = 0, s 6= 0, inference can be made noting that V [ρ̂s] = T−1 using a standard t-test,

ρ̂s√
V[ρ̂s]

=
ρ̂s√
T−1

= T
1
2 ρ̂s

d→ N(0,1). (4.53)

A alternative null hypothesis is that the autocorrelations on lags s and above are zero but that the
autocorrelations on lags 1,2, . . . ,s−1 are unrestricted, H0 : ρ j = 0, j ≥ s. Under this null, and again
assuming homoskedasticity,
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Autocorrelation and Partial Autocorrelation function
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Figure 4.4: Autocorrelation function and partial autocorrelation function for 4 processes. Note the
difference between how the ACF and PACF respond in AR and MA models.

V[ρ̂s] = T−1 for s = 1 (4.54)

= T−1(1+2
s−1∑
j=1

ρ̂
2
j ) for s > 1

If the null is H0 : ρs = 0 with no further restrictions on the other autocorrelations, the variance of the
sth autocorrelation is (assuming homoskedasticity)
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Autocorrelation and Partial Autocorrelation function
ACF PACF
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Figure 4.5: Autocorrelation function and partial autocorrelation function for 3 processes, an MA(1),
and ARMA(1,1) and a random walk. Note the difference between how the ACF and PACF respond
in AR and MA models.

V[ρ̂s] = T−1(1+2
∞∑

j=1, j 6=s

ρ̂
2
j ) (4.55)

which is infeasible. The usual practice is to truncate the variance estimator at some finite lag L where
L is a function of the sample size, often assumed that L ∝ T

1
3 (if L is not an integer, rounding to the

nearest one).8

Once the assumption of homoskedasticity is relaxed, inference becomes more complicated. First
consider the most restrictive null H0 : ρs = 0, s 6= 0. If {Yt} is a heteroskedastic white noise pro-
cess (plus possibly a non-zero mean), inference can be made using White’s heteroskedasticity robust
covariance estimator (see chapter 3) so that

8The choice of L ∝ T
1
3 is motivated by asymptotic theory where T

1
3 is the optimal rate in the sense that it minimizes

the asymptotic mean square error of the variance estimator.



254 Analysis of a Single Time Series

V[ρ̂s] = T−1

(
T−1

T∑
t=1

Y ∗2t−s

)−1(
T−1

T∑
t=1

Y ∗t
2Y ∗2t−s

)(
T−1

T∑
t=1

Y ∗2t−s

)−1

(4.56)

=

∑T
t=s+1Y ∗t

2Y ∗2t−s(∑T
t=s+1Y ∗2t−s

)2 .

This covariance estimator is identical to White’s covariance estimator for the regression

Yt = ρsYt−s + εt

since under the null that ρs = 0, Yt = εt .
To test one of the more complicated null hypotheses a Heteroskedasticity-Autocorrelation Con-

sistent (HAC) covariance estimator is required, the most common of which is the Newey-West co-
variance estimator.

Definition 4.21 (Newey-West Variance Estimator). Let zt be a series that may be autocorrelated and
define z∗t = zt − z̄ where z̄ = T−1∑T

t=1 zt . The L-lag Newey-West variance estimator for the variance
of z̄ is

σ̂
2
NW = T−1

T∑
t=1

z∗t
2 +2

L∑
l=1

wlT−1
T∑

t=l+1

z∗t z∗t−l (4.57)

= γ̂0 +2
L∑

l=1

wl γ̂l

where γ̂l = T−1∑T
t=l+1 z∗t z∗t−l and wl =

L+1−l
L+1 .

The Newey-West estimator has two important properties. First, it is always greater than 0. This
is a desirable property of any variance estimator. Second, as long as L→∞, the σ̂2

NW
p→ V[Yt ].

The only remaining choice is which value to choose for L. Unfortunately this is problem dependent
and it is important to use as small a value for L as the data will permit. Newey-West estimators
tend to perform poorly in small samples and are worse, often substantially, than simpler estimators
such as White’s heteroskedasticity-consistent covariance estimator. This said, they also work in sit-
uations where White’s estimator fails: when a sequence is autocorrelated White’s estimator is not
consistent.9 Long-run variance estimators are covered in more detail in the Multivariate Time Series
chapter (chapter 5).

When used in a regression, the Newey-West estimator extends White’s covariance estimator to
allow {Yt−sεt} to be both heteroskedastic and autocorrelated, setting z∗t = Y ∗t Y ∗t−s,

9The Newey-West estimator nests White’s covariance estimator as a special case by choosing L = 0.
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V[ρ̂s] = T−1

(
T−1

T∑
t=s+1

Y ∗2t−s

)−1

(4.58)

×

T−1
T∑

t=s+1

Y ∗t
2Y ∗2t−s +2

L∑
j=1

w jT−1
T∑

t=s+ j+1

Y ∗t Y ∗t−s
(
Y ∗t− jY

∗
t−s− j

)
×
(

T−1
T∑

t=s+1

Y ∗2t−s

)−1

=

∑T
t=s+1Y ∗t

2Y ∗2t−s +2
∑L

j=1 w j
∑T

t=s+ j+1Y ∗t Y ∗t−s

(
Y ∗t− jY

∗
t−s− j

)
(∑T

t=s+1Y ∗2t−s

)2 .

Note that only the center term has been changed and that L must diverge for this estimator to be
consistent – even if {Yt} follows an MA process, and the efficient choice sets L∝ T

1
3 .

Tests that multiple autocorrelations are simultaneously zero can also be conducted. The standard
method to test that s autocorrelations are zero, H0 = ρ1 = ρ2 = . . . = ρs = 0, is the Ljung-Box Q
statistic.

Definition 4.22 (Ljung-Box Q statistic). The Ljung-Box Q statistic, or simply Q statistic, tests the
null that the first s autocorrelations are all zero against an alternative that at least one is non-zero:
H0 : ρk = 0 for k = 1,2, . . . ,s versus H1 : ρk 6= 0 for k = 1,2, . . . ,s. The test statistic is defined

Q = T (T +2)
s∑

k=1

ρ̂2
k

T − k
(4.59)

and Q has a standard χ2
s distribution.

The Q statistic is only valid under an assumption of homoskedasticity so caution is warranted when
using it with financial data. A heteroskedasticity robust version of the Q-stat can be formed using an
LM test.

Definition 4.23 (LM test for serial correlation). Under the null, E[Y ∗t Y ∗t− j] = 0 for 1 ≤ j ≤ s. The

LM-test for serial correlation is constructed by defining the score vector st = Y ∗t
[
Y ∗t−1Y ∗t−2 . . .Y

∗
t−s
]′,

LM = T s̄′Ŝs̄ d→ χ
2
s (4.60)

where s̄ = T−1∑T
t=1 st and Ŝ = T−1∑T

t=1 sts′t .10

Like the Ljung-Box Q statistic, this test has an asymptotic χ2
s distribution with the added advantage

of being heteroskedasticity robust.
Partial autocorrelations can be estimated using regressions,

10Refer to chapters 2 and 3 for more on LM-tests.
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Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+ ϕ̂sYt−s + εt

where ϕ̂s = φ̂s. To test whether a partial autocorrelation is zero, the variance of φ̂s, under the null and
assuming homoskedasticity, is approximately T−1 for any s, and so a standard t-test can be used,

T
1
2 φ̂s

d→ N(0,1). (4.61)

If homoskedasticity cannot be assumed, White’s covariance estimator can be used to control for het-
eroskedasticity.

Definition 4.24 (Sample Partial Autocorrelogram). A plot of the sample partial autocorrelations
against the lag index is known as a sample partial autocorrelogram.

4.6.3.1 Example: Autocorrelation, partial autocorrelation and Q Statistic

Figure 4.6 contains plots of the first 20 autocorrelations and partial autocorrelations of the VWM
market returns and the default spread. The market appears to have a small amount of persistence
and appears to be more consistent with a moving average than an autoregression. The default spread
is highly persistent, and an AR(1) appears to be a choice to model the series since the autocorrela-
tions decay slowly, and the partial autocorrelations drop off dramatically after one lag, although an
ARMA(1,1) cannot be ruled out.

4.6.4 Model Selection: The Box-Jenkins Methodology

The Box and Jenkins methodology is the most common approach for time-series model selection. It
consists of two stages:

• Identification: Visual inspection of the series, the autocorrelations, and the partial autocorrela-
tions.

• Estimation: By relating the sample autocorrelations and partial autocorrelations to the ACF
and PACF of ARMA models, candidate models are identified. These candidates are estimated,
and the residuals are tested for neglected dynamics using the residual autocorrelations, partial
autocorrelations, and Q statistics or LM-tests for serial correlation. If dynamics are detected in
the residuals, a new model is specified, and the procedure is repeated.

The Box-Jenkins procedure relies on two principles: parsimony and invertibility.

Definition 4.25 (Parsimony). Parsimony is a property of a model where the specification with the
fewest parameters capable of capturing the dynamics of a time series is preferred to other representa-
tions equally capable of capturing the same dynamics.

Parsimony is an intuitive principle, and using the smallest model has other benefits, particularly when
forecasting. One consequence of the parsimony principle is that parameters that are not needed are
excluded. For example, if the data generating process were an AR(1), selecting an AR(2) would
adequately describe the process. The parsimony principle indicates the AR(1) should be referred to
as an AR(2) since both are equally capable of capturing the dynamics of the data. Further, recall that
an AR(1) can be reformulated as an MA(T ) where θs = φ s

1. Both the AR(1) and MA(T ) are capable of
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Figure 4.6: These for pictures plot the first 20 autocorrelations (left) and partial autocorrelations
(right) of the VWM (top) and the Baa-Aaa spread (bottom). Approximate standard errors, assuming
homoskedasticity, are in parenthesis.

capturing the dynamics of the data if the DGP is an AR(1), although the number of parameters in each
is very different. The parsimony principle provides guidance on selecting the AR(1) over the MA(T )
since it contains (many) fewer parameters yet provides an equivalent description of the relationship
between current and past values of the data.

Definition 4.26 (Invertibility). A moving average is invertible if it can be written as a finite or con-
vergent autoregression. Invertibility requires the roots of

(1−θ1z−θ2z2− . . .−θQzQ) = 0

to be greater than one in modulus (absolute value).
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Invertibility is a technical requirement stemming from the use of the autocorrelogram and partial
autocorrelogram to choose the model, and it plays an important role in achieving unique identification
of the MA component of a model. For example, the ACF and PACF of

Yt = 2εt−1 + εt

and

Yt = .5εt−1 + εt

are identical. The first autocorrelation is θ1/(1+ θ 2
1 ), and so in the first specification ρ1 = 2/(1+

22) = .4 and in the second ρ1 = .5/(1+ .52) = .4 while all other autocorrelations are zero. The partial
autocorrelations are similarly identical – partial correlation are functions of autocorrelations – and so
two processes are indistinguishable. Invertibility rules out the first of these two models since the root
of 1−2z = 0 is 1

2 < 1.
Information criteria such as the AIC or S/BIC can also be used to choose a model. Recall the

definitions of the AIC and BIC:

Definition 4.27 (Akaike Information Criterion). The Akaike Information Criteria (AIC) is

AIC = ln σ̂
2 + k2/T (4.62)

where σ̂2 is the estimated variance of the regression error and k is the number of parameters in the
model.

Definition 4.28 (Schwarz/Bayesian Information Criterion). The Schwarz Information Criteria (SIC),
also known as the Bayesian Information Criterion (BIC) is

BIC = ln σ̂
2 + klnT/T (4.63)

where σ̂2 is the estimated variance of the regression error and k is the number of parameters in the
model.

ICs are often applied by estimating the largest model, which is thought to correctly capture the dy-
namics and then dropping lags until the AIC or S/BIC fail to decrease. Specific-to-General (StG) and
General-to-Specific (GtS) are also applicable to time-series modeling and suffer from the same issues
as those described in chapter 3, section 3.13.

4.7 Estimation

ARMA models are typically estimated using maximum likelihood (ML) estimation assuming that
the errors are normal, using either conditional maximum likelihood, where the likelihood of Yt given
Yt−1,Yt−2, . . . is used, or exact maximum likelihood where the joint distribution of [Y1,Y2, . . . ,Yt−1,Yt ]
is used.
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4.7.1 Conditional Maximum Likelihood

Conditional maximum likelihood uses the distribution of Yt given Yt−1,Yt−2, . . . to estimate the pa-
rameters of an ARMA. The data are assumed to be conditionally normal, and so the likelihood is

f (Yt |Yt−1,Yt−2, . . . ;φ ,θ ,σ2) = (2πσ
2)−

1
2 exp

(
− ε2

t
2σ2

)
(4.64)

= (2πσ
2)−

1
2 exp

(
−
(Yt−φ0−

∑P
i=1 φiYt−i−

∑Q
j=1 θ jεt− j)

2

2σ2

)

Since the {εt} series is assumed to be a white noise process, the joint likelihood is simply the product
of the individual likelihoods,

f (yt |yt−1,yt−2 . . . ;φ ,θ ,σ2) =
T∏

t=1

(2πσ
2)−

1
2 exp

(
− ε2

t
2σ2

)
(4.65)

and the conditional log-likelihood is

l(φ ,θ ,σ2;yt |yt−1,yt−2 . . .) =−
1
2

T∑
t=1

ln2π + lnσ
2 +

ε2
t

σ2 . (4.66)

Recall that the first-order condition for the mean parameters from a normal log-likelihood does not
depend on σ2 and that given the parameters in the mean equation, the maximum likelihood estimate
of the variance is

σ̂
2 = T−1

T∑
t=1

(Yt−φ0−φ1Yt−1− . . .−φPYt−P−θ1εt−1− . . .−θQεt−Q)
2 (4.67)

= T−1
T∑

t=1

ε
2
t . (4.68)

This transformation allows the variance to be concentrated out of the log-likelihood so that it becomes

l(yt |yt−1,yt−2 . . . ;φ ,θ ,σ2) =−1
2

T∑
t=1

ln2π + ln(T−1
T∑

t=1

ε
2
t )+

ε2
t

T−1
∑T

t=1 ε2
t

(4.69)

=−1
2

T∑
t=1

ln2π− 1
2

T∑
t=1

ln(T−1
T∑

t=1

ε
2
t )−

T
2

T∑
t=1

ε2
t∑T

t=1 ε2
t

=−1
2

T∑
t=1

ln2π− 1
2

T∑
t=1

ln(T−1
T∑

t=1

ε
2
t )−

T
2

∑T
t=1 ε2

t∑T
t=1 ε2

t
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=−1
2

T∑
t=1

ln2π− 1
2

T∑
t=1

ln(T−1
T∑

t=1

ε
2
t )−

T
2

=−1
2

T∑
t=1

ln2π− T
2
− 1

2

T∑
t=1

ln(T−1
T∑

t=1

ε
2
t )

=−1
2

T∑
t=1

ln2π− T
2
− T

2
ln σ̂

2.

Eliminating terms that do not depend on model parameters shows that maximizing the likelihood
is equivalent to minimizing the error variance,

max
φ ,θ ,σ2

l(yt |yt−1,yt−2 . . . ;φ ,θ ,σ2) =−T
2

ln σ̂
2. (4.70)

where ε̂t =Yt−φ0−φ1Yt−1− . . .−φPYt−P−θ1εt−1− . . .−θQεt−Q, and so estimation using conditional
maximum likelihood is equivalent to least squares, although unlike linear regression the objective is
nonlinear due to the moving average terms and so a nonlinear maximization algorithm is required. If
the model does not include moving average terms (Q = 0), then the conditional maximum likelihood
estimates of an AR(P) are identical to least squares estimates from the regression

Yt = φ0 +φ1Yt−1 +φ2Yt−2 + . . .+φPYt−P + εt . (4.71)

Conditional maximum likelihood estimation of ARMA models requires either backcast values or
truncation since some of the observations have low indices (e.g., Y1) that depend on observations not
in the sample (e.g., Y0, Y−1, ε0, ε−1, etc.). Truncation is the most common and the likelihood is only
computed for t = P+ 1, . . . ,T , and initial values of εt are set to 0. When using backcasts, missing
values of y can be initialized at the long-run average, ȳ = T−1∑T

t=1Yt , and the initial values of εt
are set to their unconditional expectation, 0. Using unconditional values works well when data are
not overly persistent and T is not too small. The likelihood can then be recursively computed where
estimated errors ε̂t used are using in moving average terms,

ε̂t = Yt−φ0−φ1Yt−1− . . .−φPYt−P−θ1ε̂t−1− . . .−θQε̂t−Q, (4.72)

where backcast values are used if any index is less than or equal to 0. The estimated residuals are then
plugged into the conditional log-likelihood (eq. (4.69)), and the log-likelihood value is computed. The
numerical maximizer will search for values of φ and θ that produce the largest log-likelihood. Once
the likelihood optimizing values have been found, the maximum likelihood estimate of the variance
is computed using

σ̂
2 = T−1

T∑
t=1

(Yt− φ̂0− φ̂1Yt−1− . . .− φ̂PYt−P− θ̂1ε̂t−1− . . .− θ̂Qε̂t−Q)
2 (4.73)

or the truncated version which sums from P+1 to T .
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4.7.2 Exact Maximum Likelihood

Exact maximum likelihood directly utilizes the autocorrelation function of an ARMA(P,Q) to compute
the correlation matrix of all of the y data, which allows the joint likelihood to be evaluated. Define

y = [Y1,Y2, . . . ,YT−1YT ]
′

and let Γ be the T by T covariance matrix of y. The joint likelihood of y is given by

f (y|φ ,θ ,σ2) = (2π)−
T
2 |Γ|− T

2 exp

(
−y′Γ−1y

2

)
. (4.74)

The log-likelihood is

l(φ ,θ ,σ2;y) =−T
2

ln(2π)− T
2

ln |Γ|− 1
2

y′Γ−1y. (4.75)

where Γ is the symmetric matrix of autocovariances,

Γ =



γ0 γ1 γ2 γ3 . . . γT−2 γT−1
γ1 γ0 γ1 γ2 . . . γT−3 γT−2
γ2 γ1 γ0 γ1 . . . γT−4 γT−3
...

...
...

... . . .
...

...
γT−2 γT−3 γT−4 γT−5 . . . γ0 γ1
γT−1 γT−2 γT−3 γT−4 . . . γ1 γ0


,

that are determined by the model parameters (excluding the constant), φ , θ , and σ2. A nonlinear
maximization algorithm can be used to search for the vector of parameters that maximizes this log-
likelihood. The exact maximum likelihood estimator is generally believed to be more precise than
conditional maximum likelihood and does not require backcasts of data or errors.

4.8 Inference

Inference on ARMA parameters from stationary time series is a standard application of maximum
likelihood theory. Define ψ = [φ θ σ2]′ as the parameter vector. Recall from 2 that maximum likeli-
hood estimates are asymptotically normal,

√
T (ψ− ψ̂)

d→ N(0,I−1) (4.76)

where

I =−E
[

∂ 2l(y;ψ)

∂ψ∂ψ ′

]
.

where ∂ 2l(y;ψ)/∂ψ∂ψ ′ is the second derivative matrix of the log-likelihood (or Hessian). In practice
I is not known and it must be replaced with a consistent estimate,

Î = T−1
T∑

t=1

−∂ 2l(Yt ; ψ̂)

∂ψ∂ψ ′
.
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Wald and t-tests on the parameter estimates can be computed using the elements of I, or likelihood
ratio tests can be used by imposing the null on the model and comparing the log-likelihood values of
the constrained and unconstrained estimators.

One important assumption in the above distribution theory is that the estimator is a maximum
likelihood estimator; this requires the likelihood to be correctly specified, or, in other words, for
the data to be homoskedastic and normally distributed. This assumption is generally implausible
when using financial data, and a modification of the above theory is needed. When one likelihood
is specified for the data, but they have a different distribution, the estimator is known as a Quasi
Maximum Likelihood estimator (QML). QML estimators, like ML estimators, are asymptotically
normal under mild regularity conditions on the data but with a different asymptotic covariance matrix,

√
T (ψ− ψ̂)

d→ N(0,I−1J I−1) (4.77)

where

J = E
[

∂ l(y;ψ)

∂ψ

∂ l(y;ψ)

∂ψ ′

]
J must also be estimated and the usual estimator is

Ĵ = T−1
T∑

t=1

∂ l(Yt ;ψ)

∂ψ

∂ l(Yt ;ψ)

∂ψ ′

where ∂ l(Yt ;ψ)
∂ψ

is the score of the log-likelihood. I−1J I−1 is known as a sandwich covariance esti-
mator, White’s covariance estimator.

A sandwich covariance estimator is needed when the model for the data is either incompletely
specified or is misspecified, and it accounts for the failure of Information Matrix Inequality to hold
(see chapters 2and 3). As was the case in linear regression, a sufficient condition for the IME to
fail in ARMA estimation is heteroskedastic residuals. Considering the prevalence of conditionally
heteroskedasticity in financial data, this is nearly a given.

4.9 Forecasting

Forecasting is a common objective of many time-series models. The objective of a forecast is to
minimize a loss function.

Definition 4.29 (Loss Function). A loss function is a function of the observed data, Yt+h and the
time-t constructed forecast, Ŷt+h|t , L(Yt ,Ŷt+h|t), that has the three following properties:

• Property 1: The loss of any forecast is non-negative, so L(Yt+h,Ŷt+h|t)≥ 0.

• Property 2: There exists a point, Y ∗t+h, known as the optimal forecast, where the loss function
takes the value 0. That is L(Yt+h,Y ∗t+h) = 0.

• Property 3: The loss is non-decreasing away from Y ∗t+h. That is if Y B
t+h > Y A

t+h > Y ∗t+h, then
L(Yt+h,Y B

t+h)>L(Yt+h,Y A
t+h)>L(Yt+h,Y ∗t+h). Similarly, if Y D

t+h <YC
t+h <Y ∗t+h, then L(Yt+h,Y D

t+h)>

L(Yt+h,YC
t+h)> L(Yt+h,Y ∗t+h).
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The most common loss function is Mean Square Error (MSE) which chooses the forecast to min-
imize

E[L(Yt+h,Ŷt+h|t)] = E[(Yt+h− Ŷt+h|t)
2] (4.78)

where Ŷt+h|t is the time-t forecast of Yt+h. Notice that this is just the optimal projection problem and
the optimal forecast is the conditional mean, Y ∗t+h|t = Et [Yt+h] (See chapter 3). It is simple to verify
that this loss function satisfies the properties of a loss function. Property 1 holds by inspection and
property 2 occurs when Yt+h = Ŷ ∗t+h|t . Property 3 follows from the quadratic form. MSE is the most
common loss function, but others, such as Mean Absolute Deviation (MAD), Quad-Quad, and Linex,
are used in practice and academic literature. The MAD loss function will be revisited in chapter 6
(Value-at-Risk). The Advanced Financial Econometrics elective will study non-MSE loss functions
in more detail.

The remainder of this section will focus exclusively on forecasts that minimize the MSE loss
function. Fortunately, in this case, forecasting from ARMA models is an easy exercise. For simplicity,
consider the AR(1) process,

Yt = φ0 +φ1Yt−1 + εt .

Since the optimal forecast is the conditional mean, all that is needed is to compute Et [Yt+h] for any h.
When h = 1,

Yt+1 = φ0 +φ1Yt + εt+1,

so the conditional expectation is

Et [Yt+1] = Et [φ0 +φ1Yt + εt+1] (4.79)
= φ0 +φ1Et [Yt ]+Et [εt+1]

= φ0 +φ1Yt +0
= φ0 +φ1Yt

which follows since Yt is in the time-t information set (Ft) and Et [εt+1] = 0 by assumption.11 The
optimal forecast for h = 2 is given by Et [Yt+2],

Et [Yt+2] = Et [φ0 +φ1Yt+1 + εt+2]

= φ0 +φ1Et [Yt+1]+Et [εt+1]

= φ0 +φ1 (φ0 +φ1Yt)+0

= φ0 +φ1φ0 +φ
2
1Yt

which follows by substituting in the expression derived in eq. (4.79) for Et [Yt+1]. The optimal forecast
for any arbitrary h uses the recursion

Et [Yt+h] = φ0 +φ1Et [Yt+h−1] (4.80)

11This requires a sightly stronger assumption than εt is a white noise process.
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and it is easily shown that Et [Yt+h] = φ0
∑h−1

i=0 φ i
1+φ h

1Yt . If |φ1|< 1, as h→∞, the forecast of Yt+h and
Et [Yt+h] converges to φ0/(1−φ1), the unconditional expectation of Yt . In other words, for forecasts
in the distant future there is no information about the location of Yt+h other than it will return to its
unconditional mean. This is not surprising since Yt is covariance stationary when |φ1|< 1.

Next consider forecasts from an MA(2),

Yt = φ0 +θ1εt−1 +θ2εt−2 + εt .

The one-step-ahead forecast is given by

Et [Yt+1] = Et [φ0 +θ1εt +θ2εt−1 + εt+1]

= φ0 +θ1Et [εt ]+θ2Et [εt−1]+Et [εt+1]

= φ0 +θ1εt +θ2εt−1 +0

which follows since εt and εt−1 are in the Ft information set and Et [εt+1] = 0 by assumption. In
practice the one step ahead forecast would be given by

Et [Yt+1] = φ̂0 + θ̂1ε̂t + θ̂2ε̂t−1

where both the unknown parameters and the unknown residuals would be replaced with their esti-
mates.12 The 2-step ahead forecast is given by

Et [Yt+2] = Et [φ0 +θ1εt+1 +θ2εt + εt+2]

= φ0 +θ1Et [εt+1]+θ2Et [εt ]+Et [εt+2]

= φ0 +θ10+θ2εt +0
= φ0 +θ2εt .

Longer-horizon forecasts are then φ0 since all future residuals have zero expectation, and so they do
not alter longer horizon forecasts. Like the AR(1) forecast, the MA(2) forecast is mean-reverting.
Recall the unconditional expectation of an MA(Q) process is φ0. For any h > Q the forecast of Yt+h
is just this value, φ0.

Finally, consider the 1 to 3-step ahead forecasts from an ARMA(2,2),

Yt = φ0 +φ1Yt−1 +φ2Yt−2 +θ1εt−1 +θ2εt−2 + εt .

Conditioning on the information set Ft , the expectation of Yt+1 is

Et [Yt+1] = Et [φ0 +φ1Yt +φ2Yt−1 +θ1εt +θ2εt−1 + εt+1]

= Et [φ0]+Et [φ1Yt ]+Et [φ2Yt−1]+Et [θ1εt ]+Et [θ2εt−1]+Et [εt+1].

Noting that all of the elements are in Ft except εt+1, which has conditional expectation 0,

12The residuals are a natural by-product of the parameter estimation stage.



4.9 Forecasting 265

Et [Yt+1] = φ0 +φ1Yt +φ2Yt−1 +θ1εt +θ2εt−1

Note that in practice, the parameters and errors will all be replaced by their estimates (i.e. φ̂1 and ε̂t).
The 2-step ahead forecast is given by

Et [Yt+2] = Et [φ0 +φ1Yt+1 +φ2Yt +θ1εt+1 +θ2εt + εt+2]

= Et [φ0]+Et [φ1Yt+1]+Et [φ2Yt ]+θ1Et [εt+1]+θ2εt +Et [εt+2]

= φ0 +φ1Et [Yt+1]+φ2Yt +θ1Et [εt+1]+θ2εt +Et [εt+2]

= φ0 +φ1 (φ0 +φ1Yt +φ2Yt−1 +θ1εt +θ2εt−1)+φ2Yt +θ10+θ2εt +0

= φ0 +φ1φ0 +φ
2
1Yt +φ1φ2Yt−1 +φ1θ1εt +φ1θ2εt−1 +φ2Yt +θ2εt

= φ0 +φ1φ0 +(φ 2
1 +φ2)Yt +φ1φ2Yt−1 +(φ1θ1 +θ2)εt +φ1θ2εt−1.

In this case, there are three terms which are not known at time t. By assumption Et [εt+2] =Et [εt+1] = 0
and Et [Yt+1] has been computed above, so

Et [Yt+2] = φ0 +φ1φ0 +(φ 2
1 +φ2)Yt +φ1φ2Yt−1 +(φ1θ1 +θ2)εt +φ1θ2εt−1

In a similar manner,

Et [Yt+3] = φ0 +φ1Et [Yt+2]+φ2Et [Yt+1]+θ1εt+2 +θ2εt+1 + εt+3

Et [Yt+3] = φ0 +φ1Et [Yt+2]+φ2Et [Yt+1]+0+0+0

which is easily solved by plugging in the previously computed values for Et [Yt+2] and Et [Yt+1]. This
pattern can be continued by iterating forward to produce the forecast for an arbitrary h.

Two things are worth noting from this discussion:

• If there is no AR component, all forecast for h > Q will be φ0.

• For large h, the optimal forecast converges to the unconditional expectation given by

lim
h→∞

Et [Yt+h] =
φ0

1−φ1−φ2− . . .−φP
(4.81)

4.9.1 Forecast Evaluation

Forecast evaluation is an extensive topic, and these notes only cover two essential tests: Mincer-
Zarnowitz regressions and Diebold-Mariano tests.

4.9.1.1 Mincer-Zarnowitz Regressions

Mincer-Zarnowitz regressions (henceforth MZ) are used to test for the optimality of the forecast and
are implemented with a standard regression. If a forecast is correct, it should be the case that a
regression of the realized value on its forecast and a constant should produce coefficients of 1 and 0
respectively.
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Definition 4.30 (Mincer-Zarnowitz Regression). A Mincer-Zarnowitz (MZ) regression is a regression
of a forecast, Ŷt+h|t on the realized value of the predicted variable, Yt+h and a constant,

Yt+h = β1 +β2Ŷt+h|t +ηt . (4.82)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with β1 = 0 and
β2 = 1.

For example, let Ŷt+h|t be the h-step ahead forecast of y constructed at time t. Then running the
regression

Yt+h = β1 +β2Ŷt+h|t +νt

should produce estimates close to 0 and 1. Testing is straightforward and can be done with any
standard test (Wald, LR or LM). An augmented MZ regression can be constructed by adding time-t
measurable variables to the original MZ regression.

Definition 4.31 (Augmented Mincer-Zarnowitz Regression). An Augmented Mincer-Zarnowitz re-
gression is a regression of a forecast, Ŷt+h|t on the realized value of the predicted variable, Yt+h, a
constant and any other time-t measurable variables, xt = [X1t X2t . . .XKt ],

Yt+h = β1 +β2Ŷt+h|t +β3X1t + . . .+βK+2XKt +ηt . (4.83)

If the forecast is optimal, the coefficients in the MZ regression should be consistent with β1 = β3 =
. . .= βK+2 = 0 and β2 = 1.

It is crucial that the additional variables are time-t measurable and are in Ft . Again, any standard
test statistic can be used to test the null H0 : β2 = 1∩β1 = β3 = . . .= βK+2 = 0 against the alternative
H1 : β2 6= 1∪β j 6= 0, j = 1,3,4, . . . ,K−1,K−2.

4.9.1.2 Diebold-Mariano Tests

A Diebold-Mariano test, in contrast to an MZ regression, examines the relative performance of two
forecasts. Under MSE, the loss function is given by L(Yt+h,Ŷt+h|t) = (Yt+h− Ŷt+h|t)

2. Let A and
B index the forecasts from two models Ŷ A

t+h|t and Ŷ B
t+h|t , respectively. The losses from each can be

defined as lA
t = (Yt+h− Ŷ A

t+h|t)
2 and lB

t = (Yt+h− Ŷ B
t+h|t)

2. If the models were equally good (or bad),
one would expect l̄A ≈ l̄B where l̄ is the average loss. If model A is better, meaning it has a lower
expected loss E[L(Yt+h,Ŷ A

t+h|t)]<E[L(Yt+h,Ŷ B
t+h|t)], then, on average, it should be the case that l̄A < l̄B.

Alternatively, if model B were better it should be the case that l̄B < l̄A. The DM test exploits this to
construct a simple t-test of equal predictive ability.

Definition 4.32 (Diebold-Mariano Test). Define dt = lA
t − lB

t . The Diebold-Mariano test is a test of
equal predictive accuracy and is constructed as

DM =
d̄√
V̂[d̄]
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where M (for modeling) is the number of observations used in the model building and estimation, R
(for reserve) is the number of observations held back for model evaluation and d̄ = R−1∑M+R

t=M+1 dt .
Under the null that E[L(Yt+h,Ŷ A

t+h|t)] = E[L(Yt+h,Ŷ B
t+h|t)], and under some regularity conditions on

{dt}, DM d→ N(0,1). V[dt ] is the long-run variance of dt and must be computed using a HAC covari-
ance estimator.

If the models are equally accurate, one would expect that E[dt ] = 0 which forms the null of the
DM test, H0 : E[dt ] = 0. To test the null, a standard t-stat is used although the test has two alternatives:
HA

1 : E[dt ] < 0 and HB
1 : E[dt ] > 0 which correspond to the superiority of model A or B, respectively.

DM is asymptotically normally distributed. Large negative values (less than -2) indicate model A
produces less loss on average and hence is superior, while large positive values indicate the opposite.
Values close to zero indicate neither is statistically superior.

In Diebold-Marino tests, the variance must be estimated using a Heteroskedasticity-Autocorrelation
Consistent variance estimator.

Definition 4.33 (Heteroskedasticity Autocorrelation Consistent Covariance Estimator). Covariance
estimators which are robust to both ignored autocorrelation in residuals and heteroskedasticity are
known as Heteroskedasticity-Autocorrelation Consistent (HAC) covariance. The most common ex-
ample of a HAC estimator is the Newey-West (or Bartlett) covariance estimator.

The typical variance estimator cannot be used in DM tests, and a kernel estimator must be substituted
(e.g., Newey-West).

Despite all of these complications, implementing a DM test is very easy. The first step is to
compute the series of losses, {lA

t } and {lB
t }, for both forecasts. Next compute dt = lA

t − lB
t . Finally,

regress dt on a constant and use Newey-West errors,

dt = β1 + εt .

The t-stat on β1 is the DM test statistic and can be compared to a critical value from a normal distri-
bution.

4.10 Nonstationary Time Series

Nonstationary time series present some particular difficulties, and standard inference often fails when
a process depends explicitly on t. Nonstationarities can be classified into one of four categories:

• Seasonalities

• Deterministic Trends (also known as Time Trends)

• Unit Roots (also known as Stochastic Trends)

• Structural Breaks

Each type has a unique feature. Seasonalities are technically a form of a deterministic trend, although
their analysis is sufficiently similar to stationary time series that little is lost in treating a seasonal
time series as if it were stationary. Processes with deterministic trends have unconditional means
which depend on time, while unit-root processes have unconditional variances that grow over time.
Structural breaks are an encompassing class that may result in either the mean and variance exhibiting
time dependence.



268 Analysis of a Single Time Series

4.10.1 Seasonality, Diurnality, and Hebdomadality

Seasonality, diurnality, and hebdomadality are pervasive in economic time series. While many data
series have been seasonally adjusted to remove seasonalities, particularly US macroeconomic series,
there are many time-series where no seasonally adjusted version is available. Ignoring seasonalities
is detrimental to the precision of parameter estimates and forecasting. Model specifications are often
simpler when both seasonal and nonseasonal dynamics are simultaneously modeled.

Definition 4.34 (Seasonality). Data are seasonal if they exhibit a non-constant deterministic pattern
with an annual frequency.

Definition 4.35 (Hebdomadality). Data which exhibit day-of-week deterministic effects are said to
be hebdomadal.

Definition 4.36 (Diurnality). Data which exhibit intra-daily deterministic effects are said to be diur-
nal.

Seasonal data are nonstationary, although seasonally detrended data (usually referred to as desea-
sonalized data) may be stationary. Seasonality is frequently encountered when modeling macroeco-
nomic time series. Diurnality is pervasive in ultra-high frequency data (tick data), and hebdomadality
is often believed to be a feature of asset returns.

4.10.2 Deterministic Seasonality

Seasonality may be deterministic, in which case it produces in a nonstationary time series, or cyclical,
in which case the time series may be stationary. Two approaches are commonly used to model sea-
sonality. The first uses a seasonal deterministic term to express the predictable change in the model.
The seasonal deterministic terms are usually modeled using seasonal dummies, although it is com-
mon to use Fourier series to model deterministic seasonality when the seasonal length is large (e.g.,
minutes in a day, hours in a week, or days in a year). A standard ARMA model can be augmented
with seasonal dummies to capture both seasonal and cyclical behavior. For example, in a monthly
time series,

Yt = φ0 +

11∑
i=1

γiI[t mod 12=i]+φ1Yt−1 +θ1εt−1 + εt ,

is a ARMA(1,1) with seasonal dummies. The intercept in month t is φ0 + γt mod 12 if t mod 12 is not
zero and just φ0 every twelfth month.

4.10.3 Seasonal Autoregressive Moving Average (SARMA) Models

Cyclical seasonality is modeled using a Seasonal ARMA (SARMA) which adds an additional compo-
nent that has lags that occur on the seasonal frequency. SARMA models are described using two sets
of indices, (P,Q) which describe the observation time model and (Ps,Qs,s) which describe the sea-
sonal time components and the length of the seasonality.13 Seasonal ARMA models are simplest to

13It is more common to describe Seasonal ARMA using the notation of Seasonal Integrated ARMA models, or
SARIMA. These models include 2 additional parameters the capture the differences used to transform a non-stationary
time series to be stationary. The full description is SARIMA(P,d,Q)× (Ps,ds,Qs,s) where d is the order of differencing
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describe using a lag polynomial, so that a SARMA(1,1)×(1,1,12), which is a Seasonal ARMA(1,1)
with an ARMA(1,1) seasonal component, can be expressed

(1−φ1L)
(
1−φsL12)Yt = φ0 +(1+θ1L)

(
1+θsL12)

εt .

The polynomial can be expanded to determine the specification of the model using standard ARMA
notation(
1−φ1L−φsL12 +φ1L13)Yt =φ0 +

(
1+θ1L+θsL12 +θ1θsL13)

εt

Yt =φ0 +φ1Yt−1 +φsYt−12−φ1φsYt−13 +θ1εt−1 +θsεt−12 +θ1θsεt−13 + εt .

The expanded model is an restricted ARMA(13,13). The restrictions com in two forms: many of
the coefficients are restricted to be 0, and the coefficients appearing on lags 13 are the product of the
coefficient on the other lags. The sign of the coefficient on the lag-13 AR term is also negated. As
long as the root of the characteristic polynomial associated with 1−φ1L−φsL12+φ1L13 are less than
1 in modulus, then the seasonal model will be stationary.

For example, consider a seasonal quarterly time series. Seasonal dynamics may occur at lags
4,8,12,16, . . ., while nonseasonal dynamics can occur at any lag 1,2,3,4, . . .. Note that multiples of
4 appear in both lists, and so the identification of the seasonal and nonseasonal dynamics may be dif-
ficult (although separate identification makes little practical difference). When working with seasonal
data, the standard practice is to conduct model selection over two sets of lags by choosing a maximum
lag to capture the seasonal dynamics and by choosing a maximum lag to capture nonseasonal ones.

4.10.3.1 Example: Seasonality

Most U.S. data series are available seasonally adjusted, which is not true for data from many areas
of the world, including the Eurozone. This example uses monthly data on U.S. housing starts, a time
series that tracks the construction of new homes.

Figure 4.10.3.1 contains a plot of housing starts, its growth rate (log differences), and the sample
autocorrelogram and sample partial autocorrelogram of the growth rate. These figures show evidence
of an annual seasonality (lags 12, 24, and 36), and applying the Box-Jenkins methodology, the sea-
sonality appears to be a seasonal AR, or possibly a seasonal ARMA. The short-run dynamics oscillate
and appear consistent with an AR since the autocorrelations are more persistent than the partial auto-
correlations. Four specifications were the process were fit to the data: a nonseasonal ARMA(1,1) and
three seasonal models. The AIC indicates that the seasonal component is required in the model.

4.10.4 Deterministic Trends

The simplest form of nonstationarity is a deterministic trend. Models with deterministic time trends
can be decomposed into three components:

Yt = deterministic+ cyclic+noise (4.84)

in observation time and ds is the order of differencing in seasonal time. The full specification is(
1−φ1L− . . .−φPLP)(1−φs,1L2− . . .−φs,Ps L

sPs
)

∆
d
∆

ds
s Yt =

(
1+θ1L+ . . .+θQLQ)(1+θs,1Ls + . . .+θs,QsL

sQs
)

εt .

The differencing terms are ∆d = (1−L)d and ∆ds
s (1−Ls)

ds . Normally only one of d or d2 is non-zero.
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Housing Starts, Growth, and the ACF and PACF of the Housing Start Growth Rate
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Figure 4.7: Plot of the the number of housing starts, its growth rate (log differences), and the sample
autocorrelogram and sample partial autocorrelogram of the growth rate of housing starts growth.
There is a clear seasonal pattern at 12 months which appears consistent with a seasonal ARMA.

SARMA Order φ0 φ1 φ12,1 φ12,2 θ1 AIC

(1,1)× (0,0,0) 1.03
(1.40)

0.13
(0.61)

0.07
(0.33)

6165.7

(1,0)× (1,0,12) 0.37
(0.83)

−0.29
(−9.30)

0.74
(38.60)

5729.3

(1,1)× (1,0,12) 0.30
(0.87)

−0.09
(−0.88)

0.75
(38.28)

−0.22
(−2.12)

5728.4

(1,1)× (2,0,12) 0.17
(0.62)

−0.02
(−0.18)

0.46
(16.33)

0.38
(12.87)

−0.31
(−3.32)

5620.1

Table 4.3: Estimated parameters, t-stats and AIC for three models with seasonalities. The AIC prefers
the largest specification.
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where {Yt} would be stationary if the trend were absent. The two most common forms of time trends
are polynomial (e.g., linear or quadratic) and exponential. Processes with polynomial-time trends can
be expressed

Yt = φ0 +δ1t +δ2t2 + . . .+δStS + cyclic+noise,

and linear time trend models are the most common,

Yt = φ0 +δ1t + cyclic+noise.

For example, consider a linear time trend model with an MA(1) stationary component,

Yt = φ0 +δ1t +θ1εt−1 + εt

The long-run behavior of this process is dominated by the time trend, although it may still exhibit
persistent fluctuations around δ1t.

Exponential trends appear as linear or polynomial trends in the log of the dependent variable; for
example,

lnYt = φ0 +δ1t + cyclic+noise.

The trend is the permanent component of a nonstationary time series, and so all observations are
permanently affected by the trend line irrespective of the number of observations between them. The
class of deterministic trend models can be reduced to a stationary process by detrending.

Definition 4.37 (Trend Stationary). A stochastic process, {Yt} is trend stationary if there exists a
nontrivial function g(t,δ ) such that {Yt−g(t,δ )} is stationary.

Detrended data may be strictly or covariance stationary (or both).

4.10.4.1 Modeling the time trend in GDP

U.S. GDP data was taken from FRED II from Q1 1947 until Q2 July 2008. To illustrate the use of a
time trend, consider two simple models for the level of GDP. The first models the level as a quadratic
function of time, while the second models the natural log of GDP in an exponential trend model.

GDPt = φ0 +δ1t +δ2t2 + εt

and
lnGDPt = φ0 +δ1t + εt .

Figure 4.8 presents the time series of GDP, the log of GDP, and errors from two models that
include trends. Neither time trend appears to remove the extreme persistence in GDP, and the process
likely contains a unit root.
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Time trend models of GDP
GDP ε̂ from GDPt = µ +δ1t +δ2t2 + εt

1950
1960

1970
1980

1990
2000

2010
2020

5000

10000

15000

20000

1950
1960

1970
1980

1990
2000

2010
2020

−2000

−1000

0

1000

lnGDP ε̂ from lnGDPt = µ +δ1t + εt

1950
1960

1970
1980

1990
2000

2010
2020

7.5

8.0

8.5

9.0

9.5

1950
1960

1970
1980

1990
2000

2010
2020

−0.2

−0.1

0.0

0.1

Figure 4.8: Two time trend models are presented, one on the levels of GDP and one on the natural
log. Note that the detrended residuals are still highly persistent. This is a likely sign of a unit root.

4.10.5 Unit Roots

Unit root processes are generalizations of the classic random walk. A process is said to have a unit
root if the distributed lag polynomial can be factored so that one of the roots is exactly one.

Definition 4.38 (Unit Root). A stochastic process, {Yt}, is said to contain a unit root if

(1−φ1L−φ2L2− . . .−φPLP)Yt = φ0 +(1−θ1L−θ2L2− . . .−θQLQ)εt (4.85)

can be factored

(1−L)(1− φ̃1L− φ̃2L2− . . .− φ̃P−1LP−1)Yt = φ0 +(1−θ1L−θ2L2− . . .−θQLQ)εt . (4.86)

The simplest example of a unit root process is a random walk.
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Definition 4.39 (Random Walk). A stochastic process {Yt} is known as a random walk if

Yt = Yt−1 + εt (4.87)

where εt is a white noise process with the additional property that Et−1[εt ] = 0.

The basic properties of a random walk are simple to derive. First, a random walk is a martingale
since Et [Yt+h] = Yt for any h.14 The variance of a random walk can be deduced from

V[Yt ] = E[(Yt−Y0)
2] (4.88)

= E[(εt +Yt−1−Y0)
2]

= E[(εt + εt−1 +Yt−2−Y0)
2]

= E[(εt + εt−1 + . . .+ ε1)
2]

= E[ε2
t + ε

2
t−1 + . . .+ ε

2
1 ]

= tσ2

and this relationship holds for any time index, and so V[Ys] = sσ2. The sth autocovariance (γs) of a
unit root process is given by

V[(Yt−Y0)(Yt−s−Y0)] = E[(εt + εt−1 + . . .+ ε1)(εt−s + εt−s−1 + . . .+ ε1)] (4.89)

= E[(ε2
t−s + ε

2
t−s−1 + . . .+ ε

2
1 ]

= (t− s)σ2

and the sth autocorrelation is then

ρs =
t− s

t
(4.90)

which tends to 1 for large t and fixed s. The autocorrelations of unit-root processes are virtually
constant at 1, with only a small decline at large lags. Building from the simple unit root, one can
define a unit root plus drift model,

Yt = δ +Yt−1 + εt

which can be equivalently expressed

Yt = δ t +
t∑

i=1

εi +Y0

and so the random walk plus drift process consists of both a deterministic trend and a random walk.
Alternatively, a random walk model can be augmented with stationary noise so that

Yt =
t∑

i=1

εi +ηt

14Since the effect of an innovation never declines in a unit root process, it is not reasonable to consider the infinite past
as in a stationary AR(1).
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which leads to the general class of random walk models plus stationary noise processes

Yt =
t∑

i=1

εi +
t−1∑
j=1

θ jηt− j +ηt

=
t∑

i=1

εi +Θ(L)ηt

where Θ(L)ηt =
∑t−1

j=1 θ jηt− j +ηt is a compact expression for a lag polynomial in θ . Since Θ(L)ηt
can include any covariance stationary process, this class should be considered general. More im-
portantly, this process has two components: a permanent one,

∑t
i=1 εi and a transitory one Θ(L)ηt .

The permanent behaves similarly to a deterministic time trend, although unlike the deterministic trend
model, the permanent component of this specification depends on random increments. For this reason,
it is known as a stochastic trend.

Like the deterministic model, where the process can be detrended, a process with a unit root can
be stochastically detrended, or differenced, ∆Yt = Yt −Yt−1. Differencing a random walk produces a
stationary series,

Yt−Yt−1 =
t∑

i=1

εi +Θ(L)ηt−
t−1∑
i=1

εi +Θ(L)ηt−1

∆Yt = εt +(1−L)Θ(L)ηt

Over-differencing occurs when the difference operator is applied to a stationary series. While
over-differencing cannot create a unit root, it does have negative consequences such as increasing
the residual variance and reducing the magnitude of possibly important dynamics. Finally, unit root
processes are often known as I(1) processes.

Definition 4.40 (Integrated Process of Order 1). A stochastic process {Yt} is integrated of order 1,
written I(1), if {Yt} is non-covariance-stationary and if {∆Yt} is covariance stationary. Note: A
process that is already covariance stationary is said to be I(0).

The expression integrated is derived from the presence of
∑t

i=1 εi in a unit root process where the
sum operator is the discrete version of an integrator.

4.10.6 Difference or Detrend?

Detrending removes nonstationarities from deterministically trending series while differencing re-
moves stochastic trends from unit-roots. What happens if the wrong type of detrending is used? The
unit root case is simple, and since the trend is stochastic, no amount of detrending can eliminate
the permanent component. Only knowledge of the stochastic trend at an earlier point in time can
transform the series to be stationary.

Differencing a trend-stationary series produces a series that is stationary but with a larger variance
than a correctly detrended series.
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Yt = δ t + εt

∆Yt = δ + εt− εt−1

while the properly detrended series would be

Yt−δ t = εt

If εt is a white noise process, the differenced series’s variance is twice that of the detrended series
with a large negative MA component. The parsimony principle dictates that the correctly detrended
series should be preferred even though differencing is a viable method of transforming a nonstationary
series to be stationary. Higher orders of time trends can be eliminated by re-differencing at the cost
of even higher variance.

4.10.7 Testing for Unit Roots: The Dickey-Fuller Test and the Augmented
DF Test

Dickey-Fuller tests (DF), and their generalization to augmented Dickey-Fuller tests (ADF) are the
standard test for unit roots. Consider the case of a simple random walk,

Yt = Yt−1 + εt

so that
∆Yt = εt .

Dickey and Fuller noted that if the null of a unit root were true, then

Yt = φ1Yt−1 + εt

can be transformed into
∆Yt = γYt−1 + εt

where γ = φ−1 and a test could be conducted for the null H0 : γ = 0 against an alternative H1 : γ < 0.
This test is equivalent to testing whether φ = 1 in the original model. γ̂ can be estimated using a
simple regression of ∆Yt on Yt−1, and the t-stat can be computed in the usual way. If the distribution
of γ̂ were standard normal (under the null), this would be a standard hypothesis test. Unfortunately,
it is non-standard since, under the null, Yt−1 is a unit root, and the variance increases rapidly as the
number of observations increases. The solution to this problem is to use the Dickey-Fuller distribution
rather than the standard normal to make inference on the t-stat of γ̂ .

Dickey and Fuller considered three separate specifications for their test,

∆Yt = γYt−1 + εt (4.91)
∆Yt = φ0 + γYt−1 + εt

∆Yt = φ0 +δ1t + γYt−1 + εt

which corresponds to a unit root, a unit root with a linear time trend, and a unit root with a quadratic
time trend. The null and alternative hypotheses are the same: H0 : γ = 0, H1 : γ < 0 (one-sided
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alternative), and the null that Yt contains a unit root will be rejected if γ̂ is sufficiently negative, which
is equivalent to φ̂ being significantly less than 1 in the original specification.

Unit root testing is further complicated since the inclusion of deterministic regressor(s) affects the
asymptotic distribution. For example, if T = 200, the critical values of a Dickey-Fuller distribution
are

No trend Constant Linear Quadratic

10% -1.62 -2.57 -3.14 -3.57
5% -1.94 -2.88 -3.43 -3.86
1% -2.58 -3.46 -4.00 -4.43

The Augmented Dickey-Fuller (ADF) test generalized the DF to allow for short-run dynamics
in the differenced dependent variable. The ADF is a DF regression augmented with lags of the
differenced dependent variable to capture short-term fluctuations around the stochastic trend,

∆Yt = γYt−1 +
P∑

p=1

φp∆Yt−p + εt (4.92)

∆Yt = φ0 + γYt−1 +
P∑

p=1

φp∆Yt−p + εt

∆Yt = φ0 +δ1t + γYt−1 +
P∑

p=1

φp∆Yt−p + εt

Neither the null and alternative hypotheses nor the critical values are changed by including lagged
dependent variables. The intuition behind this result stems from the observation that the ∆Yt−p are
“less integrated” than Yt and so are asymptotically less informative.

4.10.8 Higher Orders of Integration

In some situations, integrated variables are not just I(1) but have a higher-order of integration. For
example, the log consumer price index (lnCPI) is often found to be I(2) (integrated of order 2), and so
double differencing is required to transform the original data into a stationary series. Consequently,
both the level of lnCPI and its difference (inflation) contain unit-roots.

Definition 4.41 (Integrated Process of Order d). A stochastic process {Yt} is integrated of order d,
written I(d), if {(1−L)dYt} is a covariance stationary ARMA process.

Testing for higher orders of integration is simple: repeat the DF or ADF test on the differenced
data. Suppose that it is not possible to reject the null that the level of a variable, Yt , is integrated and so
the data should be differenced (∆Yt). If the test applied to the differenced data rejects a unit root, the
testing procedure is complete, and the series is consistent with an I(1) process. If the differenced data
contains evidence of a unit root, the data should be double differenced (∆2Yt) and the test repeated.
The null of a unit root should be rejected on the double-differenced data since no economic data are
thought to be I(3), and so if the null cannot be rejected on double-differenced data, careful checking
for omitted deterministic trends or other serious problems in the data is warranted.
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4.10.8.1 Power of Unit Root tests

Recall that the power of a test is the probability that the null is rejected when the null is false (1 minus
the probability Type II). In the case of a unit root, power is the test’s ability to reject the null that
the process contains a unit root when the largest characteristic root is less than 1. Many economic
time-series have roots close to 1, and so it is crucial to maximize the power of a unit root test so that
models apply the correct transformation to correct for the order of integration.

DF and ADF tests are known to be very sensitive to misspecification and, in particular, have little
power to reject a false null if the ADF specification is not flexible enough to account for factors other
than the stochastic trend. Omitted deterministic time trends or insufficient lags of the differenced
dependent variable lower the power by increasing the residual variance. The same lack of power
appears in any regression test when the residual variance is too large due to omitted variables.

A few recommendations can be made regarding unit root tests:

• Use a loose model selection criteria to choose the lag length of the included differenced depen-
dent variables (e.g., AIC).

• Including extraneous deterministic regressors lowers power, but failing to include relevant de-
terministic regressors produces a test with no power, even asymptotically, and so be conserva-
tive when excluding deterministic regressors.

• More powerful tests than the ADF are available. Specifically, DF-GLS of Elliott, Rothenberg,
and Stock (1996) is increasingly available, and it has maximum power against certain alterna-
tives.

• Trends tend to be obvious and so always plot both the data and the differenced data.

• Use a general-to-specific search to perform unit root testing. Start from a model which should
be too large. If the unit root is rejected, one can be confident that there is no unit root since
this is a low power test. If a unit root cannot be rejected, reduce the model by removing in-
significant deterministic components first since these lower power without affecting the t-stat.
If all regressors are significant, and the null still cannot be rejected, then conclude that the data
contains a unit root.

4.10.9 Example: Unit root testing

Two series will be examined for unit roots: the default spread and the log U.S. consumer price index.
The lnCPI, which measures consumer prices index less energy and food costs (also known as core
inflation), has been taken from FRED, consists of quarterly data, and covers the period between
August 1968 and August 2008. Figure 4.9 contains plots of both series and the first and second
differences of lnCPI.

lnCPI is trending, and the spread does not have an apparent time trend. However, deterministic
trends should be over-specified, and so the initial model for lnCPI will include both a constant and
a time-trend, and the model for the spread will include a constant. The lag length used in the model
was automatically selected using the BIC.

Results of the unit root tests are presented in table 4.4. Based on this output, the spreads reject a
unit root at the 5% level, but the lnCPI cannot. The next step is to difference the lnCPI to produce
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Unit Root Analysis of lnCPI and the Default Spread
lnCPI ∆12 lnCPI (Annualized Inflation)
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Figure 4.9: These four panels plot the log consumer price index (lnCPI), ∆ lnCPI, ∆2 lnCPI and the
default spread. Both ∆2 lnCPI and the default spread reject the null of a unit root.

∆ lnCPI. Rerunning the ADF test on the differenced CPI (inflation) and including either a constant or
no deterministic trend, the null of a unit root still cannot be rejected. Further differencing the data,
∆2 lnCPIt = δ lnCPIt − lnCPIt−1, strongly rejects, and so lnCPI appears to be I(2). The final row of
the table indicates the number of lags used in the ADF. This value is selected using the BIC with a
maximum of 12 lags for lnCPI or 36 lags for the spread (3 years).

4.10.10 Seasonal Differencing

When a time series has both a unit root and a seasonal pattern, it is common to use a seasonal dif-
ference rather than a first difference. In many cases, the model using seasonally differencing can
be simpler than the model built using the first difference. Define the operator ∆s to be the seasonal
difference defined as ∆sYt =Yt−Yt−s = (1−Ls)Yt . This difference is the year-over-year change, or if
Yt has been logged, the year-over-year growth rate.
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ln CPI ∆12 ln CPI ∆ Inf Default

t-stat -0.981 -1.323 1.691 -2.811 -1.498 -4.935 -3.395 -1.751
p-value 0.947 0.618 0.978 0.057 0.126 0.000 0.011 0.076
Deterministic Linear Const None Const None None Const None
Num. Lags 9 9 9 20 20 19 21 21

Table 4.4: ADF results for tests that lnCPI and the default spread have unit-roots. The null of a unit
root cannot be rejected in lnCPI, nor can the null that ∆ lnCPI contains a unit root, and so CPI appears
to be an I(2) process. The default spread rejects the null of a unit root, although it is highly persistent.

4.11 SARIMA Models

All of the key concepts presented for modeling time series, whether stationary or non-stationary, can
be compactly expressed as a Seasonal Autoregressive Integrated Moving Averages (SARIMA) model.
The SARIMA encompasses:

• P: Autoregressive dynamics in observation time through Φ(L) = 1−φ1L− . . .−φPLp

• Q: Moving average dynamics in observation time through Θ(L) =
(
1−θ1L− . . .−θQLQ)

• d: Differencing in observation time ∆d

• Ps: Autoregressive dynamics in observation time through Φ(L) = 1−φs,1Ls− . . .−φs,PsLPs

• Qs: Moving average dynamics in observation time through Θ(L)=
(
1−θs,1Ls− . . .−θs,QsL

sQs
)

• ds: Differencing in observation time ∆ds
s

• s: The seasonal period

• Polynomial deterministic terms δ (t) = δ0 +δ1t + . . .+δmtm

• Seasonal deterministic dummies15 γ (t) =
∑s−1

i=1 γiI[t mod s=i]

These parameters, excluding the deterministic regressors, are commonly collected into a single ex-
pression: SARIMA(P,d,Q)× (Ps,ds,Qss). The full model is then

Φ(L)Φs (L)∆
d
∆

ds
s Yt = δ (t)+ γ (t)+Θ(L)Θs (L)εt .

While this specification looks very complex, the both products Φ(L)Φs (L)∆d∆ds
s and Θ(L)Θs (L)

are lag polynomials so that the model is just a (parameterized and restricted) ARMA that may also
contain trends and deterministic seasonal components. Forecasting SARIMA models is no different

15These can be alternatively replaced with a season Fourier series of order k, ψk (t) =
∑k

i=1 ψs,i sin(2kπτ) +
ψc,i cos(2kπτ) where τ = t− sb(t−1)/sc cycles over the sequence 1,2, . . . ,s. Including a Fourier series of order intro-
duces 2k parameters, and in many applications 2k < s−1 components are sufficient to model the deterministic seasonal
variation.
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SARIMA Order φ0 φ1 φ12,1 θ1 AIC

(1,1,1)× (1,0,0,12) 0.00
(0.03)

0.19
(0.64)

0.64
(16.38)

0.00
(0.01)

-955.0

(1,0,1)× (1,1,0,12) 0.00
(0.06)

0.94
(72.95)

0.07
(1.85)

−0.39
(−12.19)

-1018.6

Table 4.5: Estimated parameters, t-stats and AIC for three models with seasonalities. The AIC prefers
the seasonal difference.

from forecasting an ARMA model once the polynomials have been expanded. For example, the
SARIMA(1,0,1)× (1,1,0,4) with a time-trend can be equivalently written as

(1−φ1L)
(
1−φ4,1L4)

∆4Yt = δ0 +δ1t +(1+θL)εt

(1−φ1L)
(
1−φ4,1L4)(1−L4)Yt = δ0 +δ1t +(1+θL)εt(

1−φ1L−φ4,1L4 +φ1φ4,1L5
)(

1−L4)Yt = δ0 +δ1t +(1+θL)εt(
1−φ1L− (1+φ4,1)L4 +(φ1φ4,1 +φ1)L5 +φ4,1L8−φ1φ4,1L9

)
Yt = δ0 +δ1t +(1+θL)εt .

When written as a standard ARMA without using the lag operator, we have

Yt = δ0 +δ1t +φ1Yt−1 +(1+φ4,1)Yt−4− (φ1φ4,1 +φ1)Yt−5−φ4,1Yt−8 +φ1φ4,1Yt−9 +θεt−1 + εt .

The model is a restricted ARMA(9,1) where many coefficients are either have cross-lag restrictions
imposed or are restricted to be zero. Once the coefficient are known (or have been estimated), fore-
casts are computed using

Et [Yt+h] =δ̂0 + δ̂1 (t +h)+ φ̂1Et [Yt+h−1]+
ˆ̃
φ4Et [Yt+h−4]− ˆ̃

φ5Et [Yt+h−5]

− ˆ̃
φ8Et [Yt+h−8]+

ˆ̃
φ9Et [Yt+h−9]+ θ̂Et [εt+h−1]

where the estimated coefficient have been replaced for simplicity of exposition, so that, e.g., ˆ̃
φ4 =

1+ φ̂4,1.
Table 4.5 revisits the housing growth data using SARMA models. The two models are identical

except that one uses the first difference, and the other uses the seasonal difference. These parame-
ters very different and indicate very different dynamics. The AIC selects the model containing the
seasonal difference.

4.12 Filters

Most time-series modeling’s ultimate goal is to forecast a time-series in its entirety, which requires a
model for both permanent and transitory components. In some situations, it may be desirable to focus
on either the short-run dynamics or the long-run dynamics exclusively, for example, in technical
analysis where prices are believed to be long-run unpredictable but may have some short- or medium-
run predictability. Linear filters are a class of functions that can be used to “extract” a stationary cyclic
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component from a time-series that contains both short-run dynamics and a permanent component.
Generically, a filter for a time series {Yt} is defined as

Xt =
∞∑

i=−∞
wiYt−i (4.93)

where Xt is the filtered time-series or filter output. In most applications, it is desirable to assign a label
to Xt , either a trend, written τt , or a cyclic component, Ct .

Filters are further categorized into causal and non-causal. Causal filters are restricted to depend
on only the past and present of Yt , and so as a class are defined through

Xt =
∞∑

i=0

wiYt−i. (4.94)

Causal filters are more useful in isolating trends from cyclical behavior for forecasting purposes, while
non-causal filters are more useful for historical analysis of macroeconomic and financial data.

4.12.1 Frequency, High- and Low-Pass Filters

This text has exclusively dealt with time series in the time domain – that is, understanding dynamics
and building models based on the time distance between points. An alternative strategy for describing
a time series is in terms of frequencies and the magnitude of the cycle at a given frequency. For
example, suppose a time series has a cycle that repeats every four periods. This series could be
equivalently described as having a cycle with a frequency of 1 in 4, or .25. A frequency description is
relatively compact – it is only necessary to describe a process from frequencies of 0 to 0.5, the latter
of which would be a cycle with a period of 2.16

The idea behind filtering is to choose a set of frequencies and then to isolate the cycles which occur
within the selected frequency range. Filters that eliminate high-frequency cycles are known as low-
pass filters, while filters that eliminate low-frequency cycles are known as high-pass filters. Moreover,
high- and low-pass filters are related in such a way that if {wi} is a set of weights corresponding
to a high-pass filter, v0 = 1−w0, vi = −wi i 6= 0 is a set of weights corresponding to a low-pass
filter. This relationship forms an identity since {vi +wi} must correspond to an all-pass filter since∑∞

i=−∞(vi +wi)Yt−1 = Yt for any set of weights.
The goal of a filter is to select a particular frequency range and nothing else. The gain function

describes the amount of attenuations which occurs at a given frequency.17 A gain of 1 at a particular
frequency means any signal at that frequency is passed through unmodified while a gain of 0 means
that the signal at that frequency is eliminated from the filtered data. Figure 4.10 contains a graphical
representation of the gain function for a set of ideal filters. The four panels show an all-pass (all

16The frequency 1
2 is known as the Nyquist frequency since it is not possible to measure any cyclic behavior at frequen-

cies above 1
2 since these would have a cycle of 1 period and so would appear constant.

17The gain function for any filter of the form Xt =
∑∞

i=−∞wiYt−i can be computed as

G( f ) =

∣∣∣∣∣
∞∑

k=−∞

w j exp(−ik2π f )

∣∣∣∣∣
where i =

√
−1.
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Ideal Filters
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Figure 4.10: These four panels depict the gain functions from a set of ideal filters. The all-pass filter
allows all frequencies through. The low-pass filter cuts off at 1

10 . The high-pass cuts off below 1
6 and

the band-pass filter cuts off below 1
32 and above 1

6 .

frequencies unmodified), a low-pass filter with a cutoff frequency of 1
10 , a high-pass with a cutoff

frequency of 1
6 , and a band-pass filter with cutoff frequencies of 1

6 and 1
32 .18 In practice, only the

all-pass filter (which corresponds to a filter with weights w0 = 1, wi = 0 for i 6= 0) can be constructed
using a finite sum, and so applied filtering must make trade-offs.

18Band-pass filters are simply the combination of two low-pass filters. Specifically, if {wi} is set of weights from a
low-pass filter with a cutoff frequency of f1 and {vi} is a set of weights from a low-pass filter with a cutoff frequency of
f2, f2 > f1, then {vi−wi} is a set of weights which corresponds to a band-pass filter with cutoffs at f1 and f2.
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4.12.2 Moving Average and Exponentially Weighted Moving Average (EWMA)

Moving averages are the simplest filters and are often used in technical analysis. Moving averages
can be constructed as both causal and non-causal filters.

Definition 4.42 (Causal Moving Average). A causal moving average (MA) is a function which takes
the form

τt =
1
n

n∑
i=1

Yt−i+1.

Definition 4.43 (Centered (Non-Causal) Moving Average). A centered moving average (MA) is a
function which takes the form

τt =
1

2n+1

n∑
i=−n

Yt−i+1.

Note that the centered MA is an average over 2n+1 data points.
Moving averages are low-pass filters since their weights add up to 1. In other words, the moving

average would contain the permanent component of {Yt} and so would have the same order of inte-
gration. The cyclic component, Ct = Yt − τt , would have a lower order of integration that Yt . Since
moving averages are low-pass filters, the difference of two moving averages must be a band-pass fil-
ter. Figure 4.11 contains the gain function from the difference between a 20-day and 50-day moving
average, which is commonly used in technical analysis.

Exponentially Weighted Moving Averages (EWMA) are a close cousin of the MA which places
greater weight on recent data than on past data.

Definition 4.44 (Exponentially Weighted Moving Average). A exponentially weighed moving aver-
age (EWMA) is a function which takes the form

τt = (1−λ )
∞∑

i=0

λ
iYt−i

for some λ ∈ (0,1).

The name EWMA is derived from the exponential decay in the weights, and EWMAs can be equiva-
lently expressed (up to an initial condition) as

τt = (1−λ )λYt +λτt−1.

Like MAs, EWMAs are low-pass filters since the sum of the weights is 1.
EWMAs are commonly used in financial applications as volatility filters, where the dependent

variable is chosen to be the squared return. The difference between two EWMAs is often referred
to as a Moving Average Convergence Divergence (MACD) filter in technical analysis. Two numbers
index MACDs, a fast period and a slow period, where the number of data in the MACD can be
converted to λ as λ = (n−1)/(n+1), and so a MACD(12,26) is the difference between two EWMAs
with parameters .842 and .926. 4.11 contains the gain function from a MACD(12,26) (the difference
between two EWMAs), which is similar to, albeit smoother than, the gain function from the difference
of a 20-day and a 50-day MAs.
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4.12.3 Hodrick-Prescott Filter

The Hodrick and Prescott (1997) (HP) filter is constructed by balancing the fitting the trend to the
data and the trend’s smoothness. The HP filter is defined as the solution to

min
τt

T∑
t=1

(Yt− τt)
2 +λ

T−1∑
t=2

((τt−1− τt)− (τt + τt−1))

where (τt−1− τt)− (τt + τt−1) can be equivalently expressed as the second-difference of τt , ∆2τt . λ

is a smoothness parameter: if λ = 0 then the solution to the problem is τt =Yt ∀t, and as λ →∞, the
“cost” of variation in {τt} becomes arbitrarily high and τt = β0 +β1t where β0 and β1 are the least
squares fit of a linear trend model to the data.

It is simple to show that the solution to this problem must have

y = Γτ

where Γ is a band-diagonal matrix (all omitted elements are 0) of the form

Γ =



1+λ −2λ λ

−2λ 1+5λ −4λ λ

λ −4λ 1+6λ −4λ λ

λ −4λ 1+6λ −4λ λ

. . . . . . . . . . . . . . .
λ −4λ 1+6λ −4λ λ

λ −4λ 1+6λ −4λ λ

λ −4λ 1+5λ −2λ

λ −2λ 1+λ


and The solution to this set of T equations in T unknowns is

τ = Γ
−1y.

The cyclic component is defined as Ct = Yt− τt .
Hodrick and Prescott (1997) recommend values of 100 for annual data, 1600 for quarterly data,

and 14400 for monthly data. The HP filter is non-causal and so is not appropriate for prediction. The
gain function of the cyclic component of the HP filter with λ = 1600 is illustrated in figure 4.11.
While the filter attempts to eliminate components with a frequency below ten years of quarterly data
( 1

40 ), there is some gain until about 1
50 and the gain is not unity until approximately 1

25 .

4.12.4 Baxter-King Filter

Baxter and King (1999) consider the problem of designing a filter to be close to the ideal filter subject
to using a finite number of points.19 They further argue that extracting the cyclic component requires
the use of both a high-pass and a low-pass filter – the high-pass filter is to cutoff the most persistent
components while the low-pass filter is used to eliminate high-frequency noise. The BK filter is

19Ideal filters, except for the trivial all-pass, require an infinite number of points to implement, and so are infeasible.
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defined by a triple, two-period lengths (inverse frequencies) and the number of points used to construct
the filter (k), and is written as BKk(p,q) where p < q are the period lengths.

Baxter and King suggest using a band-pass filter with cutoffs at 1
32 and 1

6 for quarterly data. The
final choice for their approximate ideal filter is the number of nodes, for which they suggest 12. The
number of points has two effects. First, the BK filter cannot be used in the first and last k points.
Second, a higher number of nodes will produce a more accurate approximation to the ideal filter.

Implementing the BK filter is simple. Baxter and King show that the optimal weights for a low-
pass filter at a particular frequency f satisfy

w̃0 = 2 f (4.95)

w̃i =
sin(2iπ f )

iπ
, i = 1,2, . . . ,k (4.96)

θ = [2k+1]−1

(
1−

k∑
i=−k

w̃i

)
(4.97)

wi = w̃i +θ , i = 0,1, . . . ,k (4.98)
wi = w−i. (4.99)

The BK filter is constructed as the difference between two low-pass filters, and so

τt =
k∑

i=−k

wiYt−i (4.100)

Ct =
k∑

i=−k

(vi−wi)Yt−i (4.101)

where {wi} and {vi} are both weights from low-pass filters where the period used to construct {wi}
is longer than the period used to construct {vi}. The gain function of the BK12(6,32) is illustrated in
the upper right panel of figure 4.11. The approximation is reasonable, with near unit gain between 1

32
and 1

6 and little gain outside.

4.12.5 First Difference

Another very simple filter to separate a “trend” from a ”cyclic” component is the first difference. Note
that if Yt is an I(1) series, then the first difference which contains the “cyclic” component, Ct =

1
2∆Yt ,

is an I(0) series and so the first difference is a causal filter. The “trend” is measured using an MA(2),
τt =

1
2 (Yt +Yt−1) so that Yt = Ct + τt . The FD filter is not sharp – it allows for most frequencies to

enter the cyclic component – and so is not recommended in practice.

4.12.6 Beveridge-Nelson Decomposition

The Beveridge and Nelson (1981) decomposition extends the first-order difference decomposition to
include any predictable component in the future trend as part of the current trend. The idea behind the
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Actual Filters
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Figure 4.11: These six panels contain the standard HP filter, the BK12(6,32) filter, the first difference
filter, an EWMA with λ = .94, a MACD(12,26) and the difference between a 20-day and a 50-day
moving average. The gain functions in the right hand column have been normalized so that the
maximum weight is 1. The is equivalent to scaling all of the filter weights by a constant, and so is
simple a change in variance of the filter output.

BN decomposition is simple: if the predictable part of the long-run component places the long-run
component above its current value, then the cyclic component should be negative. Similarly, if the
predictable part of the long-run component expects that the long-run component should trend lower,
then the cyclic component should be positive. Formally the BN decomposition is defined as

τt = lim
h→∞

Ŷt+h|t−hµ (4.102)

Ct = Yt− τt

where µ is the drift in the trend, if any. The trend can be equivalently expressed as the current level
of Yt plus the expected increments minus the drift,

τt = Yt + lim
h→∞

h∑
i=1

E
[
∆Ŷt+i|t−µ

]
(4.103)
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where µ is the unconditional expectation of the increments to Yt , E[∆Ŷt+ j|t ]. The trend component
contains the persistent component, and so the filter applied must be a low-pass filter, while the cyclic
component is stationary and so must be the output of a high-pass filter. The gain of the filter ap-
plied when using the BN decomposition depends crucially on the forecasting model for the short-run
component.

Suppose {Yt} is an I(1) series which has both a permanent and transitive component. Since {Yt}
is I(1), ∆Yt must be I(0) and so can be described by a stationary ARMA(P,Q) process. For simplicity,
suppose that ∆Yt follows an MA(3) so that

∆Yt = φ0 +θ1εt−1 +θ1εt−2 +θ3εt−3 + εt

In this model, µ = φ0, and the h-step ahead forecast is given by

∆Ŷt+1|t = µ +θ1εt +θ2εt−1 +θ3εt−2

∆Ŷt+2|t = µ +θ2εt +θ3εt−1

∆Ŷt+3|t = µ +θ3εt

∆Ŷt+h|t = µ h≥ 4,

and so
τt = Yt +(θ1 +θ2 +θ3)εt +(θ2 +θ3)εt−1 +θ3εt−2

and

Ct =−(θ1 +θ2 +θ3)εt− (θ2 +θ3)εt−1−θ3εt−2.

Alternatively, suppose that ∆Yt follows an AR(1) so that

∆Yt = φ0 +φ1∆Yt−1 + εt .

This model can be equivalently defined in terms of deviations around the long-run mean, ∆ỹt = ∆Yt−
φ0/(1−φ1), as

∆Yt = φ0 +φ1∆Yt−1 + εt

∆Yt = φ0
1−φ1

1−φ1
+φ1∆Yt−1 + εt

∆Yt =
φ0

1−φ1
−φ1

φ0

1−φ1
+φ1∆Yt−1 + εt

∆Yt−
φ0

1−φ1
= φ1

(
∆Yt−1−

φ0

1−φ1

)
+ εt

∆ỹt = φ1∆ỹt−1 + εt .

In this transformed model, µ = 0 which simplifies finding the expression for the trend. The h-step
ahead forecast if ∆ỹt is given by

∆ ˆ̃yt+h|t = φ
h
1 ∆ỹt
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and so

τt = Yt + lim
h→∞

h∑
i=1

∆ ˆ̃yt+i|t

= Yt + lim
h→∞

h∑
i=1

φ
i
1∆ỹt

= Yt + lim
h→∞

∆ỹt

h∑
i=1

φ
i
1

= Yt + lim
h→∞

∆ỹt
φ1

1−φ1

which follows since limh→∞
∑h

i=1 φ i
1 = −1+ limh→∞

∑h
i=0 φ i

1 = 1/(1− φ1)− 1. The main criti-
cism of the Beveridge-Nelson decomposition is that the trend and the cyclic component are perfectly
(negatively) correlation.

4.12.7 Extracting the cyclic components from Real US GDP

The cyclic component was extracted from log real US GDP data taken from the Federal Reserve Eco-
nomics Database using alternative filters. Data were available from 1947 Q1 to Q2 2020. Figure 4.12
contains the cyclical component extracted using four methods. The top panel contains the standard
HP filter with λ = 1600. The middle panel contains BK12(6,32) (solid) and BK12(1,32) (dashed)
filters, the latter of which is a high pass-filter since the faster frequency is 1. Note that the first and
last 12 points of the cyclic component are set to 0. The bottom panel contains the cyclic component
extracted using a Beveridge-Nelson decomposition based on an AR(1) estimated on GDP growth
data. For the BN decomposition, the first 2 points are zero, reflecting the loss of data due to the first
difference and fitting the AR(1) to the first difference.20

The HP filter and the BK12(1,32) are remarkably similar with a correlation of over 99%. The
correlation between the BK12(6,32) and the HP filter is 96%. The key difference between the two is
in the lack of a high-frequency component in the HP filter. The cyclic component from the BN de-
composition has a small negative correlation with the other three filters, although choosing a different
model for GDP growth would change the decomposition.

4.13 Nonlinear Models for Time-Series Analysis

While this chapter has exclusively focused on linear time-series processes, many non-linear time-
series processes have been found to provide parsimonious descriptions of the dynamics in financial
data. Two which have proven particularly useful in the analysis of financial data are Markov Switch-
ing Autoregressions (MSAR) and Threshold Autoregressions (TAR), especially the subclass of Self-
Exciting Threshold Autoregressions (SETAR).21

20The AR(1) was chosen from a model selection search of AR models with an order up to 8 using the SBIC.
21There are many nonlinear models frequently used in financial econometrics for modeling quantities other than the

conditional mean. For example, both the ARCH (conditional volatility) and CaViaR (conditional Value-at-Risk) models
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Cyclical Component of U.S. Real GDP
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Figure 4.12: The top panel contains the filtered cyclic component from a HP filter with λ = 1600. The
middle panel contains the cyclic component from BK12(6,32) (solid) and BK12(1,32) (dashed) filters.
The bottom panel contains the cyclic component from a Beveridge-Nelson decomposition based on
an AR(1) model for GDP growth rates.

4.13.1 Markov Switching Autoregression

Markov switching autoregression, introduced into econometrics in Hamilton (1989), uses a composite
model which evolves according to both an autoregression and a latent state which determines the
value of the autoregressive parameters. In financial applications using low-frequency asset returns,
an MSAR that allows the mean and the variance to be state-dependent has been found to outperform
linear models (Perez-Quiros and Timmermann, 2000).

Definition 4.45 (Markov Switching Autoregression). A k-state Markov switching autoregression
(MSAR) is a stochastic process which has dynamics that evolve through both a Markovian state
process and an autoregression where the autoregressive parameters are state dependent. The states,

are nonlinear in the original data.
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labeled 1,2, . . . ,k, are denoted st and follow a k-state latent Markov Chain with transition matrix P,

P =


p11 p12 . . . p1k
p21 p22 . . . p2k
...

...
...

...
pk1 pk2 . . . pkk

 (4.104)

where pi j = Pr(st+1 = i|st = j). Note that the columns must sum to 1 since
∑k

i=1 Pr(st+1 = i|st =
j) = 1. Data are generated according to a Pth order autoregression,

Yt = φ
(st)
0 +φ

(st)
1 Yt−1 + . . .+φ

(st)
P Yt−p +σ

(st)εt (4.105)

where φ
(st) = [φ

(st)
0 φ

(st)
1 . . . φ

(st)
P ]′ are state-dependent autoregressive parameters, σ (st) is the state-

dependent standard deviation and εt
i.i.d.∼ N(0,1).22 The unconditional state probabilities (Pr(st = i)),

known as the ergodic probabilities, are denoted π = [π1 π2 . . . πk]
′ and are the solution to

π = Pπ. (4.106)

The ergodic probabilities can also be computed as the normalized eigenvector of P corresponding to
the only unit eigenvalue.

Rather than attempting to derive properties of an MSAR, consider a simple specification with two
states, no autoregressive terms, and where only the mean of the process varies23

Yt =

{
φ H + εt
φ L + εt

(4.107)

where the two states are indexed by H (high) and L (low). The transition matrix is

P =

[
pHH pHL
pLH pLL

]
=

[
pHH 1− pLL

1− pHH pLL

]
(4.108)

and the unconditional probabilities of being in the high and low state, πH and πL, respectively, are

πH =
1− pLL

2− pHH− pLL
(4.109)

πL =
1− pHH

2− pHH− pLL
. (4.110)

This simple model is useful for understanding the data generation in a Markov Switching process:

1. At t = 0 an initial state, s0, is chosen according to the ergodic (unconditional) probabilities.
With probability πH , s0 = H and with probability πL = 1−πH , s0 = L.

22The assumption that εt
i.i.d.∼ N(0,1) can be easily relaxed to include other i.i.d.processes for the innovations.

23See Hamilton (1994, chapter 22) or Krolzig (1997) for further information on implementing MSAR models.
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2. The state probabilities evolve independently from the observed data according to a Markov
Chain. If s0 = H, s1 = H with probability pHH , the probability st+1 = H given st = H and
s1 = L with probability pLH = 1− pHH . If s0 = L, s1 = H with probability pHL = 1− pLL and
s1 = L with probability pLL.

3. Once the state at t = 1 is known, the value of Y1 is chosen according to

Y1 =

{
φ H + ε1 if s1 = H
φ L + εt if s1 = L

.

4. Steps 2 and 3 are repeated for t = 2,3, . . . ,T , to produce a time series of Markov Switching
data.

4.13.1.1 Markov Switching Examples

Using the 2-state Markov Switching Autoregression described above, four systems were simulated
for 100 observations.

• Pure mixture

– µH = 4, µL =−2, V[εt ] = 1 in both states

– pHH = .5 = pLL

– πH = πL = .5

– Remark: This is a “pure” mixture model where the probability of each state does not
depend on the past. This occurs because the probability of going from high to high is the
same as the probability of going from low to high, 0.5.

• Two persistent States

– µH = 4, µL =−2, V[εt ] = 1 in both states

– pHH = .9 = pLL so the average duration of each state is 10 periods.

– πH = πL = .5

– Remark: Unlike the first parameterization this is not a simple mixture. Conditional on the
current state being H, there is a 90% chance that the next state will remain H.

• One persistent state, on transitory state

– µH = 4, µL =−2, V[εt ] = 1 if st = H and V[εt ] = 2 if st = L

– pHH = .9, pLL = .5

– πH = .83, πL = .16

– Remark: This type of model is consistent with quarterly data on U.S. GDP where booms
(H) typically last 10 quarters while recessions die quickly, typically in 2 quarters.

• Mixture with different variances

– µH = 4, µL =−2, V[εt ] = 1 if st = H and V[εt ] = 16 if st = L
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– pHH = .5 = pLL

– πH = πL = .5

– Remark: This is another “pure” mixture model, but the variances differ between the states.
One nice feature of mixture models (MSAR is a member of the family of mixture mod-
els) is that the unconditional distribution of the data may be non-normal even though the
shocks are conditionally normally distributed.24

Figure 4.13 contains plots of 100 data points generated from each of these processes. The first
(MSAR(1)) produces a mixture with modes at -2 and 4 each with equal probability, and the states
(top panel, bottom right) are i.i.d. . The second process produced a similar unconditional distribution,
but the state evolution is very different. Each state is very persistent and, conditional on the current
state being high or low, the next state is likely to remain the same. The third process had one very
persistent state and one with much less persistence. These dynamics produced a large skew in the
unconditional distribution since the state where µ =−2 was visited less frequently than the state with
µ = 4. The final process (MSAR(4)) has state dynamics similar to the first but produces a very dif-
ferent unconditional distribution. The difference occurs since the variance depends on the state of the
Markov process.

4.13.2 Threshold Autoregression and Self-Exciting Threshold Autoregres-
sion

A second class of nonlinear models that have gained considerable traction in financial applications
are Threshold Autoregressions (TAR), and in particular, the subfamily of Self-Exciting Threshold
Autoregressions (SETAR).25

Definition 4.46 (Threshold Autoregression). A threshold autoregression is a Pth Order autoregres-
sive process with state-dependent parameters where the state is determined by the lagged level of an
exogenous variable Xt−k for some k ≥ 1.

Yt = φ
(st)
0 +φ

(st)
1 Yt−1 + . . .+φ

(st)
P Yt−p +σ

(st)εt (4.111)

Let −∞= X0 < X1 < X2 < .. . < XN < XN+1 =∞ be a partition of x in to N +1 distinct bins. st = j
if Xt−k ∈ (x j,x j+1).

Self-exciting threshold autoregressions, introduced in Tong (1978), are similarly defined. The
only change is in the definition of the threshold variable; rather than relying on an exogenous variable
to determine the state, the state in SETARs is determined by lagged values of the dependent variable.

Definition 4.47 (Self Exciting Threshold Autoregression). A self exciting threshold autoregression is
a Pth Order autoregressive process with state-dependent parameters where the state is determined by
the lagged level of the dependent variable, Yt−k for some k ≥ 1.

Yt = φ
(st)
0 +φ

(st)
1 Yt−1 + . . .+φ

(st)
P Yt−p +σ

(st)εt (4.112)

24Mixtures of finitely many normals, each with different means and variances, can be used approximate many non-
normal distributions.

25See Fan and Yao (2005) for a comprehensive treatment of non-linear time-series models.
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Markov Switching Processes
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Figure 4.13: The four panels of this figure contain simulated data generated by the 4 Markov switching
processes described in the text. In each panel, the large subpanel contains the generated data, the top
right subpanel contains a kernel density estimate of the unconditional density and the bottom right
subpanel contains the time series of the state values (high points correspond to the high state).

Let −∞= Y0 < Y1 < Y2 < .. . < YN < YN+1 =∞ be a partition of y in to N +1 distinct bins. st = j is
Yt−k ∈ (Yj,Yj+1).

The primary application of SETAR models in finance has been to exchange rates which often
exhibit a behavior that is difficult to model with standard ARMA models: many FX rates exhibit
random-walk-like behavior in a range yet remain within the band longer than would be consistent
with a simple random walk. A symmetric SETAR is a parsimonious model that can describe this
behavior and is parameterized
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Yt = Yt−1 + εt if C−δ < Yt <C+δ (4.113)
Yt =C(1−φ)+φYt−1 + εt if Yt <C−δ or Yt >C+δ

where C is the “target” exchange rate. The first equation is a standard random walk, and when Yt is
within the target band, it behaves like a random walk. The second equation is only relevant when Yt
is outside of its target band and ensures that Yt is mean-reverting towards C as long as |φ | < 1.26 φ

is usually assumed to lie between 0 and 1 which produces a smooth mean reversion back towards the
band.

To illustrate this process’s behavior and highlight the differences between it and a random walk,
200 data points were generated with different values of φ using standard normal innovations. The
mean was set to 100 and the used δ = 5, and so Yt follows a random walk when between 95 and
105. The lag value of the threshold variable (k) was set to one. Four values for φ were used: 0, 0.5,
0.9 and 1. The extreme cases represent a process which is immediately mean-reverting (φ = 0), in
which case as soon as Yt leaves the target band it is immediately returned to C, and a process that
is a pure random walk (φ = 1) since Yt = Yt−1 + εt for any value of Yt−1. The two interior cases
represent smooth reversion back to the band; when φ = .5, the reversion is quick, and when φ = .9,
the reversion is slow. When φ is close to 1, it is challenging to differentiate a band SETAR from a
pure random walk, which is one of the explanations for the poor performance of unit root tests where
tests often fail to reject a unit root despite clear economic theory predicting that a time series should
be mean reverting.

4.A Computing Autocovariance and Autocorrelations

This appendix covers the derivation of the ACF for the MA(1), MA(Q), AR(1), AR(2), AR(3), and
ARMA(1,1). Throughout this appendix, {εt} is assumed to be a white noise process, and the processes
parameters are always assumed to be consistent with covariance stationarity. All models are assumed
to be mean 0, an assumption made without loss of generality since autocovariances are defined using
demeaned time series,

γs = E[(Yt−µ)(Yt−s−µ)]

where µ = E[Yt ]. Recall that the autocorrelation is simply the of the sth autocovariance to the variance,

ρs =
γs

γ0
.

This appendix presents two methods for deriving the autocorrelations of ARMA processes: backward
substitution and the Yule-Walker equations, a set of k equations with k unknowns where γ0,γ1, . . . ,γk−1
are the solution.

4.A.1 Yule-Walker

The Yule-Walker equations are a linear system of max(P,Q)+1 equations (in an ARMA(P, Q)) where
the solution to the system is the long-run variance and the first k−1 autocovariances. The Yule-Walker

26Recall the mean of an AR(1) Yt = φ0 +φ1Yt−1 + εt is φ0/(1−φ1) where φ0 =C(1−φ) and φ1 = φ in this SETAR.
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Self Exciting Threshold Autoregression Processes
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Figure 4.14: The four panels of this figure contain simulated data generated by a SETAR with different
values of φ . When φ = 0 the process is immediately returned to its unconditional mean C = 100.
Larger values of φ increase the amount of time spent outside of the “target band” (95–105) and when
φ = 1, the process is a pure random walk.

equations are formed by equating the definition of an autocovariance with an expansion produced by
substituting for the contemporaneous value of Yt . For example, suppose Yt follows an AR(2) process,

Yt = φ1Yt−1 +φ2Yt−2 + εt

The variance must satisfy

E[YtYt ] = E[Yt(φ1Yt−1 +φ2Yt−2 + εt)] (4.114)

E[Y 2
t ] = E[φ1YtYt−1 +φ2YtYt−2 +Ytεt ]

V[Yt ] = φ1E[YtYt−1]+φ2E[YtYt−2]+E[Ytεt ].

In the final equation above, terms of the form E[YtYt−s] are replaced by their population values, γs and
E[Ytεt ] is replaced with its population value, σ2.

V[YtYt ] = φ1E[YtYt−1]+φ2E[YtYt−2]+E[Ytεt ] (4.115)
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becomes

γ0 = φ1γ1 +φ2γ2 +σ
2 (4.116)

and so the long run variance is a function of the first two autocovariances, the model parameters, and
the innovation variance. This can be repeated for the first autocovariance,

E[YtYt−1] = φ1E[Yt−1Yt−1]+φ2E[Yt−1Yt−2]+E[Yt−1εt ]

becomes

γ1 = φ1γ0 +φ2γ1, (4.117)

and for the second autocovariance,

E[YtYt−2] = φ1E[Yt−2Yt−1]+φ2E[Yt−2Yt−2]+E[Yt−2εt ] becomes

becomes

γ2 = φ1γ1 +φ2γ0. (4.118)

Together eqs. (4.116), (4.117) and (4.118) form a system of three equations with three unknowns. The
Yule-Walker method relies heavily on the covariance stationarity and so E[YtYt− j] = E[Yt−hYt−h− j]
for any h. This property of covariance stationary processes was repeatedly used in forming the pro-
ducing the Yule-Walker equations since E[YtYt ] = E[Yt−1Yt−1] = E[Yt−2Yt−2] = γ0 and E[YtYt−1] =
E[Yt−1Yt−2] = γ1.The Yule-Walker method will be demonstrated for several models, starting from a
simple MA(1) and working up to an ARMA(1,1).

4.A.1.1 MA(1)

The autocorrelations of the MA(1) are simple to derive.

Yt = θ1εt−1 + εt

The Yule-Walker equations are

E[YtYt ] = E[θ1εt−1Yt ]+E[εtYt ] (4.119)
E[YtYt−1] = E[θ1εt−1Yt−1]+E[εtYt−1]

E[YtYt−2] = E[θ1εt−1Yt−2]+E[εtYt−2]

γ0 = θ
2
1 σ

2 +σ
2 (4.120)

γ1 = θ1σ
2

γ2 = 0

Additionally, both γs and ρs, s ≥ 2 are 0 by the white noise property of the residuals, and so the
autocorrelations are

ρ1 =
θ1σ2

θ 2
1 σ2 +σ2

=
θ1

1+θ 2
1
,

ρ2 = 0.
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4.A.1.2 MA(Q)

The Yule-Walker equations can be constructed and solved for any MA(Q), and the structure of the
autocovariance is simple to detect by constructing a subset of the full system.

E[YtYt ] = E[θ1εt−1Yt ]+E[θ2εt−2Yt ]+E[θ3εt−3Yt ]+ . . .+E[θQεt−QYt ] (4.121)

γ0 = θ
2
1 σ

2 +θ
2
2 σ

2 +θ
2
3 σ

2 + . . .+θ
2
Qσ

2 +σ
2

= σ
2(1+θ

2
1 +θ

2
2 +θ

2
3 + . . .+θ

2
Q)

E[YtYt−1] = E[θ1εt−1Yt−1]+E[θ2εt−2Yt−1]+E[θ3εt−3Yt−1]+ . . .+E[θQεt−QYt−1] (4.122)

γ1 = θ1σ
2 +θ1θ2σ

2 +θ2θ3σ
2 + . . .+θQ−1θQσ

2

= σ
2(θ1 +θ1θ2 +θ2θ3 + . . .+θQ−1θQ)

E[YtYt−2] = E[θ1εt−1Yt−2]+E[θ2εt−2Yt−2]+E[θ3εt−3Yt−2]+ . . .+E[θQεt−QYt−2] (4.123)

γ2 = θ2σ
2 +θ1θ3σ

2 +θ2θ4σ
2 + . . .+θQ−2θQσ

2

= σ
2(θ2 +θ1θ3 +θ2θ4 + . . .+θQ−2θQ)

The pattern that emerges shows,

γs = θsσ
2 +

Q−s∑
i=1

σ
2
θiθi+s = σ

2(θs +

Q−s∑
i=1

θiθi+s).

and so , γs is a sum of Q− s+1 terms. The autocorrelations are

ρ1 =
θ1 +

∑Q−1
i=1 θiθi+1

1+θs +
∑Q

i=1 θ 2
i

(4.124)

ρ2 =
θ2 +

∑Q−2
i=1 θiθi+2

1+θs +
∑Q

i=1 θ 2
i

... =
...

ρQ =
θQ

1+θs +
∑Q

i=1 θ 2
i

ρQ+s = 0, s≥ 0

4.A.1.3 AR(1)

The Yule-Walker method requires be max(P,Q)+ 1 equations to compute the autocovariance for an
ARMA(P,Q) process and in an AR(1), two are required (the third is included to establish this point).

Yt = φ1Yt−1 + εt

E[YtYt ] = E[φ1Yt−1Yt ]+E[εtYt ] (4.125)
E[YtYt−1] = E[φ1Yt−1Yt−1]+E[εtYt−1]

E[YtYt−2] = E[φ1Yt−1Yt−2]+E[εtYt−2]
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These equations can be rewritten in terms of the autocovariances, model parameters and σ2 by taking
expectation and noting that E[εtYt ] = σ2 since Yt = εt +φ1εt−1+φ 2

1 εt−2+ . . . and E[εtYt− j] = 0, j > 0
since {εt} is a white noise process.

γ0 = φ1γ1 +σ
2 (4.126)

γ1 = φ1γ0

γ2 = φ1γ1

The third is redundant since γ2 is fully determined by γ1 and φ1, and higher autocovariances are
similarly redundant since γs = φ1γs−1 for any s. The first two equations can be solved for γ0 and γ1,

γ0 = φ1γ1 +σ
2

γ1 = φ1γ0

⇒ γ0 = φ
2
1 γ0 +σ

2

⇒ γ0−φ
2
1 γ0 = σ

2

⇒ γ0(1−φ
2
1 ) = σ

2

⇒ γ0 =
σ2

1−φ 2
1

and

γ1 = φ1γ0

γ0 =
σ2

1−φ 2
1

⇒ γ1 = φ1
σ2

1−φ 2
1
.

The remaining autocovariances can be computed using the recursion γs = φ1γs−1, and so

γs = φ
2
1

σ2

1−φ 2
1
.

Finally, the autocorrelations can be computed as ratios of autocovariances,

ρ1 =
γ1

γ0
= φ1

σ s

1−φ 2
1

/
σ2

1−φ 2
1

ρ1 = φ1

ρs =
γs

γ0
= φ

s
1

σ2

1−φ 2
1

/
σ2

1−φ 2
1

ρs = φ
s
1.
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4.A.1.4 AR(2)

The autocorrelations in an AR(2)

Yt = φ1Yt−1 +φ2Yt−2 + εt

can be similarly computed using the max(P,Q)+1 equation Yule-Walker system,

E[YtYt ] = φ1E[Yt−1Yt ]+φ2E[Yt−2Yt ]+EεtYt ] (4.127)
E[YtYt−1] = φ1E[Yt−1Yt−1]+φ2E[Yt−2Yt−1]+E[εtYt−1]

E[YtYt−2] = φ1E[Yt−1Yt−2]+φ2E[Yt−2Yt−2]+E[εtYt−2]

and then replacing expectations with their population counterparts, γ0,γ1, γ2 and σ2.

γ0 = φ1γ1 +φ2γ2 +σ
2 (4.128)

γ1 = φ1γ0 +φ2γ1

γ2 = φ1γ1 +φ2γ0

Further, it must be the case that γs = φ1γs−1 + φ2γs−2 for s ≥ 2. To solve this system of equations,
divide the autocovariance equations by γ0, the long run variance. Omitting the first equation, the
system reduces to two equations in two unknowns,

ρ1 = φ1ρ0 +φ2ρ1

ρ2 = φ1ρ1 +φ2ρ0

since ρ0 = γ0/γ0 = 1.

ρ1 = φ1 +φ2ρ1

ρ2 = φ1ρ1 +φ2

Solving this system,

ρ1 = φ1 +φ2ρ1

ρ1−φ2ρ1 = φ1

ρ1(1−φ2) = φ1

ρ1 =
φ1

1−φ2

and

ρ2 = φ1ρ1 +φ2

= φ1
φ1

1−φ2
+φ2

=
φ1φ1 +(1−φ2)φ2

1−φ2

=
φ 2

1 +φ2−φ 2
2

1−φ2
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Since ρs = φ1ρs−1 +φ2ρs−2, these first two autocorrelations are sufficient to compute the other auto-
correlations,

ρ3 = φ1ρ2 +φ2ρ1

= φ1
φ 2

1 +φ2−φ 2
2

1−φ2
+φ2

φ1

1−φ2

and the long run variance of Yt ,

γ0 = φ1γ1 +φ2γ2 +σ
2

γ0−φ1γ1−φ2γ2 = σ
2

γ0(1−φ1ρ1−φ2ρ2) = σ
2

γ0 =
σ2

1−φ1ρ1−φ2ρ2

The final solution is computed by substituting for ρ1 and ρ2,

γ0 =
σ2

1−φ1
φ1

1−φ2
−φ2

φ 2
1+φ2−φ 2

2
1−φ2

=
1−φ2

1+φ2

(
σ2

(φ1 +φ2−1)(φ2−φ1−1)

)
4.A.1.5 AR(3)

Begin by constructing the Yule-Walker equations,

E[YtYt ] = φ1E[Yt−1Yt ]+φ2E[Yt−2Yt ]+φ3E[Yt−3Yt ]+E[εtYt ]

E[YtYt−1] = φ1E[Yt−1Yt−1]+φ2E[Yt−2Yt−1]+φ3E[Yt−3Yt−1]+E[εtYt−1]

E[YtYt−2] = φ1E[Yt−1Yt−2]+φ2E[Yt−2Yt−2]+φ3E[Yt−3Yt−2]+E[εtYt−2]

E[YtYt−3] = φ1E[Yt−1Yt−3]+φ2E[Yt−2Yt−3]+φ3E[Yt−3Yt−3]+E[εtYt−4].

Replacing the expectations with their population values, γ0,γ1, . . . and σ2, the Yule-Walker equations
can be rewritten

γ0 = φ1γ1 +φ2γ2 +φ3γ3 +σ
2 (4.129)

γ1 = φ1γ0 +φ2γ1 +φ3γ2

γ2 = φ1γ1 +φ2γ0 +φ3γ1

γ3 = φ1γ2 +φ2γ1 +φ3γ0

and the recursive relationship γs = φ1γs−1 +φ2γs−2 +φ3γs−3 can be observed for s ≥ 3.Omitting the
first condition and dividing by γ0,

ρ1 = φ1ρ0 +φ2ρ1 +φ3ρ2

ρ2 = φ1ρ1 +φ2ρ0 +φ3ρ1

ρ3 = φ1ρ2 +φ2ρ1 +φ3ρ0.
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leaving three equations in three unknowns since ρ0 = γ0/γ0 = 1.

ρ1 = φ1 +φ2ρ1 +φ3ρ2

ρ2 = φ1ρ1 +φ2 +φ3ρ1

ρ3 = φ1ρ2 +φ2ρ1 +φ3

Following some tedious algebra, the solution to this system is

ρ1 =
φ1 +φ2φ3

1−φ2−φ1φ3−φ 2
3

ρ2 =
φ2 +φ 2

1 +φ3φ1−φ 2
2

1−φ2−φ1φ3−φ 2
3

ρ3 =
φ3 +φ 3

1 +φ 2
1 φ3 +φ1φ 2

2 +2φ1φ2 +φ 2
2 φ3−φ2φ3−φ1φ 2

3 −φ 3
3

1−φ2−φ1φ3−φ 2
3

.

Finally, the unconditional variance can be computed using the first three autocorrelations,

γ0 = φ1γ1 +φ2γ2 +φ3γ3σ
2

γ0−φ1γ1−φ2γ2−φ3γ3 = σ
2

γ0(1−φ1ρ1 +φ2ρ2 +φ3ρ3) = σ
2

γ0 =
σ2

1−φ1ρ1−φ2ρ2−φ3ρ3

γ0 =
σ2 (1−φ2−φ1φ3−φ 2

3
)

(1−φ2−φ3−φ1)
(
1+φ2 +φ3φ1−φ 2

3
)
(1+φ3 +φ1−φ2)

4.A.1.6 ARMA(1,1)

Deriving the autocovariances and autocorrelations of an ARMA process is more complicated than for
a pure AR or MA process. An ARMA(1,1) is specified as

Yt = φ1Yt−1 +θ1εt−1 + εt

and since P = Q = 1, the Yule-Walker system requires two equations, noting that the third or higher
autocovariance is a trivial function of the first two autocovariances.

E[YtYt ] = E[φ1Yt−1Yt ]+E[θ1εt−1Yt ]+E[εtYt ] (4.130)
E[YtYt−1] = E[φ1Yt−1Yt−1]+E[θ1εt−1Yt−1]+E[εtYt−1]

The presence of the E[θ1εt−1Yt ] term in the first equation complicates solving this system since εt−1
appears in Yt directly though θ1εt−1 and indirectly through φ1Yt−1. The non-zero relationships can
be determined by recursively substituting Yt until it consists of only εt , εt−1 and Yt−2 (since Yt−2 is
uncorrelated with εt−1 by the WN assumption).

Yt = φ1Yt−1 +θ1εt−1 + εt (4.131)
= φ1(φ1Yt−2 +θ1εt−2 + εt−1)+θ1εt−1 + εt

= φ
2
1Yt−2 +φ1θ1εt−2 +φ1εt−1 +θ1εt−1 + εt

= φ
2
1Yt−2 +φ1θ1εt−2 +(φ1 +θ1)εt−1 + εt
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and so E[θ1εt−1Yt ] = θ1(φ1 +θ1)σ
2 and the Yule-Walker equations can be expressed using the popu-

lation moments and model parameters.

γ0 = φ1γ1 +θ1(φ1 +θ1)σ
2 +σ

2

γ1 = φ1γ0 +θ1σ
2

These two equations in two unknowns which can be solved,

γ0 = φ1γ1 +θ1(φ1 +θ1)σ
2 +σ

2

= φ1(φ1γ0 +θ1σ
2)+θ1(φ1 +θ1)σ

2 +σ
2

= φ
2
1 γ0 +φ1θ1σ

2 +θ1(φ1 +θ1)σ
2 +σ

2

γ0−φ
2
1 γ0 = σ

2(φ1θ1 +φ1θ1 +θ
2
1 +1)

γ0 =
σ2(1+θ 2

1 +2φ1θ1)

1−φ 2
1

γ1 = φ1γ0 +θ1σ
2

= φ1

(
σ2(1+θ 2

1 +2φ1θ1)

1−φ 2
1

)
+θ1σ

2

= φ1

(
σ2(1+θ 2

1 +2φ1θ1)

1−φ 2
1

)
+

(1−φ 2
1 )θ1σ2

1−φ 2
1

=
σ2(φ1 +φ1θ 2

1 +2φ 2
1 θ1)

1−φ 2
1

+
(θ1−θ1φ 2

1 )σ
2

1−φ 2
1

=
σ2(φ1 +φ1θ 2

1 +2φ 2
1 θ1 +θ1−φ 2

1 θ1)

1−φ 2
1

=
σ2(φ 2

1 θ1 +φ1θ 2
1 +φ1 +θ1)

1−φ 2
1

=
σ2(φ1 +θ1)(φ1θ1 +1)

1−φ 2
1

and so the 1stautocorrelation is

ρ1 =

σ
2(φ1+θ1)(φ1θ1+1)

1−φ 2
1

σ2(1+θ 2
1+2φ1θ1)

1−φ 2
1

=
(φ1 +θ1)(φ1θ1 +1)
(1+θ 2

1 +2φ1θ1)
.

Returning to the next Yule-Walker equation,

E[YtYt−2] = E[φ1Yt−1Yt−2]+E[θ1εt−1Yt−2]+E[εtYt−2]

and so γ2 = φ1γ1, and, dividing both sized by γ0, ρ2 = φ1ρ1. Higher order autocovariances and
autocorrelation follow γs = φ1γs−1 and ρs = φ1ρs−1 respectively, and so ρs = φ

s−1
1 ρ1, s≥ 2.



4.A Computing Autocovariance and Autocorrelations 303

4.A.2 Backward Substitution

Backward substitution is a direct but tedious method to derive the ACF and long-run variance.

4.A.2.1 AR(1)

The AR(1) process,
Yt = φ1Yt−1 + εt

is stationary if |φ1| < 1 and {εt} is white noise. To compute the autocovariances and autocorrela-
tions using backward substitution, Yt = φ1Yt−1 + εt must be transformed into a pure MA process by
recursive substitution,

Yt = φ1Yt−1 + εt (4.132)
= φ1(φ1Yt−2 + εt−1)+ εt

= φ
2
1Yt−2 +φ1εt−1 + εt

= φ
2
1 (φ1Yt−3 + εt−2)+φ1εt−1 + εt

= φ
3
1Yt−3 +φ

2
1 εt−2 +φ1εt−1 + εt

= εt +φ1εt−1 +φ
2
1 εt−2 +φ

3
1 εt−3 + . . .

Yt =
∞∑

i=0

φ
i
1εt−i.

The variance is the expectation of the square,

γ0 = V[Yt ] = E[Y 2
t ] (4.133)

= E[(
∞∑

i=0

φ
i
1εt−i)

2]

= E[(εt +φ1εt−1 +φ
2
1 εt−2 +φ

3
1 εt−3 + . . .)2]

= E[
∞∑

i=0

φ
2i
1 ε

2
t−i +

∞∑
i=0

∞∑
j=0,i 6= j

φ
i
1φ

j
1 εt−iεt− j]

= E[
∞∑

i=0

φ
2i
1 ε

2
t−i]+E[

∞∑
i=0

∞∑
j=0,i6= j

φ
i
1φ

j
1 εt−iεt− j]

=

∞∑
i=0

φ
2i
1 E[ε2

t−i]+
∞∑

i=0

∞∑
j=0,i6= j

φ
i
1φ

j
1 E[εt−iεt− j]

=

∞∑
i=0

φ
2i
1 σ

2 +

∞∑
i=0

∞∑
j=0,i 6= j

φ
i
1φ

j
1 0

=

∞∑
i=0

φ
2i
1 σ

2

=
σ2

1−φ 2i
1
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The difficult step in the derivation is splitting up the εt−i into those that are matched to their own
lag (ε2

t−i) to those which are not (εt−iεt− j, i 6= j). The remainder of the derivation follows from
the assumption that {εt} is a white noise process, and so E[ε2

t−i] = σ2 and E[εt−iεt− j]=0, i 6= j.

Finally, the identity that limn→∞
∑n

i=0 φ 2i
1 = limn→∞

∑n
i=0
(
φ 2

1
)i
= 1

1−φ 2
1

for |φ1| < 1 was used to
simplify the expression.The 1st autocovariance can be computed using the same steps on the MA(∞)
representation,

γ1 = E[YtYt−1] (4.134)

= E[
∞∑

i=0

φ
i
1εt−i

∞∑
i=1

φ
i−1
1 εt−i]

= E[(εt +φ1εt−1 +φ
2
1 εt−2 +φ

3
1 εt−3 + . . .)(εt−1 +φ1εt−2 +φ

2
1 εt−3 +φ

3
1 εt−4 + . . .)]

= E[
∞∑

i=0

φ
2i+1
1 ε

2
t−1−i +

∞∑
i=0

∞∑
j=1,i 6= j

φ
i
1φ

j−1
1 εt−iεt− j]

= E[φ1

∞∑
i=0

φ
2i
1 ε

2
t−1−i]+E[

∞∑
i=0

∞∑
j=1,i 6= j

φ
i
1φ

j−1
1 εt−iεt− j]

= φ1

∞∑
i=0

φ
2i
1 E[ε2

t−1−i]+
∞∑

i=0

∞∑
j=1,i 6= j

φ
i
1φ

j−1
1 E[εt−iεt− j]

= φ1

∞∑
i=0

φ
2i
1 σ

2 +
∞∑

i=0

∞∑
j=1,i6= j

φ
i
1φ

j−1
1 0

= φ1

( ∞∑
i=0

φ
2i
1 σ

2

)

= φ1
σ2

1−φ 2
1

= φ1γ0

and the sth autocovariance can be similarly determined.

γs = E[YtYt−s] (4.135)

= E[
∞∑

i=0

φ
i
1εt−i

∞∑
i=s

φ
i−s
1 εt−i]

= E[
∞∑

i=0

φ
2i+s
1 ε

2
t−s−i +

∞∑
i=0

∞∑
j=s,i 6= j

φ
i
1φ

j−s
1 εt−iεt− j]

= E[φ s
1

∞∑
i=0

φ
2i
1 ε

2
t−s−i]+E[

∞∑
i=0

∞∑
j=s,i 6= j

φ
i
1φ

j−s
1 εt−iεt− j]

= φ
s
1

∞∑
i=0

φ
2i
1 σ

2 +

∞∑
i=0

∞∑
j=s,i 6= j

φ
i
1φ

j−s
1 0
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= φ
s
1

( ∞∑
i=0

φ
2i
1 σ

2

)
= φ

s
1γ0

Finally, the autocorrelations can be computed from rations of autocovariances, ρ1 = γ1/γ0 = φ1 and
ρs = γs/γ0 = φ s

1.

4.A.2.2 MA(1)

The MA(1) model is the simplest non-degenerate time-series model considered in this course,

Yt = θ1εt−1 + εt

and the derivation of its autocorrelation function is trivial since there no backward substitution is
required. The variance is

γ0 = V[Yt ] = E[Y 2
t ] (4.136)

= E[(θ1εt−1 + εt)
2]

= E[θ 2
1 ε

2
t−1 +2θ1εtεt−1 + ε

2
t ]

= E[θ 2
1 ε

2
t−1]+E[2θ1εtεt−1]+E[ε2

t ]

= θ
2
1 σ

2 +0+σ
2

= σ
2(1+θ

2
1 )

and the 1st autocovariance is

γ1 = E[YtYt−1] (4.137)
= E[(θ1εt−1 + εt)(θ1εt−2 + εt−1)]

= E[θ 2
1 εt−1εt−2 +θ1ε

2
t−1 +θ1εtεt−2 + εtεt−1]

= E[θ 2
1 εt−1εt−2]+E[θ1ε

2
t−1]+E[θ1εtεt−2]+E[εtεt−1]

= 0+θ1σ
2 +0+0

= θ1σ
2

The 2nd(and higher) autocovariance is

γ2 = E[YtYt−2] (4.138)
= E[(θ1εt−1 + εt)(θ1εt−3 + εt−2)]

= E[θ 2
1 εt−1εt−3 +θ1εt−1εt−2 +θ1εtεt−3 + εtεt−2]

= E[θ 2
1 εt−1εt−3]+E[θ1εt−1εt−2]+E[θ1εtεt−3]+E[εtεt−2]

= 0+0+0+0
= 0

and the autocorrelations are ρ1 = θ1/(1+θ 2
1 ), ρs = 0, s≥ 2.
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4.A.2.3 ARMA(1,1)

An ARMA(1,1) process,
Yt = φ1Yt−1 +θ1εt−1 + εt

is stationary if |φ1| < 1 and {εt} is white noise. The derivation of the variance and autocovariances
is more tedious than for the AR(1) process. It should be noted that derivation is longer and more
complex than solving the Yule-Walker equations.Begin by computing the MA(∞) representation,

Yt = φ1Yt−1 +θ1εt−1 + εt (4.139)
Yt = φ1(φ1Yt−2 +θ1εt−2 + εt−1)+θ1εt−1 + εt

Yt = φ
2
1Yt−2 +φ1θ1εt−2 +φ1εt−1 +θ1εt−1 + εt

Yt = φ
2
1 (φ1Yt−3 +θ1εt−3 + εt−2)+φ1θ1εt−2 +(φ1 +θ1)εt−1 + εt

Yt = φ
3
1Yt−3 +φ

2
1 θ1εt−3 +φ

2
1 εt−2 +φ1θ1εt−2 +(φ1 +θ1)εt−1 + εt

Yt = φ
3
1 (φ1Yt−4 +θ1εt−4 + εt−3)+φ

2
1 θ1εt−3 +φ1(φ1 +θ1)εt−2 +(φ1 +θ1)εt−1 + εt

Yt = φ
4
1Yt−4 +φ

3
1 θ1εt−4 +φ

3
1 εt−3 +φ

2
1 θ1εt−3 +φ1(φ1 +θ1)εt−2 +(φ1 +θ1)εt−1 + εt

Yt = φ
4
1Yt−4 +φ

3
1 θ1εt−4 +φ

2
1 (φ1 +θ1)εt−3 +φ1(φ1 +θ1)εt−2 +(φ1 +θ1)εt−1 + εt

Yt = εt +(φ1 +θ1)εt−1 +φ1(φ1 +θ1)εt−2 +φ
2
1 (φ1 +θ1)εt−3 + . . .

Yt = εt +
∞∑

i=0

φ
i
1(φ1 +θ1)εt−1−i

The primary issue is that the backward substitution form, unlike in the AR(1) case, is not completely
symmetric. Specifically, εt has a different weight than the other shocks and does not follow the same
pattern.

γ0 = V [Yt ] = E
[
Y 2

t
]

(4.140)

= E

(εt +
∞∑

i=0

φ
i
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φ
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= σ
2 +

∞∑
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φ
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2 E
[
ε

2
t−1−i

]
+

∞∑
i=0

∞∑
j=0, j 6=i

φ
i
1φ

j
1 (φ1 +θ1)

2 E
[
εt−1−iεt−1− j

]
= σ

2 +
∞∑

i=0

φ
2i
1 (φ1 +θ1)

2
σ

2 +

∞∑
i=0

∞∑
j=0, j 6=i

φ
i
1φ

j
1 (φ1 +θ1)

2 0

= σ
2 +

∞∑
i=0

φ
2i
1 (φ1 +θ1)

2
σ

2

= σ
2 +

(φ1 +θ1)
2

σ2

1−φ 2
1

= σ
2 1−φ 2

1 +(φ1 +θ1)
2

1−φ 2
1

= σ
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1

The difficult step in this derivations is in aligning the εt−i since {εt} is a white noise process. The
autocovariance derivation is reasonably involved (and presented in full detail).

γ1 = E [YtYt−1] (4.141)

= E
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εt +

∞∑
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= (φ1 +θ1)σ
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The most difficult step in this derivation is in showing that E[
∑∞

i=0 φ i
1(φ1+θ1)εt−1εt−1−i] = σ2(φ1+

θ1) since there is one εt−1−i which is aligned to εt−1 (i.e. when i = 0), and so the autocorrelations
may be derived,

ρ1 =

σ
2(φ1+θ1)(φ1θ1+1)

1−φ 2
1

σ2(1+θ 2
1+2φ1θ1)

1−φ 2
1

(4.142)

=
(φ1 +θ1)(φ1θ1 +1)
(1+θ 2

1 +2φ1θ1)

and the remaining autocorrelations can be computed using the recursion, ρs = φ1ρs−1, s≥ 2.

Exercises

Exercise 4.1. Is the sum of two white noise processes, εt = ηt +νt necessarily a white noise process?

Exercise 4.2. Suppose that Yt follows a random walk then ∆Yt = Yt−Yt−1 is stationary.

1. Is Yt−Yt− j for and j ≥ 2 stationary?

2. If it is and {εt} is an i.i.d. sequence of standard normals, what is the distribution of Yt−Yt− j?

3. What is the joint distribution of Yt−Yt− j and Yt−h−Yt− j−h (Note: The derivation for an arbitrary
h is challenging)?
Note: If it helps in this problem, consider the case where j = 2 and h = 1.
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Exercise 4.3. Precisely describe the two types of stationarity.

Exercise 4.4. Why is stationarity a useful property?

Exercise 4.5. Write the AR(1) Yt = φ0 +φ1Yt−1 + εt as an MA(∞) assuming |φ1|< 1.

Exercise 4.6. Write the MA(1) Yt = φ0 +θ1εt−1 + εt as an AR(∞) assuming |θ1| < 1. Hint: Yt−1 =
φ0 +θ2εt−2 + εt−1⇒ εt−1 = Yt−1−φ0−θ2εt−2.

Exercise 4.7. What are the 1-step and 2-step optimal forecasts for the conditional mean when Yt =

φ0 +φ1Yt−1 + εt where εt
i.i.d.∼ N (0,1)?

Exercise 4.8. What is the optimal 3-step forecast from the ARMA(1,2), Yt = φ0 +φ1Yt−1 +θ1εt−1 +
θ2εt−2 + εt , where εt is a mean 0 white noise process?

Exercise 4.9. What are the 1-step and 2-step optimal mean square forecast errors when Yt = φ0 +

θ1εt−1 +θ2εt−2 + εt where εt
i.i.d.∼ N (0,1)?

Exercise 4.10. Assume {εt} is a mean zero i.i.d. sequence.

1. For each of the following processes, find Et [Yt+1].

(a) Yt = φ0 +φ1Yt−1 + εt

(b) Yt = φ0 +θ1εt−1 + εt

(c) Yt = φ0 +φ1Yt−1 +φ2Yt−2 + εt

(d) Yt = φ0 +φ2Yt−2 + εt

(e) Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt

2. For (a), (d) and (e), derive the h-step ahead forecast, Et [Yt+h]. What is the long run behavior of
the forecast in each case?

Exercise 4.11. Write down the characteristic equations for the systems listed below, find the roots,
and classify each as convergent, explosive, stable or metastable.

1. Yt = 1+ .6Yt−1 +Xt

2. Yt = 3+ .8Yt−2 +Xt

3. Yt = .6Yt−1 + .3Yt−2 +Xt

4. Yt = 2.7+1.2Yt−1 + .2Yt−2 +Xt

5. Yt = 0.4+1.4Yt−1 + .24Yt−2 +Xt

6. Yt = 10− .8Yt−1 + .2Yt−2 +Xt

Exercise 4.12. Under what conditions on the parameters are the following processes covariance sta-
tionary when εt ∼WN

(
0,σ2) is w ahite noise process?

1. Yt = φ0 + εt
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2. Yt = φ0 +φ1Yt−1 + εt

3. Yt = φ0 +θ1εt−1 + εt

4. Yt = φ0 +φ1Yt−1 +φ2Yt−2 + εt

5. Yt = φ0 +φ2Yt−2 + εt

6. Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt

Exercise 4.13. In which of the following models are the {Yt} covariance stationary, assuming {εt} is
a mean-zero white noise process. If the answer is conditional, explain the conditions required. In any
case, explain your answer:

1. ∆Yt =−0.2Yt−1 + εt

2. Yt = φ0 +φ1Yt−1 +φ2Yt−2 + εt

3. Yt = φ0 +0.1Xt−1 + εt , Xt = Xt−1 + εt

4. Yt = 0.8Yt−1 + εt

Exercise 4.14. Which of the following models are covariance stationary, assuming {εt} is a mean-
zero white noise process. If the answer is conditional, explain the conditions required. In any case,
explain your answer:

1. Yt = φ0 +0.8Yt−1 +0.2Yt−2 + εt

2. Yt = φ0 +φ1I[t>200]+ εt

3. Yt = αt +0.8εt−1 + εt

4. Yt = 4εt−1 +9εt−2 + εt

5. Yt = εt +
∑∞

j=1 γ jεt− j

Exercise 4.15. Assuming εt ∼WN
(
0,σ2), compute mean E [Yt ] and variance V [Yt ] of:

1. Yt = φ0−0.8Yt−1 + εt

2. Yt = φ0 +0.5εt−1 +0.5εt−2 + εt

3. Yt = φ0 +
∑Q

i=1 θiεt−i + εt

Exercise 4.16. Compute the ACF and PACF for:

1. Yt = φ0 +φ1Yt−1 + εt

2. Yt = φ0−0.5εt−1 +0.5εt−2 + εt

3. Yt = φ0 +
∑Q

i=1 θiεt−i + εt

4. Yt = φ0 +φ1Yt−1 +φ2Yt−2 + εt [Hard]
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Exercise 4.17. Consider an AR(1)
Yt = φ0 +φ1Yt−1 + εt

What are the values of the following quantities?

1. E[Yt+1] , Et [Yt+1], and Et [Yt+2]

2. V[Yt+1] , Vt [Yt+1], and Vt [Yt+2]

3. ρ−1 and ρ2

Exercise 4.18. Consider an MA(1)

Yt = φ0 +θ1εt−1 + εt

1. What is a minimal set of assumptions sufficient to ensure {Yt} is covariance stationary if {εt}
is an i.i.d. sequence?

2. What are the values of the following quantities?

(a) E[Yt+1], Et [Yt+1] and Et [Yt+2]

(b) V[Yt+1] , Vt [Yt+1], and Vt [Yt+2]

(c) ρ−1 and ρ2

Exercise 4.19. Consider an MA(2)

Yt = µ +θ1εt−1 +θ2εt−2 + εt

1. What is a minimal set of assumptions sufficient to ensure {Yt} is covariance stationary if {εt}
is an i.i.d. sequence?

2. What are the values of the following quantities?

(a) E[Yt+1], Et [Yt+1] and Et [Yt+2]

(b) V[Yt+1] , Vt [Yt+1], Vt [Yt+2]

(c) ρh, h = 1,2,3,4, . . .

Exercise 4.20. Suppose you observe the three sets of ACF/PACF in figure 4.15. What ARMA speci-
fication would you expect in each case. Note: Dashed line indicates the 95% confidence interval for
a test that the autocorrelation or partial autocorrelation is 0.

Exercise 4.21. Justify a reasonable model for each of these time series in Figure 4.16 using informa-
tion in the autocorrelation and partial autocorrelation plots. In each set of plots, the left most panel
shows that data (T = 100). The middle panel shows the sample autocorrelation with 95% confidence
bands. The right panel shows the sample partial autocorrelation for the data with 95% confidence
bands.

Exercise 4.22. Describe two methods that are used to estimate the parameters of ARMA models. Are
there any limitations of either estimation method?
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Autocorrelation and Partial Autocorrelation function
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Figure 4.15: The ACF and PACF of three stochastic processes. Use these to answer question 4.20.
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Figure 4.16: Plots for question problem 4.21.
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Exercise 4.23. Explain difference between what the ACF and PACF measure, and how each is useful.

Exercise 4.24. Suppose you model the difference ∆Yt = φ0 + φ1∆Yt−1 + εt where εt
i.i.d.∼ N

(
0,σ2).

What are:

1. Et [∆Yt+1], Et [∆Yt+2]

2. Et [Yt+1], Et [Yt+2]

3. Et [∆Yt+h] and Et [Yt+h] for an arbitrary h

4. Vt [∆Yt+1], Vt [∆Yt+2]

5. Vt [Yt+1], Vt [Yt+2]

6. Vt [∆Yt+h] and Vt [Yt+h] for an arbitrary h

Exercise 4.25. Determine which of the the model below are covariance stationary. If not, explain
which property of covariance stationarity they violate

1. Yt = Yt−1 + εt

2. Yt = φ0 +0.9Yt−1−0.3Yt−1I[t>2020]+ εt

3. Yt = 0.33+1.4Yt−1−0.45Yt−2 + εt

4. Yt = φ0 +
∑4

i=2 γiI[Quarter=i]+ εt where data is observed quarterly

5. Yt = φ0 +1.33εt−1 + εt

6. Yt = φ0 +δ t +0.5Yt−1 + εt

Exercise 4.26. Describe the four key types of non-stationarity in data and provide a model that ex-
emplifies each type.

Exercise 4.27. What are the 1-step and 2-step forcasts Et [Yt+h] from the models:

1. Yt = φ0 +δ t + εt

2. Yt = φ0 +δ t +φ1Yt−1 + εt

3. Yt = φ0 +δ1t +δ2t2 +θ1εt−1 + εt

4. lnYt = φ0 +δ t + εt , ε
i.i.d.∼ N

(
0,σ2) (use properties of Lognormal random variables)

5. lnYt = lnYt−1 + εt , ε
i.i.d.∼ N

(
0,σ2) (use properties of Lognormal random variables)

Exercise 4.28. Write the following models using both lag notation and as the standard ARMA repre-
sentation where Yt is the left-hand-side variable:

1. SARIMA(1,0,0)× (1,0,0,4)

2. SARIMA(0,0,2)× (1,1,0,12)
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3. SARIMA(2,0,2)× (0,0,0,0)

4. SARIMA(1,2,1)× (0,0,0,0)

5. SARIMA(0,0,0)× (1,1,1,24)

Exercise 4.29. What are the Et
[
Yt+h|t

]
for h = 1,2,3,4,5 for the following models:

1. SARIMA(1,0,1)× (1,0,1,4)

2. SARIMA(1,1,1)× (1,0,1,4)

3. SARIMA(1,0,1)× (1,1,1,4)

Exercise 4.30. What are the Et
[
Yt+h|t

]
for h = 1,2,3,4,5 for the model (1−φ1L)

(
1−φsL4)∆4Yt =

φ0 +(1+θ1L)
(
1+θsL4)εt?Note that the model is a SARIMA(1,0,1)× (1,1,1,4) with a non-zero

constant φ0.

Exercise 4.31. Suppose Yt is I (1) and follows a SARIMA(1,0,0)× (0,1,0,4) where |φ1|< 1.

1. What is the model of ∆Yt?

2. Is ∆Yt covariance stationary? (You can solve the problem for a specific value of |φ1| < 1 if it
helps.

Exercise 4.32. Suppose you were trying to differentiate between an AR(1) and an MA(1) but could
not estimate any regressions. What would you do?

Exercise 4.33. How are the autocorrelations and partial autocorrelations useful in building a model?

Exercise 4.34. Describe the three methods of model selection discussed in class: general-to-specific,
specific-to-general and the use of information criteria (Schwarz/Bayesian Information Criteria and/or
Akaike Information Criteria). When might each be preferred to the others?

Exercise 4.35. Consider the AR(2)

Yt = φ1Yt−1 +φ2Yt−2 + εt

1. Rewrite the model with ∆Yt on the left-hand side and Yt−1 and ∆Yt−1 on the right-hand side.

2. What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in the first
differences?

3. When the model collapses, what does this tell you about Yt?

Exercise 4.36. Discuss the important issues when testing for unit roots in economic time-series.

Exercise 4.37. Outline the steps needed to determine whether a time series {Yt} contains a unit root.
Be certain to discuss the important considerations at each step, if any.
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Exercise 4.38. Determine the order integration of each of the three time time series using the ADF
test results in the table below. The column difference indicates the numebr of times the series was
differened before running the test. The included trend was one of none, a constant (Const), a constant
and time-trend (Time), or a constant and linear and quadratice time trends (Quad). The table reports
the test statistic and its p-value.

Series 1 Series 2 Series 3
Difference Trend ADF Stat P-value ADF Stat P-value ADF Stat P-value

None 6.269 1.000 1.123 0.932 1.939 0.988
Const 0.620 0.988 0.988 0.994 9.490 1.000
Time -3.624 0.028 -1.691 0.755 0.221 0.996
Quad -3.620 0.086 -3.219 0.202 -3.695 0.071

∆ None -1.331 0.170 0.044 0.699 0.655 0.858
∆ Const -7.806 0.000 -1.954 0.307 -1.651 0.457
∆ Time -7.829 0.000 -2.273 0.449 -11.12 0.000
∆ Quad -7.813 0.000 -2.263 0.699 -11.10 0.000
∆2 None -7.892 0.000 -15.10 0.000 -12.87 0.000
∆2 Const -7.876 0.000 -15.09 0.000 -12.87 0.000
∆2 Time -7.858 0.000 -15.06 0.000 -12.85 0.000
∆2 Quad -7.845 0.000 -15.03 0.000 -12.85 0.000

Exercise 4.39. Outline the steps needed to perform a unit root test on as time-series of FX rates. Be
sure to detail the any important considerations that may affect the test.

Exercise 4.40. The table below that contains model estimates that are nested by the augmented
Mincer-Zarnowitz regression

Yt+h = α +βŶt+h|t + γZt +ηt

The table reports coefficients and their t-stats. Missing coefficient indicate that the variable was
excluded from the model. The covariance estimator used in the MZ regression is reported in the final
column.

1. Is the forecast systematically biased, on average?

2. Is the forcast error systematically related to the forecast?

3. Is the forecast error unpredictable?

h α β γ Cov. Est.
1 0.06

(1.34)
1.08
(29.6)

White

1 −0.05
(−1.43)

1.00
(34.7)

2.36
(4.58)

Newey-West

3 − 0.17
(−0.87)

1.02
(12.4)

White

3 − 0.17
(−2.03)

1.02
(37.8)

Newey-West
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Exercise 4.41. What are the expected values for α, β and γ when a forecasting model is well specified
in the Mincer-Zarnowitz regression,

Yt+h = α +βŶt+h|t + γXt +ηt+h.

Provide an explanation for why these values should be expected.

Exercise 4.42. Let Yt = φ0 +φ1Yt−1 + εt where {εt} is a WN process.

1. Derive an explicit expression for the 1-step and 2-step ahead forecast errors, et+h|t = Yt+h−
Ŷt+h|t where Ŷt+h|t is the MSE optimal forecast where h = 1 or h = 2.

2. What is the autocorrelation function of a time-series of forecast errors {et+h|t} for h = 1 and
h = 2?

3. Generalize the above to a generic h (In other words, leave the solution as a function of h).

4. How could you test whether the forecast has excess dependence using an ARMA model?

Exercise 4.43. Let Yt = φ0 +θ1εt−1 +θ2εt−2 + εt with the usual assumptions on {εt}.

1. Derive an explicit expression for the 1-step and 2-step ahead forecast errors, et+h|t = Yt+h−
Ŷt+h|t where Ŷt+h|t is the MSE optimal forecast where h = 1 or h = 2 (what is the MSE optimal
forecast?).

2. What is the autocorrelation function of a time-series of forecast errors {et+h|t}, h = 1 or h = 2.
(Hint: Use the formula you derived above)

3. Can you generalize the above to a generic h? (In other words, leave the solution as a function
of h).

4. How could you test whether the forecast has excess dependence using an ARMA model?

Exercise 4.44. When should you use a Diebold-Mariano test statistic instead of a Mincer-Zarnowitz
test when evaluating forecasts?

Exercise 4.45. Outline the steps needed to perform a Diebold-Mariano test that two models for the
conditional mean are equivalent (in the MSE sense).

Exercise 4.46. A Diebold-Mariano test statistic is defined using δt = lA
t − lB

t where li
t is the loss

produced using the forecasts from model i. How do you interpret a Diebold-Mariano test statistic
when the test statistic is signficant and negative? What is the interpretation if the test statistic is
significant and positive? And what if it is not significant?

Exercise 4.47. What are the consequences of using White or Newey-West to estimate the covariance
in a linear regression when the errors are serially uncorrelated and homoskedastic?
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Chapter 5

Analysis of Multiple Time Series

The alternative reference for the material in this chapter is Enders (2004) (chapters 5 and 6). Chap-
ters 10-11 and 18-19 in Hamilton (1994) provide a more technical treatment of the material.

Multivariate time-series analysis extends many of the ideas of univariate time-series analysis
to systems of equations. The primary model used in multivariate time-series analysis is the
vector autoregression (VAR). Many properties of autoregressive processes extend naturally
to multivariate time-series using a slight change in notation and results from linear algebra.
This chapter examines the properties of vector time-series models, estimation and identi-
fication and introduces two new concepts: Granger Causality and the Impulse Response
Function. The chapter concludes by examining models of contemporaneous relationships
between two or more time-series in the framework of cointegration, spurious regression and
cross-sectional regression of stationary time-series.

In many applications, analyzing a time-series in isolation is a reasonable choice; in others, uni-
variate analysis is insufficient to capture the complex dynamics among interrelated time series. For
example, Campbell (1996) links financially interesting variables, including stock returns and the de-
fault premium, in a multivariate system where shocks to one variable propagate to the others. The
vector autoregression (VAR) is the standard model used to model multiple stationary time-series. If
the time series are not stationary, a different type of analysis, cointegration, is used.

5.1 Vector Autoregressions

Vector autoregressions are remarkably similar to univariate autoregressions, and most results carry
over by replacing scalars with matrices and scalar operations with their linear algebra equivalent.

5.1.1 Definition

The definition of a vector autoregression is nearly identical to that of a univariate autoregression.

Definition 5.1 (Vector Autoregression of Order P). A Pth order vector autoregression, written VAR(P),
is a process that evolves according to

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t (5.1)
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where Yt is a k by 1 vector stochastic process, Φ0 is a k by 1 vector of intercept parameters, Φ j,
j = 1, . . . ,P are k by k parameter matrices and ε t is a vector white noise process with the additional
assumption that Et−1[ε t ] = 0.

A VAR(P) reduces to an AR(P) when k = 1 so that Yt and the coefficient matrices, Φ j, are scalars. A
vector white noise process extends the three properties of a univariate white noise process to a vector;
it is mean zero, has finite covariance and is uncorrelated with its past. The components of a vector
white noise process are not assumed to be contemporaneously uncorrelated.

Definition 5.2 (Vector White Noise Process). A k by 1 vector-valued stochastic process, {ε t}is a
vector white noise if

E[ε t ] = 0k (5.2)
E[ε tε

′
t−s] = 0k×k

E[ε tε
′
t ] = Σ

for all t where Σ is a finite positive definite matrix.

The simplest VAR is a first-order bivariate specification which is equivalently expressed as

Yt = Φ0 +Φ1Yt−1 + ε t ,

[
Y1,t
Y2,t

]
=

[
φ1,0
Y2,0

]
+

[
φ11,1 φ12,1
φ21,1 φ22,1

][
Y1,t−1
Y2,t−1

]
+

[
ε1,t
ε2,t

]
,

or

Y1,t = φ1,0 +φ11,1Y1,t−1 +φ12,1Y2,t−1 + ε1,t

Y2,t = φ2,0 +φ21,1Y1,t−1 +φ22,1Y2,t−1 + ε2,t .

Each element of Yt is a function of each element of Yt−1.

5.1.2 Properties of a VAR(1)

The properties of the VAR(1) are straightforward to derive. Importantly, section 5.2 shows that all
VAR(P)s can be rewritten as a VAR(1), and so the properties of any VAR follow from those of a
first-order VAR.

5.1.2.1 Stationarity

A VAR(1), driven by vector white noise shocks,

Yt = Φ0 +Φ1Yt−1 + ε t

is covariance stationary if the eigenvalues of Φ1 are less than 1 in modulus.1 In the univariate case,
this is statement is equivalent to the condition |φ1|< 1. Assuming the eigenvalues of Φ1 are less than
one in absolute value, backward substitution can be used to show that

1The definition of an eigenvalue is:
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Yt =
∞∑

i=0

Φ
i
1Φ0 +

∞∑
i=0

Φ
i
1ε t−i (5.3)

which, applying Theorem 5.3, is equivalent to

Yt = (Ik−Φ1)
−1

Φ0 +

∞∑
i=0

Φ
i
1ε t−i (5.4)

where the eigenvalue condition ensures that Φ
i
1 converges to zero as i grows large.

5.1.2.2 Mean

Taking expectations of Yt expressed in the backward substitution form yields

E [Yt ] = E
[
(Ik−Φ1)

−1
Φ0

]
+E

[ ∞∑
i=0

Φ
i
1ε t−i

]
(5.5)

= (Ik−Φ1)
−1

Φ0 +
∞∑

i=0

Φ
i
1E [ε t−i]

= (Ik−Φ1)
−1

Φ0 +
∞∑

i=0

Φ
i
10

= (Ik−Φ1)
−1

Φ0

The mean of a VAR process resembles that of a univariate AR(1), (1−φ1)
−1φ0.2 The long-run mean

depends on the intercept, Φ0, and the inverse of Φ1. The magnitude of the inverse is determined by

Definition 5.3 (Eigenvalue). λ is an eigenvalue of a square matrix A if and only if |A− λ In| = 0 where | · | denotes
determinant.

Definition 5.4. Eigenvalues play a unique role in the matrix power operator.

Theorem 5.1 (Singular Value Decomposition). Let A be an n by n real-valued matrix. Then A can be decomposed as
A = UΛV′ where V′U = U′V = In and Λ is a diagonal matrix containing the eigenvales of A.

Theorem 5.2 (Matrix Power). Let A be an n by n real-valued matrix. Then Am = AA . . .A = UΛV′UΛV′ . . .UΛV′ =
UΛ

mV′ where Λ
m is a diagonal matrix containing each eigenvalue of A raised to the power m.

The essential properties of eigenvalues for applications to VARs are given in the following theorem:

Theorem 5.3 (Convergent Matrices). Let A be an n by n matrix. Then the following statements are equivalent

• Am→ 0 as m→∞.

• All eigenvalues of A, λi, i = 1,2, . . . ,n, are less than 1 in modulus (|λi|< 1).

• The series
∑m

i=0 Am = In +A+A2 + . . .+Am→ (In−A)−1 as m→∞.

Note: Replacing A with a scalar a produces many familiar results: am → 0 as m→∞ (property 1) and
∑m

i=0 am →
(1−a)−1 as m→∞ (property 3) as long as |a|<1 (property 2).

2When a is a scalar where |a|< 1, then
∑∞

i=0 ai = 1/(1−a). This result extends to a k× k square matrix A when all
of the eigenvalues of A are less than 1, so that

∑∞
i=0 Ai = (Ik−A)

−1
.
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the eigenvalues of Φ1, and if any eigenvalue is close to one, then (Ik−Φ1)
−1 is large in magnitude

and, all things equal, the unconditional mean is larger. Similarly, if Φ1 = 0, then the mean is Φ0 since
{Yt} is a constant plus white noise.

5.1.2.3 Variance

Before deriving the variance of a VAR(1), it useful to express a VAR in deviations form. Define
µ = E[Yt ] to be the unconditional expectation (assumed it is finite). The deviations form of the
VAR(P)

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

is

Yt−µ = Φ1 (Yt−1−µ)+Φ2 (Yt−2−µ)+ . . .+ΦP (Yt−P−µ)+ ε t (5.6)

Ỹt = Φ1Ỹt−1 +Φ2Ỹt−2 + . . .+ΦPỸt−P + ε t .

The deviations form is mean 0 by construction, and so the backward substitution form in a VAR(1) is

Ỹt =
∞∑

i=1

Φ
i
1ε t−i. (5.7)

The deviations form translates the VAR from its original mean, µ , to a mean of 0. The process
written in deviations form has the same dynamics and shocks, and so can be used to derive the long-
run covariance and autocovariances and to simplify multistep forecasting. The long-run covariance is
derived using the backward substitution form so that

E
[
(Yt−µ)(Yt−µ)′

]
= E

[
ỸtỸ′t

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−i

)′]
(5.8)

= E

[ ∞∑
i=0

Φ
i
1ε t−iε

′
t−i
(
Φ
′
1
)′]

(Since ε t is WN)

=
∞∑

i=0

Φ
i
1E
[
ε t−iε

′
t−i
](

Φ
′
1
)′

=
∞∑

i=0

Φ
i
1Σ
(
Φ
′
1
)′

vec
(
E
[
(Yt−µ)(Yt−µ)′

])
= (Ik2−Φ1⊗Φ1)

−1 vec(Σ)

where µ = (Ik−Φ1)
−1Φ0. The similarity between the long-run covariance of a VAR(1) and the long-

run variance of a univariate autoregression, σ2/(1−φ 2
1 ), are less pronounced. The difference between
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these expressions arises since matrix multiplication is non-commutative (AB 6= BA, in general). The
final line makes use of the vec (vector) operator to compactly express the long-run covariance. The
vec operator and a Kronecker product stack the elements of a matrix product into a single column.3

The eigenvalues of Φ1 also affect the long-run covariance, and if any are close to 1, the long-run
covariance is large since the maximum eigenvalue determines the persistence of shocks. All things
equal, more persistence lead to larger long-run covariances since the effect of any shock last longer.

5.1.2.4 Autocovariance

The autocovariances of a vector-valued stochastic process are defined

Definition 5.7 (Autocovariance). The autocovariance matrices of k by 1 vector-valued covariance
stationary stochastic process {Yt} are defined

Γs = E[(Yt−µ)(Yt−s−µ)′] (5.10)

and
Γ−s = E[(Yt−µ)(Yt+s−µ)′] (5.11)

where µ = E[Yt ] = E[Yt− j] = E[Yt+ j].

The structure of the autocovariance function is the first significant deviation from the univariate
time-series analysis in chapter 4. Vector autocovarianes are reflected, and so are symmetric only when
transposed. Specifically,

3The vec of a matrix A is defined:

Definition 5.5 (vec). Let A = [ai j] be an m by n matrix. The vec operator (also known as the stack operator) is defined

vecA =


a1
a2
...

an

 (5.9)

where a j is the jth column of the matrix A.

The Kronecker Product is defined:

Definition 5.6 (Kronecker Product). Let A = [ai j] be an m by n matrix, and let B = [bi j] be a k by l matrix. The Kronecker
product is defined

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB


and has dimension mk by nl.

It can be shown that

Theorem 5.4 (Kronecker and vec of a product). Let A, B and C be conformable matrices as needed. Then

vec(ABC) = (C′⊗A)vecB
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Γs 6= Γ−s

but4

Γs = Γ
′
−s.

In contrast, the autocovariances of stationary scalar processes satisfy γs = γ−s. Computing the auto-
covariances uses the backward substitution form so that

Γs = E
[
(Yt−µ)(Yt−s−µ)′

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
(5.12)

= E

[(
s−1∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]

+E

[( ∞∑
i=0

Φ
s
1Φ

i
1ε t−s−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
(5.13)

= 0+Φ
s
1E

[( ∞∑
i=0

Φ
i
1ε t−s−i

)( ∞∑
i=0

Φ
i
1ε t−s−i

)′]
= Φ

s
1V [Yt ]

and

Γ−s = E
[
(Yt−µ)(Yt+s−µ)′

]
= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
i
1ε t+s−i

)′]
(5.14)

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

Φ
s
1Φ

i
1ε t−i

)′]

+E

( ∞∑
i=0

Φ
i
1ε t−i

)(
s−1∑
i=0

Φ
i
1ε t+s−i

)′ (5.15)

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

ε
′
t−i
(
Φ
′
1
)i (

Φ
′
1
)s

)]
+0

= E

[( ∞∑
i=0

Φ
i
1ε t−i

)( ∞∑
i=0

ε
′
t−i
(
Φ
′
1
)i

)](
Φ
′
1
)s

= V [Yt ]
(
Φ
′
1
)s

where V[Yt ] is the symmetric covariance matrix of the VAR. Like most properties of a VAR, the
autocovariance function of a VAR(1) closely resembles that of an AR(1): γs = φ

|s|
1 σ2/(1− φ 2

1 ) =

φ
|s|
1 V[Yt ].

4This follows directly from the property of a transpose that if A and B are compatible matrices, (AB)′ = B′A′.
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5.2 Companion Form

Any stationary VAR(P) can be rewritten as a VAR(1). Suppose {Yt} follows a VAR(P) process,

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t .

By subtracting the mean and stacking P lags of Yt into a large column vector denoted Zt , a VAR(P)
is equivalently expressed as a VAR(1) using the companion form.

Definition 5.8 (Companion Form of a VAR(P)). Let Yt follow a VAR(P) given by

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

where ε t is a vector white noise process and µ =
(

I−∑P
p=1 Φp

)−1
Φ0 = E[Yt ] is finite. The com-

panion form is
Zt = ϒZt−1 +ξ t (5.16)

where

Zt =


Yt−µ

Yt−1−µ

...
Yt−P+1−µ

 , (5.17)

ϒ =


Φ1 Φ2 Φ3 . . . ΦP−1 ΦP
Ik 0 0 . . . 0 0
0 Ik 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . Ik 0

 (5.18)

and

ξ t =


ε t
0
...
0

 ,E[ξ tξ
′
t ] =


Σ 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .. (5.19)

The properties of a VAR(P) are identical to that of its companion form VAR(1). For example, VAR(P)
is covariance stationary if all of the eigenvalues of ϒ - there are k×P of them - are less than one in
absolute value (modulus if complex).5

5.3 Empirical Examples

Two examples from the macrofinance literature are used throughout this chapter to illustrate the ap-
plication of VARs.

5The companion form is also useful when working with univariate AR(P) models. An AR(P) can be equivalently
expressed as a VAR(1), which simplifies computing properties such as the long-run variance and autocovariances.
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5.3.1 Example: The interaction of stock and bond returns

Stocks and bonds are often thought to hedge one another. VARs provide a simple method to determine
whether their returns are linked through time. Consider the VAR(1)[

VWMt
TERMt

]
=

[
φ01
φ02

]
+

[
φ11,1 φ12,1
φ21,1 φ22,1

][
VWMt−1
TERMt−1

]
+

[
ε1,t
ε2,t

]
where VWMt is the return on the value-weighted-market portfolio and T ERMt is the return on a port-
folio that is long the 10-year and short the 1-year U.S. government bond. The VAR contains a model
for stock returns

VWMt = φ01 +φ11,1VWMt−1 +φ12,1TERMt−1 + ε1,t

and a model for the return on the term premium,

TERMt = φ01 +φ21,1VWMt−1 +φ22,1TERMt−1 + ε2,t .

Since these models do not share any parameters, the coefficient can be estimated equation-by-equation
using OLS.6 A VAR(1) is estimated using monthly return data (multiplied by 12) for the VWM from
CRSP and the 10-year constant maturity treasury yield from FRED covering the period February 1962
until December 2018.7

[
VWMt
T ERMt

]
=

 0.801
(0.000)

0.232
(0.041)

+
 0.059

(0.122)
0.166
(0.004)

−0.104
(0.000)

0.116
(0.002)

[ VWMt−1
T ERMt−1

]
+

[
ε1,t
ε2,t

]

The p-value of each coefficient is reported in parenthesis. The estimates indicate that stock returns
are not predictable using past stock returns but are predictable using the returns on the lagged term
premium: positive returns on the term premium lead increase expected returns in stocks. In contrast,
positive returns in equities decrease the expected return on the term premium. The annualized long-
run mean can be computed from the estimated parameters as

12×
([

1 0
0 1

]
−
[

0.059 0.166
−0.104 0.116

])−1[ 0.801
0.232

]
=

[
10.558
1.907

]
.

These model-based estimates are similar to the sample averages of returns of 10.57 and 1.89 for VWM
and TERM, respectively.

5.3.2 Example: Monetary Policy VAR

VARs are widely used in macrofinance to model closely related macroeconomic variables. This exam-
ple uses a 3-variable VAR containing the unemployment rate, the effective federal funds rate, which
is the rate that banks use to lend to each other, and inflation. Inflation is measured using the implicit

6Theoretical motivations often lead to cross-parameter equality restrictions in VARs. These models cannot be esti-
mated equation-by-equation. A VAR subject to linear equality restrictions can be estimated using a system OLS estimator.

7The yields of the bonds are converted to prices, and then returns are computed as the log difference of the prices plus
accrued interest.
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Raw Data
∆ lnUNEMPt−1 FFt−1 ∆INFt−1

∆ lnUNEMPt 0.624
(0.000)

0.015
(0.001)

0.016
(0.267)

FFt −0.816
(0.000)

0.979
(0.000)

−0.045
(0.317)

∆INFt −0.501
(0.010)

−0.009
(0.626)

−0.401
(0.000)

Standardized Series
∆ lnUNEMPt−1 FFt−1 ∆INFt−1

∆ lnUNEMPt 0.624
(0.000)

0.153
(0.001)

0.053
(0.267)

FFt −0.080
(0.000)

0.979
(0.000)

−0.015
(0.317)

∆INFt −0.151
(0.010)

−0.028
(0.626)

−0.401
(0.000)

Table 5.1: Parameter estimates from the monetary policy VAR. The top panel contains estimates using
original, unmodified values while the bottom panel contains estimates from data standardized to have
unit variance. While the magnitudes of many coefficients change, the p-values and the eigenvalues of
the parameter matrices are identical, and the parameters are roughly comparable since the series have
the same variance.

GDP price deflator. Two of the three variables, the unemployment and inflation rates, appear to be
nonstationary when tested using an ADF test, and so are differenced.8

Using a VAR(1) specification, the model can be described

 ∆UNEMPt
FFt

∆INFt

= Φ0 +Φ1

 ∆UNEMPt−1
FFt−1

∆INFt−1

+
 ε1,t

ε2,t
ε3,t

 .
Two sets of parameters are presented in Table 5.1. The top panel contains estimates using non-
scaled data. The bottom panel contains estimates from data where each series is standardized to have
unit variance. Standardization produces coefficients that have comparable magnitudes. Despite this
transformation and very different parameter estimates, the p-values remain unchanged since OLS
t-stats are invariant to rescalings of this type. The eigenvalues of the two parameter matrices are
identical, and so the estimate of the persistence of the process is not affected by standardizing the
data.

8All three series, UNRATE (unemployment), DFF (Federal Funds), and GDPDEF (deflator), are available in FRED.
The unemployment and Federal Funds rates are aggregated to quarterly by taking the mean of all observations within a
quarter. The inflation rate is computed from the deflator as 400ln(GDPDEFt/GDPDEFt−1) .
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5.4 VAR forecasting

Constructing forecasts of a vector time series is identical to constructing the forecast from a single
time series. h-step forecasts are recursively constructed starting with Et [Yt+1], using Et [Yt+1] to
construct Et [Yt+2], and continuing until Et [Yt+h].

Recall that the h-step ahead forecast, Ŷt+h|t in an AR(1) is

Et [Yt+h] =
h−1∑
j=0

φ
j

1 φ0 +φ
h
1Yt .

The h-step ahead forecast of a VAR(1) , Ŷt+h|t , has the same structure, and is

Et [Yt+h] =
h−1∑
j=0

Φ
j
1Φ0 +Φ

h
1Yt .

This formula can be used to produce multi-step forecast of any VAR using the companion form.
In practice, it is simpler to compute the forecasts using the deviations form of the VAR since it

includes no intercept,

Ỹt = Φ1Ỹt−1 +Φ2Ỹt−2 + . . .+ΦPỸt−P + ε t ,

where µ = (Ik−Φ1− . . .−ΦP)
−1

Φ0 and Ỹt = Yt − µ are mean 0. The h-step forecasts from the
deviations form are computed using the recurrence

Et [Ỹt+h] = Φ1Et [Ỹt+h−1]+Φ2Et [Ỹt+h−2]+ . . .+ΦPEt [Ỹt+h−P].

starting at Et [Ỹt+1]. Using the forecast of Et [Ỹt+h], the h-step ahead forecast of Yt+h is constructed
by adding the long-run mean, Et [Yt+h] = µ +Et [Ỹt+h].

5.4.1 Example: Monetary Policy VAR

Forecasts from VARs incorporate information beyond the history of a single time series. Table 5.2
contains the relative Mean Square Error of out-of-sample forecasts for the three variables in the policy
VAR. Each set of forecasts is produced by recursively estimating model parameters using a minimum
of 50% of the available sample. Forecasts are produced for up to 8 quarters ahead. Each series is also
forecast using a univariate AR model.

The out-of-sample MSE of the forecasts from a model is defined

MSE = 1/T−h−R

T−h∑
t=R

(
Yt+h− Ŷt+h|t

)2

where R is the size of the initial in-sample period, Yt+h is the realization of the variable in period t+h,
and Ŷt+h|t is the h-step ahead forecast produced at time t. The relative MSE is defined as

Relative MSE =
MSE

MSEbm
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VAR AR
Horizon Series Restricted Unrestricted Restricted Unrestricted

Unemployment 0.522 0.520 0.520 0.521
1 Fed. Funds Rate 0.887 0.903 0.917 0.927

Inflation 0.869 0.868 0.839 0.839

Unemployment 0.716 0.710 0.743 0.745
2 Fed. Funds Rate 0.923 0.943 1.102 1.119

Inflation 1.082 1.081 1.030 1.030

Unemployment 0.872 0.861 0.962 0.965
4 Fed. Funds Rate 0.952 0.976 1.071 1.098

Inflation 1.000 0.999 0.998 0.998

Unemployment 0.820 0.806 0.971 0.977
8 Fed. Funds Rate 0.974 1.007 1.058 1.105

Inflation 1.001 1.000 0.998 0.997

Table 5.2: Relative out-of-sample Mean Square Error for forecasts between 1 and 8-quarters ahead.
The benchmark model is a constant for the unemployment rate and the inflation rate and a random
walk for the Federal Funds rate. Model parameters are recursively estimated, and forecasts are pro-
duced once 50% of the available sample. Model order is selected using the BIC.

where MSEbm is the out-of-sample MSE of a benchmark model. The Federal Funds rate is modeled
in levels, and so the benchmark model is a random walk. The other two series are differenced, and so
use the historical mean (an AR(0)) as the benchmark model. The number of lags in either the VAR or
the AR is selected by minimizing the BIC (see Section 5.5).

Each model is estimated using two methods, the standard estimator and a restricted estimator
where the long-run mean forced to match the in-sample mean. The restricted model is estimated in
two steps. First, the sample mean is subtracted, and then the model is estimated without a constant.
The forecasts are then constructed using the sample mean plus the forecast of the demeaned data.
The two-step estimator ensures that the model mean reverts to the historical average. The unrestricted
model jointly estimates the intercept with the parameters that capture the dynamics and so does not
revert (exactly) to the sample mean even over long horizons. These two method can produce qual-
itatively different forecasts in persistent time series due to differences in the average values of the
data used as lags (Ȳt− j = (T −P)−1∑T− j

t=P− j+1 Yt for j = 1,2, . . . ,P) and the average value of the

contemporaneous values (Ȳt = (T −P)−1∑T
t=P+1 Yt). The two-step estimator uses the same mean

value for both, Ȳ = T−1∑P
t=1 Yt .

The VAR performs well in this forecasting problem. It produced the lowest MSE in 7 of 12
horizon-series combinations. When it is not the best model, it performs only slightly worse than
the autoregression. Ultimately, the choice of a model to use in forecasting applications – either
multivariate or univariate – is an empirical question that is best answered using in-sample analysis
and pseudo-out-of-sample forecasting.
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5.5 Estimation and Identification

Understanding the dependence structure in VAR models requires additional measures of cross-variable
relationships. The cross-correlation function (CCF) and partial cross-correlation function (PCCF) ex-
tend the autocorrelation and partial autocorrelation functions used to identify the model order in a
single time series.

Definition 5.9 (Cross-correlation). The sth cross correlations between two covariance stationary series
{xt} and {Yt} are defined

ρxy,s =
E[(xt−µx)(Yt−s−µy)]√

V[xt ]V[Yt ]
(5.20)

and

ρyx,s =
E[(Yt−µy)(xt−s−µx)]√

V[xt ]V[Yt ]
(5.21)

where the order of the indices indicates the lagged variable, E[Yt ] = µy and E[xt ] = µx.

Cross-correlations, unlike autocorelations, are not symmetric in the order of the arguments. Partial
cross-correlations are defined using a similar extension of partial autocorrelation as the correlation
between xt and Yt−s controlling for Yt−1, . . . ,Yt−(s−1).

Definition 5.10 (Partial Cross-correlation). The partial cross-correlations between two covariance
stationary series {xt} and {Yt} are defined as the population values of the coefficients ϕxy,s in the
regression

xt = φ0 +φx1xt−1 + . . .+φxs−1xt−(s−1)+φy1Yt−1 + . . .+φys−1Yt−(s−1)+ϕxy,sYt−s + εx,t (5.22)

and ϕyx,s in the regression

Yt = φ0 +φy1Yt−1 + . . .+φys−1Yt−(s−1)+φx1xt−1 + . . .+φxs−1xt−(s−1)+ϕyx,sxt−s + εy,t (5.23)

where the order of the indices indicates which lagged variable. In a k-variable VAR, the PCCF of
series i with respect to series j is the population value of the coefficient ϕYiY js in the regression

Yit = φ0 +φ
′
1Yt−1 + . . .+φ

′
s−1 +ϕYiY jsYjt−s + εi

where φ j are 1 by k vectors of parameters.
The controls in the sth partial cross-correlation are included variables in a VAR(s-1). If the data are
generated by a VAR(P), then the sth partial cross-correlation is 0 whenever s > P. This behavior
is analogous to the behavior of the PACF in an AR(P) model. The PCCF is a useful diagnostic to
identify the order of a VAR and for verifying the order of estimated models when applied to residuals.

Figure 5.1 plots 1,000 simulated data points from a high-order bivariate VAR. One component
of the VAR follows a HAR(22) process with no spillovers from the other component. The second
component is substantially driven by both spillovers from the HAR and its own innovation. The
complete specification of the VAR(22) is
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Simulated data from a VAR(22)

200 400 600 800 1000

10

5

0

5

10

x
y

Figure 5.1: Simulated data from the VAR(22) in eq. (5.24). Both processes are stationary but highly
persistent and have a high degree of comovement.

[
xt
Yt

]
=

[
0.5 0.9
.0 0.47

][
xt−1
Yt−1

]
+

5∑
i=2

[
0 0
0 0.06

][
xt−i
Yt−i

]
+

22∑
j=6

[
0 0
0 0.01

][
xt− j
Yt− j

]
+

[
εx,t
εy,t

]
.

(5.24)
Figure 5.2 contains plots of the theoretical ACF and CCF (cross-correlation function) of this VAR.
Both ACFs and CCFs indicate that the series are highly persistent. They also show that both variables
are a strong predictor of either at any lag since the squared correlation can be directly interpretable
as an R2. Figure 5.3 contains plots of the partial auto- and cross-correlation function. These are
markedly different from the ACFs and CCFs. The PACF and PCCF of x both cut off after one lag.
This happens since x has 0 coefficients on all lagged values after the first. The PACF and PCCF of y
are more complex. The PACF resembles the step-function of the coefficients in the HAR model. It
cuts off sharply after 22 lags since this is the order of the VAR. The PCCF of y is also non-zero for
many lags, and only cuts off after 21. The reduction in the cut-off is due to the structure of the VAR
where x is only exposed to the lagged value of y at the first lag, and so the dependence is reduced by
one.

These new definitions enable the key ideas of the Box-Jenkins methodology to be extended to vec-
tor processes. While this extension is technically possible, using the ACF, PACF, CCF, and PCCF
to determine the model lag length is difficult. The challenge of graphical identification of the or-
der is especially daunting in specifications with more than two variables since there are many de-
pendence measures to inspect – a k-dimensional stochastic process has 2

(
k2− k

)
distinct auto- and

cross-correlation functions.
The standard approach is to adopt the approach advocated in Sims (1980). The VAR specification

should include all variables that theory indicates are relevant, and the lag length should be chosen so
that the model has a high likelihood of capturing all of the dynamics. Once the maximum value of
the lag length is chosen, a general-to-specific search can be conducted to reduce the model order, or
an information criterion can be used to select an appropriate lag length. In a VAR, the Akaike IC,
Hannan and Quinn (1979) IC and the Schwarz/Bayesian IC are
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Auto and Cross Correlations
ACF (x on lagged x) CCF (x on lagged y)
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Figure 5.2: The four panels contain the ACFs and CCFs of the VAR(22) process in eq. (5.24).

AIC: ln |Σ̂(P)|+ k2P
2
T

HQIC: ln |Σ̂(P)|+ k2P
2ln lnT

T

BIC: ln |Σ̂(P)|+ k2P
lnT
T

where Σ̂(P) is the covariance of the residuals estimated using a VAR(P) and | · | is the determinant.9 All
models must use the same values on the left-hand-side irrespective of the lags included when choosing
the lag length. In practice, it is necessary to adjust the sample when estimating the parameters of
models with fewer lags than the maximum allowed. For example, when comparing models with up to
2 lags, the largest model is estimated by fitting observations 3,4, . . . ,T since two lags are lost when
constructing the right-hand-side variables. The 1-lag model should also fit observations 3,4, . . . ,T
and so observation 1 is excluded from the model since it is not needed as a lagged variable.

9ln |Σ̂| is, up to an additive constant, the Gaussian log-likelihood divided by T . These three information criteria are all
special cases of the usual information criteria for log-likelihood models which take the form −L+PIC where PIC is the
penalty which depends on the number of estimated parameters in the model and the information criterion.
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Partial Auto and Cross Correlations
PACF (x on lagged x) PCCF (x on lagged y)
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Figure 5.3: The four panels contain the PACFs and PCCFs of the VAR(22) process in eq. (5.24).
Values marked with a red x are exactly 0.

The lag length should be chosen to minimize one of the criteria. The BIC has the most substantial
penalty term and so always chooses a (weakly) smaller model than the HQIC. The AIC has the small-
est penalty, and so selects the largest model of the three ICs. Ivanov and Kilian (2005) recommend
the AIC for monthly models and the HQIC for quarterly models unless the sample size is less than
120 quarters. In short samples, the BIC is preferred. Their recommendation is based on the accuracy
of the impulse response function, and so may not be ideal in other applications, e.g., forecasting.

Alternatively, a likelihood ratio test can be used to test whether to specifications are equivalent.
The LR test statistic is

(T −P2k2)
(
ln |Σ̂(P1)|− ln |Σ̂(P2)|

) A∼ χ
2
(P2−P1)k2 ,

where P1 is the number of lags in the restricted (smaller) model, P2 is the number of lags in the
unrestricted (larger) model and k is the dimension of Yt . Since model 1 is a restricted version of
model 2, its covariance is larger and so this statistic is always positive. The −P2k2 term in the log-
likelihood is a degree of freedom correction that generally improves small-sample performance of
the test. Ivanov and Kilian (2005) recommend against using sequential likelihood ratio testing in lag
length selection.
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Lag Length AIC HQIC BIC LR P-val

0 4.014 3.762 3.605 925 0.000
1 0.279 0.079 0.000HN 39.6 0.000
2 0.190 0.042 0.041 40.9 0.000
3 0.096 0.000H 0.076 29.0 0.001
4 0.050H 0.007 0.160 7.34 0.602H

5 0.094 0.103 0.333 29.5 0.001
6 0.047 0.108 0.415 13.2 0.155
7 0.067 0.180 0.564 32.4 0.000
8 0.007 0.172N 0.634 19.8 0.019
9 0.000N 0.217 0.756 7.68 0.566N

10 0.042 0.312 0.928 13.5 0.141
11 0.061 0.382 1.076 13.5 0.141
12 0.079 0.453 1.224 – –

Table 5.3: Normalized values for the AIC, HQIC, and BIC in a Monetary Policy VAR. The informa-
tion criteria are normalized by subtracting the smallest value from each column. The LR and P-value
in each row are for a test with the null that the coefficient on lag l+1 are all zero (H0 : Φl+1 = 0) and
the alternative H1 : Φl+1 6= 0. Values marked with H indicate the lag length selected using a specific-
to-general search. Values marked with N indicate the lag length selected using general-to-specific.

5.5.1 Example: Monetary Policy VAR

The Monetary Policy VAR is used to illustrate lag length selection. The information criteria, log-
likelihoods, and p-values from the LR tests are presented in Table 5.3. This table contains the AIC,
HQIC, and BIC values for lags 0 (no dynamics) through 12 as well as likelihood ratio test results for
testing l lags against l +1. Note that the LR and P-value corresponding to lag l test the null that the
fit using l lags is equivalent to the fit using l + 1 lags. Using the AIC, 9 lags produces the smallest
value and is selected in a general-to-specific search. A specific-to-general search stops at 4 lags since
the AIC of 5 lags is larger than the AIC of 4. The HQIC chooses 3 lags in a specific-to-general
search and 9 in a general-to-specific search. The BIC selects a single lag irrespective of the search
direction. A general-to-specific search using the likelihood ratio chooses 9 lags, and a hypothesis-
test-based specific-to-general procedure chooses 4. The specific-to-general stops at 4 lags since the
null H0 : P = 4 tested against the alternative that H1 : P = 5 has a p-value of 0.602, which indicates
that these models provide similar fits of the data.

Finally, the information criteria are applied in a “global search” that evaluates models using every
combination of lags up to 12. This procedure fits a total of 4096 VARs (which only requires a few
seconds on a modern computer), and the AIC, HQIC, and the BIC are computed for each.10 Using
this methodology, the AIC search selected lags 1–3 and 7–9, the HQIC selects lags 1–3, 6, and 8, and
the BIC continues to select a parsimonious model that includes only the first lag. Search procedures
of this type are computationally viable for checking up to 20 lags.

10For a maximum lag length of L, 2L models must be estimated.
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5.6 Granger causality

Granger causality (GC, also known as prima facia causality) is the first concept exclusive to vector
analysis. GC is the standard method to determine whether one variable is useful in predicting another
and evidence of Granger causality it is a good indicator that a VAR, rather than a univariate model, is
needed.

Granger causality is defined in the negative.

Definition 5.11 (Granger causality). A scalar random variable xt does not Granger cause Yt if E[Yt |xt−1,Yt−1,xt−2,Yt−2, . . .]=
E[Yt |,Yt−1,Yt−2, . . .].11 That is, xt does not Granger cause Yt if the forecast of Yt is the same whether
conditioned on past values of xt or not.

Granger causality can be simply illustrated in a bivariate VAR.[
xt
Yt

]
=

[
φ11,1 φ12,1
φ21,1 φ22,1

][
xt−1
Yt−1

]
+

[
φ11,2 φ12,2
φ21,2 φ22,2

][
xt−2
Yt−2

]
+

[
ε1,t
ε2,t

]
In this model, if φ21,1 = φ21,2 = 0 then xt does not Granger cause Yt . Note that xt not Granger causing
Yt says nothing about whether Yt Granger causes xt .

An important limitation of GC is that it does not account for indirect effects. For example, suppose
xt and Yt are both Granger caused by Zt . xt is likely to Granger cause Yt in a model that omits Zt if
E[Yt |Yt−1,xt−1, . . .] 6= E[Yt |Yt−1, . . .] even though E[Yt |Yt−1,Zt−1,xt−1, . . .] = E[Yt |Yt−1,Zt−1, . . .].

Testing

Testing Granger causality in a VAR(P) is implemented using a likelihood ratio test. In the VAR(P),

Yt = Φ0 +Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t ,

Yj,t does not Granger cause Yi,t if φi j,1 = φi j,2 = . . . = φi j,P = 0. The likelihood ratio test statistic
for testing the null H0 : φi j,m = 0, ∀m ∈ {1,2, . . . ,P} against the alternative H1 : φi j,m 6= 0 ∃m ∈
{1,2, . . . ,P} is

(T − (Pk2− k))
(
ln |Σ̂r|− ln |Σ̂u|

) A∼ χ
2
P

where Σr is the estimated residual covariance when the null of no Granger causation is imposed
(H0 : φi j,1 = φi j,2 = . . .= φi j,P = 0) and Σu is the estimated covariance in the unrestricted VAR(P).12

5.6.1 Example: Monetary Policy VAR

The monetary policy VAR is used to illustrate testing Granger causality. Table 5.4 contains the results
of Granger causality tests in the monetary policy VAR with three lags (as chosen by the HQIC). Tests
of a variable causing itself have been omitted since these are not informative about the need for a

11Technically, this definition is for Granger causality in the mean. Other definition exist for Granger causality in the
variance (replace conditional expectation with conditional variance) and distribution (replace conditional expectation with
conditional distribution).

12The multiplier in the test is a degree of freedom adjusted factor. There are T data points, and there are Pk2− k
parameters in the restricted model.
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Fed. Funds Rate Inflation Unemployment
Exclusion P-val Stat P-val Stat P-val Stat

Fed. Funds Rate – – 0.001 13.068 0.014 8.560
Inflation 0.001 14.756 – – 0.375 1.963
Unemployment 0.000 19.586 0.775 0.509 – –
All 0.000 33.139 0.000 18.630 0.005 10.472

Table 5.4: Tests of Granger causality. This table contains tests where the variable on the left-hand
side is excluded from the regression for the variable along the top. Since the null is no GC, rejection
indicates a relationship between past values of the variable on the left and contemporaneous values of
variables on the top.

multivariate model. The table contains tests whether the variables in the left-hand column Granger
Cause the variables labeled across the top. Each row contains a p-value indicating significance using
standard test sizes (5 or 10%), and so each variable causes at least one other variable. Column-by-
column examination demonstrated that every variable is caused by at least one other variable. The
final row labeled All tests the null that a univariate model performs as well as a multivariate model by
restricting all variable other than the target to have zero coefficients. This test further confirms that
the VAR is required for each component.

5.7 Impulse Response Functions

In the univariate world, the MA(∞) representation of an ARMA is sufficient to understand how a
shock decays. When analyzing vector data, this is no longer the case. A shock to one series has an
immediate effect on that series, but it can also affect the other variables in the system which, in turn,
feed back into the original variable. It is not possible to visualize the propagation of a shock using
only the estimated parameters in a VAR. Impulse response functions simplify this task by providing
a visual representation of shock propagation.

5.7.1 Defined

Definition 5.12 (Impulse Response Function). The impulse response function of Yi, an element of Y,
with respect to a shock in ε j, an element of ε , for any j and i, is defined as the change in Yit+s, s≥ 0
for a one standard deviation shock in ε j,t .

This definition is somewhat difficult to parse and the impulse response function easier to under-
stand using the vector moving average (VMA) representation of a VAR.13 When Yt is covariance
stationary then it must have a VMA representation,

Yt = µ + ε t +Ξ1ε t−1 +Ξ2ε t−2 + . . .

13Recall that a stationary AR(P) can also be transformed into a MA(∞). Transforming a stationary VAR(P) into a
VMA(∞) is the multivariate time-series analogue.
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Using this VMA, the impulse response of Yi with respect to a shock in ε j at period h is

IRFh = σ jΞhe j (5.25)

where e j is a vector of 0s with 1 in position j, e j =

0, . . . ,0︸ ︷︷ ︸
j−1

,1,0, . . . ,0︸ ︷︷ ︸
k− j


′

and where σ j is the stan-

dard deviation of ε j. These impulse responses are then
{

σ j,σ jΞ
[ii]
1 ,σ jΞ

[ii]
2 ,σ jΞ

[ii]
3 , . . .

}
if i = j and{

0,σ jΞ
[i j]
1 ,σ jΞ

[i j]
2 ,σ jΞ

[i j]
3 , . . .

}
otherwise where Ξ

[i j]
m is the element in row i and column j of Ξm. The

coefficients of the VMA can be computed from the VAR using the relationship

Ξ j = Φ1Ξ j−1 +Φ2Ξ j−2 + . . .+ΦPΞ j−P

where Ξ0 = Ik and Ξm = 0 for m < 0. For example, in a VAR(2),

Yt = Φ1Yt−1 +Φ2Yt−2 + ε t ,

Ξ0 = Ik, Ξ1 = Φ1, Ξ2 = Φ
2
1 +Φ2, and Ξ3 = Φ

3
1 +Φ1Φ2 +Φ2Φ1.

5.7.2 Orthogonal Impulse Response Functions

The previous discussion assumed shocks are uncorrelated so that a shock to component j had no
effect on the other components of the error. This assumption is problematic since the shocks are
often correlated, and so it is not possible to change one in isolation. The model shocks have covari-
ance Cov [ε t ] = Σ, and so a set of orthogonal shocks can be produced as η t = Σ

−1/2
ε t . Using these

uncorrelated and standardized shocks, the VMA is now

Yt = µ + ε t +Ξ1Σ
1/2

Σ
−1/2

ε t−1 +Ξ2Σ
1/2

Σ
−1/2

ε t−2 + . . .

= µ +Σ
1/2

η t + Ξ̃1η t−1 + Ξ̃2η t−2 + . . .

where Ξ̃m = ΞmΣ
1/2. The impulse response for a shock to series j in period h is Σ

1/2e j in period 0,

OIRFh = Ξ̃he j (5.26)

for h≥ 1. If Σ is diagonal, then these impulse responses are identical to the expression in eq. (5.25).
In practice, the Cholesky factor is used as the square root of the covariance matrix. The Cholesky

factor is a lower triangular matrix which imposes a de facto ordering to the shocks. For example, if

Σ =

[
1 1
1 4

]
,

then the Cholesky factor is

Σ
1/2
C =

[
1 0
1 2

]
so that Σ = Σ

1/2
C

(
Σ

1/2
C

)′
. Shocking element j has an effect of every series the appears after j ( j, . . . ,k)

but not on the first j−1 (1, . . . , j−1). In some contexts, it is plausible that there is a natural order to
the shocks since some series are faster than others.
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In the monetary policy VAR, it is commonly assumed that changes in the Federal Funds rate
immediately spillover to unemployment and inflation, but that unemployment and inflation only feed-
back into the Federal Funds rate with a lag. Similarly, it is commonly assumed that changes in
unemployment affect inflation immediately, but that inflation does not have a contemporaneous im-
pact on unemployment. When using the Cholesky factor, the impulse responses depend on the order
of the variables in the VAR. Additionally, in many important applications – for example when a VAR
includes multiple financial variables – then there is no plausible method to order the shocks since
financial variables are likely to react simultaneously to a shock.

The leading alternative to the using the Cholesky factor is to use a Generalized Impulse Response
function (Pesaran and Shin, 1998). This method is invariant to the order of the variables since it does
not use a matrix square root. The GIRF is justified as the difference measuring between the conditional
expectation of Yt+h given shock j is one standard deviation and the conditional expectation of Yt+h,

Et
[
Yt+h|ε j = σ j

]
−Et [Yt+h] .

When the VAR is driven by normally distributed errors, this expression is

GIRFh = σ
−1
j ΞhΣe j. (5.27)

The GIRF is equivalently expressed as

Ξh
[
σ1 j,σ2 j, . . . ,σk j

]′
/σ j j×σ j = Ξh

[
β1 j,β2 j, . . . ,βk j

]′
σ j

where βi j is the population value of th regression coefficient of regressing εit on ε jt .

5.7.3 Example: Impulse Response in the Monetary Policy VAR

The monetary policy VAR is used to illustrate impulse response functions. Figure 5.4 contains the
impulse responses of the three variable to the three shocks. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky, and it is assumed that
the shock to the Federal Funds Rate impacts all variables immediately, the shock the unemployment
affects inflation immediately but not the Federal Funds rate, and that the inflation shock has no im-
mediate effect. The unemployment rate is sensitive to changes in the Federal Funds rate, and one
standard deviation shock reduces the change (∆UNEMPt) in the unemployment rate by up to 0.15%
as the impulse evolves.

5.7.4 Confidence Intervals

Impulse response functions, like the parameters of the VAR, are estimated quantities and subject to
statistical variation. Confidence bands are used to determine whether an impulse response different
from zero. Since the parameters of the VAR are asymptotically normally distributed (as long as it
is stationary and the innovations are white noise), the impulse responses also asymptotically normal,
which follows as an application of the δ -method. The analytical derivation of the covariance of the
impulse response function is tedious (see Section 11.7 in Hamilton (1994) for details). Instead, two
computational methods to construct confidence bands of impulse response functions are described:
Monte Carlo and bootstrap.
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Impulse Response Function
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Figure 5.4: Impulse response functions for 16 quarters. The dotted lines represent two standard
deviation confidence intervals. The covariance is factored using the Cholesky so that a shock to the
Federal Funds rate spills over immediately to the other two variables, an unemployment shock spills
over to inflation, and an inflation shock has no immediate effect on the other series.

5.7.4.1 Monte Carlo Confidence Intervals

Monte Carlo confidence intervals come in two forms, one that directly simulates Φ̂i from its asymp-
totic distribution and one that simulates the VAR and draws Φ̂i as the result of estimating the unknown
parameters in the simulated VAR. The direct sampling method is simple:
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1. Compute θ̂ from the data and estimate the covariance matrix Λ̂ in the asymptotic distribution√
T (θ̂ −θ)

A∼ N(0, Λ̂) where θ is the collection of all model parameters, Φ0,Φ1, . . . ,ΦP and Σ.

2. Using θ̂ and Λ̂, generate simulated values Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b from the asymptotic distri-
bution as θ̂ +Λ̂

1/2
ε where ε

i.i.d.∼ N(0,Ik2(P+1)). These are i.i.d.draws from a N(θ̂ , Λ̂) distribution.

3. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̂ jb} where j = 1,2, . . . ,h.
Save these values.

4. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

5. For each impulse response and each horizon, sort the responses. The 5th and 95th percentile of
this distribution are the confidence intervals.

The second Monte Carlo method simulates data assuming the errors are i.i.d.normally distributed,
and then uses these values to produce a draw from the joint distribution of the model parameters. This
method avoids the estimation of the parameter covariance matrix Λ̂ in the alternative Monte Carlo
method.

1. Compute Φ̂ from the initial data and estimate the residual covariance Σ̂.

2. Using Φ̂ and Σ̂, simulate a time-series {Ỹt} with as many observations as the original data.
These can be computed directly using forward recursion

Ỹt = Φ̂0 + Φ̂1Yt−1 + . . .+ Φ̂PYt−P + Σ̂
1/2

ε t

where ε
i.i.d.∼ N(0,Ik) are multivariate standard normally distributed. The P initial values are

set to a consecutive block of the historical data chosen at random, Yτ ,Yτ+1, . . . ,Yτ+P−1 for
τ ∈ {1, . . . ,T −P}.

3. Using {Ỹt}, estimate the model parameters Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b.

4. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̂ jb} where j = 1,2, . . . ,h.
Save these values.

5. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

6. For each impulse response for each horizon, sort the impulse responses. The 5th and 95th

percentile of this distribution are the confidence intervals.

Of these two methods, the former should be preferred since the assumption of i.i.d.normally dis-
tributed errors in the latter may be unrealistic, especially when modeling financial data.
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5.7.4.2 Bootstrap Confidence Intervals

The bootstrap is a simulation-based method that resamples from the observed data produce a simu-
lated data set. The idea behind this method is simple: if the residuals are realizations of the actual
error process, one can use them directly to simulate this distribution rather than making an arbitrary
assumption about the error distribution (e.g., i.i.d.normal). The procedure is essentially identical to
the second Monte Carlo procedure outlined above:

1. Compute Φ̂ from the initial data and estimate the residuals ε̂ t .

2. Using ε̂ t , compute a new series of residuals ε̃ t by sampling, with replacement, from the original
residuals. The new series of residuals can be described

{ε̂u1, ε̂u2, . . . , ε̂uT }

where ui are i.i.d.discrete uniform random variables taking the values 1,2, . . . ,T . In essence,
the new set of residuals is just the old set of residuals reordered with some duplication and
omission.14

3. Using Φ̂ and {ε̂u1, ε̂u2, . . . , ε̂uT }, simulate a time-series {Ỹt} with as many observations as the
original data. These can be computed directly using the VAR

Ỹt = Φ̂0 + Φ̂1Yt−1 + . . .+ Φ̂PYt−P + ε̂ut

4. Using {Ỹt}, compute estimates of Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b from a VAR.

5. Using Φ̂0b,Φ̂1b, . . . ,Φ̂Pb and Σ̂b, compute the impulse responses {Ξ̆ jb} where j = 1,2, . . . ,h.
Save these values.

6. Return to step 2 and compute a total of B impulse responses. Typically B is between 100 and
1000.

7. For each impulse response for each horizon, sort the impulse responses. The 5th and 95th

percentile of this distribution are the confidence intervals.

5.8 Cointegration

Many economic time-series are nonstationarity and so standard VAR analysis which assumes all
series are covariance stationary is unsuitable. Cointegration extends stationary VAR models to non-
stationary time series. Cointegration analysis also provides a method to characterize the long-run
equilibrium of a system of non-stationary variables. Before more formally examining cointegration,
consider the consequences if two economic variables that have been widely documented to contain
unit roots, consumption and income, have no long-run relationship. Without a stable equilibrium
relationship, the values of these two variables would diverge over time. Individuals would either have
extremely high saving rates – when income is far above consumption, or become incredibly indebted.

14This is one version of the bootstrap and is appropriate for homoskedastic data. If the data are heteroskedastic, some
form of block bootstrap is needed.
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These two scenarios are implausible, and so there must be some long-run (or equilibrium) relationship
between consumption and income. Similarly, consider the relationship between the spot and future
price of oil. Standard finance theory dictates that future’s price, ft , is a conditionally unbiased estimate
of the spot price in period t +1, st+1 (Et [st+1] = ft , assuming various costs such as the risk-free rate
and storage are 0). Additionally, today’s spot price is also an unbiased estimate of tomorrow’s spot
price (Et [st+1] = st). However, both the spot and future price contain unit roots. Combining these two
identities reveals a cointegrating relationship: st − ft should be stationary even if the spot and future
prices contain unit roots.15

In stationary time-series, whether scalar or when the multiple processes are linked through a VAR,
the process is self-equilibrating; given enough time, a process reverts to its unconditional mean. In a
VAR, both the individual series and linear combinations of the series are stationary. The behavior of
cointegrated processes is meaningfully different. Each component of a cointegrated process contains
a unit root, and so has shocks with a permanent impact. However, when combined with another series,
a cointegrated pair revert towards one another. A cointegrated pair is mean reverting to a stochastic
trend (a unit root process), rather than to fixed value.

Cointegration and error correction provide a set of tools to analyze long-run relationships and
short-term deviations from the equilibria. Cointegrated time-series exhibit temporary deviations from
a long-run trend but are ultimately mean reverting to this trend. The Vector Error Correction Model
(VECM) explicitly includes the deviation from the long-run relationship when modeling the short-
term dynamics of the time series to push the components towards their long-run relationship.

5.8.1 Definition

Recall that a first-order integrated process is not stationary in levels but is stationary in differences.
When this is the case, Yt is I(1) and ∆Yt = Yt −Yt−1 is I(0). Cointegration builds on this structure
by defining relationships across series which transform multiple I(1) series into I(0) series without
using time-series differences.

Definition 5.13 (Bivariate Cointegration). Let {xt} and {Yt} be two I(1) series. These series are
cointegrated if there exists a vector β with both elements non-zero such that

β
′[xt Yt ]

′ = β1xt−β2Yt ∼ I(0) (5.28)

This definition states that there exists a nontrivial linear combination of xt and Yt that is station-
ary. This feature – a stable relationship between the two series, is a powerful tool in the analysis of
nonstationary data. When treated individually, the data are extremely persistent; however, there is a
well-behaved linear combination with transitory shocks that is stationary. Moreover, in many cases,
this relationship takes a meaningful form such as Yt− xt .

Cointegrating relationships are only defined up to a non-zero constant. For example if xt −βYt
is a cointegrating relationship, then 2xt − 2βYt = 2(xt − βYt) is also a cointegrating relationship.
The standard practice is to normalize the vector on one of the variables so that its coefficient is
unity. For example, if β1xt − β2Yt is a cointegrating relationship, the two normalized versions are
xt−β2/β1Yt = xt− β̃Yt and Yt−β1/β2xt = Yt− β̈xt .

The complete definition in the general case is similar, albeit slightly more intimidating.

15This assumes the horizon is short.
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Nonstationary and Stationary VAR(1)s
Cointegration (Φ11) Independent Unit Roots(Φ12)

20 40 60 80 100 20 40 60 80 100

Persistent, Stationary (Φ21) Anti-persistent, Stationary(Φ22)

20 40 60 80 100 20 40 60 80 100

Figure 5.5: A plot of four time-series that all begin at the same initial value and use the same shocks.
All data are generated by Yt = Φi jYt−1 + ε t where Φi j varies across the panels.

Definition 5.14 (Cointegration). A set of k variables Yt are cointegrated if at least two series are I(1)
and there exists a non-zero, reduced rank k by k matrix π such that

πYt ∼ I(0). (5.29)

The non-zero requirement is obvious: if π = 0 then πYt = 0 and this time series is trivially I(0).
The second requirement that π is reduced rank is not. This technical requirement is necessary since
whenever π is full rank and πYt ∼ I(0), the series must be the case that Yt is also I(0). However, for
variables to be cointegrated, they must be integrated. If the matrix is full rank, the common unit roots
cannot cancel, and πYt must have the same order of integration as Y. Finally, the requirement that at
least two of the series are I(1) rules out the degenerate case where all components of Yt are I(0), and
allows Yt to contain both I (0) and I(1) random variables. If Yt contains both I(0) and I(1) random
variables, then the long-run relationship only depends on the I(1) random variable.

For example, suppose the components of Yt = [Y1t ,Y2t ]
′ are cointegrated so that Y1t − βY2t is

stationary. One choice for π is

π =

[
1 −β

1 −β

]
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To begin developing an understanding of cointegration, examine the plots in Figure 5.5. These four
plots show two nonstationary processes and two stationary processes all initialized at the same value
and using the same shocks. These plots contain simulated data from VAR(1) processes with different
parameters, Φi j.

Yt = Φi jYt−1 + ε t ,

Φ11 =

[
.8 .2
.2 .8

]
, Φ12 =

[
1 0
0 1

]
,

λi = 1,0.6 λi = 1,1

Φ21 =

[
.7 .2
.2 .7

]
, Φ22 =

[
−.3 .3
.1 −.2

]
,

λi = 0.9,0.5 λi =−0.43,−0.06

where λi are the eigenvalues of the parameter matrices. The nonstationary processes both have unit
eigenvalues. The eigenvalues in the stationary processes are all less than 1 (in absolute value). The
cointegrated process has a single unit eigenvalue while the independent unit root process has two. In
a VAR(1), the number of unit eigenvalues plays a crucial role in cointegration and higher dimension
cointegrated systems may contain between 1 and k− 1 unit eigenvalues. The number of unit eigen-
values shows the count of the unit root “drivers” in the system of equations.16 The picture presents
evidence of the most significant challenge in cointegration analysis: it can be challenging to tell when
two series are cointegrated, a feature in common with unit root testing of a single time series.

5.8.2 Vector Error Correction Models (VECM)

The Granger representation theorem provides a key insight into cointegrating relationships. Granger
demonstrated that if a system is cointegrated then there exists a vector error correction model with a
reduced rank coefficient matrix and if there is a VECM with a reduced rank coefficient matrix then the
system must be cointegrated. A VECM describes the short-term deviations from the long-run trend
(a stochastic trend/unit root). The simplest VECM is[

∆xt
∆Yt

]
=

[
π11 π12
π21 π22

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
(5.30)

which states that changes in xt and Yt are related to the levels of xt and Yt through the cointe-
grating matrix (π). However, since xt and Yt are cointegrated, there exists β such that xt − βYt =[

1 −β
][

xt Yt
]
~I(0) . Substituting this value into this equation, equation 5.30 is equivalently

expressed as [
∆xt
∆Yt

]
=

[
α1
α2

][
1 −β

][ xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
. (5.31)

The short-run dynamics evolve according to

∆xt = α1(xt−1−βYt−1)+ ε1,t (5.32)

16In higher order VAR models, the eigenvalues must be computed from the companion form.
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and
∆Yt = α2(xt−1−βYt−1)+ ε2,t . (5.33)

The important elements of this VECM can be clearly labeled: xt−1− βYt−1 is the deviation from
the long-run trend (also known as the equilibrium correction term) and α1 and α2 are the speed of
adjustment parameters. VECMs impose one restriction of the αs: they cannot both be 0 (if they
were, π would also be 0). In its general form, an VECM can be augmented to allow past short-run
deviations to also influence present short-run deviations and to include deterministic trends. In vector
form, an VECM(P) evolves according to

∆Yt = δ 0 +πYt−1 +π1∆Yt−1 +π2∆Yt−2 + . . .++πP∆Yt−P + ε t

where πYt−1 = αβ
′Yt captures the cointegrating relationship, δ 0 represents a linear time trend in the

original data (levels) and π j∆Yt− j, j = 1,2, . . . ,P capture short-run dynamics around the stochastic
trend.

5.8.2.1 The Mechanics of the VECM

Any cointegrated VAR can be transformed into an VECM. Consider a simple cointegrated bivariate
VAR(1) [

xt
Yt

]
=

[
.8 .2
.2 .8

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
To transform this VAR to an VECM, begin by subtracting [xt−1 Yt−1]

′ from both sides

[
xt
Yt

]
−
[

xt−1
Yt−1

]
=

[
.8 .2
.2 .8

][
xt−1
Yt−1

]
−
[

xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
(5.34)[

∆xt
∆Yt

]
=

([
.8 .2
.2 .8

]
−
[

1 0
0 1

])[
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
[

∆xt
∆Yt

]
=

[
−.2 .2
.2 −.2

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
[

∆xt
∆Yt

]
=

[
−.2
.2

][
1 −1

][ xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
In this example, the speed of adjustment parameters are−.2 for ∆xt and .2 for ∆Yt and the normalized
(on xt) cointegrating relationship is [1 −1].
In the general multivariate case, a cointegrated VAR(P) can be turned into an VECM by recursive
substitution. Consider a cointegrated VAR(3),

Yt = Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−3 + ε t

This system is cointegrated if at least one but fewer than k eigenvalues of π = Φ1 +Φ2 +Φ3− Ik are
not zero. To begin the transformation, add and subtract Φ3Yt−2 to the right side
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Yt = Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−2−Φ3Yt−2 +Φ3Yt−3 + ε t

= Φ1Yt−1 +Φ2Yt−2 +Φ3Yt−2−Φ3∆Yt−2 + ε t

= Φ1Yt−1 +(Φ2 +Φ3)Yt−2−Φ3∆Yt−2 + ε t .

Next, add and subtract (Φ2 +Φ3)Yt−1 to the right-hand side,

Yt = Φ1Yt−1 +(Φ2 +Φ3)Yt−1− (Φ2 +Φ3)Yt−1 +(Φ2 +Φ3)Yt−2−Φ3∆Yt−2 + ε t

= Φ1Yt−1 +(Φ2 +Φ3)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t

= (Φ1 +Φ2 +Φ3)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t .

Finally, subtract Yt−1 from both sides,

Yt−Yt−1 = (Φ1 +Φ2 +Φ3)Yt−1−Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t

∆Yt = (Φ1 +Φ2 +Φ3− Ik)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t .

The final step is to relabel the equation in terms of π notation,

Yt−Yt−1 = (Φ1 +Φ2 +Φ3− Ik)Yt−1− (Φ2 +Φ3)∆Yt−1−Φ3∆Yt−2 + ε t (5.35)
∆Yt = πYt−1 +π1∆Yt−1 +π2∆Yt−2 + ε t .

which is equivalent to

∆Yt = αβ
′Yt−1 +π1∆Yt−1 +π2∆Yt−2 + ε t . (5.36)

where α contains the speed of adjustment parameters, and β contains the cointegrating vectors. This
recursion can be used to transform any VAR(P), whether cointegrated or not,

Yt−1 = Φ1Yt−1 +Φ2Yt−2 + . . .+ΦPYt−P + ε t

into its VECM from

∆Yt = πYt−1 +π1∆Yt−1 +π2∆Yt−2 + . . .+πP−1∆Yt−P+1 + ε t

using the identities π =−Ik +
∑P

i=1 Φi and π p =−
∑P

i=p+1 Φi.17

17Stationary VAR(P) models can be written as VECM with one important difference. When {Yt} is covariance sta-
tionary, then π must have rank k. In cointegrated VAR models, the coefficient π in the VECM always has rank between
1 and k− 1. If π has rank 0, then the VAR(P) contains k distinct unit roots and it is note possible to construct a linear
combination that is I(0).
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5.8.2.2 Cointegrating Vectors

The key to understanding cointegration in systems with three or more variables is to note that the
matrix which governs the cointegrating relationship, π , can always be decomposed into two matrices,

π = αβ
′

where α and β are both k by r matrices where r is the number of cointegrating relationships. For
example, suppose the parameter matrix in an VECM is

π =

 0.3 0.2 −0.36
0.2 0.5 −0.35
−0.3 −0.3 0.39


The eigenvalues of this matrix are .9758, .2142 and 0. The 0 eigenvalue of π indicates there are two
cointegrating relationships since the number of cointegrating relationships is rank(π). Since there are
two cointegrating relationships, β can be normalized to be

β =

 1 0
0 1
β1 β2


and α has 6 unknown parameters. αβ

′ combine to produce

π =

 α11 α12 α11β1 +α12β2
α21 α22 α21β1 +α22β2
α31 α32 α31β1 +α32β2

 ,
and α can be determined using the left block of π . Once α is known, any two of the three remaining
elements can be used to solve of β1 and β2. Appendix A contains a detailed illustration of the steps
used to find the speed of adjustment coefficients and the cointegrating vectors in trivariate cointegrated
VARs.

5.8.3 Rank and the number of unit roots

The rank of π is the same as the number of distinct cointegrating vectors. Decomposing π = αβ
′

shows that if π has rank r, then α and β must both have r linearly independent columns. α contains the
speed of adjustment parameters, and β contains the cointegrating vectors. There are r cointegrating
vectors, and so the system contains m = k− r distinct unit roots. This relationship holds since when
there are k variables and m distinct unit roots, it is always possible to find r distinct linear combinations
eliminate the unit roots and so are stationary.

Consider a trivariate cointegrated system driven by either one or two unit roots. Denote the under-
lying unit root processes as w1,t and w2,t . When there is a single unit root driving all three variables,
the system can be expressed

Y1,t = κ1w1,t + ε1,t

Y2,t = κ2w1,t + ε2,t

Y3,t = κ3w1,t + ε3,t



348 Analysis of Multiple Time Series

where ε j,t is a covariance stationary error (or I(0), but not necessarily white noise).
In this system there are two linearly independent cointegrating vectors. First consider normalizing

the coefficient on Y1,t to be 1 and so in the equilibrium relationship Y1,t−β1Y2,t−β1Y3,t must satisfy

κ1 = β1κ2 +β2κ3.

This equality ensures that the unit roots are not present in the difference. This equation does not have
a unique solution since there are two unknown parameters. One solution is to further restrict β1 = 0
so that the unique solution is β2 = κ1/κ3 and an equilibrium relationship is Y1,t − (κ1/κ3)Y3,t . This
alternative normalization produces a cointegrating vector since

Y1,t−
κ1

κ3
Y3,t = κ1w1,t + ε1,t−

κ1

κ3
κ3w1,t−

κ1

κ3
ε3,t = ε1,t−

κ1

κ3
ε3,t

Alternatively one could normalize the coefficient on Y2,t and so the equilibrium relationship Y2,t −
β1Y1,t−β2Y3,t would require

κ2 = β1κ1 +β2κ3.

This equation is also not identified since there are two unknowns and one equation. To solve assume
β1 = 0 and so the solution is β2 = κ2/κ3, which is a cointegrating relationship since

Y2,t−
κ2

κ3
Y3,t = κ2w1,t + ε2,t−

κ2

κ3
κ3w1,t−

κ2

κ3
ε3,t = ε2,t−

κ2

κ3
ε3,t

These solutions are the only two needed since any other definition of the equilibrium must be a
linear combination of these. The redundant equilibrium is constructed by normalizing on Y1,t to define
an equilibrium of the form Y1,t−β1Y2,t−β2Y3,t . Imposing β3 = 0 to identify the solution, β1 = κ1/κ2
which produces the equilibrium condition

Y1,t−
κ1

κ2
Y2,t .

This equilibrium is already implied by the first two,

Y1,t−
κ1

κ3
Y3,t and Y2,t−

κ2

κ3
Y3,t

and can be seen to be redundant since

Y1,t−
κ1

κ2
Y2,t =

(
Y1,t−

κ1

κ3
Y3,t

)
− κ1

κ2

(
Y2,t−

κ2

κ3
Y3,t

)
In this system of three variables and one common unit root the set of cointegrating vectors can be
expressed as

β =

 1 0
0 1
κ1
κ3

κ2
κ3

 .
When a system has only one unit root and three series, there are two non-redundant linear combina-
tions of the underlying variables which are stationary. In a complete system with k variables and a
single unit root, there are k−1 non-redundant linear combinations that are stationary.
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Next consider a trivariate system driven by two unit roots,

Y1,t = κ11w1,t +κ12w2,t + ε1,t

Y2,t = κ21w1,t +κ22w2,t + ε2,t

Y3,t = κ31w1,t +κ32w2,t + ε3,t

where the errors ε j,t are again covariance stationary but not necessarily white noise. If the coefficient
on Y1,t is normalized to 1, then it the weights in the equilibrium condition, Y1,t−β1Y2,t−β2Y3,t , satisfy

κ11 = β1κ21 +β2κ31

κ12 = β1κ22 +β2κ32

to order to eliminate both unit roots. This system of two equations in two unknowns has the solution[
β1
β2

]
=

[
κ21 κ31
κ22 κ32

]−1[
κ11
κ12

]
.

This solution is unique (up to the initial normalization), and there are no other cointegrating vectors
so that

β =

 1
κ11κ32−κ12κ22
κ21κ32−κ22κ31
κ12κ21−κ11κ31
κ21κ32−κ22κ31


This line of reasoning extends to k-variate systems driven by m unit roots. One set of r cointe-

grating vectors is constructed by normalizing the first r elements of Y one at a time. In the general
case

Yt = Kwt + ε t

where K is a k by m matrix, wt an m by 1 set of unit root processes, and ε t is a k by 1 vector of
covariance stationary errors. Normalizing on the first r variables, the cointegrating vectors in this
system are

β =

[
Ir

β̃

]
(5.37)

where Ir is an r-dimensional identity matrix. β̃ is a m by r matrix of loadings,

β̃ = K−1
2 K′1, (5.38)

where K1 is the first r rows of K (r by m) and K2 is the bottom m rows of K (m by m). In the trivariate
example driven by one unit root,

K1 =

[
κ1
κ2

]
and K2 = κ3

and in the trivariate system driven by two unit roots,
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K1 = [κ11 κ12] and K2 =

[
κ21 κ22
κ31 κ32

]
.

Applying eqs. (5.37) and (5.38) produces the previously derived set of cointegrating vectors. Note
that when r = 0 then the system contains k unit roots and so is not cointegrated (in general) since the
system would have three equations and only two unknowns. Similarly when r = k there are no unit
roots and any linear combination is stationary.

5.8.3.1 Relationship to Common Features and common trends

Cointegration is a particular case of a broader concept known as common features. In the case of
cointegration, both series have a common stochastic trend (or common unit root). Other examples
of common features include common heteroskedasticity, defined as xt and Yt are heteroskedastic but
there exists a combination, xt −βYt , which is not, common nonlinearities which are defined analo-
gously (replacing heteroskedasticity with nonlinearity), and cobreaks, where two series both contain
structural breaks but xt−βYt does now. Incorporating common features often produces simpler mod-
els than leaving them unmodeled.

5.8.4 Testing

Testing for cointegration, like testing for a unit root in a single series, is complicated. Two meth-
ods are presented, the original Engle-Granger 2-step procedure and the more sophisticated Johansen
methodology. The Engle-Granger method is generally only applicable if there are two variables, if the
system contains exactly one cointegrating relationship, or if the cointegration vector is known (e.g.,
an accounting identity where the left-hand side has to add up to the right-hand side). The Johansen
methodology is substantially more general and can be used to examine complex systems with many
variables and multiple cointegrating relationships.

5.8.4.1 Johansen Methodology

The Johansen methodology is the dominant technique used to determine whether a system of I(1)
variables is cointegrated and if so, to determine the number of cointegrating relationships. Recall that
one of the requirements for a set of integrated variables to be cointegrated is that π has reduced rank,

∆Yt = πYt−1 +π1∆Yt−1 + . . .+πP∆Yt−Pε t ,

and the number of non-zero eigenvalues of π is between 1 and k− 1. If the number of non-zero
eigenvalues is k, the system is stationary. If no non-zero eigenvalues are present, then the system
contains k unit roots, is not cointegrated and it is not possible to define a long-run relationship. The
Johansen framework for cointegration analysis uses the magnitude of the eigenvalues of π̂ to test for
cointegration. The Johansen methodology also allows the number of cointegrating relationships to be
determined from the data directly, a key feature missing from the Engle-Granger two-step procedure.

The Johansen methodology makes use of two statistics, the trace statistic (λtrace) and the maximum
eigenvalue statistic (λmax). Both statistics test functions of the estimated eigenvalues of π but have
different null and alternative hypotheses. The trace statistic tests the null that the number of cointe-
grating relationships is less than or equal to r against an alternative that the number is greater than r.
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Define λ̂i, i = 1,2, . . . ,k to be the complex modulus of the eigenvalues of π̂1 and let them be ordered
such that λ1 > λ2 > .. . > λk.18 The trace statistic is defined

λtrace (r) =−T
k∑

i=r+1

ln
(

1− λ̂i

)
.

There are k trace statistics. The trace test is applied sequentially, and the number of cointegrating
relationships is determined by proceeding through the test statistics until the null is not rejected. The
first trace statistic, λtrace(0) =−T

∑k
i=1 ln(1− λ̂i), tests the null there are no cointegrating relationships

(i.e., the system contains k unit roots) against an alternative that the number of cointegrating relation-
ships is one or more. If there are no cointegrating relationships, then the true rank of π is 0, and each
of the estimated eigenvalues should be close to zero. The test statistic λtrace(0) ≈ 0 since every unit
root “driver” corresponds to a zero eigenvalue in π . When the series are cointegrated, π has one or
more non-zero eigenvalues. If only one eigenvalue is non-zero, so that λ1 > 0, then in large samples
ln
(

1− λ̂1

)
< 0 and λtrace (0)≈−T (1−λ1), which becomes arbitrarily large as T grows.

Like unit root tests, cointegration tests have nonstandard distributions that depend on the included
deterministic terms if any. Software packages return the appropriate critical values for the length of
the time-series analyzed and included deterministic regressors if any.

The maximum eigenvalue test examines the null that the number of cointegrating relationships is
r against the alternative that the number is r+1. The maximum eigenvalue statistic is defined

λmax(r,r+1) =−T ln
(

1− λ̂r+1

)
Intuitively, if there are r+1 cointegrating relationships, then the r+1th ordered eigenvalue should be
positive, ln

(
1− λ̂r+1

)
< 0, and the value of λmax(r,r+1)≈−T ln(1−λr+1) should be large. On the

other hand, if there are only r cointegrating relationships, the r+ 1th eigenvalue is zero, its estimate
should be close to zero, and so the statistic should be small. Again, the distribution is nonstandard,
but statistical packages provide appropriate critical values for the number of observations and the
included deterministic regressors.
The steps to implement the Johansen procedure are:
Step 1: Plot the data series being analyzed and perform univariate unit root testing. A set of vari-
ables can only be cointegrated if they are all integrated. If the series are trending, either linearly or
quadratically, remember to include deterministic terms when estimating the VECM.
Step 2: The second stage is lag length selection. Select the lag length using one of the procedures
outlined in the VAR lag length selection section (e.g., General-to-Specific or AIC). For example, to
use the General-to-Specific approach, first select a maximum lag length L and then, starting with
l = L, test l lags against l−1 use a likelihood ratio test,

LR = (T − l · k2)(ln |Σl−1|− ln |Σl|)∼ χ
2
k .

Repeat the test by decreasing the number of lags (l) until the LR rejects the null that the smaller model
is equivalent to the larger model.
Step 3: Estimate the selected VECM,

18The complex modulus is defined as |λi|= |a+bi|=
√

a2 +b2.
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∆Yt = πYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

and determine the rank of π where P is the lag length previously selected. If the levels of the series
appear to be trending, then the model in differences should include a constant and

∆Yt = δ 0 +πYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

should be estimated. Using the λtrace and λmax tests, determine the cointegrating rank of the system. It
is important to check that the residuals are weakly correlated – so that there are no important omitted
variables, the residuals are not excessively heteroskedastic, which affects the size and power of the
procedure, and are approximately Gaussian.
Step 4: Analyze the normalized cointegrating vectors to determine whether these conform to implica-
tions of finance theory. Hypothesis tests on the cointegrating vector can also be performed to examine
whether the long-run relationships conform to a particular theory.
Step 5: The final step of the procedure is to assess the adequacy of the model by plotting and an-
alyzing the residuals. This step should be the final task in the analysis of any time-series data, not
just the Johansen methodology. If the residuals do not resemble white noise, the model should be
reconsidered. If the residuals are stationary but autocorrelated, more lags may be necessary. If the
residuals are I(1), the system may not be cointegrated.

Lag Length Selection

Tests of cointegration using the two test statistic, λtrace and λmax, are sensitive to the lag length. The
number of included lags must be sufficient to produce white noise residuals. The lag length is com-
monly chosen using an IC, and given the trade-off between a model that is too small – which leaves
serial correlation in the model residuals – and too large, which produces noisier estimates of parame-
ters but no serial correlation, a loose criterion like the AIC is preferred to a more strict one.

Trends

Nonstationary time series often contain time trends. Like the Augmented Dickey-Fuller test, Jo-
hansen’s λtrace and λmax tests are both sensitive to the choice of included trends. There are five different
configurations of trends in the VECM,

∆Yt = δ 0 +δ 1t +α
′ (βYt−1 + γ0 + γ1t)+π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

The five test configurations of the test are:

• no trends, δ 0 = δ 1 = γ0 = γ1 = 0;

• linear trend in Yt , α ′βYt−1 is mean 0, δ 1 = γ0 = γ1 = 0;

• linear trend in Yt , non-zero mean α ′βYt−1, δ 1 = γ1 = 0;

• quadratic trend in Yt , non-zero mean α ′βYt−1, γ1 = 0;and

• quadratic trend in Yt , linear trend in α ′βYt−1, no restrictions on the parameters.
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The simplest specification sets all trends to be 0, so that

∆Yt = α
′
βYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

The specification is only appropriate if the components of Yt are not trending. When the component
time series of Yt have linear time trends, then

∆Yt = δ 0 +α
′ (βYt−1 + γ0)+π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε

allows them to appear in two places. The two intercepts, δ 0 and α ′γ0 play different roles. δ 0 allows
for time trends in the component series since the left-hand-side has been differenced, so that a time-
trend in the level becomes an intercept in the difference. γ0 allows the cointegrating relationship
to have a non-zero mean, which is practically important in many applications of cointegration. The
model can be estimated assuming γ0 = 0 so that

∆Yt = δ 0 +α
′
βYt−1 +π1∆Yt−1 + . . .+πP−1∆Yt−P+1 + ε.

In this specification, the components are allowed to have unrestricted time trends but the cointegrating
relationships are restricted to be mean zero. In practice, this requires that the growth rates of the
component time series in Yt are the same. The full set of time trends are included in the model, the Yt
is allowed to have a quadratic time trend (the difference has a linear time trend) and the cointegrating
relationship,

βYt−1 + γ0 + γ1t

may also have a time trend. The specification with a time trend can be restricted so that γ1 = 0 in
which case the cointegrating relationships are allowed to have a mean different from 0 but not to be
trending.

Additional trend components increase the critical values of the λtrace and λmax test statistics, and so,
all things equal, it is harder to reject the null. The principle behind selecting deterministic terms in
the Johansen’s framework is the same as when including deterministic terms in ADF tests – any de-
terministic that is present in the data must be included, and failing to include a required deterministic
term prevents the null from being rejected even in large samples. Similarly, including more deter-
ministic trends than required lowers the power of the test and so makes it more challenging to find
cointegration when it is present. Deterministic trends should be eliminated using a general-to-specific
search starting with the full set of terms, and eliminating any that are (jointly) insignificant.

5.8.4.2 Example: Consumption Aggregate Wealth

To illustrate cointegration and error correction, three series which have revived the CCAPM in re-
cent years are examined (Lettau and Ludvigson, 2001a; Lettau and Ludvigson, 2001b). These three
series are consumption (c), asset prices (a) and labor income (y). The data are made available by
Martin Lettau on his web site, and contain quarterly data from 1952:1 until 2017:3. These series are
documented to be cointegrated in published papers, and the cointegrating error is related to expected
future returns. When c−δ0−βaa−βy is positive, then consumption is above its long-run trend, and
so asset returns are expected to be above average. When this error is negative, then c is relatively low
compared to asset values and labor income, and so asset values are too high.

https://sites.google.com/view/martinlettau/data
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Trace Test
Null Alternative λtrace Crit. Val.

r = 0 r ≥ 1 19.06 29.80
r = 1 r ≥ 2 8.68 15.49
r = 2 r = 3 2.03 3.84

Max Test
Null Alternative λmax Crit. Val.

r = 0 r = 1 10.39 21.13
r = 1 r = 2 6.64 14.26
r = 2 r = 3 2.03 3.84

Table 5.5: Results of testing using the Johansen methodology to the cay time series.

The Johansen methodology begins by examining the original data for unit roots. The results in
Table 5.6 establish that all series have unit roots using ADF tests. The next step tests eigenvalues of
π in the VECM

∆Yt = δ 0 +π (Yt−1 + γ0)+π1∆Yt−1 +π2∆Yt−2 + . . .++πP∆Yt−P + ε t .

using λtrace and λmax tests. Table 5.5 contains the results of the two tests. These tests are applied
sequentially. The first null hypothesis is not rejected for either test, which indicates that the π has
rank 0, and so the system contains three distinct unit roots, and so the variables are not cointegrated.19

5.8.4.3 A Single Cointegrating Relationship: Engle-Granger Methodology

The Engle-Granger method exploits the defining characteristic of a cointegrated system with a single
cointegrating relationship – if the time series are cointegrated, then a linear combination of the se-
ries can be constructed that is stationary. If they are not, then any linear combination remains I(1).
When there are two variables, the Engle-Granger methodology begins by specifying the cross-section
regression

Yt = βxt + εt

where β̂ can be estimated using OLS. It may be necessary to include a constant,

Yt = δ0 +βxt + εt

or a constant and time trend,

Yt = δ0 +δ1t +βxt + εt ,

if the residuals from the simple cross-sectional regression are not mean 0 or trending. The model
residuals, ε̂t , are constructed from the OLS estimates of the model coefficients and are tested for the

19The first null not rejected indicates the cointegrating rank of the system. If all null hypotheses are rejected, then the
original system appears stationary, and a reanalysis of the I(1) classification of the original data is warranted.
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presence of a unit root. If xt and Yt are both I(1) and ε̂t is I(0), then the series are cointegrated. If
the null that ε̂t contains a unit root is not rejected, then the two series are no cointegrated since the
difference did not eliminate the unit root. The procedure concludes by using ε̂t to estimate the VECM
to estimate parameters which may be of interest (e.g., the speed of convergence parameters).
Step 1: Begin by analyzing xt and Yt in isolation to ensure that they are both integrated, plot the data,
and perform ADF tests. Remember, variables can only be cointegrated if they are integrated.
Step 2: Estimate the long-run relationship by fitting

Yt = δ0 +δ1t +βxt + εt ,

where the two deterministic terms are included only if necessary, using OLS and computing the
estimated residuals {ε̂t}. Use an ADF test (or DF-GLS for more power) and test H0 : γ = 0 against
H1 : γ < 0 in the regression

∆ε̂t = γε̂t−1 +ψ1∆ε̂t−1 + . . .+ψp∆ε̂t−P +ηt .

Deterministic effects are removed in the cross-sectional regression, and so are not included in the ADF
test. If the null is rejected and ε̂t is stationary, then xt and Yt appear to be cointegrated. Alternatively,
if ε̂t still contains a unit root, the series are not cointegrated.20

Step 3: If a cointegrating relationship is found, specify and estimate the VECM[
∆xt
∆Yt

]
=

[
π01
π02

]
+

[
α1(Yt−1−δ0−δ1t−βxt−1)
α2(Yt−1−δ0−δ1t−βxt−1)

]
+π1

[
∆xt−1
∆Yt−1

]
+. . .+πP

[
∆xt−P
∆Yt−P

]
+

[
η1,t
η2,t

]
Note that this specification is not linear in its parameters. Both equations have interactions between
the α and β parameters and so OLS cannot be used. Engle and Granger noted that the terms involving
β can be replaced with ε̂t−1 = (Yt−1− β̂1− β̂2xt−1),[

∆xt
∆Yt

]
=

[
π01
π02

]
+

[
α1ε̂t−1
α2ε̂t−1

]
+π1

[
∆xt−1
∆Yt−1

]
+ . . .+πP

[
∆xt−P
∆Yt−P

]
+

[
η1,t
η2,t

]
,

and so parameters of these specifications can be estimated using OLS. The substitution has no impact
on the standard errors of the estimated parameters since the parameters of the cointegrating relation-
ship are super-consistent (i.e., they converge faster than the standard

√
T rate).

Step 4: The final step is to assess the model adequacy and test hypotheses about α1 and α2. Standard
diagnostic checks including plotting the residuals and examining the ACF should be used to examine
model adequacy. Impulse response functions for the short-run deviations can be examined to assess
the effect of a shock on the deviation of the series from the long term trend.

Deterministic Regressors

The cross-sectional regression in the Engle-Granger methodology can be modified to accommodate
three configurations of deterministic regressors. The simplest configuration has no deterministic terms
so that the regression is

Yt = βxt + εt .

20The distribution of the ADF is different when testing cointegration than when testing for a unit root. Software
packages report the correct value which depends on the number of variables in the cointegrating relationship and the
deterministic terms if any.
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Engle-Granger is only limited finding a single cointegrating relationship, which might exist between
k variables, not just 2. In this case, the cross-sectional regression is

Yt = β
′Xt + εt

where Xt is the k−1 by 1 vector, and the cointegrating vector is
[
1,−β

′]. This generalized form can
be further extended by altering the deterministic terms in the model. For example, it is common to
include an intercept in the cross-sectional regression,

Yt = δ0 +β
′Xt + εt .

This structure allows the long-run relationship between Yt and Xt to have a non-zero mean. The
intercept should be included except where theory suggests that the cointegrating errors should be
zero, e.g., in the relationship between spot and future prices or the long-run relationship between
prices of the same security trading in different markets.

The cross-sectional regression can be further extended to include a time trend,

Yt = δ0 +δ1t +β
′Xt + εt .

When the model includes a time-trend, the long-run relationship, Yt and Xt , is assumed to be trending
over time, so that Yt−δ0−δ1t−β

′Xt is a mean-zero I(0) process. This might occur if the growth rates
of Yt and the components Xt differ. It is much less common to include time-trends in the cointegrating
relationship. Best practice is to only include δ1 if there is some a priori reason to believe that the
relationship has a time-trend and when δ̂1 is statistically different from 0 when the cross-sectional
regression is estimated. The cross-sectional regression can be compactly expressed as

Yt = δ
′dt +β

′Xt + εt

where dt is the vector of included deterministic regressors, i.e., on of [] (nothing), [1], or [1, t].

Dynamic OLS

The parameter estimators of the cointegrating vector estimated using a cross-sectional regression
is not normally distributed in large samples. It is also not efficient since the I(1) variables might
have short-run dynamics. Dynamic OLS, a simple modification of the Engle-Granger regression,
addresses both of these. It adds lags and leads of the differences on the right-hand-side variables to
the cross-sectional regression. These extra terms effectively remove the short term dynamics in the
right-hand-side variables. In a bivariate cointegrated relationship, the Dynamic OLS regression is

Yt = δ
′dt +β1xt +

P∑
i=−P

γi∆xt−i + εt

where dt is a vector of deterministic terms in the model. This regression is estimated using OLS, and
the estimated cointegrating relationship is Yt − δ̂

′
dt − β̂1xt . If there are more than 1-right-hand-side

variables, then the regression is

Yt = δ
′dt +β

′Xt +

P∑
i=−P

γ
′
∆Xt−i + εt
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Unit Root Tests
Series T-stat P-val ADF Lags

c -1.198 0.674 5
a -0.205 0.938 3
y -2.302 0.171 0

ε̂c
t -2.706 0.379 1

ε̂a
t -2.573 0.447 0

ε̂
y
t -2.679 0.393 1

Table 5.6: The top three lines contain the results of ADF tests for unit roots in the three components of
cay : Consumption, Asset Prices and Aggregate Wealth. The final lines contain the results of unit root
tests on the estimated residuals from the cross-sectional regressions. The variable in the superscript is
the dependent variable in the Engle-Granger regression. The lags column reports the number of lags
used in the ADF procedure, which is automatically selected using the AIC.

where β , γ i and Xt are k− 1 by 1 vectors. The estimators of the cointegrating vector are asymptot-
ically normally distributed, although the parameter covariance must be estimated using a long-run
covariance estimator that accounts for dependence, e.g., Newey-West (see Section 5.9.2). The num-
ber of leads and lags to include in the model is can be selected using an information criterion. In
application in macrofinance, it is often chosen to capture 1 year of data, so either 4 (quarterly) or 12
(monthly).

5.8.4.4 Cointegration in Consumption, Asset Prices and Income

The Engle-Granger procedure begins by performing unit root tests on the individual series and exam-
ining the data. Table 5.6 and contain the results from ADF tests and Figure 5.6 plots the detrended
series. The null of a unit root is not rejected in any of the three series, and all have time-detrended
errors which appear to be nonstationary.

The next step is to specify the cointegrating regression

ct = δ0 +βaat +βyYt + εt

and to estimate the long-run relationship using OLS. The estimated cointegrating vector from is [1 −
0.249 − 0.785], and corresponds to a long-run relationship of ε̂t = ct + .643− 0.249at − 0.785Yt .
Finally, the residuals are tested for the presence of a unit root. The results of this test are labeled ε̂c

t
in Table 5.6 and indicate that the null is not rejected, and so the three series are not cointegrated. The
Engle-Granger methodology agrees with the Johansen methodology that it is not possible to eliminate
the unit roots from the three series using a single linear combination. It is also possible to normalize
the coefficients on a or y by using these are the dependent variable. The final two lines in Table 5.6
contain results for these specifications. The results for the alternative agree with the finding for c, and
the series do not appear to be cointegrated. The middle panel of Figure 5.6 plot the three residual series
where each of the variables is used as the dependent. The residuals constructed from the regression
when a or y are the dependent are multiplied by −1 so that the sign on c is always positive, and all
three series are normalized to have unit variance (for comparability). The three residual series are very
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Comparing Engle-Granger and Dynamic OLS
Dependent Variable

c a y

δ0 −0.643 −0.640
(−6.896)

1.917 1.874
(7.784)

0.702 0.713
(5.312)

βc 2.284 2.385
(6.994)

1.163 1.180
(18.521)

βa 0.249 0.260
(6.187)

−0.214 −0.229
(−3.790)

βy 0.785 0.773
(17.339)

−1.322 −1.421
(−4.024)

Table 5.7: Each column reports estimates of the cointegrating relationship where the dependent vari-
able varies across the three series. The parameter estimators in Engle-Granger regressions are not
asymptotically normally distributed, and so t-stats are not reported. The t-stats reported for the esti-
mates produces using Dynamic OLS are computed using the Newey-West covariance estimator with
14 lags.

similar which indicates that the choice of the dependent variable has little impact on the estimates of
the cointegrating relationship.

The VECM uses the residuals estimated using the cross-sectional regression, ε̂t = ct− δ̂0− β̂aat−
β̂yYt .

 ∆ct
∆at
∆yt

=


0.003
(0.000)

0.004
(0.014)

0.003
(0.000)

+

−0.000
(0.281)

0.002
(0.037)

0.000
(0.515)

 ε̂t−1 +


0.192
(0.005)

0.102
(0.000)

0.147
(0.004)

0.282
(0.116)

0.220
(0.006)

−0.149
(0.414)

0.369
(0.000)

0.061
(0.088)

−0.139
(0.140)


 ∆ct−1

∆at−1
∆yt−1

+η t

The coefficients on the lagged residual measure the speed of adjustment. The estimates are all close to
0 indicating that deviations from the equilibrium are highly persistent. Two of the speed of adjustment
coefficients are not statistically different from zero, which indicates that three series are not well
described as a cointegrated system. The lag length in the VECM is selected by minimizing the HQIC
using up to 4 lags of the quarterly data.

Table 5.7 contains estimates of the parameters from the Engle-Granger cross-sectional regressions
and the Dynamic OLS regressions. The DOLS estimates are asymptotically normal (if the series
are cointegrated) and so standard errors, computed using the Newey-West covariance estimator, are
reported for the coefficients. The bottom panel of Figure 5.6 plot the residual from the two estimators
when c is the dependent variable. The leads and lags have little effect on the estimated cointegration
vector, and so the two series are very similar.

5.8.5 Spurious Regression and Balance

When a regression is estimated using two related I(1) variables, the cointegrating relationship domi-
nates and the regression coefficients can be directly interpreted as the cointegrating vectors. However,
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Analysis of cay

1960 1970 1980 1990 2000 2010

0.1

0.0

0.1

0.2 Consumption Asset Prices Labor Income

Residuals

1960 1970 1980 1990 2000 2010

−2

0

2

c Residual a Residual (Neg.) y Residual (Neg.)

Engle-Granger and Dynamic OLS Residuals

1960 1970 1980 1990 2000 2010

−0.04

−0.02

0.00

0.02

0.04

Dynamic OLS Residual Engle-Granger Residual

Figure 5.6: The top panel contains plots of detrended residuals from regressions of consumption, asset
prices and labor income on a linear time trend. The middle panel contains a plot of residuals from
the three specifications of the Engle-Granger regression where each of the three series is used as the
dependent variable. The residuals are multiplied by -1 when a or y is the dependent variable so they
the sign on c is always positive. The residuals are all normalized to have unit variance. The bottom
panel plots the residuals computed using the Dynamic OLS estimates of the cointegrating relationship
when c is the dependent variable and 4 leads and lags are used.

when a model is estimated on two unrelated I(1) variables, the regression estimator is no longer con-
sistent. For example, let xt and Yt be independent random walk processes.
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xt = xt−1 +ηt

and

Yt = Yt−1 +νt

In the regression

xt = βYt + εt

β̂ is not consistent for 0 despite the independence of xt and Yt .
Models that include independent I(1) processes are known as spurious regressions. When the

regressions are spurious, the estimated β̂ can take any value and typically have t-stats that indicate
significance at conventional levels. The solution to this problems is simple: whenever regressing
one I(1) variable on another, always check to be sure that the regression residuals are I(0) and not
I(1) – in other words, verify that the series are cointegrated. If the series are not cointegrated, it is
not possible to estimate a meaningful long-run relationship between the two (or more) I(1) random
variables. Nonstationary time series that are not cointegrated can be differenced to be I(0) and then
modeled as a stationary VAR.

Balance is an important concept when data which contain both stationary and integrated data. An
equation is balanced if all variables have the same order of integration. The usual case occurs when
a stationary variable (I(0)) is related to one or more other stationary variables. It is illustrative to
consider the four combinations:

• I(0) on I(0): The usual case. Standard asymptotic arguments apply. See section 5.9 for more
issues in cross-section regression using time-series data.

• I(1) on I(0): This regression is unbalanced. An I(0) variable can never explain the long-run
variation in an I(1) variable. The usual solution is to difference the I(1) and then examine
whether the short-run dynamics in the differenced I(1), which are I(0), can be explained by the
I(0).

• I(1) on I(1): One of two outcomes: cointegration or spurious regression.

• I(0) on I(1): This regression is unbalanced. An I(1) variable can never explain the variation
in an I(0) variable, and unbalanced regressions are not useful tools for explaining economic
phenomena. Unlike spurious regressions, the t-stat still has a standard asymptotic distribu-
tion although caution is needed since the CLT does not, in empirically relevant samples sizes,
provide an accurate approximation to the finite sample distribution. Poor finite-sample approx-
imations are common in applications where a stationary variable, e.g., returns on the market,
is regressed on a highly persistent predictor (such as the default premium, dividend yield or
price-to-earnings ratio).

5.9 Cross-sectional Regression with Time-series Data

Cross-sectional regressions are commonly estimated using data that occur sequentially, e.g., the CAP-
M and related models. Chapter 3 used n to index the observations to indicate that the data are not
ordered,
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Yn = β1xn1 +β2xn2 + . . .+βkxnk + εn. (5.39)

Here the observation index is replaced with t to indicate that ordered time-series data are used in the
regression,

Yt = β1xt1 +β2xt2 + . . .+βkxtk + εt . (5.40)

Five assumptions are used to establish the asymptotic distribution of the parameter estimated. Here
these assumptions are restated using time-series indices.

Assumption 5.1 (Linearity). The model specification is linear in Xt , Yt = Xtβ + εt .

Assumption 5.2 (Stationary Ergodicity). {(Xt ,εt)} is a strictly stationary and ergodic sequence.

Assumption 5.3 (Rank). E[X′tXt ] = ΣXX is non-singular and finite.

Assumption 5.4 (Martingale Difference). {X′tεt ,Ft−1} is a martingale difference sequence, E
[(

x j,tεt
)2
]
<

∞ j = 1,2, . . . ,k, t = 1,2 . . . and S = V[T−
1
2 X′ε] is finite and non singular.

Assumption 5.5 (Moment Existence). E[x4
j,t ]<∞, j = 1,2, . . . ,k, t = 1,2, . . . and E[ε2

t ] = σ2 <∞,
t = 1,2, . . ..

Assumption 3.9 may be violated when estimating cross-sectional models using time series data. When
this assumption is violated, the scores from the linear regression, X′tεt are a not martingale difference
with respect to the time t− 1 information set, Ft−1. The autocorrelation in the scores occurs when
the errors from the model, εt , have a persistent component that is not explained by the regressors.
The MDS assumption featured prominently in two theorems: the asymptotic distribution of β̂ and the
estimation of the covariance of the parameters.

Theorem 5.5. Under assumptions 3.1 and 3.7 - 3.9

√
T (β̂ T −β )

d→ N(0,Σ−1
XX SΣ

−1
XX ) (5.41)

where ΣXX = E[X′tXt ] and S = V[T−1/2X′ε]

Theorem 5.6. Under assumptions 3.1 and 3.7 - 3.10,

Σ̂XX =T−1X′X p→ ΣXX

Ŝ =T−1
T∑

n=1

e2
t X′tXt

p→ S

=T−1 (X′ÊX
)

and
Σ̂
−1
XX ŜΣ̂

−1
XX

p→ Σ
−1
XX SΣ

−1
XX

where Ê = diag(ε̂2
1 , . . . , ε̂

2
T ) is a matrix with the squared estimated residuals along the diagonal.
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When the MDS assumption does now hold, the asymptotic covariance takes a different form that re-
flects the persistence in the data, and so an alternative estimator is required to estimate the covariance
of β̂ . The new estimator is an extended version of White’s covariance estimator that accounts for the
predictability of the scores (X′tεt). The correlation in the scores alters the amount of “unique” informa-
tion available to estimate the parameters. The standard covariance estimator assumes that the scores
are uncorrelated with their past and so each contributes its full share to the precision to β̂ . When
the scores are autocorrelated, only the unpredictable component of the score is informative about the
value of the regression coefficient, and the covariance estimator must account for this change in the
available information. Heteroskedasticity Autocorrelation Consistent (HAC) covariance estimators
are consistent even in the presence of score autocorrelation.

5.9.1 Estimating the mean with time-series errors

To understand why a HAC estimator is needed, consider estimating the mean in two different setups.
In the first, the shock, {εt}, is assumed to be a white noise process with variance σ2. In the second,
the shock follows an MA(1) process.

5.9.1.1 White Noise Errors

Suppose the data generating process for Yt is,

Yt = µ + εt

where {εt} is a white noise process. It is simple to show that

E[Yt ] = µ and V[Yt ] = σ
2

since the error is a white noise process. Define the sample mean estimator in the usual way,

µ̂ = T−1
T∑

t=1

Yt

The sample mean is unbiased,

E[µ̂] = E

[
T−1

T∑
t=1

Yt

]

= T−1
T∑

t=1

E[Yt ]

= T−1
T∑

t=1

µ

= µ.

The variance of the mean estimator exploits the white noise property which ensures E[εiε j]=0 when-
ever i 6= j.
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V[µ̂] = E[(T−1
T∑

t=1

Yt−µ)2]

= E[(T−1
T∑

t=1

εt)
2]

= E[T−2(
T∑

t=1

ε
2
t +

T∑
r=1

T∑
s=1,r 6=s

εrεs)]

= T−2
T∑

t=1

E[ε2
t ]+T−2

T∑
r=1

T∑
s=1,r 6=s

E[εrεs]

= T−2
T∑

t=1

σ
2 +T−2

T∑
r=1

T∑
s=1,r 6=s

0

= T−2T σ
2

= σ
2/T ,

and so, V[µ̂] = σ
2/T , the standard result.

5.9.1.2 MA(1) errors

Suppose the model is altered so that the error process ({ηt}) is a mean zero MA(1) constructed from
white noise shocks ({εt}),

ηt = θεt−1 + εt .

The properties of the error are easily derived using the results in Chapter 4. The mean is 0,
E[ηt ] = E[θεt−1 + εt ] = θE[εt−1]+E[εt ] = θ0+0 = 0,

and the variance depends on the MA parameter,

V[ηt ] = E[(θεt−1 + εt)
2]

= E[θ 2
ε

2
t−1 +2εtεt−1 + ε

2
t ]

= E[θ 2
ε

2
t−1]+2E[εtεt−1]+E[ε2

t ]

= θ
2
σ

2 +2 ·0+σ
2

= σ
2(1+θ

2).

The DGP for Yt is

Yt = µ +ηt ,

and so the mean and variance of Yt are

E[Yt ] = µ and V[Yt ] = V[ηt ] = σ
2(1+θ

2).
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The sample mean estimator remains unbiased,

µ̂ = T−1
T∑

t=1

Yt

E[µ̂] = E

[
T−1

T∑
t=1

Yt

]

= T−1
T∑

t=1

E[Yt ]

= T−1
T∑

t=1

µ

= µ.

The variance of the mean estimator, however, is different, since ηt is autocorrelated, and so E[ηtηt−1] 6=
0.

V[µ̂] = E

[
(T−1

T∑
t=1

Yt−µ)2

]

= E

[
(T−1

T∑
t=1

ηt)
2

]

= E

[
T−2(

T∑
t=1

η
2
t +2

T−1∑
t=1

ηtηt+1 +2
T−2∑
t=1

ηtηt+2 + . . .+2
2∑

t=1

ηtηt+T−2 +2
1∑

t=1

ηtηt+T−1)

]

= T−2
T∑

t=1

E[η2
t ]+2T−2

T−1∑
t=1

E[ηtηt+1]+2T−2
T−2∑
t=1

E[ηtηt+2]+ . . .+

2T−2
2∑

t=1

E[ηtηt+T−2]+2T−2
1∑

t=1

E[ηtηt+T−1]

= T−2
T∑

t=1

γ0 +2T−2
T−1∑
t=1

γ1 +2T−2
T−2∑
t=1

γ2 + . . .+2T−2
2∑

t=1

γT−2 +2T−2
1∑

t=1

γT−1

where γ0 = E[η2
t ] = V[ηt ] and γs = E[ηtηt−s]. Only γ0 and γ1 are non-zero when the error follows an

MA(1) process. γ0 = V [ηt ] = σ2 (1+θ 2) and
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γ1 = E[ηtηt−1]

= E[(θεt−1 + εt)(θεt−2 + εt−1)]

= E[θ 2
εt−1εt−2 +θε

2
t−1 +θεtεt−2 + εtεt−1]

= θ
2E[εt−1εt−2]+θE[ε2

t−1]+θE[εtεt−2]+E[εtεt−1]

= θ
20+θσ

2 +θ0+0

= θσ
2.

The remaining autocovariance are all 0 since γs = 0, s > Q in a MA(Q). Returning to the variance of
µ̂ ,

V[µ̂] = T−2
T∑

t=1

γ0 +2T−2
T−1∑
t=1

γ1 (5.42)

= T−2T γ0 +2T−2(T −1)γ1

≈ γ0 +2γ1

T
.

When the errors are autocorrelated, the usual mean estimator has a different variance that reflects the
dependence in the errors. Importantly, the usual estimator variance is no longer correct and V[µ̂] 6=
γ0/T .

This simple illustration captures the key idea that underlies the Newey-West variance estimator,

σ̂
2
NW = γ̂0 +2

L∑
l=1

(
1− l

L+1

)
γ̂l.

When L= 1, the only weight is 1−1/2 = 1/2 and σ̂2
NW = γ̂0+ γ̂1, which is different from the variance in

the MA(1) error example. However as L increases, the weight on γ1 converges to 1since limL→∞ 1−
1

L+1 = 1. The Newey-West variance estimator asymptotically includes all of the autocovariance in the
variance, γ0 +2γ1, and when L grows large,

σ̂
2
NW → γ0 +2γ1.

The variance of the estimated mean can be consistently estimated using σ2
NW as

V[µ̂] =
γ0 +2γ1

T
≈ σ2

NW
T

.

As a general principle, the variance of the sum is the sum of the variances only true when the errors
are uncorrelated. HAC covariance estimators account for time-series dependence and lead to correct
inference as long as L grows with the sample size.21

It is tempting to estimate eq. (5.42) using the natural estimator σ̂2
HAC = γ̂0+2γ̂1/T . This estimator

is not guaranteed to be positive in finite samples, an in general unweighted estimators of the form

21Allowing L to grow at the rate T 1/3 is optimal in a certain sense related to testing.
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σ̂2
HAC = γ̂0 + 2γ̂1 + 2γ̂2 + . . .+ 2γ̂L, may be negative. The Newey-West variance estimator, σ̂2

NW , is
guaranteed to be positive for any L. The weights that scale the autocovariances,

(
1− l

L+1

)
, alter the

estimator and ensure that the estimate is positive.

5.9.2 Estimating the variance of β̂ when the errors are autocorrelated

There are two solutions to modeling cross-sectional data that have autocorrelated errors. The direct
method is to alter the cross-sectional model to capture the time-series variation by including both
contemporaneous effects of Xt as well as lagged values of Yt (and possibly lags of Xt). This approach
needs to include sufficient lags so that the errors are white noise. If the dependence is fully modeled,
then White’s heteroskedasticity (but not autocorrelation) consistent covariance estimator is consistent,
and there is no need for a more complex covariance estimator.

The second approach modifies the covariance estimator to account for the dependence in the data.
The key insight in White’s estimator of S,

Ŝ = T−1
T∑

t=1

e2
t X′tXt ,

is that this form explicitly captures the dependence between the e2
t and X′tXt . Heteroskedasticity

Autocorrelation Consistent estimators work similarly by capturing both the dependence between the
e2

t and X′tXt (heteroskedasticity) and the dependence between the Xtet and Xt− jet− j (autocorrelation).
HAC estimators of the score covariance in linear regressions use the same structure, and

ŜHAC = T−1

 T∑
t=1

e2
t X′tXt +

L∑
l=1

wl

 T∑
s=l+1

eses−lX′sXs−l +
T∑

q=l+1

eq−leqX′q−lXq

 (5.43)

= Γ̂0 +

L∑
l=1

wl
(
Γ̂l + Γ̂−l

)
= Γ̂0 +

L∑
l=1

wl

(
Γ̂l + Γ̂

′
l

)
where {wl} are a set of weights. The Newey-West estimator uses wl = 1− l

L+1 and is always positive
semi-definite. Other estimators alter the weights and have different finite-sample properties.

5.A Cointegration in a trivariate VAR

This section details how to:

• determine whether a trivariate VAR is cointegrated;

• determine the number of cointegrating vectors in a cointegrated system; and

• decompose the π matrix into α , the adjustment coefficient, and β , the cointegrating vectors.
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5.A.1 Stationary VAR

Consider the VAR(1),  xt
Yt
Zt

=

 .9 −.4 .2
.2 .8 −.3
.5 .2 .1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the parameter matrix determine the stationarity properties of this VAR process. If
the eigenvalues are all less than one in modulus, then the VAR(1) is stationary. This is the case here,
and the eigenvalues are 0.97, 0.62, and 0.2. An alternative method is to transform the model into an
VECM  ∆xt

∆Yt
∆Zt

=

 .9 −.4 .2
.2 .8 −.3
.5 .2 .1

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −.1 −.4 .2
.2 −.2 −.3
.5 .2 −.9

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


∆wt = πwt + ε t

where wt is a vector composed of xt , Yt and Zt . The rank of the parameter matrix π can be determined
by transforming it into row-echelon form. −0.1 −0.4 0.2

0.2 −0.2 −0.3
0.5 0.2 −0.9

⇒
 1 4 −2

0.2 −0.2 −0.3
0.5 0.2 −0.9

⇒
 1 4 −2

0 −1 0.1
0 −1.8 0.1

⇒
 1 4 −2

0 1 −0.1
0 −1.8 0.1


⇒

 1 0 −1
0 1 −0.1
0 0 −0.08

⇒
 1 0 −1

0 1 −0.1
0 0 1

⇒
 1 0 0

0 1 0
0 0 1


Since the π matrix is full rank, the system must be stationary. This method is equivalent to computing
the eigenvalues of the parameter matrix in the VAR.

5.A.2 Independent Unit Roots

Consider the simple VAR  xt
Yt
Zt

=

 1 0 0
0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the coefficient matrix are all 1 and the VECM is ∆xt

∆Yt
∆Zt

=

 1 0 0
0 1 0
0 0 1

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 0 0 0
0 0 0
0 0 0

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


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and the rank of π is clearly 0, so this system contains three independent unit roots. This structure also
applies to higher order nonstationary VAR models that contain independent unit root processes – the
coefficient matrix in the VECM is always rank 0 when the system contains as many distinct unit roots
as variables.

5.A.3 Cointegrated with one cointegrating relationship

Consider the VAR(1), xt
Yt
Zt

=

 0.8 0.1 0.1
−0.16 1.08 0.08
0.36 −0.18 0.82

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of the parameter matrix are 1, 1 and .7. The VECM form of this model is ∆xt

∆Yt
∆Zt

=

 0.8 0.1 0.1
−0.16 1.08 0.08
0.36 −0.18 0.82

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −0.2 0.1 0.1
−0.16 0.08 0.08
0.36 −0.18 −0.18

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of π are 0, 0 and −.3, and so rank(π) = 1. Recall that the number of cointegrating
vectors is the rank of π in a cointegrated system. In this example, there is one cointegrating vector,
which can be computed by transforming π into row-echelon form,

 −0.2 0.1 0.1
−0.16 0.08 0.08
0.36 −0.18 −0.18

⇒
 1 −0.5 −0.5
−0.16 0.08 0.08
0.36 −0.18 −0.18

⇒
 1 −0.5 −0.5

0 0 0
0 0 0


The cointegrating vector is β = [1 −0.5 −0.5]′ and α is found by noting that

π = αβ
′ =

 α1 −1
2α1 −1

2α1
α2 −1

2α2 −1
2α2

α3 −1
2α3 −1

2α3

 ,
so that α = [−.2 − .16 0.36]′ is the first column of π .

5.A.4 Cointegrated with two cointegrating relationships

Consider the VAR(1),  xt
Yt
Zt

=

 0.3 0.4 0.3
0.1 0.5 0.4
0.2 0.2 0.6

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
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The eigenvalues of the parameter matrix are 1, .2+.1i and .2-.1i, which have complex moduli of 1,
.223 and .223, respectively. The VECM form of this model is ∆xt

∆Yt
∆Zt

=

 0.3 0.4 0.3
0.1 0.5 0.4
0.2 0.2 0.6

−
 1 0 0

0 1 0
0 0 1

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t


 ∆xt

∆Yt
∆Zt

=

 −0.7 0.4 0.3
0.1 −0.5 0.4
0.2 0.2 −0.4

 xt−1
Yt−1
Zt−1

+
 ε1,t

ε2,t
ε3,t

 .
The eigenvalues of π are 0, −0.8+0.1i and −0.8−0.1i, and so rank(π) = 2. The number of cointe-
grating vectors is the rank of π . One set of cointegrating vectors can be found by transforming π into
row-echelon form22,

 −0.7 0.4 0.3
0.1 −0.5 0.4
0.2 0.2 −0.4

⇒
 1 −0.57143 −0.42857

0.1 −0.5 0.4
0.2 0.2 −0.4

⇒
 1 −0.57143 −0.42857

0 −0.44286 0.44286
0 0.31429 −0.31429

⇒
 1 −0.57143 −0.42857

0 1 −1
0 0.31429 −0.31429

⇒
 1 0 −1

0 1 −1
0 0 0


β is the transpose of first two rows of the row-echelon form,

β =

 1 0
0 1
−1 −1


α is found using the relationship

π = αβ
′ =

 α11 α12 −α11−α12
α21 α22 −α21−α22
α31 α32 −α31−α32

 ,
and so α is the first two columns of π ,

α =

 −0.7 0.4
0.1 −0.5
0.2 0.2

 .

22The cointegrating vectors are only defined up to an arbitrary normalization. Any set of cointegrating vectors β and be
used to create a different set by multiplying by a k by k full-rank matrix A so that β̃ = Aβ is also a cointegrating vector.
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Exercises

Shorter Questions

Problem 5.1. Under what conditions are two random variables cointegrated?

Problem 5.2. Suppose Yt = Φ0 +Φ1Yt−1 + ε t where Yt is a k by 1 vector values variable and Φ0
and Φ1 are conformable. What are the 1 and 2 step forecasts from this model?

Longer Questions

Exercise 5.1. Consider the estimation of a mean where the errors are a white noise process.

i. Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are i.i.d.

Now suppose error process follows an MA(1) so that εt = νt +θ1νt−1 where νt is a WN process.

ii. Show that the usual mean estimator is still unbiased and derive the variance of the mean.

Suppose that {η1,t} and {η2,t} are two sequences of uncorrelated i.i.d. standard normal random
variables.

xt = η1,t +θ11η1,t−1 +θ12η2,t−1

Yt = η2,t +θ21η1,t−1 +θ22η2,t−1

iii. What are Et [xt+1] and Et [xt+2]?

iv. Define the autocovariance matrix of a vector process.

v. Compute the autocovariance matrix Γ j for j = 0,±1.

Exercise 5.2. Consider an AR(1)

i. What are the two types of stationarity? Provide precise definitions.

ii. Which of the following bivariate Vector Autoregressions are stationary? If they are not station-
ary are they cointegrated, independent unit roots or explosive? Assume[

ε1t
ε2t

]
i.i.d.∼ N (0,I2)

Recall that the eigenvalues values of a 2×2 non-triangular matrix

π =

[
π11 π12
π21 π22

]
can be solved using the two-equation, two-unknowns system λ1 +λ2 = π11 +π22 and λ1λ2 =
π11π22−π12π21.
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(a) [
xt
Yt

]
=

[
1.4 .4
−.6 .4

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
(b) [

xt
Yt

]
=

[
1 0
0 1

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
(c) [

xt
Yt

]
=

[
.8 0
.2 .4

][
xt−1
Yt−1

]
+

[
ε1t
ε2t

]
iii. What are spurious regression and balance?

iv. Why is spurious regression a problem?

v. Briefly outline the steps needed to test for a spurious regression in

Yt = β1 +β2xt + εt .

Exercise 5.3. Consider the AR(2)

Yt = φ1Yt−1 +φ2Yt−2 + εt .

i. Rewrite the model with ∆Yt on the left-hand side and Yt−1 and ∆Yt−1 on the right-hand side.

ii. What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in the first
differences?

iii. When the model collapses, what does this imply about Yt?

Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

i. Are xt and Yt cointegrated?

ii. Write this model in error correction form.

Consider the VAR(1) [
xt
Yt

]
=

[
0.4 0.3
0.8 0.6

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
where {ε t} is a vector white noise process.

i. Verify that xt and Yt are cointegrated.
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ii. Write this model in error correction form.

iii. Compute the speed of adjustment coefficient α and the cointegrating vector β where the β on
xt is normalized to 1.

Exercise 5.4. Data on interest rates on US government debt is collected for 3-month (3MO) T-bills,
and 3-year (3Y R) and 10-year (10Y R) bonds from 1957 until 2009. Three transformed variables are
defined using these three series:

Level 3MO
Slope 10Y R−3MO

Curvature (10Y R−3Y R)− (3Y R−3MO)

i. In terms of VAR analysis, does it matter whether the original data or the level-slope-curvature
model is fit? Hint: Think about reparameterizations between the two.

Granger Causality analysis is performed on this set, and the p-values are

Levelt−1 Slopet−1 Curvaturet−1

Levelt 0.000 0.244 0.000
Slopet 0.000 0.000 0.000

Curvaturet 0.000 0.000 0.000
All (excl. self) 0.000 0.000 0.000

ii. Interpret this table.

iii. When constructing impulse response graphs the selection of the covariance of the shocks is
important. Outline the alternatives and describe situations when each may be preferable.

iv. Figure 5.7 contains the impulse response curves for this model. Interpret the graph. Also,
comment on why the impulse responses can all be significantly different from 0 in light of the
Granger Causality table.

v. Why are some of the lag-0 impulses precisely 0.0?

Exercise 5.5. Answer the following questions:

i. Consider the AR(2)
Yt = φ1Yt−1 +φ2Yt−2 + εt

(a) Rewrite the model with ∆Yt on the left-hand side and Yt−1 and ∆Yt−1 on the right-hand
side.

(b) What restrictions are needed on φ1 and φ2 for this model to collapse to an AR(1) in the
first differences?

(c) When the model collapses, what does this imply about Yt?
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Level-Slope-Curvature Impulse Response
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Figure 5.7: Impulse response functions and 95% confidence intervals for the level-slope-curvature
exercise.

ii. Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

(a) Are xt and Yt cointegrated?

(b) Write this model in error correction form.

iii. Consider the VAR(1)[
xt
Yt

]
=

[
0.625 −0.3125
−0.75 0.375

][
xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
where {ε t} is a vector white noise process.

(a) Verify that xt and Yt are cointegrated.

(b) Write this model in error correction form.
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(c) Compute the speed of adjustment coefficient α and the cointegrating vector β where the
β on xt is normalized to 1.

Exercise 5.6. Consider the estimation of a mean where the errors are a white noise process.

i. Show that the usual mean estimator is unbiased and derive its variance without assuming the
errors are i.i.d.

Now suppose error process follows an AR(1) so that Yt = µ +εt and εt = ρεt−1+νt where {νt}
is a WN process.

ii. Show that the usual mean estimator is still unbiased and derive the variance of the sample mean.

iii. What is Granger Causality and how is it useful in Vector Autoregression analysis? Be as specific
as possible.

Suppose that {η1,t} and {η2,t} are two sequences of uncorrelated i.i.d. standard normal random
variables.

xt = η1,t +θ11η1,t−1 +θ12η2,t−1

Yt = η2,t +θ21η1,t−1 +θ22η2,t−1

iv. Define the autocovariance matrix of a vector process.

v. Compute the autocovariance matrix Γ j for j = 0,±1.

vi. The AIC, HQIC, and BIC are computed for a bivariate VAR with lag length ranging from 0 to
12 and are in the table below. Which model is selected by each criterion?

Lag Length AIC HQIC BIC

0 2.1916 2.1968 2.2057
1 0.9495 0.9805 1.0339
2 0.9486 1.0054 1.1032
3 0.9716 1.0542 1.1965
4 0.9950 1.1033 1.2900
5 1.0192 1.1532 1.3843
6 1.0417 1.2015 1.4768
7 1.0671 1.2526 1.5722
8 1.0898 1.3010 1.6649
9 1.1115 1.3483 1.7564

10 1.1331 1.3956 1.8478
11 1.1562 1.4442 1.9406
12 1.1790 1.4926 2.0331
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Exercise 5.7. Consider the VAR(1)

xt = xt−1 + ε1,t

Yt = βxt−1 + ε2,t

where {ε t} is a vector white noise process.

i. Are xt and Yt cointegrated?

ii. Write this model in error correction form.

Exercise 5.8. Answer the following questions.

i. Describe two methods for determining the number of lags to use in a VAR(P)

ii. Consider the VAR(P)
Yt = Φ1Yt−1 +Φ2Yt−2 + ε t.

Write this VAR in companion form. Under what conditions is this process stationary?

iii. For the remainder of the question, consider the 2-dimentional VAR(1)

Yt = Φ1Yt−1 + ε t.

Define Granger Causality and explain what conditions on Φ1 are needed for no series in yt to
Granger cause any other series in yt .

iv. Define cointegration in this system.

v. What conditions on Φ1 are required for the VAR(1) to be cointegrated?

vi. Write the VAR(1) in error correction form.

vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.9. Consider a VAR(1)
Yt = Φ1Yt−1 + ε t

i. What are the impulses in this model?

ii. Define cointegration for this model.

iii. What conditions on the eigenvalues of Φ1 are required for cointegration to be present?

iv. Consider a 2-dimensional VAR(1) written in error correction form

∆Yt = ΠYt−1 + ε t .

Assume each of the variables in Yt are I(1). What conditions on the rank of Π must hold when:

(a) Yt−1 are stationary

(b) Yt−1 are cointegrated
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(c) Yt−1 are random walks

v. Define spurious regression. Why is this a problem?

Exercise 5.10. Consider the VAR(P)

Yt = Φ1Yt−1 +Φ2Yt−2 + ε t

i. Write this in companion form. Under what conditions is the VAR(P) stationary?

ii. Consider the 2-dimentional VAR
Yt = Φ1Yt−1 + ε t

(a) What conditions on Φ1 are required for the VAR(1) to have cointegration?

(b) Describe how to test for cointegration using the Engle-Granger method.

Exercise 5.11. Consider a VAR(1)
Yt = Φ1Yt−1 + ε t

i. What is an impulse response function for this model?

ii. Define cointegration for this model.

iii. What conditions on the eigenvalues of Φ1 are required for cointegration to be present?

iv. Consider a 2-dimensional VAR(1) written in error correction form

∆Yt = ΠYt−1 + ε t .

Assume each of the variables in Yt are I(1). What conditions on the rank of Π must hold when:

(a) Yt−1 are stationary

(b) Yt−1 are cointegrated

(c) Yt−1 are random walks

v. Define spurious regression. Why is this a problem?

Exercise 5.12. Answer the following questions.

i. Describe two methods for determining the number of lags to use in a VAR(P)

ii. Consider the VAR(P)
Yt = Φ1Yt−1 +Φ2Yt−2 + ε t .

Write this in companion form. Under what conditions is the VAR(P) stationary?

iii. For the remainder of the question, consider the 2-dimentional VAR(1)

Yt = Φ1Yt−1 + ε t .

Define Granger Causality and explain what conditions on Φ1 are needed for no series in Yt to
Granger cause any other series in Yt .
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iv. Define cointegration in this system.

v. What conditions on Φ1 are required for the VAR(1) to have cointegration?

vi. Write the VAR(1) in error correction form.

vii. In this setup, describe how to test for cointegration using the Engle-Granger method.

Exercise 5.13. Answer the following questions.

i. Suppose Yt = φ0 +φ1y+φ2Yt−2 + εt where {εt} is a white noise process.

ii. Write this model in companion form.

(a) Using the companion form, derive expressions for the first two autocovariances of Yt . (It
is not necessary to explicitly solve them in scalar form)

(b) Using the companion form, determine the formal conditions for φ1 and φ2 to for {Yt} to be
covariance stationary. You can use the result that when A is a 2 by 2 matrix, its eigenvalues
solve the two equations

λ1λ2 = a11a22−a12a21

λ1 +λ2 = a11 +a22
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Chapter 6

Generalized Method Of Moments (GMM)

Note: The primary reference text for these notes is Hall (2005). Alternative, but less comprehensive,
treatments can be found in chapter 14 of Hamilton (1994) or some sections of chapter 4 of Greene
(2007). For an excellent perspective of GMM from a finance point of view, see chapters 10, 11 and 13
in Cochrane (2001).

Generalized Moethod of Moments is a broadly applicable parameter estimation
strategy which nests the classic method of moments, linear regression, maximum
likelihood. This chapter discusses the specification of moment conditions – the
building blocks of GMM estimations, estimation, inference and specificatrion test-
ing. These ideas are illustrated through three examples: estimation of a consump-
tion asset pricing model, linear factors models and stochastic volatility.

Generalized Method of Moments (GMM) is an estimation procedure that allows economic models
to be specified while avoiding often unwanted or unnecessary assumptions, such as specifying a par-
ticular distribution for the errors. This lack of structure means GMM is widely applicable, although
this generality comes at the cost of a number of issues, the most important of which is questionable
small sample performance. This chapter introduces the GMM estimation strategy, discuss specifica-
tion, estimation, inference and testing.

6.1 Classical Method of Moments

The classical method of moments, or simply method of moments, uses sample moments to estimate
unknown parameters. For example, suppose a set of T observations, y1, . . . ,yT are i.i.d.Poisson with
intensity parameter λ . Since E[yt ] = λ , a natural method to estimate the unknown parameter is to use
the sample average,

λ̂ = T−1
T∑

t=1

yt (6.1)

which converges to λ as the sample size grows large. In the case of Poisson data , the mean is not
the only moment which depends on λ , and so it is possible to use other moments to learn about the
intensity. For example the variance V[yt ] = λ , also depends on λ and so E[y2

t ] = λ 2 +λ . This can be
used estimate to lambda since
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λ +λ
2 = E

[
T−1

T∑
t=1

y2
t

]
(6.2)

and, using the quadratic formula, an estimate of λ can be constructed as

λ̂ =
−1+

√
1+4y2

2
(6.3)

where y2 = T−1∑T
t=1 y2

t . Other estimators for λ could similarly be constructed by computing higher
order moments of yt .1 These estimators are method of moments estimators since they use sample
moments to estimate the parameter of interest. Generalized Method of Moments (GMM) extends the
classical setup in two important ways. The first is to formally treat the problem of having two or more
moment conditions which have information about unknown parameters. GMM allows estimation and
inference in systems of Q equations with P unknowns, P ≤ Q. The second important generalization
of GMM is that quantities other than sample moments can be used to estimate the parameters. GMM
exploits laws of large numbers and central limit theorems to establish regularity conditions for many
different “moment conditions” that may or may not actually be moments. These two changes pro-
duce a class of estimators that is broadly applicable. Section 6.7 shows that the classical method of
moments, ordinary least squares and maximum likelihood are all special cases of GMM.

6.2 Examples

Three examples will be used throughout this chapter. The first is a simple consumption asset pricing
model. The second is the estimation of linear asset pricing models and the final is the estimation of a
stochastic volatility model.

6.2.1 Consumption Asset Pricing

GMM was originally designed as a solution to a classic problem in asset pricing: how can a consump-
tion based model be estimated without making strong assumptions on the distribution of returns? This
example is based on Hansen and Singleton (1982), a model which builds on Lucas (1978).

The classic consumption based asset pricing model assumes that a representative agent maximizes
the conditional expectation of their lifetime discounted utility,

Et

[ ∞∑
i=0

β
iU(ct+i)

]
(6.4)

where β is the discount rate (rate of time preference) and U(·) is a strictly concave utility function.
Agents allocate assets between N risky assets and face the budget constraint

1The quadratic formula has two solutions. It is simple to verify that the other solution,
−1−

√
1+4y2

2 , is negative and so
cannot be the intensity of a Poisson process.
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ct +

N∑
j=1

p j,tq j,t =
N∑

j=1

R j,tq j,t−m j +wt (6.5)

where ct is consumption, p j,t and q j,t are price and quantity of asset j, j = 1,2, . . . ,N, R j,t is the time t
payoff of holding asset j purchased in period t−m j, q j,t−m j is the amount purchased in period t−m j
and wt is real labor income. The budget constraint requires that consumption plus asset purchases
(LHS) is equal to portfolio wealth plus labor income. Solving this model produces a standard Euler
equation,

p j,tU ′(ct) = β
m jEt

[
R j,t+m jU

′(ct+m j)
]

(6.6)

which is true for all assets and all time periods. This Euler equation states that the utility foregone by
purchasing an asset at p j,t must equal the discounted expected utility gained from holding that asset
in period t +m j. The key insight of Hansen and Singleton (1982) is that this simple condition has
many testable implications, mainly that

Et

[
β

m j

(
R j,t+m j

p j,t

)(
U ′(ct+m j)

U ′(ct)

)]
−1 = 0 (6.7)

Note that
R j,t+m j

p j,t
is the gross rate of return for asset j (1 plus the net rate of return). Since the Euler

equation holds for all time horizons, it is simplest to reduce it to a one-period problem. Defining r j,t+1
to be the net rate of return one period ahead for asset j,

Et

[
β
(
1+ r j,t+1

)(U ′(ct+1)

U ′(ct)

)]
−1 = 0 (6.8)

which provides a simple testable implication of this model. This condition must be true for any asset
j which provides a large number of testable implications by replacing the returns of one series with
those of another. Moreover, the initial expectation is conditional which produces further implications
for the model. Not only is the Euler equation required to have mean zero, it must be uncorrelated with
any time t instrument zt , and so it must also be the case that

E
[(

β
(
1+ r j,t+1

)(U ′(ct+1)

U ′(ct)

)
−1
)

zt

]
= 0. (6.9)

The use of conditioning information can be used to construct a huge number of testable restrictions.
This model is completed by specifying the utility function to be CRRA,

U(ct) =
c1−γ

t

1− γ
(6.10)

U ′(ct) = c−γ

t (6.11)

where γ is the coefficient of relative risk aversion. With this substitution, the testable implications are

E

[(
β
(
1+ r j,t+1

)(ct+1

ct

)−γ

−1

)
zt

]
= 0 (6.12)
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where zt is any t available instrument (including a constant, which will produce an unconditional
restriction).

6.2.2 Linear Factor Models

Linear factor models are widely popular in finance due to their ease of estimation using the Fama
and MacBeth (1973) methodology and the Shanken (1992) correction. However, Fama-MacBeth,
even with the correction, has a number of problems; the most important is that the assumptions
underlying the Shanken correction are not valid for heteroskedastic asset pricing models and so the
modified standard errors are not consistent. GMM provides a simple method to estimate linear asset
pricing models and to make correct inference under weaker conditions than those needed to derive the
Shanken correction. Consider the estimation of the parameters of the CAPM using two assets. This
model contains three parameters: the two β s, measuring the risk sensitivity, and λm, the market price
of risk. These two parameters are estimated using four equations,

re
1t = β1re

mt + ε1t (6.13)
re

2t = β2re
mt + ε2t

re
1t = β1λ

m +η1t

re
2t = β2λ

m +η2t

where re
j,t is the excess return to asset j, re

m,t is the excess return to the market and ε j,t and η j,t are
errors.

These equations should look familiar; they are the Fama-Macbeth equations. The first two – the
“time-series” regressions – are initially estimated using OLS to find the values for β j, j = 1,2 and
the last two – the “cross-section” regression – are estimated conditioning on the first stage β s to
estimate the price of risk. The Fama-MacBeth estimation procedure can be used to generate a set of
equations that should have expectation zero at the correct parameters. The first two come from the
initial regressions (see chapter 3),

(re
1t +β1re

mt)r
e
mt = 0 (6.14)

(re
2t +β2re

mt)r
e
mt = 0

and the last two come from the second stage regressions

re
1t−β1λ

m = 0 (6.15)
re

2t−β2λ
m = 0

This set of equations consists 3 unknowns and four equations and so cannot be directly estimates
using least squares. One of the main advantages of GMM is that it allows estimation in systems
where the number of unknowns is smaller than the number of moment conditions, and to test whether
the moment conditions hold (all conditions not significantly different from 0).
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6.2.3 Stochastic Volatility Models

Stochastic volatility is an alternative framework to ARCH for modeling conditional heteroskedas-
ticity. The primary difference between the two is the inclusion of 2 (or more) shocks in stochastic
volatility models. The inclusion of the additional shock makes standard likelihood-based methods,
like those used to estimate ARCH-family models, infeasible. GMM was one of the first methods
used to estimate these models. GMM estimators employ a set of population moment conditions to
determine the unknown parameters of the models. The simplest stochastic volatility model is known
as the log-normal SV model,

rt = σtεt (6.16)

lnσ
2
t = ω +ρ ln

(
σ

2
t−1−ω

)
+σηηt (6.17)

where (εt ,ηt)
i.i.d.∼ N(0,I2) are i.i.d. standard normal. The first equation specifies the distribution of

returns as heteroskedastic normal. The second equation specifies the dynamics of the log of volatility
as an AR(1). The parameter vector is (ω,ρ,ση)

′. The application of GMM will use functions of rt to
identify the parameters of the model. Because this model is so simple, it is straight forward to derive
the following relationships:

E [|rt |] =
√

2
π

E [σt ] (6.18)

E
[
r2
t
]
= E

[
σ

2
t
]

E
[
|r3

t |
]
= 2

√
2
π

E
[
σ

3
t
]

E
[
|r4

t |
]
= 3E

[
σ

4
t
]

E
[
|rtrt− j|

]
=

2
π

E
[
σtσt− j

]
E
[
|r2

t r2
t− j|
]
= E

[
σ

2
t σ

2
t− j
]

where

E [σm
t ] = exp

m
ω

2
+m2

σ
2
η

1−ρ2

8

 (6.19)

E
[
σ

m
t σ

n
t− j
]
= E [σm

t ]E [σn
t ]exp

(mn)ρ j

σ
2
η

1−ρ2

4

 .

These conditions provide a large set of moments to determine the three unknown parameters. GMM
seamlessly allows 3 or more moment conditions to be used in the estimation of the unknowns.
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6.3 General Specification

The three examples show how a model – economic or statistical – can be turned into a set of moment
conditional that have zero expectation, at least if the model is correctly specified. All GMM spec-
ifications are constructed this way. Derivation of GMM begins by defining the population moment
condition.

Definition 6.1 (Population Moment Condition). Let wt be a vector of random variables, θ 0 be a p by
1 vector of parameters, and g(·) be a q by 1 vector valued function. The population moment condition
is defined

E[g(wt ,θ 0)] = 0 (6.20)

It is possible that g(·) could change over time and so could be replaced with gt(·). For clarity of
exposition the more general case will not be considered.

Definition 6.2 (Sample Moment Condition). The sample moment condition is derived from the aver-
age population moment condition,

gT (w,θ) = T−1
T∑

t=1

g(wt ,θ). (6.21)

The gT notation dates back to the original paper of Hansen (1982) and is widely used to differentiate
population and sample moment conditions. Also note that the sample moment condition suppresses
the t in w. The GMM estimator is defined as the value of θ that minimizes

QT (θ) = gT (w,θ)′WT gT (w,θ). (6.22)

Thus the GMM estimator is defined as

θ̂ = argmin
θ

QT (θ) (6.23)

where WT is a q by q positive semi-definite matrix. WT may (and generally will) depend on the data
but it is required to converge in probability to a positive definite matrix for the estimator to be well
defined. In order to operationalize the GMM estimator, q, the number of moments, will be required
to greater than or equal to p, the number of unknown parameters.

6.3.1 Identification and Overidentification

GMM specifications fall in to three categories: underidentified, just-identified and overidentified.
Underidentified models are those where the number of non-redundant moment conditions is less than
the number of parameters. The consequence of this is obvious: the problem will have many solutions.
Just-identified specification have q = p while overidentified GMM specifications have q > p. The
role of just- and overidentification will be reexamined in the context of estimation and inference. In
most applications of GMM it is sufficient to count the number of moment equations and the number
of parameters when determining whether the model is just- or overidentified. The exception to this
rule arises if some moment conditions are linear combination of other moment conditions – in other
words are redundant – which is similar to including a perfectly co-linear variable in a regression.
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6.3.1.1 Example: Consumption Asset Pricing Model

In the consumption asset pricing model, the population moment condition is given by

g(wt ,θ 0) =

(
β0 (1+ rt+1)

(
ct+1

ct

)−γ0

−1

)
⊗ zt (6.24)

where θ 0 = (β0,γ0)
′, and wt = (ct+1,ct ,r′t+1,z

′
t)
′ and ⊗ denotes Kronecker product.2Note that both

rt+1 and zt are column vectors and so if there are n assets and k instruments, then the dimension of
g(·)(number of moment conditions) is q = nk by 1 and the number of parameters is p = 2. Systems
with nk ≥ 2 will be identified as long as some technical conditions are met regarding instrument
validity (see section 6.11).

6.3.1.2 Example: Linear Factor Models

In the linear factor models, the population moment conditions are given by

g(wt ,θ 0) =

(
(rt−β ft)⊗ ft

rt−βλ

)
(6.27)

where θ 0 = (vec(β )′,λ ′)′ and wt = (r′t , f′t)′ where rt is n by 1 and ft is k by 1.3 These moments can
be decomposed into two blocks. The top block contains the moment conditions necessary to estimate
the β s. This block can be further decomposed into n blocks of k moment conditions, one for each
factor. The first of these n blocks is

2

Definition 6.3 (Kronecker Product). Let A = [ai j] be an m by n matrix, and let B = [bi j] be a k by l matrix. The Kronecker
product is defined

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB

 (6.25)

and has dimension mk by nl. If a and b are column vectors with length m and k respectively, then

a⊗b =


a1b
a2b

...
amb

 . (6.26)

3The vec operator stacks the columns of a matrix into a column vector.

Definition 6.4 (vec). Let A = [ai j] be an m by n matrix. The the vec operator (also known as the stack operator) is defined

vecA =


A1
A2
...

An

 (6.28)

and vec(A) is mn by 1.
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
(r1t−β11 f1t−β12 f2t− . . .−β1K fKt) f1t
(r1t−β11 f1t−β12 f2t− . . .−β1K fKt) f2t

...
(r1t−β11 f1t−β12 f2t− . . .−β1K fKt) fKt

=


ε1t f1t
ε1t f2t

...
ε1t fKt

 . (6.29)

Each equation in (6.29) should be recognized as the first order condition for estimating the slope
coefficients in a linear regression. The second block has the form

r1t−β11λ1−β12λ2− . . .−β1KλK
r2t−β21λ1−β22λ2− . . .−β2KλK

...
rNt−βN1λ1−βN2λ2− . . .−βNKλK

 (6.30)

where λ j is the risk premium on the jthfactor. These moment conditions are derived from the relation-
ship that the average return on an asset should be the sum of its risk exposure times the premium for
that exposure.

The number of moment conditions (and the length of g(·)) is q= nk+n. The number of parameters
is p = nk (from β ) + k (from λ ), and so the number of overidentifying restrictions is the number of
equations in g(·) minus the number of parameters, (nk+ n)− (nk+ k) = n− k, the same number of
restrictions used when testing asset pricing models in a two-stage Fama-MacBeth regressions.

6.3.1.3 Example: Stochastic Volatility Model

Many moment conditions are available to use in the stochastic volatility model. It is clear that at least
3 conditions are necessary to identify the 3 parameters and that the upper bound on the number of
moment conditions is larger than the amount of data available. For clarity of exposition, only 5 and 8
moment conditions will be used, where the 8 are a superset of the 5. These 5 are:

g(wt ,θ 0) =



|rt |−
√

2
π

exp

ω

2 +

σ
2
η

1−ρ2

8


r2
t − exp

ω +

σ
2
η

1−ρ2

2


r4
t −3exp

(
2ω +2 σ

2
η

1−ρ2

)
|rtrt−1|− 2

π

exp

ω

2 +

σ
2
η

1−ρ2

8

2

exp

ρ

σ
2
η

1−ρ2

4


r2
t r2

t−2−

exp

ω +

σ
2
η

1−ρ2

2

2

exp
(

ρ2 σ
2
η

1−ρ2

)



(6.31)

These moment conditions can be easily verified from 6.18 and 6.19. The 8 moment-condition esti-
mation extends the 5 moment-condition estimation with
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g(wt ,θ 0) =



Moment conditions from 6.31

|r3
t |−2

√
2
π

exp

3ω

2 +9
σ

2
η

1−ρ2

8


|rtrt−3|− 2

π

exp

ω

2 +

σ
2
η

1−ρ2

8

2

exp

ρ3
σ

2
η

1−ρ2

4


r2
t r2

t−4−

exp

ω +

σ
2
η

1−ρ2

2

2

exp
(

ρ4 σ
2
η

1−ρ2

)


(6.32)

The moments that use lags are all staggered to improve identification of ρ .

6.4 Estimation

Estimation of GMM is seemingly simple but in practice fraught with difficulties and user choices.
From the definitions of the GMM estimator,

QT (θ) = gT (w,θ)′WT gT (w,θ) (6.33)

θ̂ = argmin
θ

QT (θ) (6.34)

Differentiation can be used to find the solution, θ̂ , which solves

2GT (w, θ̂)′WT gT (w, θ̂) = 0 (6.35)

where GT (w,θ) is the q by p Jacobian of the moment conditions with respect to θ
′,

GT (w,θ) =
∂gT (w,θ)

∂θ
′ = T−1

T∑
t=1

∂g(wt ,θ)

∂θ
′ . (6.36)

GT (w,θ) is a matrix of derivatives with q rows and p columns where each row contains the derivative
of one of the moment conditions with respect to all p parameters and each column contains the
derivative of the q moment conditions with respect to a single parameter.

The seeming simplicity of the calculus obscures two important points. First, the solution in eq.
(6.35) does not generally emit an analytical solution and so numerical optimization must be used.
Second, QT (·) is generally not a convex function in θwith a unique minimum, and so local minima
are possible. The solution to the latter problem is to try multiple starting values and clever initial
choices for starting values whenever available.

Note that WT has not been specified other than requiring that this weighting matrix is positive
definite. The choice of the weighting matrix is an additional complication of using GMM. Theory
dictates that the best choice of the weighting matrix must satisfyWT

p→ S−1 where
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S = avar
{√

T gT (wt ,θ 0)
}

(6.37)

and where avar indicates asymptotic variance. That is, the best choice of weighting is the inverse
of the covariance of the moment conditions. Unfortunately the covariance of the moment conditions
generally depends on the unknown parameter vector, θ 0. The usual solution is to use multi-step
estimation. In the first step, a simple choice for WT ,which does not depend on θ (often Iq the identity
matrix), is used to estimate θ̂ . The second uses the first-step estimate of θ̂ to estimate Ŝ. A more
formal discussion of the estimation of S will come later. For now, assume that a consistent estimation
method is being used so that Ŝ p→ S and so WT = Ŝ−1 p→ S−1.

The three main methods used to implement GMM are the classic 2-step estimation, K-step estima-
tion where the estimation only ends after some convergence criteria is met and continuous updating
estimation.

6.4.1 2-step Estimator

Two-step estimation is the standard procedure for estimating parameters using GMM. First-step es-
timates are constructed using a preliminary weighting matrix W̃, often the identity matrix, and θ̂ 1
solves the initial optimization problem

2GT (w, θ̂ 1)
′W̃gT (w, θ̂ 1) = 0. (6.38)

The second step uses an estimated Ŝ based on the first-step estimates θ̂ 1. For example, if the moments
are a martingale difference sequence with finite covariance,

Ŝ(w, θ̂ 1) = T−1
T∑

t=1

g(wt , θ̂ 1)g(wt , θ̂ 1)
′ (6.39)

is a consistent estimator of the asymptotic variance of gT (·), and the second-step estimates, θ̂ 2, mini-
mizes

QT (θ) = gT (w,θ)′Ŝ−1(θ 1)gT (w,θ). (6.40)

which has first order condition

2GT (w, θ̂ 2)
′Ŝ−1(θ 1)gT (w, θ̂ 2) = 0. (6.41)

Two-step estimation relies on the the consistence of the first-step estimates, θ̂ 1
p→ θ 0 which is gener-

ally needed for Ŝ p→ S.

6.4.2 k-step Estimator

The k-step estimation strategy extends the two-step estimator in an obvious way: if two-steps are bet-
ter than one, k may be better than two. The k-step procedure picks up where the 2-step procedure left
off and continues iterating between θ̂ and Ŝ using the most recent values θ̂ available when computing
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the covariance of the moment conditions. The procedure terminates when some stopping criteria is
satisfied. For example if

max |θ̂ k− θ̂ k−1|< ε (6.42)

for some small value ε , the iterations would stop and θ̂ = θ̂ k. The stopping criteria should depend
on the values of θ . For example, if these values are close to 1, then 1× 10−4 may be a good choice
for a stopping criteria. If the values are larger or smaller, the stopping criteria should be adjusted
accordingly. The k-step and the 2-step estimator are asymptotically equivalent, although, the k-step
procedure is thought to have better small sample properties than the 2-step estimator, particularly
when it converges.

6.4.3 Continuously Updating Estimator (CUE)

The final, and most complicated, type of estimation, is the continuously updating estimator. Instead
of iterating between estimation of θ and S, this estimator parametrizes S as a function of θ . In the
problem, θ̂C is found as the minimum of

QC
T (θ) = gT (w,θ)′S(w,θ)−1gT (w,θ) (6.43)

The first order condition of this problem is not the same as in the original problem since θ appears
in three terms. However, the estimates are still first-order asymptotically equivalent to the two-step
estimate (and hence the k-step as well), and if the continuously updating estimator converges, it is
generally regarded to have the best small sample properties among these methods.4 There are two
caveats to using the continuously updating estimator. First, it is necessary to ensure that gT (w,θ) is
close to zero and that minimum is not being determined by a large covariance since a large S(w,θ)
will make QC

T (θ) small for any value of the sample moment conditions gT (w,θ). The second warning
when using the continuously updating estimator has to make sure that S(w,θ) is not singular. If the
weighting matrix is singular, there are values of θ which satisfy the first order condition which are not
consistent. The continuously updating estimator is usually implemented using the k-step estimator to
find starting values. Once the k-step has converged, switch to the continuously updating estimator
until it also converges.

6.4.4 Improving the first step (when it matters)

There are two important caveats to the first-step choice of weighting matrix. The first is simple: if the
problem is just identified, then the choice of weighting matrix does not matter and only one step is
needed. The understand this, consider the first-order condition which definesθ̂ ,

2GT (w, θ̂)′WT gT (w, θ̂) = 0. (6.44)

If the number of moment conditions is the same as the number of parameters, the solution must have

gT (w, θ̂) = 0. (6.45)

4The continuously updating estimator is more efficient in the second-order sense than the 2- of k-step estimators,
which improves finite sample properties.
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as long as WT is positive definite and GT (w, θ̂) has full rank (a necessary condition). However, if
this is true, then

2GT (w, θ̂)′W̃T gT (w, θ̂) = 0 (6.46)

for any other positive definite W̃T whether it is the identity matrix, the asymptotic variance of the
moment conditions, or something else.

The other important concern when choosing the initial weighting matrix is to not overweight high-
variance moments and underweight low variance ones. Reasonable first-step estimates improve the
estimation of Ŝ which in turn provide more accurate second-step estimates. The second (and later)
steps automatically correct for the amount of variability in the moment conditions. One fairly robust
starting value is to use a diagonal matrix with the inverse of the variances of the moment conditions on
the diagonal. This requires knowledge about θ to implement and an initial estimate or a good guess
can be used. Asymptotically it makes no difference, although careful weighing in first-step estimation
improves the performance of the 2-step estimator.

6.4.5 Example: Consumption Asset Pricing Model

The consumption asset pricing model example will be used to illustrate estimation. The data set
consists of two return series, the value-weighted market portfolio and the equally-weighted market
portfolio, VWM and EWM respectively. Models were fit to each return series separately. Real con-
sumption data was available from Q1 1947 until Q4 2009 and downloaded from FRED (PCECC96).
Five instruments (zt) will be used, a constant (1), contemporaneous and lagged consumption growth
(ct/ct−1 and ct−1/ct−2) and contemporaneous and lagged gross returns on the VWM (pt/pt−1 and
pt−1/pt−2). Using these five instruments, the model is overidentified since there are only 2 unknowns
and five moment conditions,

g(wt ,θ 0) =



(
β (1+ rt+1)

(
ct+1
ct

)−γ

−1
)

(
β (1+ rt+1)

(
ct+1
ct

)−γ

−1
)

ct
ct−1(

β (1+ rt+1)
(

ct+1
ct

)−γ

−1
)

ct−1
ct−2(

β (1+ rt+1)
(

ct+1
ct

)−γ

−1
)

pt
pt−1(

β (1+ rt+1)
(

ct+1
ct

)−γ

−1
)

pt−1
pt−2


(6.47)

where rt+1 is the return on either the VWM or the EWM. Table 6.1 contains parameter estimates
using the 4 methods outlined above for each asset.

The parameters estimates were broadly similar across the different estimators. The typical dis-
count rate is very low (β close to 1) and the risk aversion parameter appears to be between 0.5 and
2.

One aspect of the estimation of this model is that γ is not well identified. Figure 6.1 contain
surface and contour plots of the objective function as a function of β and γ for both the two-step
estimator and the CUE. It is obvious in both pictures that the objective function is steep along the
β -axis but very flat along the γ-axis. This means that γ is not well identified and many values will
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VWM EWM
Method β̂ γ̂ β̂ γ̂

Initial weighting matrix : I5

1-Step 0.977 0.352 0.953 2.199
2-Step 0.975 0.499 0.965 1.025
k-Step 0.975 0.497 0.966 0.939
Continuous 0.976 0.502 0.966 0.936

Initial weighting matrix: (z′z)−1

1-Step 0.975 0.587 0.955 1.978
2-Step 0.975 0.496 0.966 1.004
k-Step 0.975 0.497 0.966 0.939
Continuous 0.976 0.502 0.966 0.936

Table 6.1: Parameter estimates from the consumption asset pricing model using both the VWM and
the EWM to construct the moment conditions. The top block corresponds to using an identity matrix
for starting values while the bottom block of four correspond to using (z′z)−1 in the first step. The
first-step estimates seem to be better behaved and closer to the 2- and K-step estimates when (z′z)−1

is used in the first step. The K-step and continuously updating estimators both converged and so
produce the same estimates irrespective of the 1-step weighting matrix.

result in nearly the same objective function value. These results demonstrate how difficult GMM can
be in even a simple 2-parameter model. Significant care should always be taken to ensure that the
objective function has been globally minimized.

6.4.6 Example: Stochastic Volatility Model

The stochastic volatility model was fit using both 5 and 8 moment conditions to the returns on the
FTSE 100 from January 1, 2000 until December 31, 2009, a total of 2,525 trading days. The results
of the estimation are in table 6.2. The parameters differ substantially between the two methods.
The 5-moment estimates indicate relatively low persistence of volatility with substantial variability.
The 8-moment estimates all indicate that volatility is extremely persistent with ρclose to 1. All
estimates weighting matrix computed using a Newey-West covariance with 16 lags (≈ 1.2T

1
3 ). A

non-trivial covariance matrix is needed in this problem as the moment conditions should be persistent
in the presence of stochastic volatility, unlike in the consumption asset pricing model which should,
if correctly specified, have martingale errors.

In all cases the initial weighting matrix was specified to be an identity matrix, although in es-
timation problems such as this where the moment condition can be decomposed into g(wt ,θ) =
f(wt)−h(θ) a simple expression for the covariance can be derived by noting that, if the model is well
specified, E[g(wt ,θ)] = 0 and thus h(θ) = E[f(wt)]. Using this relationship the covariance of f(wt)
can be computed replacing h(θ) with the sample mean of f(wt).



392 Generalized Method Of Moments (GMM)
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Figure 6.1: This figure contains a plot of the GMM objective function using the 2-step estimator (top
panels) and the CUE (bottom panels). The objective is very steep along the β axis but nearly flat
along the γ axis. This indicates that γ is not well identified.

6.5 Asymptotic Properties

The GMM estimator is consistent and asymptotically normal under fairly weak, albeit technical, as-
sumptions. Rather than list 7-10 (depending on which setup is being used) hard to interpret assump-
tions, it is more useful to understand why the GMM estimator is consistent and asymptotically normal.
The key to developing this intuition comes from understanding the that moment conditions used to
define the estimator, gT (w,θ), are simple averages which should have mean 0 when the population
moment condition is true.

In order for the estimates to be reasonable, g(wt ,θ) need to well behaved. One scenario where
this occurs is when g(wt ,θ) is a stationary, ergodic sequence with a few moments. If this is true, only
a few additional assumptions are needed to ensure θ̂ should be consistent and asymptotically normal.
Specifically, WT must be positive definite and the system must be identified. Positive definiteness of
WT is required to ensure that QT (θ) can only be minimized at one value – θ 0. If WT were positive
semi-definite or indefinite, many values would minimize the objective function. Identification is
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Method ω̂ ρ̂ σ̂η

5 moment conditions

1-Step 0.004 1.000 0.005
2-Step -0.046 0.865 0.491
k-Step -0.046 0.865 0.491
Continuous -0.046 0.865 0.491

8 moment conditions

1-Step 0.060 1.000 0.005
2-Step -0.061 1.000 0.005
k-Step -0.061 1.000 0.004
Continuous -0.061 1.000 0.004

Table 6.2: Parameter estimates from the stochastic volatility model using both the 5- and 8-moment
condition specifications on the returns from the FTSE from January 1, 2000 until December 31, 2009.

trickier, but generally requires that there is enough variation in the moment conditions to uniquely
determine all of the parameters. Put more technically, the rank of G = plimGT (w,θ 0) must be
weakly larger than the number of parameters in the model. Identification will be discussed in more
detail in section 6.11. If these technical conditions are true, then the GMM estimator has standard
properties.

6.5.1 Consistency

The estimator is consistent under relatively weak conditions. Formal consistency arguments involve
showing that QT (θ)is suitably close the E [QT (θ)] in large samples so that the minimum of the sample
objective function is close to the minimum of the population objective function. The most important
requirement – and often the most difficult to verify – is that the parameters are uniquely identified
which is equivalently to saying that there is only one value θ 0for which E [g(wt ,θ)] = 0. If this
condition is true, and some more technical conditions hold, then

θ̂ −θ 0
p→ 0 (6.48)

The important point of this result is that the estimator is consistent for any choice of WT , not just
WT

p→ S−1 since whenever WT is positive definite and the parameters are uniquely identified, QT (θ)
can only be minimized when E [g(w,θ)]= 0 which is θ 0.

6.5.2 Asymptotic Normality of GMM Estimators

The GMM estimator is also asymptotically normal, although the form of the asymptotic covariance
depends on how the parameters are estimated. Asymptotic normality of GMM estimators follows
from taking a mean-value (similar to a Taylor) expansion of the moment conditions around the true
parameter θ 0,
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0 = GT
(
w, θ̂

)′WT g
(
w, θ̂

)
≈G′Wg(w,θ 0)+G′W

∂g
(
w, θ̈

)
∂θ
′

(
θ̂ −θ 0

)
(6.49)

≈G′Wg(w,θ 0)+G′WG
(
θ̂ −θ 0

)
G′WG

(
θ̂ −θ 0

)
≈−G′Wg(w,θ 0) (6.50)

√
T
(
θ̂ −θ 0

)
≈−

(
G′WG

)−1 G′W
[√

T g(w,θ 0)
]

where G≡ plimGT (w,θ 0) and W≡ plimWT . The first line uses the score condition on the left hand
side and the right-hand side contains the first-order Taylor expansion of the first-order condition.
The second line uses the definition G = ∂g(w,θ)/∂θ

′ evaluated at some point θ̈ between θ̂ and θ 0
(element-by-element) the last line scales the estimator by

√
T . This expansion shows that the asymp-

totic normality of GMM estimators is derived directly from the normality of the moment conditions
evaluated at the true parameter – moment conditions which are averages and so may, subject to some
regularity conditions, follow a CLT.

The asymptotic variance of the parameters can be computed by computing the variance of the last
line in eq. (6.49).

V
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(
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Using the asymptotic variance, the asymptotic distribution of the GMM estimator is

√
T
(
θ̂ −θ 0

) d→ N
(

0,
(
G′WG

)−1 G′WSWG
(
G′WG

)−1
)

(6.51)

If one were to use single-step estimation with an identity weighting matrix, the asymptotic covariance
would be (G′G)

−1 G′SG(G′G)
−1. This format may look familiar: the White heteroskedasticity ro-

bust standard error formula when G = X are the regressors and G′SG = X′EX, where E is a diagonal
matrix composed of the the squared regression errors.

6.5.2.1 Asymptotic Normality, efficient W

This form of the covariance simplifies when the efficient choice of W = S−1 is used,

V
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and the asymptotic distribution is
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(
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)−1
)

(6.52)
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Using the long-run variance of the moment conditions produces an asymptotic covariance which is
not only simpler than the generic form, but is also smaller (in the matrix sense). This can be verified
since

(
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1
2 WG

(
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)−1
= A′

[
Iq−X

(
X′X

)−1 X′
]

A

where A = S
1
2 WG(G′WG)

−1andX = S−
1
2 G. This is a quadratic form where the inner matrix is

idempotent – and hence positive semi-definite – and so the difference must be weakly positive. In
most cases the efficient weighting matrix should be used, although there are application where an
alternative choice of covariance matrix must be made due to practical considerations (many moment
conditions) or for testing specific hypotheses.

6.5.3 Asymptotic Normality of the estimated moments, gT (w, θ̂)

Not only are the parameters asymptotically normal, but the estimated moment conditions are as well.
The asymptotic normality of the moment conditions allows for testing the specification of the model
by examining whether the sample moments are sufficiently close to 0. If the efficient weighting matrix
is used (W = S−1),

√
T W1/2

T gT (w, θ̂)
d→ N

(
0,Iq−W1/2G

[
G′WG

]−1 G′W1/2
)

(6.53)

The variance appears complicated but has a simple intuition. If the true parameter vector was known,
W1/2

T ĝT (w,θ) would be asymptotically normal with identity covariance matrix. The second term is
a result of having to estimate an unknown parameter vector. Essentially, one degree of freedom is
lost for every parameter estimated and the covariance matrix of the estimated moments has q− p
degrees of freedom remaining. Replacing W with the efficient choice of weighting matrix (S−1), the
asymptotic variance of

√
T ĝT (w, θ̂) can be equivalently written as S−G

[
G′S−1G

]−1 G′ by pre- and
post-multiplying the variance in by S

1
2 . In cases where the model is just-identified, q = p, gT (w, θ̂) =

0, and the asymptotic variance is degenerate (0).

If some other weighting matrix is used where WT
p

9 Sthen the asymptotic distribution of the
moment conditions is more complicated.

√
T W1/2

T gT (w, θ̂)
d→ N

(
0,NW1/2SW1/2N′

)
(6.54)

where N = Iq−W1/2G [G′WG]
−1 G′W1/2. If an alternative weighting matrix is used, the estimated

moments are still asymptotically normal but with a different, larger variance. To see how the efficient
form of the covariance matrix is nested in this inefficient form, replace W = S−1 and note that since
N is idempotent, N = N′ and NN = N.
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6.6 Covariance Estimation

Estimation of the long run (asymptotic) covariance matrix of the moment conditions is important and
often has significant impact on tests of either the model or individual coefficients. Recall the definition
of the long-run covariance,

S = avar
{√

T gT (wt ,θ 0)
}
.

S is the covariance of an average, gT (wt ,θ 0) =
√

T T−1∑T
t=1 g(wt ,θ 0) and the variance of an av-

erage includes all autocovariance terms. The simplest estimator one could construct to capture all
autocovariance is

Ŝ = Γ̂0 +

T−1∑
i=1

(
Γ̂i + Γ̂

′
i

)
(6.55)

where

Γ̂i = T−1
T∑

t=i+1

g
(
wt , θ̂

)
g
(
wt−i, θ̂

)′
.

While this estimator is the natural sample analogue of the population long-run covariance, it is not
positive definite and so is not useful in practice. A number of alternatives have been developed which
can capture autocorrelation in the moment conditions and are guaranteed to be positive definite.

6.6.1 Serially uncorrelated moments

If the moments are serially uncorrelated then the usual covariance estimator can be used. Moreover,
E[gT (w,θ)] = 0 and so S can be consistently estimated using

Ŝ = T−1
T∑

t=1

g(wt , θ̂)g(wt , θ̂)
′, (6.56)

This estimator does not explicitly remove the mean of the moment conditions. In practice it may be
important to ensure the mean of the moment condition when the problem is over-identified (q > p),
and is discussed further in6.6.5.

6.6.2 Newey-West

The Newey and West (1987) covariance estimator solves the problem of positive definiteness of an
autocovariance robust covariance estimator by weighting the autocovariances. This produces a het-
eroskedasticity, autocovariance consistent (HAC) covariance estimator that is guaranteed to be posi-
tive definite. The Newey-West estimator computes the long-run covariance as if the moment process
was a vector moving average (VMA), and uses the sample autocovariances, and is defined (for a
maximum lag l)
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ŜNW = Γ̂0 +

l∑
i=1

l +1− i
l +1

(
Γ̂i + Γ̂

′
i

)
(6.57)

The number of lags, l, is problem dependent, and in general must grow with the sample size to ensure
consistency when the moment conditions are dependent. The optimal rate of lag growth has l = cT

1
3

where c is a problem specific constant.

6.6.3 Vector Autoregressive

While the Newey-West covariance estimator is derived from a VMA, a Vector Autoregression (VAR)-
based estimator can also be used. The VAR-based long-run covariance estimators have significant
advantages when the moments are highly persistent. Construction of the VAR HAC estimator is
simple and is derived directly from a VAR. Suppose the moment conditions, gt follow a VAR(r), and
so

gt = Φ0 +Φ1gt−1 +Φ2gt−2 + . . .+Φrgt−r +η t . (6.58)

The long run covariance of gt can be computed from knowledge of Φ j, j = 1,2, . . . ,s and the covari-
ance of η t . Moreover, if the assumption of VAR(r) dynamics is correct, η t is a while noise process
and its covariance can be consistently estimated by

Ŝη = (T − r)−1
T∑

t=r+1

η̂ t η̂
′
t . (6.59)

The long run covariance is then estimated using

ŜAR = (I− Φ̂1− Φ̂2− . . .− Φ̂r)
−1Ŝη

((
I− Φ̂1− Φ̂2− . . .− Φ̂r

)−1
)′
. (6.60)

The primary advantage of the VAR based estimator over the NW is that the number of parameters
needing to be estimated is often much, much smaller. If the process is well described by an VAR, k
may be as small as 1 while a Newey-West estimator may require many lags to adequately capture the
dependence in the moment conditions. Haan and Levin (2000)show that the VAR procedure can be
consistent if the number of lags grow as the sample size grows so that the VAR can approximate the
long-run covariance of any covariance stationary process. They recommend choosing the lag length
using BIC in two steps: first choosing the lag length of own lags, and then choosing the number of
lags of other moments.

6.6.4 Pre-whitening and Recoloring

The Newey-West and VAR long-run covariance estimators can be combined in a procedure known as
pre-whitening and recoloring. This combination exploits the VAR to capture the persistence in the
moments and used the Newey-West HAC to capture any neglected serial dependence in the residuals.
The advantage of this procedure over Newey-West or VAR HAC covariance estimators is that PWRC
is parsimonious while allowing complex dependence in the moments.

A low order VAR (usually 1st) is fit to the moment conditions,
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gt = Φ0 +Φ1gt−1 +η t (6.61)

and the covariance of the residuals, η̂ t is estimated using a Newey-West estimator, preferably with a
small number of lags,

ŜNW
η = Ξ̂0 +
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l +1

(
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′
i

)
(6.62)

where

Ξ̂i = T−1
T∑

t=i+1

η̂ t η̂
′
t−i. (6.63)

The long run covariance is computed by combining the VAR parameters with the Newey-West co-
variance of the residuals,

ŜPWRC =
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)−1 ŜNW
η

((
I− Φ̂1

)−1
)′
, (6.64)

or, if a higher order VAR was used,
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where r is the order of the VAR.

6.6.5 To demean or not to demean?

One important issue when computing asymptotic variances is whether the sample moments should be
demeaned before estimating the long-run covariance. If the population moment conditions are valid,
then E[gt(wt ,θ)] = 0 and the covariance can be computed from {gt(wt , θ̂)} without removing the
mean. If the population moment conditions are not valid, then E[gt(wt ,θ)] 6= 0 and any covariance
matrices estimated from the sample moments will be inconsistent. The intuition behind the inconsis-
tency is simple. Suppose the E[gt(wt ,θ)] 6= 0 for all θ ∈Θ, the parameter space and that the moments
are a vector martingale process. Using the “raw” moments to estimate the covariance produces an
inconsistent estimator since

Ŝ = T−1
T∑

t=1

g(wt , θ̂)g(wt , θ̂)
′ p→ S+µµ

′ (6.66)

where S is the covariance of the moment conditions and µ is the expectation of the moment conditions
evaluated at the probability limit of the first-step estimator, θ̂ 1.

One way to remove the inconsistency is to demean the moment conditions prior to estimating the
long run covariance so that gt(wt , θ̂) is replaced by g̃t(wt , θ̂) = gt(wt , θ̂)−T−1∑T

t=1 gt(wt , θ̂) when
computing the long-run covariance. Note that demeaning is not free since removing the mean, when
the population moment condition is valid, reduces the variation in gt(·) and in turn the precision of
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Ŝ. As a general rule, the mean should be removed except in cases where the sample length is small
relative to the number of moments. In practice, subtracting the mean from the estimated moment
conditions is important for testing models using J-tests and for estimating the parameters in 2- or
k-step procedures.

6.6.6 Example: Consumption Asset Pricing Model

Returning the to consumption asset pricing example, 11 different estimators where used to estimate
the long run variance after using the parameters estimated in the first step of the GMM estimator.
These estimators include the standard estimator and both the Newey-West and the VAR estimator
using 1 to 5 lags. In this example, the well identified parameter, β is barely affected but the poorly
identified γ shows some variation when the covariance estimator changes. In this example it is rea-
sonable to use the simple covariance estimator because, if the model is well specified, the moments
must be serially uncorrelated. If they are serially correlated then the investor’s marginal utility is
predictable and so the model is misspecified. It is generally good practice to impose any theoretically
sounds restrictions on the covariance estimator (such as a lack of serially correlation in this example,
or at most some finite order moving average).

Lags Newey-West Autoregressive
β̂ γ̂ β̂ γ̂

0 0.975 0.499
1 0.979 0.173 0.982 -0.082
2 0.979 0.160 0.978 0.204
3 0.979 0.200 0.977 0.399
4 0.978 0.257 0.976 0.493
5 0.978 0.276 0.976 0.453

Table 6.3: The choice of variance estimator can have an effect on the estimated parameters in a 2-step
GMM procedure. The estimate of the discount rate is fairly stable, but the estimate of the coefficient
of risk aversion changes as the long-run covariance estimator varies. Note that the NW estimation
with 0 lags is the just the usual covariance estimator.

6.6.7 Example: Stochastic Volatility Model

Unlike the previous example, efficient estimation in the stochastic volatility model example requires
the use of a HAC covariance estimator. The stochastic volatility estimator uses unconditional mo-
ments which are serially correlated whenever the data has time-varying volatility. For example, the
moment conditions E[|rt |] is autocorrelated since E[|rtrt− j|] 6= E[|rt |]2 (see eq.(6.19)). All of the pa-
rameter estimates in table 6.2 were computed suing a Newey-West covariance estimator with 12 lags,
which was chosen using cT

1
3 rule where c= 1.2 was chosen. Rather than use actual data to investigate

the value of various HAC estimators, consider a simple Monte Carlo where the DGP is
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rt = σtεt (6.67)

lnσ
2
t =−7.36+0.9ln

(
σ

2
t−1−7.36

)
+0.363ηt

which corresponds to an annualized volatility of 22%. Both shocks were standard normal. 1000
replications with T = 1000 and 2500 were conducted and the covariance matrix was estimated using
4 different estimators: a misspecified covariance assuming the moments are uncorrelated, a HAC
using 1.2T 1/3, a VAR estimator where the lag length is automatically chosen by the SIC, and an
“infeasible” estimate computed using a Newey-West estimator computed from an auxiliary run of 10
million simulated data points. The first-step estimator was estimated using an identity matrix.

The results of this small simulation study are presented in table 6.4. This table contains a lot of
information, much of which is contradictory. It highlights the difficulties in actually making the cor-
rect choices when implementing a GMM estimator. For example, the bias of the 8 moment estimator
is generally at least as large as the bias from the 5 moment estimator, although the root mean square
error is generally better. This highlights the general bias-variance trade-off that is made when using
more moments: more moments leads to less variance but more bias. The only absolute rule evident
from the the table is the performance changes when moving from 5 to 8 moment conditions and using
the infeasible covariance estimator. The additional moments contained information about both the
persistence ρ and the volatility of volatility σ .

6.7 Special Cases of GMM

GMM can be viewed as a unifying class which nests mean estimators. Estimators used in frequentist
econometrics can be classified into one of three types: M-estimators (maximum), R-estimators (rank),
and L-estimators (linear combination). Most estimators presented in this course, including OLS and
MLE, are in the class of M-estimators. All M-class estimators are the solution to some extremum
problem such as minimizing the sum of squares or maximizing the log likelihood.

In contrast, all R-estimators make use of rank statistics. The most common examples include the
minimum, the maximum and rank correlation, a statistic computed by calculating the usual correla-
tion on the rank of the data rather than on the data itself. R-estimators are robust to certain issues
and are particularly useful in analyzing nonlinear relationships. L-estimators are defined as any linear
combination of rank estimators. The classical example of an L-estimator is a trimmed mean, which is
similar to the usual mean estimator except some fraction of the data in each tail is eliminated, for ex-
ample the top and bottom 1%. L-estimators are often substantially more robust than their M-estimator
counterparts and often only make small sacrifices in efficiency. Despite the potential advantages of
L-estimators, strong assumptions are needed to justify their use and difficulties in deriving theoretical
properties limit their practical application.

GMM is obviously an M-estimator since it is the result of a minimization and any estimator
nested in GMM must also be an M-estimator and most M-estimators are nested in GMM. The most
important exception is a subclass of estimators known as classical minimum distance (CMD). CMD
estimators minimize the distance between a restricted parameter space and an initial set of estimates.
The final parameter estimates generally includes fewer parameters than the initial estimate or non-
linear restrictions. CMD estimators are not widely used in financial econometrics, although they
occasionally allow for feasible solutions to otherwise infeasible problems – usually because direct
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5 moment conditions 8 moment conditions
Bias

T =1000 ω ρ σ ω ρ σ

Inefficeint -0.000 -0.024 -0.031 0.001 -0.009 -0.023
Serial Uncorr. 0.013 0.004 -0.119 0.013 0.042 -0.188
Newey-West -0.033 -0.030 -0.064 -0.064 -0.009 -0.086
VAR -0.035 -0.038 -0.058 -0.094 -0.042 -0.050
Infeasible -0.002 -0.023 -0.047 -0.001 -0.019 -0.015

T=2500

Inefficeint 0.021 -0.017 -0.036 0.021 -0.010 -0.005
Serial Uncorr. 0.027 -0.008 -0.073 0.030 0.027 -0.118
Newey-West -0.001 -0.034 -0.027 -0.022 -0.018 -0.029
VAR 0.002 -0.041 -0.014 -0.035 -0.027 -0.017
Infeasible 0.020 -0.027 -0.011 0.020 -0.015 0.012

RMSE
T=1000

Inefficeint 0.121 0.127 0.212 0.121 0.073 0.152
Serial Uncorr. 0.126 0.108 0.240 0.128 0.081 0.250
Newey-West 0.131 0.139 0.217 0.141 0.082 0.170
VAR 0.130 0.147 0.218 0.159 0.132 0.152
Infeasible 0.123 0.129 0.230 0.128 0.116 0.148

T=2500

Inefficeint 0.075 0.106 0.194 0.075 0.055 0.114
Serial Uncorr. 0.079 0.095 0.201 0.082 0.065 0.180
Newey-West 0.074 0.102 0.182 0.080 0.057 0.094
VAR 0.072 0.103 0.174 0.085 0.062 0.093
Infeasible 0.075 0.098 0.185 0.076 0.054 0.100

Table 6.4: Results from the Monte Carlo experiment on the SV model. Two data lengths (T = 1000
and T = 2500) and two sets of moments were used. The table shows how difficult it can be to find
reliable rules for improving finite sample performance. The only clean gains come form increasing
the sample size and/or number of moments.
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estimation of the parameters in the restricted parameter space is difficult or impossible using nonlinear
optimizers.

6.7.1 Classical Method of Moments

The obvious example of GMM is classical method of moments. Consider using MM to estimate the
parameters of a normal distribution. The two estimators are

µ = T−1
T∑

t=1

yt (6.68)

σ
2 = T−1

T∑
t=1

(yt−µ)2 (6.69)

which can be transformed into moment conditions

gT (w,θ) =

[
T−1∑T

t=1 yt−µ

T−1∑T
t=1(yt−µ)2−σ2

]
(6.70)

which obviously have the same solutions. If the data are i.i.d., then, defining ε̂t = yt − µ̂ , S can be
consistently estimated by

Ŝ = T−1
T∑

t=1

[
gt(wt , θ̂)gt(wt , θ̂)

′] (6.71)

= T−1
T∑

t=1

[
ε̂2

t ε̂t
(
ε̂2

t −σ2)
ε̂t
(
ε̂2

t −σ2) (
ε̂2

t −σ2)2

]

=

[ ∑T
t=1 ε̂2

t
∑T

t=1 ε̂3
t∑T

t=1 ε̂3
t

∑T
t=1 ε̂4

t −2σ2ε̂2
t +σ4

]
since

∑T
t=1 ε̂t = 0

E[Ŝ]≈
[

σ2 0
0 2σ4

]
if normal

Note that the last line is exactly the variance of the mean and variance if the covariance was estimated
assuming normal maximum likelihood. Similarly, GT can be consistently estimated by

Ĝ = T−1

 ∂
∑T

t=1 yt−µ

∂ µ

∂
∑T

t=1(yt−µ)2−σ
2

∂ µ

∂
∑T

t=1 yt−µ

∂σ2
∂
∑T

t=1(yt−µ)2−σ
2

∂σ2

∣∣∣∣∣∣
θ=θ̂

(6.72)

= T−1

[ ∑T
t=1−1 −2

∑T
t=1 ε̂t

0
∑T

t=1−1

]

= T−1

[ ∑T
t=1−1 0

0
∑T

t=1−1

]
by
∑T

t=1 ε̂t = 0
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= T−1
[
−T 0
0 −T

]
=−I2

and since the model is just-identified (as many moment conditions as parameters)
(
Ĝ′T Ŝ−1ĜT

)−1
=(

Ĝ−1
T
)′

ŜĜ−1
T = Ŝ, the usual covariance estimator for the mean and variance in the method of moments

problem.

6.7.2 OLS

OLS (and other least squares estimators, such as WLS) can also be viewed as a special case of GMM
by using the orthogonality conditions as the moments.

gT (w,θ) = T−1X′(y−Xβ ) = T−1X′ε (6.73)

and the solution is obviously given by

β̂ = (X′X)−1X′y. (6.74)

If the data are from a stationary martingale difference sequence, then S can be consistently esti-
mated by

Ŝ = T−1
T∑

t=1

x′t ε̂t ε̂txt (6.75)

Ŝ = T−1
T∑

t=1

ε̂
2
t x′txt

and GT can be estimated by

Ĝ = T−1 ∂X′(y−Xβ )

∂β
′ (6.76)

=−T−1X′X

Combining these two, the covariance of the OLS estimator is

((
−T−1X′X

)−1
)′(

T−1
T∑

t=1

ε̂
2
t x′txt

)(
−T−1X′X

)−1
= Σ̂

−1
XX ŜΣ̂

−1
XX (6.77)

which is the White heteroskedasticity robust covariance estimator.
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6.7.3 MLE and Quasi-MLE

GMM also nests maximum likelihood and quasi-MLE (QMLE) estimators. An estimator is said to
be a QMLE is one distribution is assumed, for example normal, when the data are generated by some
other distribution, for example a standardized Student’s t. Most ARCH-type estimators are treated as
QMLE since normal maximum likelihood is often used when the standardized residuals are clearly
not normal, exhibiting both skewness and excess kurtosis. The most important consequence of QMLE
is that the information matrix inequality is generally not valid and robust standard errors must be used.
To formulate the (Q)MLE problem, the moment conditions are simply the average scores,

gT (w,θ) = T−1
T∑

t=1

∇θ l(wt ,θ) (6.78)

where l(·) is the log-likelihood. If the scores are a martingale difference sequence, S can be consis-
tently estimated by

Ŝ = T−1
T∑

t=1

∇θ l(wt ,θ)∇θ
′l(wt ,θ) (6.79)

and GT can be estimated by

Ĝ = T−1
T∑

t=1

∇
θθ
′l(wt ,θ). (6.80)

However, in terms of expressions common to MLE estimation,

E[Ŝ] = E[T−1
T∑

t=1

∇θ l(wt ,θ)∇θ
′l(wt ,θ)] (6.81)

= T−1
T∑

t=1

E[∇θ l(wt ,θ)∇θ
′l(wt ,θ)]

= T−1T E[∇θ l(wt ,θ)∇θ
′l(wt ,θ)]

= E[∇θ l(wt ,θ)∇θ
′l(wt ,θ)]

= J

and

E[Ĝ] = E[T−1
T∑

t=1

∇
θθ
′l(wt ,θ)] (6.82)

= T−1
T∑

t=1

E[∇
θθ
′l(wt ,θ)]

= T−1T E[∇
θθ
′l(wt ,θ)]



6.8 Diagnostics 405

= E[∇
θθ
′l(wt ,θ)]

=−I

The GMM covariance is
(
Ĝ−1)′ ŜĜ−1 which, in terms of MLE notation is I−1J I−1. If the infor-

mation matrix equality is valid (I = J ), this simplifies to I−1, the usual variance in MLE. However,
when the assumptions of the MLE procedure are not valid, the robust form of the covariance estima-
tor, I−1J I−1 =

(
Ĝ−1)′ ŜĜ−1 should be used, and failure to do so can result in tests with incorrect

size.

6.8 Diagnostics

The estimation of a GMM model begins by specifying the population moment conditions which, if
correct, have mean 0. This is an assumption and is often a hypothesis of interest. For example,
in the consumption asset pricing model the discounted returns should have conditional mean 0 and
deviations from 0 indicate that the model is misspecified. The standard method to test whether the
moment conditions is known as the J test and is defined

J = T gT (w, θ̂)′Ŝ−1gT (w, θ̂) (6.83)

= T QT
(
θ̂
)

(6.84)

which is T times the minimized GMM objective function where Ŝ is a consistent estimator of the
long-run covariance of the moment conditions. The distribution of J is χ2

q−p, where q− p measures
the degree of overidentification. The distribution of the test follows directly from the asymptotic
normality of the estimated moment conditions (see section 6.5.3). It is important to note that the
standard J test requires the use of a multi-step estimator which uses an efficient weighting matrix
(WT

p→ S−1).
In cases where an efficient estimator of WT is not available, an inefficient test test can be computed

using

JWT = T gT (w, θ̂)′
([

Iq−W1/2G
[
G′WG

]−1 G′W1/2
]

W1/2 (6.85)

× SW1/2
[
Iq−W1/2G

[
G′WG

]−1 G′W1/2
]′)−1

gT (w, θ̂)

which follow directly from the asymptotic normality of the estimated moment conditions even when
the weighting matrix is sub-optimally chosen. JWT , like J, is distributed χ2

q−p, although it is not T
times the first-step GMM objective. Note that the inverse in eq. (6.85 ) is of a reduced rank matrix
and must be computed using a Moore-Penrose generalized inverse.

6.8.1 Example: Linear Factor Models

The CAPM will be used to examine the use of diagnostic tests. The CAPM was estimated on the 25
Fama-French 5 by 5 sort on size and BE/ME using data from 1926 until 2010. The moments in this
specification can be described
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CAPM 3 Factor
Method J ∼ χ2

24 p-val J ∼ χ2
22 p-val

2-Step 98.0 0.000 93.3 0.000
k-Step 98.0 0.000 92.9 0.000
Continuous 98.0 0.000 79.5 0.000
2-step NW 110.4 0.000 108.5 0.000
2-step VAR 103.7 0.000 107.8 0.000

Table 6.5: Values of the J test using different estimation strategies. All of the tests agree, although
the continuously updating version is substantially smaller in the 3 factor model (but highly significant
since distributed χ2

22).

gt(wtθ) =

[
(re

t −β ft)⊗ ft
(re

t −βλ )

]
(6.86)

where ft is the excess return on the market portfolio and re
t is a 25 by 1 vector of excess returns

on the FF portfolios. There are 50 moment conditions and 26 unknown parameters so this system
is overidentified and the J statistic is χ2

24 distributed. The J-statistics were computed for the four
estimation strategies previously described, the inefficient 1-step test, 2-step, K-step and continuously
updating. The values of these statistics, contained in table 6.5, indicate the CAPM is overwhelmingly
rejected. While only the simple covariance estimator was used to estimate the long run covariance,
all of the moments are portfolio returns and this choice seems reasonable considering the lack of
predictability of monthly returns. The model was then extended to include the size and momentum
factors, which resulted in 100 moment equations and 78 (75β s + 3 risk premia) parameters, and so
the J statistic is distributed as a χ2

22.

6.9 Parameter Inference

6.9.1 The delta method and nonlinear hypotheses

Thus far, all hypothesis tests encountered have been linear, and so can be expressed H0 : Rθ − r = 0
where R is a M by P matrix of linear restriction and r is a M by 1 vector of constants. While linear
restrictions are the most common type of null hypothesis, some interesting problems require tests of
nonlinear restrictions.

Define R(θ) to be a M by 1 vector valued function. From this nonlinear function, a nonlinear
hypothesis can be specified H0 : R(θ) = 0. To test this hypothesis, the distribution of R(θ) needs
to be determined (as always, under the null). The delta method can be used to simplify finding this
distribution in cases where

√
T (θ̂ −θ 0) is asymptotically normal as long as R(θ) is a continuously

differentiable function of θ at θ 0.

Definition 6.5 (Delta method). Let
√

T (θ̂ −θ 0)
d→ N(0,Σ) where Σ is a positive definite covariance

matrix. Further, suppose that R(θ) is a continuously differentiable function of θ from Rp → Rm,
m≤ p. Then,

√
T (R(θ̂)−R(θ 0))

d→ N
(

0,
∂R(θ 0)

∂θ
′ Σ

∂R(θ 0)

∂θ

)
(6.87)
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This result is easy to relate to the class of linear restrictions, R(θ) = Rθ − r. In this class,

∂R(θ 0)

∂θ
′ = R (6.88)

and the distribution under the null is

√
T (Rθ̂ −Rθ 0)

d→ N
(
0,RΣR′

)
. (6.89)

Once the distribution of the nonlinear function θ has been determined, using the delta method
to conduct a nonlinear hypothesis test is straight forward with one big catch. The null hypothesis is
H0 : R(θ 0) = 0 and a Wald test can be calculated

W = T R(θ̂)′
[

∂R(θ 0)

∂θ
′ Σ

∂R(θ 0)

∂θ
′

′]−1

R(θ̂). (6.90)

The distribution of the Wald test is determined by the rank of R(θ)

∂θ
′ evaluated under H0. In some

simple cases the rank is obvious. For example, in the linear hypothesis testing framework, the rank of
R(θ)

∂θ
′ is simply the rank of the matrix R. In a test of a hypothesis H0 : θ1θ2−1 = 0,

R(θ)

∂θ
′ =

[
θ2
θ1

]
(6.91)

assuming there are two parameters in θ and the rank of R(θ)

∂θ
′ must be one if the null is true since both

parameters must be non-zero to have a product of 1. The distribution of a Wald test of this null is a
χ2

1 . However, consider a test of the null H0 : θ1θ2 = 0. The Jacobian of this function is identical but
the slight change in the null has large consequences. For this null to be true, one of three things much
occur: θ1 = 0 and θ2 6= 0, θ1 6= 0 and θ2 = 0 or θ1 = 0 and θ2 = 0. In the first two cases, the rank
of R(θ)

∂θ
′ is 1. However, in the last case the rank is 0. When the rank of the Jacobian can take multiple

values depending on the value of the true parameter, the distribution under the null is nonstandard and
none of the standard tests are directly applicable.

6.9.2 Wald Tests

Wald tests in GMM are essentially identical to Wald tests in OLS; W is T times the standardized,
summed and squared deviations from the null. If the efficient choice of WT is used,

√
T
(
θ̂ −θ 0

) d→ N
(

0,
(
G′S−1G

)−1
)

(6.92)

and a Wald test of the (linear) null H0 : Rθ − r = 0 is computed

W = T (Rθ̂ − r)′
[
R
(
G′S−1G

)−1
R′
]−1

(Rθ̂ − r) d→ χ
2
m (6.93)

where m is the rank of R. Nonlinear hypotheses can be tested in an analogous manner using the delta
method. When using the delta method, m is the rank of ∂R(θ 0)

∂θ
′ . If an inefficient choice of WT is used,

√
T
(
θ̂ −θ 0

) d→ N
(

0,
(
G′WG

)−1 G′WSWG
(
G′WG

)−1
)

(6.94)
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and

W = T (Rθ̂ − r)′V−1(Rθ̂ − r) d→ χ
2
m (6.95)

where V = R(G′WG)
−1 G′WSWG(G′WG)

−1 R′.
T-tests and t-stats are also valid and can be computed in the usual manner for single hypotheses,

t =
Rθ̂ − r√

V
d→ N(0,1) (6.96)

where the form of V depends on whether an efficient of inefficient choice of WT was used. In the
case of the t-stat of a parameter,

t =
θ̂i√
V[ii]

d→ N(0,1) (6.97)

where V[ii] indicates the element in the ithdiagonal position.

6.9.3 Likelihood Ratio (LR) Tests

Likelihood Ratio-like tests, despite GMM making no distributional assumptions, are available. Let θ̂

indicate the unrestricted parameter estimate and let θ̃ indicate the solution of

θ̃ = argmin
θ

QT (θ) (6.98)

subject to Rθ − r = 0

where QT (θ) = gT (w,θ)′Ŝ−1gT (w,θ) and Ŝ is an estimate of the long-run covariance of the moment
conditions computed from the unrestricted model (using θ̂). A LR-like test statistic can be formed

LR = T
(
gT (w, θ̃)′Ŝ−1gT (w, θ̃)−gT (w, θ̂)′Ŝ−1gT (w, θ̂)

) d→ χ
2
m (6.99)

Implementation of this test has one crucial aspect. The covariance matrix of the moments used in the
second-step estimation must be the same for the two models. Using different covariance estimates
can produce a statistic which is not χ2.

The likelihood ratio-like test has one significant advantage: it is invariant to equivalent reparame-
terization of either the moment conditions or the restriction (if nonlinear) while the Wald test is not.
The intuition behind this result is simple; LR-like tests will be constructed using the same values
of QT for any equivalent reparameterization and so the numerical value of the test statistic will be
unchanged.

6.9.4 LM Tests

LM tests are also available and are the result of solving the Lagrangian

θ̃ = argmin
θ

QT (θ)−λ
′(Rθ − r) (6.100)
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In the GMM context, LM tests examine how much larger the restricted moment conditions are than
their unrestricted counterparts. The derivation is messy and computation is harder than either Wald
or LR, but the form of the LM test statistic is

LM = T gT (w, θ̃)′S−1G(G′S−1G)−1G′S−1gT (w, θ̃)
d→ χ

2
m (6.101)

The primary advantage of the LM test is that it only requires estimation under the null which can, in
some circumstances, be much simpler than estimation under the alternative. You should note that the
number of moment conditions must be the same in the restricted model as in the unrestricted model.

6.10 Two-Stage Estimation

Many common problems involve the estimation of parameters in stages. The most common ex-
ample in finance are Fama-MacBeth regressions(Fama and MacBeth, 1973) which use two sets
of regressions to estimate the factor loadings and risk premia. Another example is models which
first fit conditional variances and then, conditional on the conditional variances, estimate condi-
tional correlations. To understand the impact of first-stage estimation error on second-stage pa-
rameters, it is necessary to introduce some additional notation to distinguish the first-stage moment
conditions from the second stage moment conditions. Let g1T (w,ψ) = T−1∑T

t=1 g1 (wt ,ψ) and
g2T (w,ψ,θ) = T−1∑T

t=1 g2 (wt ,ψ,θ) be the first- and second-stage moment conditions. The first-
stage moment conditions only depend on a subset of the parameters,ψ , and the second-stage moment
conditions depend on both ψ and θ . The first-stage moments will be used to estimate ψ and the
second-stage moments will treat ψ̂ as known when estimating θ . Assuming that both stages are
just-identified, which is the usual scenario, then

√
T
[

ψ̂−ψ

θ̂ −θ

]
d→ N

([
0
0

]
,
(
G−1)′SG−1

)

G =

[
G1ψ G2ψ

0 G2θ

]
G1ψ =

∂g1T

∂ψ ′
, G2ψ =

∂g2T

∂ψ ′
, G2θ =

∂g2T

∂θ
′

S = avar
([√

T g′1T ,
√

T g′2T

]′)
Application of the partitioned inverse shows that the asymptotic variance of the first-stage param-

eters is identical to the usual expression, and so
√

T (ψ̂−ψ)
d→ N

(
0,G−1

1ψ
SψψG−1

1ψ

)
where Sψψ is

the upper block of Swhich corresponds to the g1 moments. The distribution of the second-stage
parameters differs from what would be found if the estimation of ψ was ignored, and so

√
T
(
θ̂ −θ

) d→N
(

0,G−1
2θ

[[
−G2ψG−1

1ψ
, I
]

S
[
−G2ψG−1

1ψ
, I
]′]

G−1
2θ

)
(6.102)

=N
(

0,G−1
2θ

[
Sθθ −G2ψG−1

1ψ
Sψθ −SθψG−1

1ψ
G2ψ +G2ψG−1

1ψ
SψψG−1

1ψ
G′2ψ

]
G−1

2θ

)
.
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The intuition for this form comes from considering an expansion of the second stage moments
first around the second-stage parameters, and the accounting for the additional variation due to the
first-stage parameter estimates. Expanding the second-stage moments around the true second stage-
parameters,

√
T
(
θ̂ −θ

)
≈−G−1

2θ

√
T g2T (w, ψ̂,θ 0) .

If ψ were known, then this would be sufficient to construct the asymptotic variance. When ψ is
estimated, it is necessary to expand the final term around the first-stage parameters, and so

√
T
(
θ̂ −θ

)
≈−G−1

2θ

[√
T g2T (w,ψ0,θ 0)+G2ψ

√
T (ψ̂−ψ)

]
which shows that the error in the estimation of ψ appears in the estimation error of θ . Finally, using
the relationship

√
T (ψ̂−ψ)≈−G−1

1ψ

√
T g1T (w,ψ0), the expression can be completed, and

√
T
(
θ̂ −θ

)
≈−G−1

2θ

[√
T g2T (w,ψ0,θ 0)−G2ψG−1

1ψ

√
T g1T (w,ψ0)

]
=−G−1

2θ

[[
−G2ψG−1

1ψ
, I
]√

T
[

g1T (w,ψ0)
g2T (w,ψ0,θ 0)

]]
.

Squaring this expression and replacing the outer-product of the moment conditions with the asymp-
totic variance produces eq. (6.102).

6.10.1 Example: Fama-MacBeth Regression

Fama-MacBeth regression is a two-step estimation proceedure where the first step is just-identified
and the second is over-identified. The first-stage moments are used to estimate the factor loadings (β s)
and the second-stage moments are used to estimate the risk premia. In an application to n portfolios
and k factors there are q1 = nk moments in the first-stage,

g1t(wtθ) = (rt−β ft)⊗ ft

which are used to estimate nk parameters. The second stage uses k moments to estimate k risk premia
using

g2t(wtθ) = β
′(rt−βλ ) .

It is necessary to account for the uncertainty in the estimation of β when constructing confidence
intervals for λ . Corect inference can be made by estimating the components of eq. (6.102),

Ĝ1β=T−1
T∑

t=1

In⊗ ftf′t ,

Ĝ2β = T−1
T∑

t=1

(rt− β̂ λ̂ )′⊗ Ik− β̂
′⊗ λ̂

′
,
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Correct OLS - White Correct OLS - White
λ̂ s.e. t-stat s.e. t-stat λ̂ s.e. t-stat s.e. t-stat

VWMe 7.987 2.322 3.440 0.643 12.417 6.508 2.103 3.095 0.812 8.013
SMB – 2.843 1.579 1.800 1.651 1.722
HML – 3.226 1.687 1.912 2.000 1.613

Table 6.6: Annual risk premia, correct and OLS - White standard errors from the CAPM and the
Fama-French 3 factor mode.

Ĝ2λ = T−1
T∑

t=1

β̂
′
β̂ ,

Ŝ = T−1
T∑

t=1

[
(rt− β̂ ft)⊗ ft

β̂
′
(rt− β̂ λ̂ )

][
(rt− β̂ ft)⊗ ft

β̂
′
(rt− β̂ λ̂ )

]′
.

These expressions were applied to the 25 Fama-French size and book-to-market sorted portfolios.
Table 6.6 contains the standard errors and t-stats which are computed using both incorrect inference –
White standard errors which come from a standard OLS of the mean excess return on the β s – and the
consistent standard errors which are computed using the expressions above. The standard error and
t-stats for the excess return on the market change substantially when the parameter estiamtion error
in β is included.

6.11 Weak Identification

The topic of weak identification has been a unifying theme in recent work on GMM and related esti-
mations. Three types of identification have previously been described: underidentified, just-identified
and overidentified. Weak identification bridges the gap between just-identified and underidentified
models. In essence, a model is weakly identified if it is identified in a finite sample, but the amount of
information available to estimate the parameters does not increase with the sample. This is a difficult
concept, so consider it in the context of the two models presented in this chapter.

In the consumption asset pricing model, the moment conditions are all derived from(
β
(
1+ r j,t+1

)(ct+1

ct

)−γ

−1

)
zt . (6.103)

Weak identification can appear in at least two places in this moment conditions. First, assume that
ct+1
ct
≈ 1. If it were exactly 1, then γ would be unidentified. In practice consumption is very smooth

and so the variation in this ratio from 1 is small. If the variation is decreasing over time, this problem
would be weakly identified. Alternatively suppose that the instrument used, zt , is not related to future
marginal utilities or returns at all. For example, suppose zt is a simulated a random variable. In this
case,
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E

[(
β
(
1+ r j,t+1

)(ct+1

ct

)−γ

−1

)
zt

]
= E

[(
β
(
1+ r j,t+1

)(ct+1

ct

)−γ

−1

)]
E[zt ] = 0 (6.104)

for any values of the parameters and so the moment condition is always satisfied. The choice of
instrument matters a great deal and should be made in the context of economic and financial theories.

In the example of the linear factor models, weak identification can occur if a factor which is not
important for any of the included portfolios is used in the model. Consider the moment conditions,

g(wt ,θ 0) =

(
(rt−β ft)⊗ ft

r−βλ

)
. (6.105)

If one of the factors is totally unrelated to asset returns and has no explanatory power, all β s
corresponding to that factor will limit to 0. However, if this occurs then the second set of moment
conditions will be valid for any choice of λi; λi is weakly identified. Weak identification will make
most inference nonstandard and so the limiting distributions of most statistics are substantially more
complicated. Unfortunately there are few easy fixes for this problem and common sense and economic
theory must be used when examining many problems using GMM.

6.12 Considerations for using GMM

This chapter has provided a introduction to GMM. However, before applying GMM to every econo-
metric problem, there are a few issues which should be considered.

6.12.1 The degree of overidentification

Overidentification is beneficial since it allows models to be tested in a simple manner using the J test.
However, like most things in econometrics, there are trade-off when deciding how overidentified a
model should be. Increasing the degree of overidentification by adding extra moments but not adding
more parameters can lead to substantial small sample bias and poorly behaving tests. Adding extra
moments also increases the dimension of the estimated long run covariance matrix, Ŝ which can
lead to size distortion in hypothesis tests. Ultimately, the number of moment conditions should be
traded off against the sample size. For example, in linear factor model with n portfolios and k factors
there are n− k overidentifying restrictions and nk+ k parameters. If testing the CAPM with monthly
data back to WWII (approx 700 monthly observations), the total number of moments should be kept
under 150. If using quarterly data (approx 250 quarters), the number of moment conditions should be
substantially smaller.

6.12.2 Estimation of the long run covariance

Estimation of the long run covariance is one of the most difficult issues when implementing GMM.
Best practices are to to use the simplest estimator consistent with the data or theoretical restrictions
which is usually the estimator with the smallest parameter count. If the moments can be reasonably
assumed to be a martingale difference series then a simple outer-product based estimator is sufficient.
HAC estimators should be avoided if the moments are not autocorrelated (or cross-correlated). If the
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moments are persistent with geometrically decaying autocorrelation, a simple VAR(1) model may be
enough.

Longer Exercises

Exercise 6.1. Suppose you were interested in testing a multi-factor model with 4 factors and excess
returns on 10 portfolios.

1. How many moment conditions are there?

2. What are the moment conditions needed to estimate this model?

3. How would you test whether the model correctly prices all assets. What are you really testing?

4. What are the requirements for identification?

5. What happens if you include a factor that is not relevant to the returns of any series?

Exercise 6.2. Suppose you were interested in estimating the CAPM with (potentially) non-zero αs
on the excess returns of two portfolios, re

1 and re
2.

1. Describe the moment equations you would use to estimate the 4 parameters.

2. Is this problem underidentified, just-identified, or overidentified?

3. Describe how you would conduct a joint test of the null H0 : α1 = α2 = 0 against an alternative
that at least one was non-zero using a Wald test.

4. Describe how you would conduct a joint test of the null H0 : α1 = α2 = 0 against an alternative
that at least one was non-zero using a LR-like test.

5. Describe how you would conduct a joint test of the null H0 : α1 = α2 = 0 against an alternative
that at least one was non-zero using an LM test.

In all of the questions involving tests, you should explain all steps from parameter estimation to the
final rejection decision.
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Chapter 7

Univariate Volatility Modeling

Alternative references for volatility modeling include chapters 10 and 11 in Taylor (2005), chapter
21 of Hamilton (1994), and chapter 4 of Enders (2004). Many of the original articles have been
collected in Engle (1995).

Engle (1982) introduced the ARCH model and, in doing so, modern financial economet-
rics. Measuring and modeling conditional volatility is the cornerstone of the field. Models
used for analyzing conditional volatility can be extended to capture a variety of related phe-
nomena including Value-at-Risk, Expected Shortfall, forecasting the complete density of
financial returns and duration analysis. This chapter begins by examining the meaning of
“volatility” - it has many - before turning attention to the ARCH-family of models. The
chapter details estimation, inference, model selection, forecasting, and diagnostic testing.
The chapter concludes by covering new methods of measuring volatility: realized volatility,
which makes use of using ultra-high-frequency data, and implied volatility, a measure of
volatility computed from options prices.

Volatility measurement and modeling is the foundation of financial econometrics. This chapter
begins by introducing volatility as a meaningful concept and then describes a widely used framework
for volatility analysis: the ARCH model. The chapter describes the most widely used members of the
ARCH family, fundamental properties of each, estimation, inference and model selection. Attention
then turns to a new tool in the measurement and modeling of financial volatility, realized volatility,
before concluding with a discussion of option-based implied volatility.

7.1 Why does volatility change?

Time-varying volatility is a pervasive empirical regularity in financial time series, and it is difficult
to find an asset return series which does not exhibit time-varying volatility. This chapter focuses on
providing a statistical description of the time-variation of volatility but does not go into depth on the
economic causes of time-varying volatility. Many explanations have been proffered to explain this
phenomenon, and treated individually; none provide a complete characterization of the variation in
volatility observed in financial returns.

• News Announcements: The arrival of unanticipated news (or “news surprises”) forces agents to
update beliefs. These new beliefs lead to portfolio rebalancing and high volatility correspond to
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periods when agents are incorporating the news and dynamically solving for new asset prices.
While certain classes of assets have been shown to react to surprises, in particular, govern-
ment bonds and foreign exchange, many appear to be unaffected by large surprises (see, inter
alia Engle and Li (1998) and Andersen, Bollerslev, Diebold, and Vega (2007)). Additionally,
news-induced periods of high volatility are generally short, often on the magnitude of 5 to 30-
minutes and the apparent resolution of uncertainty is far too quick to explain the time-variation
of volatility seen in asset prices.

• Leverage: When a firm is financed using both debt and equity, only the equity reflects the
volatility of the firm’s cash flows. However, as the price of equity falls, the reduced equity
must reflect the same volatility of the firm’s cash flows and so negative returns should lead to
increases in equity volatility. The leverage effect is pervasive in equity returns, especially in
broad equity indices, although alone it is insufficient to explain the time variation of volatility
(Christie, 1982; Bekaert and Wu, 2000).

• Volatility Feedback: Volatility feedback is motivated by a model where the volatility of an asset
is priced. When the price of an asset falls, the volatility must increase to reflect the increased
expected return (in the future) of this asset, and an increase in volatility requires an even lower
price to generate a sufficient return to compensate an investor for holding a volatile asset. There
is evidence that empirically supports this explantion although this feature alone cannot explain
the totality of the time-variation of volatility (Bekaert and Wu, 2000).

• Illiquidity: Short run spells of illiquidity may produce time-varying volatility even when shocks
are i.i.d.. Intuitively, if the market is oversold (bought), a small negative (positive) shock pro-
duces a small decrease (increase) in demand. However, since few participants are willing to
buy (sell), this shock has a disproportionate effect on prices. Liquidity runs tend to last from 20
minutes to a few days and cannot explain the long cycles in present volatility.

• State Uncertainty: Asset prices are essential instruments that allow agents to express beliefs
about the state of the economy. When the state is uncertain, slight changes in beliefs may cause
significant shifts in portfolio holdings which in turn feedback into beliefs about the state. This
feedback loop can generate time-varying volatility and should have the most substantial effect
when the economy is transitioning between periods of growth and contraction (Veronesi, 1999;
Collard et al., 2018).

The economic causes of the time-variation in volatility include all of these and some not yet identified,
such as behavioral causes.

7.1.1 What is volatility?

Volatility comes in many shapes and forms. It is critical to distinguish between related but different
uses of “volatility”.
Volatility Volatility is the standard deviation. Volatility is often preferred to variance as it is measured
in the same units as the original data. For example, when using returns, the volatility is also measured
in returns, and so volatility of 5% indicates that ±5% is a meaningful quantity.
Realized Volatility Realized volatility has historically been used to denote a measure of the volatility
over some arbitrary period of time,
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σ̂ =

√√√√T−1
T∑

t=1

(rt− µ̂)2 (7.1)

but is now used to describe a volatility measure constructed using ultra-high-frequency (UHF) data
(also known as tick data). See section 7.8 for details.
Conditional Volatility Conditional volatility is the expected volatility at some future time t +h based
on all available information up to time t (Ft). The one-period ahead conditional volatility is denoted
Et [σt+1].
Implied Volatility Implied volatility is the volatility that correctly prices an option. The Black-Scholes
pricing formula relates the price of a European call option to the current price of the underlying, the
strike, the risk-free rate, the time-to-maturity, and the volatility,

BS(St ,K,r, t,σt) =Ct

where C is the price of the call. The implied volatility is the value which solves the Black-Scholes
taking the option and underlying prices, the strike, the risk-free and the time-to-maturity as given,

σ̂t(St ,K,r, t,C).

Recent econometric developments have produced nonparametric estimators that do not make strong
assumptions on the underlying price process. The VIX is a leading example of these these Model-free
Implied Volatility (MFIV) estimators.
Annualized Volatility When volatility is measured over an interval other than a year, such as a day,
week or month, it can always be scaled to reflect the volatility of the asset over a year. For example,
if σ denotes the daily volatility of an asset and there are 252 trading days in a year, the annualized
volatility is

√
252σ . Annualized volatility is a useful measure that removes the sampling interval

from reported volatilities.
Variance All of the uses of volatility can be replaced with variance, and this chapter focuses on
modeling conditional variance denoted Et [σ

2
t+1], or in the general case, Et

[
σ2

t+h

]
.

7.2 ARCH Models

In financial econometrics, an arch is not an architectural feature of a building; it is a fundamental tool
for analyzing the time-variation of conditional variance. The success of the ARCH (AutoRegressive
Conditional Heteroskedasticity) family of models can be attributed to three features: ARCH processes
are essentially ARMA models, and many of the tools of linear time-series analysis can be directly
applied, ARCH-family models are easy to estimate, and simple, parsimonious models are capable of
accurate descriptions of the dynamics of asset volatility.

7.2.1 The ARCH model

The complete ARCH(P) model (Engle, 1982) relates the current level of volatility to the past P squared
shocks.
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Definition 7.1 (Pth Order Autoregressive Conditional Heteroskedasticity (ARCH)). A Pth order ARCH
process is given by

rt = µt + εt (7.2)

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P

εt = σtet

et
i.i.d.∼ N(0,1).

where µt can be any adapted model for the conditional mean.1

The key feature of this model is that the variance of the shock, εt , is time varying and depends on
the past P shocks, εt−1,εt−2, . . . ,εt−P, through their squares. σ2

t is the time t−1 conditional variance.
All of the right-hand side variables that determine σ2

t are known at time t − 1, and so σ2
t is in the

time t−1 information set Ft−1. The model for the conditional mean can include own lags, shocks (in
an MA model) or exogenous variables such as the default spread or term premium. In practice, the
model for the conditional mean should be general enough to capture the dynamics present in the data.
In many financial time series, particularly when returns are measured over short intervals - one day to
one week - a constant mean, sometimes assumed to be 0, is sufficient.

An common alternative description an ARCH(P) model is

rt |Ft−1 ∼ N(µt ,σ
2
t ) (7.3)

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P

εt = rt−µt

which is read “rt given the information set at time t − 1 is conditionally normal with mean µt and
variance σ2

t ”. 2

The conditional variance, σ2
t , is

Et−1
[
ε

2
t
]
= Et−1

[
e2

t σ
2
t
]
= σ

2
t Et−1

[
e2

t
]
= σ

2
t (7.4)

and the unconditional variance, σ̄2, is

E
[
ε

2
t+1
]
= σ̄

2. (7.5)

The first interesting property of the ARCH(P) model is the unconditional variance. Assuming the

1A model is adapted if everything required to model the mean at time t is known at time t−1. Standard examples of
adapted mean processes include a constant mean, ARMA processes or models containing exogenous regressors known at
time t−1.

2It is implausible that the unconditional (long-run) mean return of many risky assets is zero. However, when using
daily equity data, the squared mean is typically less than 1% of the variance ( µ

2

σ2 < 0.01) and there are few consequences
for setting the conditional mean to 0. Some assets, e.g., electricity prices, have non-trivial predictability and an appropriate
model for the conditional mean is required before modeling the volatility.
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unconditional variance exists, σ̄2 = E[σ2
t ] can be derived from

E
[
σ

2
t
]
=E
[
ω +α1ε

2
t−1 +α2ε

2
t−2 + . . .+αPε

2
t−P
]

(7.6)
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2 =

ω

1−α1−α2− . . .−αP
. (7.7)

This derivation makes use of a number of properties of ARCH family models. First, the definition
of the shock ε2

t ≡ e2
t σ2

t is used to separate the i.i.d.normal innovation (et) from the conditional vari-
ance (σ2

t ) using the Law of Iterated Expectations. For example, σt−1 is known at time t−2 and so is
in Ft−2 and Et−1 [σt−1] = σt−1. et−1 is an i.i.d.draw at time t−1, a random variable at time t−2, and
so Et−2

[
e2

t−1
]
= 1. The result follows from the property that the unconditional expectation of σ2

t− j is
the same in any time period (E[σ2

t ] = E[σ2
t−p] = σ̄2) in a covariance stationary time series. Inspection

of the final line in the derivation reveals the condition needed to ensure that the unconditional expec-
tation is finite: 1−α1−α2− . . .−αP > 0. As was the case in an AR model, as the persistence (as
measured by α1,α2, . . .) increases towards a unit root, the process explodes.

7.2.1.1 Stationarity

An ARCH(P) model is covariance stationary as long as the model for the conditional mean corre-
sponds to a stationary process3 and 1−α1−α2− . . .−αP > 0.4 ARCH models have the property that
E[ε2

t ] = σ̄2 = ω/(1−α1−α2− . . .−αP) since

E[ε2
t ] = E[e2

t σ
2
t ] = E[Et−1

[
e2

t σ
2
t
]
] = E[σ2

t Et−1
[
e2

t
]
] = E[σ2

t ×1] = E[σ2
t ]. (7.8)

which exploits the conditional (on Ft−1) independence of et from σ2
t and the assumption that et is a

mean zero process with unit variance so that E[e2
t ] = 1.

One crucial requirement of any covariance stationary ARCH process is that the parameters of the
variance evolution, α1, α2, . . . , αP must all be positive.5 The intuition behind this requirement is that
if one of the αs were negative, eventually a shock would be sufficiently large to produce a negative

3For example, a constant or a covariance stationary ARMA process.
4When

∑P
i=1 αi > 1, and ARCH(P) may still be strictly stationary although it cannot be covariance stationary since it

has infinite variance.
5Since each α j ≥ 0, the roots of the characteristic polynomial associated with α1,α2, . . . ,αp are less than 1 if and only

if
∑P

p=1 αp < 1.



420 Univariate Volatility Modeling

conditional variance and an ill-defined process. Finally, it is also necessary that ω > 0 to ensure
covariance stationarity.

To aid in developing intuition about ARCH-family models consider a simple ARCH(1) with a
constant mean of 0,

rt = εt (7.9)

σ
2
t = ω +α1ε

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1).

While the conditional variance of an ARCH process appears different from anything previously en-
countered, the squared error ε2

t can be equivalently expressed as an AR(1). This transformation allows
many properties of ARCH residuals to be directly derived by applying the results of chapter 4. By
adding ε2

t −σ2
t to both sides of the volatility equation,

σ
2
t = ω +α1ε

2
t−1 (7.10)
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2
t

ε
2
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2
t−1 +σ

2
t
(
e2

t −1
)

ε
2
t = ω +α1ε

2
t−1 +νt ,

an ARCH(1) process can be shown to be an AR(1). The error term, νt represents the volatility
surprise, ε2

t − σ2
t , which can be decomposed as σ2

t (e
2
t − 1). The shock is a mean 0 white noise

process since et is i.i.d.and E[e2
t ] = 1. Using the AR representation, the autocovariances of ε2

t are
simple to derive. First note that ε2

t − σ̄2 =
∑∞

i=0 α i
1νt−i. The first autocovariance can be expressed
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where V[ε2
t−1] = V[ε2

t ] is the variance of the squared innovations.6 By repeated substitution, the sth

autocovariance, E[(ε2
t − σ̄2)(ε2

t−s− σ̄2)], can be shown to be αs
1V[ε2

t ], and so that the autocovariances
of an ARCH(1) process are identical to those of an AR(1) process.

7.2.1.2 Autocorrelations

Using the autocovariances, the autocorrelations are

Corr(ε2
t ,ε

2
t−s) =

αs
1V[ε2

t ]

V[ε2
t ]

= α
s
1. (7.12)

Further, the relationship between the sth autocorrelation of an ARCH process and an AR process holds
for ARCH processes with other orders. The autocorrelations of an ARCH(P) are identical to those
of an AR(P) process with {φ1,φ2, . . . ,φP} = {α1,α2, . . . ,αP}. One interesting aspect of ARCH(P)
processes (and any covariance stationary ARCH-family model) is that the autocorrelations of

{
ε2

t
}

must be positive. If one autocorrelation were negative, eventually a shock would be sufficiently large
to force the conditional variance negative, and so the process would be ill-defined. In practice it is
often better to examine the absolute values (Corr(|εt | , |εt−s|)) rather than the squares since financial
returns frequently have outliers that are exacerbated when squared.

7.2.1.3 Kurtosis

The second interesting property of ARCH models is that the kurtosis of shocks (εt) is strictly greater
than the kurtosis of a normal. This may seem strange since all of the shocks εt = σtet are normal by

6For the time being, assume this is finite.
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Returns of the S&P 500 and WTI
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Figure 7.1: Plots of S&P 500 and WTI returns (scaled by 100) from 1999 until 2018. The bulges in
the return plots are graphical evidence of time-varying volatility.

assumption. An ARCH model is a variance-mixture of normals, and so must have a kurtosis larger
than three. The direct proof is simple,

κ =
E
[
ε4

t
]

E
[
ε2

t
]2 =

E
[
Et−1

[
ε4

t
]]

E
[
Et−1

[
e2

t σ2
t
]]2 =

E
[
Et−1

[
e4

t
]

σ4
t
]

E
[
Et−1

[
e2

t
]

σ2
t
]2 =

E
[
3σ4

t
]

E
[
σ2

t
]2 = 3

E
[
σ4

t
]

E
[
σ2

t
]2 ≥ 3. (7.13)

The key steps in this derivation are that ε4
t = e4

t σ4
t and that Et [e4

t ] = 3 since et is a standard normal.
The final conclusion that E[σ4

t ]/E[σ2
t ]

2 > 1 follows from noting that for any random variable Y ,

V [Y ] = E
[
Y 2]−E [Y ]2 ≥ 0 and so it must be the case that E

[
σ4

t
]
≥ E

[
σ2

t
]2 or

E[σ4
t ]

E[σ2
t ]

2 ≥ 1. The

kurtosis, κ , of an ARCH(1) can be shown to be

κ =
3(1−α2

1 )

(1−3α2
1 )

> 3 (7.14)
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Squared Returns of the S&P 500 and WTI
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Figure 7.2: Plots of the squared returns of the S&P 500 Index and WTI. Time-variation in the squared
returns is evidence of ARCH.

which is greater than 3 since 1− 3α2
1 < 1−α2

1 for any value of α 6= 0. The complete derivation of
the kurtosis is involved and is presented in Appendix 7.A.

7.2.2 The GARCH model

The ARCH model has been deemed a sufficient contribution to economics to warrant a Nobel prize.
Unfortunately, like most models, it has problems. ARCH models typically require 5-8 lags of the
squared shock to model conditional variance adequately. The Generalized ARCH (GARCH) pro-
cess, introduced by Bollerslev (1986), improves the original specification adding lagged conditional
variance, which acts as a smoothing term. A low-order GARCH model typically fits as well as a
high-order ARCH.

Definition 7.2 (Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process). A
GARCH(P,Q) process is defined as

rt = µt + εt (7.15)
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σ
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αpε
2
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Q∑
q=1

βqσ
2
t−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean.

The GARCH(P,Q) model builds on the ARCH(P) model by including Q lags of the conditional vari-
ance, σ2

t−1,σ
2
t−2, . . . ,σ

2
t−Q. Rather than focusing on the general specification with all of its complica-

tions, consider a simpler GARCH(1,1) model where the conditional mean is assumed to be zero,

rt = εt (7.16)
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t = ω +α1ε
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t−1 +β1σ

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1)

In this specification, the future variance will be an average of the current shock, ε2
t−1, the current vari-

ance, σ2
t−1, and a constant. Including the lagged variance produces a model that can be equivalently

expressed as an ARCH(∞). Begin by backward substituting for σ2
t−1,

σ
2
t = ω +α1ε
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2
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and the ARCH(∞) representation can be derived.7 The conditional variance in period t depends on
a constant,

∑∞
i=0 β i

1ω = ω

1−β
, and a weighted average of past squared innovations with weights α1,

β1α1, β 2
1 α1, β 3

1 α1, . . ..
As was the case in the ARCH(P) model, the coefficients of a GARCH model must be restricted

to ensure the conditional variances are uniformly positive. In a GARCH(1,1), these restrictions are
ω > 0, α1 ≥ 0 and β1 ≥ 0. In a GARCH(P,1) model the restriction change to αp ≥ 0, p = 1,2, . . . ,P
with the same restrictions on ω and β1. The minimal parameter restrictions needed to ensure that

7Since the model is assumed to be stationary, it must be the case that 0≤ β < 1 and so lim j→∞β jσt− j = 0.
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variances are always positive are difficult to derive for the full class of GARCH(P,Q) models. For
example, in a GARCH(2,2), one of the two β ’s (β2) can be slightly negative while ensuring that all
conditional variances are positive. See Nelson and Cao (1992) for further details.

The GARCH(1,1) model can be transformed into a standard time series model for ε2
t by adding

ε2
t −σ2

t to both sides.

σ
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2
t−1 +β1σ

2
t−1 (7.18)
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The squared shock in a GARCH(1,1) follows an ARMA(1,1) process where νt = ε2
t − σ2

t is the
volatility surprise. In the general GARCH(P,Q), the ARMA representation takes the form of an
ARMA(max(P,Q),Q).

ε
2
t = ω +

max(P,Q)∑
i=1

(αi +βi)ε
2
t−i−

Q∑
q=1

β1νt−q +νt (7.19)

The unconditional variance is computed by taking expectations of both sides, so that

E[σ2
t ] = ω +α1E[ε2

t−1]+β1E[σ2
t−1] (7.20)

σ̄
2 = ω +α1σ̄

2 +β1σ̄
2

σ̄
2−α1σ̄

2−β1σ̄
2 = ω

σ̄
2 =

ω

1−α1−β1
.

Inspection of the ARMA model leads to an alternative derivation of σ̄2 since the AR coefficient is
α1 +β1 and the intercept is ω , and the unconditional mean in an ARMA(1,1) is the intercept divided
by one minus the AR coefficient, ω/(1−α1− β1). In a general GARCH(P,Q) the unconditional
variance is

σ̄
2 =

ω

1−∑P
p=1 αp−

∑Q
q=1 βq

. (7.21)

The requirements on the parameters for stationarity in a GARCH(1,1) are 1−α1−β > 0 and α1 ≥ 0,
β1 ≥ 0 and ω > 0.

The ARMA(1,1) form can be used directly to solve for the autocovariances. Recall the definition
of a mean zero ARMA(1,1),

Yt = φYt−1 +θεt−1 + εt (7.22)
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The 1stautocovariance can be computed as

E[YtYt−1] = E[(φYt−1 +θεt−1 + εt)Yt−1] (7.23)

= E[φY 2
t−1]+ [θε

2
t−1]

= φV[Yt−1]+θV[εt−1]

γ1 = φV[Yt−1]+θV[εt−1]

and the sth autocovariance is γs = φ s−1γ1. In the notation of a GARCH(1,1) model, φ = α1 + β1,
θ = −β1, Yt−1 is ε2

t−1 and ηt−1 is σ2
t−1− ε2

t−1. Thus, V[ε2
t−1] and V[σ2

t − ε2
t ] must be solved for.

This derivation is challenging and so is presented in the appendix. The key to understanding the
autocovariance (and autocorrelation) of a GARCH is to use the ARMA mapping. First note that
E[σ2

t − ε2
t ] = 0 so V[σ2

t − ε2
t ] is simply E[(σ2

t − ε2
t )

2]. This can be expanded to E[ε4
t ]− 2E[ε2

t σ2
t ]+

E[σ4
t ] which can be shown to be 2E[σ4

t ]. The only remaining step is to complete the tedious derivation
of the expectation of these fourth powers which is presented in Appendix 7.B.

7.2.2.1 Kurtosis

The kurtosis can be shown to be

κ =
3(1+α1 +β1)(1−α1−β1)

1−2α1β1−3α2
1 −β 2

1
> 3. (7.24)

The kurtosis is larger than that of a normal despite the innovations, et , all having normal distributions
since that model is a variance mixture of normals. The formal derivation is presented in 7.B.
Exponentially Weighted Moving Averages (EWMA)

Exponentially Weighted Moving Averages, popularized by RiskMetrics, are commonly used to mea-
sure and forecast volatilities from returns without estimating any parameters (J.P.Morgan/Reuters,
1996). An EWMA is a restricted GARCH(1,1) model where ω = 0 and α +β = 1. The recursive
form of an EWMA is

σ
2
t = (1−λ )ε2

t−1 +λσ
2
t−1,

which can be equivalently expressed as an ARCH(∞)

σ
2
t = (1−λ )

∞∑
i=0

λ
i
ε

2
t−i−1.

The weights on the lagged squared returns decay exponentially so that the ratio of two consecutive
weights is λ . The single parameter λ is typically set to 0.94 when using daily returns, 0.97 when
using weekly return data, or 0.99 when using monthly returns. These values were calibrated on a
wide range of assets to forecast volatility well.

7.2.3 The EGARCH model

The Exponential GARCH (EGARCH) model represents a major shift from the ARCH and GARCH
models (Nelson, 1991). Rather than model the variance directly, EGARCH models the natural log-
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arithm of the variance, and so no parameters restrictions are required to ensure that the conditional
variance is positive.

Definition 7.3 (Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH)
process). An EGARCH(P,O,Q) process is defined

rt = µt + εt (7.25)
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εt = σtet
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where µt can be any adapted model for the conditional mean. P and O were assumed to be equal in
the original parameterization of Nelson (1991).

Rather than working with the complete specification, consider a simpler version, an EGARCH(1,1,1)
with a constant mean,

rt = µ + εt (7.26)
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Three terms drive the dynamics in the log variance. The first term,
∣∣∣ εt−1

σt−1

∣∣∣−√ 2
π

=|et−1|−
√

2
π

, is the

absolute value of a normal random variable, et−1, minus its expectation,
√

2/π , and so it is a mean
zero shock. The second term, et−1 – a standard normal – is an additional mean zero shock and the
final term is the lagged log variance. The two shocks behave differently: the absolute value in the first
produces a symmetric rise in the log variance for a given return while the sign of the second produces
an asymmetric effect. γ1 is typically estimated to negative so that volatility rises more after negative
shocks than after positive ones. In the usual case where γ1 < 0, the magnitude of the shock can be
decomposed by conditioning on the sign of et−1

Shock coefficient =

{
α1 + γ1 when et−1 < 0
α1− γ1 when et−1 > 0 (7.27)

Since both shocks are mean zero and the current log variance is linearly related to past log variance
through β1, the EGARCH(1,1,1) model is an AR model.

EGARCH models often provide superior fits when compared to standard GARCH models. The
presence of the asymmetric term is largely responsible for the superior fit since many asset return
series have been found to exhibit a “leverage” effect. Additionally, the use of standardized shocks
(et−1) in the dynamics of the log-variance reduces the effect of outliers.



428 Univariate Volatility Modeling

Summary Statistics
S&P 500 WTI

Ann. Mean 14.03 5.65
Ann. Volatility 38.57 19.04
Skewness 0.063 -0.028
Kurtosis 7.22 11.45

Table 7.1: Summary statistics for the S&P 500 and WTI. Means and volatilities are reported in annu-
alized terms using 100 × returns. Skewness and kurtosis are scale-free by definition.

7.2.3.1 The S&P 500 and West Texas Intermediate Crude

The application of GARCH models will be demonstrated using daily returns on both the S&P 500 and
West Texas Intermediate (WTI) Crude spot prices from January 1, 1999, until December 31, 2018.
The S&P 500 data is from Yahoo! Finance and the WTI data is from the St. Louis Federal Reserve’s
FRED database. All returns are scaled by 100. The returns are plotted in Figure 7.1, the squared
returns are plotted in Figure 7.2, and the absolute values of the returns are plotted in Figure 7.3. The
plots of the squared returns and the absolute values of the returns are useful graphical diagnostics for
detecting ARCH. If the residuals are conditionally heteroskedastic, both plots provide evidence of
volatility dynamics in the transformed returns. In practice, the plot of the absolute returns is a more
helpful graphical tool than the plot of the squares. Squared returns are noisy proxies for the variance,
and the dynamics in the data may be obscured by a small number of outliers.

Summary statistics are presented in table 7.1, and estimates from an ARCH(5), and GARCH(1,1)
and an EGARCH(1,1,1) are presented in table 7.2. The summary statistics are typical of financial
data where both series are heavy-tailed (leptokurtotic).

Definition 7.4 (Leptokurtosis). A random variable xt is said to be leptokurtic if its kurtosis,

κ =
E[(xt−E[xt ])

4]

E[(xt−E[xt ])2]2

is greater than that of a normal (κ > 3). Leptokurtic variables are also known as “heavy-tailed” or
“fat tailed”.

Definition 7.5 (Platykurtosis). A random variable xt is said to be platykurtic if its kurtosis,

κ =
E[(xt−E[xt ])

4]

E[(xt−E[xt ])2]2

is less than that of a normal (κ < 3). Platykurtic variables are also known as “thin-tailed”.

Table 7.2 contains estimates from an ARCH(5), a GARCH(1,1) and an EGARCH(1,1,1) model.
All estimates were computed using maximum likelihood assuming the innovations are conditionally
normally distributed. There is strong evidence of time-varying variance since most p-values are near
0. The highest log-likelihood (a measure of fit) is produced by the EGARCH model in both series.
This is likely due to the EGARCH’s inclusion of asymmetries, a feature excluded from both the
ARCH and GARCH models.
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S&P 500
ARCH(5)

ω α1 α2 α3 α4 α5 Log Lik.

0.294
(0.000)

0.095
(0.000)

0.204
(0.000)

0.189
(0.000)

0.193
(0.000)

0.143
(0.000)

−7008

GARCH(1,1)
ω α1 β1 Log Lik.

0.018
(0.000)

0.102
(0.000)

0.885
(0.000)

−6888

EGARCH(1,1,1)
ω α1 γ1 β1 Log Lik.

0.000
(0.909)

0.136
(0.000)

−0.153
(0.000)

0.975
(0.000)

−6767

WTI
ARCH(5)

ω α1 α2 α3 α4 α5 Log Lik.

2.282
(0.000)

0.138
(0.000)

0.129
(0.000)

0.131
(0.000)

0.094
(0.000)

0.130
(0.000)

−11129

GARCH(1,1)
ω α1 β1 Log Lik.

0.047
(0.034)

0.059
(0.000)

0.934
(0.000)

−11030

EGARCH(1,1,1)
ω α1 γ1 β1 Log Lik.

0.020
(0.002)

0.109
(0.000)

−0.050
(0.000)

0.990
(0.000)

−11001

Table 7.2: Parameter estimates, p-values and log-likelihoods from ARCH(5), GARCH(1,1) and
EGARCH(1,1,1) models for the S&P 500 and WTI. These parameter values are typical of models
estimated on daily data. The persistence of conditional variance, as measured by the sum of the αs in
the ARCH(5), α1 +β1 in the GARCH(1,1) and β1 in the EGARCH(1,1,1), is high in all models. The
log-likelihoods indicate the EGARCH model is preferred for both return series.
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Absolute Returns of the S&P 500 and WTI
Absolute S&P 500 Returns
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Figure 7.3: Plots of the absolute returns of the S&P 500 and WTI. Plots of the absolute value are often
more useful in detecting ARCH as they are less noisy than squared returns yet still show changes in
conditional volatility.

7.2.4 Alternative Specifications

Many extensions to the basic ARCH model have been introduced to capture important empirical
features. This section outlines three of the most useful extensions in the ARCH-family.

7.2.4.1 GJR-GARCH

The GJR-GARCH model was named after the authors who introduced it, Glosten, Jagannathan, and
Runkle (1993). It extends the standard GARCH(P,Q) by adding asymmetric terms that capture a
common phenomenon in the conditional variance of equities: the propensity of the volatility to rise
more after large negative shocks than to large positive shocks (known as the “leverage effect”).

Definition 7.6 (GJR-Generalized Autoregressive Conditional Heteroskedasticity (GJR-GARCH) pro-
cess). A GJR-GARCH(P,O,Q) process is defined as

rt = µt + εt (7.28)
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εt = σtet
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where µt can be any adapted model for the conditional mean, and I[εt−o<0] is an indicator function that
takes the value 1 if εt−o < 0 and 0 otherwise.

The parameters of the GJR-GARCH, like the standard GARCH model, must be restricted to en-
sure that the fit variances are always positive. This set is difficult to describe for all GJR-GARCH(P,O,Q)
models although it is simple of a GJR-GARCH(1,1,1). The dynamics in a GJR-GARCH(1,1,1) evolve
according to

σ
2
t = ω +α1ε

2
t−1 + γ1ε

2
t−1I[εt−1<0]+β1σ

2
t−1. (7.29)

and it must be the case that ω > 0, α1 ≥ 0, α1+γ ≥ 0 and β1 ≥ 0. If the innovations are conditionally
normal, a GJR-GARCH model will be covariance stationary as long as the parameter restriction are
satisfied and α1 +

1
2γ1 +β1 < 1.

7.2.4.2 AVGARCH/TARCH/ZARCH

The Threshold ARCH (TARCH) model (also known as AVGARCH and ZARCH) makes one fun-
damental change to the GJR-GARCH model (Taylor, 1986; Zakoian, 1994). The TARCH model
parameterizes the conditional standard deviation as a function of the lagged absolute value of the
shocks. It also captures asymmetries using an asymmetric term that is similar to the asymmetry in the
GJR-GARCH model.

Definition 7.7 (Threshold Autoregressive Conditional Heteroskedasticity (TARCH) process). A TARCH(P,
O, Q) process is defined as

rt = µt + εt (7.30)

σt = ω +
P∑

p=1

αp|εt−p|+
O∑

o=1

γo|εt−o|I[εt−o<0]+

Q∑
q=1

βqσt−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean. TARCH models are also known as
ZARCH due to Zakoian (1994) or AVGARCH when no asymmetric terms are included (O= 0, Taylor
(1986)).

Below is an example of a TARCH(1,1,1) model.

σt = ω +α1|εt−1|+ γ1|εt−1|I[εt−1<0]+β1σt−1, α1 + γ1 ≥ 0 (7.31)

where I[εt−1<0] is an indicator variable which takes the value 1 if εt−1 < 0. Models of the conditional
standard deviation often outperform models that parameterize the conditional variance. The absolute
shocks are less responsive than the squared shocks.
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7.2.4.3 APARCH

The third model extends the TARCH and GJR-GARCH models by directly parameterizing the non-
linearity in the conditional variance. Where the GJR-GARCH model uses 2, and the TARCH model
uses 1, the Asymmetric Power ARCH (APARCH) of Ding, Granger, and Engle (1993) parameter-
izes this value directly (using δ ). This form provides greater flexibility in modeling the memory of
volatility while remaining parsimonious.

Definition 7.8 (Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH) pro-
cess). An APARCH(P,O,Q) process is defined as

rt = µt + εt (7.32)

σ
δ
t = ω +

max(P,O)∑
j=1

α j
(
|εt− j|+ γ jεt− j

)δ
+

Q∑
q=1

βqσ
δ
t−q

εt = σtet

et
i.i.d.∼ N(0,1)

where µt can be any adapted model for the conditional mean. It must be the case that P ≥ O in an
APARCH model, and if P > O, then γ j = 0 for j > O. If that ω > 0, αk ≥ 0 and −1 ≤ γ j ≤ 1, then
the conditional variance are always positive.

It is not completely obvious to see that the APARCH model nests the GJR-GARCH and TARCH
models as special cases. To examine how an APARCH nests a GJR-GARCH, consider an APARCH(1,1,1)
model.

σ
δ
t = ω +α1 (|εt−1|+ γ1εt−1)

δ +β1σ
δ
t−1 (7.33)

Suppose δ = 2, then

σ
2
t = ω +α1 (|εt−1|+ γ1εt−1)

2 +β1σ
2
t−1 (7.34)

= ω +α1|εt−1|2 +2α1γ1εt−1|εt−1|+α1γ
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1 ε

2
t−1 +β1σ
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= ω +α1ε
2
t−1 +α1γ

2
1 ε

2
t−1 +2α1γ1ε

2
t−1sign(εt−1)+β1σ
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where sign(·) is a function that returns 1 if its argument is positive and -1 if its argument is negative.
Consider the total effect of ε2

t−1 as it depends on the sign of εt−1,

Shock coefficient =

{
α1 +α1γ2

1 +2α1γ1 when εt > 0
α1 +α1γ2

1 −2α1γ1 when εt < 0
(7.35)

γ is usually estimated to be less than zero which corresponds to the typical “leverage effect” in GJR-
GARCH models.8 The relationship between a TARCH model and an APARCH model works anal-
ogously by setting δ = 1. The APARCH model also nests the ARCH(P), GARCH(P,Q) and AV-
GARCH(P,Q) models as special cases when γ1 = 0.

8The explicit relationship between an APARCH and a GJR-GARCH can be derived when δ = 2 by solving a system
of two equation in two unknowns where eq. (7.35) is equated with the effect in a GJR-GARCH model.
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New Impact Curves
S&P 500 News Impact Curve
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Figure 7.4: News impact curves for returns on both the S&P 500 and WTI. While the ARCH and
GARCH curves are symmetric, the others show substantial asymmetries to negative news. Addition-
ally, the fit APARCH models chose δ̂ ≈ 1, and so the NIC of the APARCH and the TARCH models
appear similar.

7.2.5 The News Impact Curve

With a wide range of volatility models, each with a different specification for the dynamics of con-
ditional variances, it can be difficult to determine the precise effect of a shock to the conditional
variance. News impact curves measure the effect of a shock in the current period on the conditional
variance in the subsequent period, and so facilitate comparison between models.

Definition 7.9 (News Impact Curve (NIC)). The news impact curve of an ARCH-family model is
defined as the difference between the variance with a shock et and the variance with no shock (et = 0).
The variance in all previous periods is set to the unconditional expectation of the variance, σ̄2,

n(et) = σ
2
t+1(et |σ2

t = σ̄
2
t ) (7.36)

NIC(et) = n(et)−n(0). (7.37)
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Setting the variance in the current period to the unconditional variance has two consequences. First,
it ensures that the NIC does not depend on the level of variance. Second, this choice for the lagged
variance improves the comparison of linear and non-linear specifications (e.g., EGARCH).

News impact curves for ARCH and GARCH models only depend on the terms which include ε2
t .

GARCH(1,1)

n(et) = ω +α1σ̄
2e2

t +β1σ̄
2 (7.38)

NIC(et) = α1σ̄
2e2

t (7.39)

News impact curve are more complicated when models is not linear in ε2
t . For example, consider the

NIC for a TARCH(1,1,1),

σt = ω +α1|εt |+ γ1|εt |I[εt<0]+β1σt−1. (7.40)

n(et) = ω
2 +2ω(α1 + γ1I[εt<0])|εt |+2β (α1 + γ1I[εt<0])|εt |σ̄ +β

2
1 σ̄

2 +2ωβ1σ̄ +(α1 + γ1I[εt<0])
2
ε

2
t

(7.41)

NIC(et) = (α1 + γ1I[εt<0])
2
ε

2
t +(2ω +2β1σ̄)(α1 + γ1I[εt<0])|εt | (7.42)

While deriving explicit expressions for NICs can be tedious, practical implementation only re-
quires computing the conditional variance for a shock of 0 (n(0)) and a set of shocks between -3
and 3 (n(z) for z ∈ (−3,3)). The difference between the conditional variance with a shock and the
conditional variance without a shock is the NIC.

7.2.5.1 The S&P 500 and WTI

Figure 7.4 contains plots of the news impact curves for both the S&P 500 and WTI. When the models
include asymmetries, the news impact curves are asymmetric and show a much larger response to
negative shocks than to positive shocks, although the asymmetry is stronger in the volatility of the
returns of the S&P 500 than it is in the volatility of WTI’s returns.

7.3 Estimation and Inference

Consider a simple GARCH(1,1) specification,

rt = µt + εt (7.43)

σ
2
t = ω +α1ε

2
t−1 +βσ

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1)
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Since the errors are assumed to be conditionally i.i.d.normal9, maximum likelihood is a natural choice
to estimate the unknown parameters, θ which contain both the mean and variance parameters. The
normal likelihood for T independent variables is

f (r;θ) =

T∏
t=1

(2πσ
2
t )
− 1

2 exp
(
−(rt−µt)

2

2σ2
t

)
(7.44)

and the normal log-likelihood function is

l(θ ;r) =
T∑

t=1

−1
2

log(2π)− 1
2

log(σ2
t )−

(rt−µt)
2

2σ2
t

. (7.45)

If the mean is set to 0, the log-likelihood simplifies to

l(θ ;r) =
T∑

t=1

−1
2

log(2π)− 1
2

log(σ2
t )−

r2
t

2σ2
t
, (7.46)

and is maximized by solving the first order conditions.

∂ l(θ ;r)
∂σ2

t
=

T∑
t=1

− 1
2σ2

t
+

r2
t

2σ4
t
= 0, (7.47)

which can be rewritten to provide some insight into the estimation of ARCH models,

∂ l(θ ;r)
∂σ2

t
=

1
2

T∑
t=1

1
σ2

t

(
r2
t

σ2
t
−1
)
. (7.48)

This expression clarifies that the parameters of the volatility are chosen to make
(

r2
t

σ2
t
−1
)

as close to

zero as possible.10 These first order conditions are not complete since ω , α1 and β1, not σ2
t , are the

parameters of a GARCH(1,1) model and

∂ l(θ ;r)
∂θi

=
∂ l(θ ;r)

∂σ2
t

∂σ2
t

∂θi
(7.49)

9The use of conditional is to denote the dependence on σ2
t , which is in Ft−1.

10If Et−1

[
r2
t

σ2
t
−1
]
= 0, and so the volatility is correctly specified, then the scores of the log-likelihood have expectation

zero since

E
[

1
σ2

t

(
r2

t

σ2
t
−1
)]

= E
[

Et−1

[
1

σ2
t

(
r2

t

σ2
t
−1
)]]

= E
[

1
σ2

t

(
Et−1

[
r2

t

σ2
t
−1
])]

= E
[

1
σ2

t
(0)
]

= 0.
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The derivatives follow a recursive form not previously encountered,

∂σ2
t

∂ω
= 1+β1

∂σ2
t−1

∂ω
(7.50)

∂σ2
t

∂α1
= ε

2
t−1 +β1

∂σ2
t−1

∂α1

∂σ2
t

∂β1
= σ

2
t−1 +β1

∂σ2
t−1

∂β1
,

although the recursion in the first order condition for ω can be removed noting that

∂σ2
t

∂ω
= 1+β1

∂σ2
t−1

∂ω
≈ 1

1−β1
. (7.51)

Eqs. (7.49) – (7.51) provide the necessary formulas to implement the scores of the log-likelihood
although they are not needed to estimate a GARCH model.11

The use of the normal likelihood has one strong justification; estimates produced by maximizing
the log-likelihood of a normal are strongly consistent. Strong consistency is a property of an estimator
that ensures parameter estimates converge to the true parameters even if the assumed conditional
distribution is misspecified. For example, in a standard GARCH(1,1), the parameter estimates would
still converge to their true value if estimated with the normal likelihood as long as the volatility model
was correctly specified. The intuition behind this result comes from the generalized error(

ε2
t

σ2
t
−1
)
. (7.52)

Whenever σ2
t = Et−1[ε

2
t ],

E
[(

ε2
t

σ2
t
−1
)]

= E
[(

Et−1[ε
2
t ]

σ2
t
−1
)]

= E
[(

σ2
t

σ2
t
−1
)]

= 0. (7.53)

Thus, as long as the GARCH model nests the true DGP, the parameters are chosen to make the
conditional expectation of the generalized error 0; these parameters correspond to those of the original
DGP even if the conditional distribution is misspecified.12 This is a unique property of the normal
distribution and is not found in other common distributions.

7.3.1 Inference

Under some regularity conditions, parameters estimated by maximum likelihood are asymptotically
normally distributed,

11MATLAB and many other econometric packages are capable of estimating the derivatives using a numerical ap-
proximation that only requires the log-likelihood. Numerical derivatives use the definition of a derivative, f ′(x) =
limh→0

f (x+h)− f (x)
h to approximate the derivative using f ′(x)≈ f (x+h)− f (x)

h for some small h.
12An assumption that a GARCH specification nests the DGP is extremely strong and likely wrong in most cases.

However, the strong consistency property of the normal likelihood in volatility models justifies estimation of models
where the standardized residuals are leptokurtotic and skewed.
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√
T (θ̂ −θ 0)

d→ N(0,I−1) (7.54)

where

I =−E
[

∂ 2l(θ 0;rt)

∂θ∂θ
′

]
(7.55)

is the negative of the expected Hessian. The Hessian measures how much curvature there is in the
log-likelihood at the optimum just like the second-derivative measures the rate-of-change in the rate-
of-change of the function in a standard calculus problem. The sample analog estimator that averages
the time-series of Hessian matrices computed at θ̂ is used to estimate I,

Î =−T−1
T∑

t=1

∂ 2l(θ̂ ;rt)

∂θ∂θ
′ . (7.56)

Chapter 2 shows that the Information Matrix Equality (IME) generally holds for MLE problems,
so that

I = J (7.57)

where

J = E
[

∂ l(rt ;θ 0)

∂θ

∂ l(rt ;θ 0)

∂θ
′

]
(7.58)

is the covariance of the scores. The scores behave like errors in ML estimators and so large score
variance indicate the parameters are difficult to estimate accurately. The estimator of J is the sample
analog averaging the outer-product of the scores evaluated at the estimated parameters,

Ĵ = T−1
T∑

t=1

∂ l(θ̂ ;rt)

∂θ

∂ l(θ̂ ;rt)

∂θ
′ . (7.59)

The IME generally applies when the parameter estimates are maximum likelihood estimates,
which requires that both the likelihood used in estimation is correct and that the specification for
the conditional variance is general enough to nest the true process. When one specification is used
for estimation (e.g., normal) but the data follow a different conditional distribution, these estimators
are known as Quasi-Maximum Likelihood Estimators (QMLE), and the IME generally fails to hold.
Under some regularity conditions, the estimated parameters are still asymptotically normal but with a
different covariance,

√
T (θ̂ −θ 0)

d→ N(0,I−1J I−1) (7.60)

If the IME is valid, I = J and so this covariance simplifies to the usual MLE variance estimator.
In most applications of ARCH models, the conditional distribution of shocks is decidedly not

normal, and standardized residuals have excess kurtosis and are skewed. Bollerslev and Wooldridge
(1992) were the first to show that the IME does not generally hold for GARCH models when the
distribution is misspecified and the “sandwich” form

Î−1Ĵ Î−1 (7.61)
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WTI
ω α1 γ1 β1

Coefficient 0.031 0.030 0.055 0.942
Std. T-stat 3.62 4.03 7.67 102.94
Robust T-stat 1.85 2.31 4.45 49.66

S&P 500
ω α1 γ1 β1

Coefficient 0.026 0.0 0.172 0.909
Std. T-stat 9.63 0.0 14.79 124.92
Robust T-stat 6.28 0.0 10.55 93.26

Table 7.3: Estimates from a TARCH(1,1,1) for the S&P 500 and WTI using alternative parameter
covariance estimators.

of the covariance estimator is often referred to as the Bollerslev-Wooldridge covariance matrix or
alternatively a robust covariance matrix. Standard Wald tests can be used to test hypotheses of interest,
such as whether an asymmetric term is statistically significant, although likelihood ratio tests are not
reliable since they do not have the usual χ2

m distribution.

7.3.1.1 The S&P 500 and WTI

A TARCH(1,1,1) models were estimated on both the S&P 500 and WTI returns to illustrate the
differences between the MLE and the Bollerslev-Wooldridge (QMLE) covariance estimators. Ta-
ble 7.3 contains the estimated parameters and t-stats using both the MLE covariance matrix and the
Bollerslev-Wooldridge covariance matrix. The robust t-stats are substantially smaller than conven-
tional ones, although conclusions about statistical significance are not affected except for ω in the
WTI model. These changes are due to the heavy-tail in the standardized residuals, êt = rt−µ̂t/σ̂t , in
these series.

7.3.1.2 Independence of the mean and variance parameters

Inference on the parameters of the ARCH model is still valid when using normal MLE or QMLE
when the model for the mean is general enough to nest the true form. This property is important
in practice since mean and variance parameters can be estimated separately without correcting the
covariance matrix of the estimated parameters.13 This surprising feature of QMLE estimators em-
ploying a normal log-likelihood comes from the cross-partial derivative of the log-likelihood with
respect to the mean and variance parameters,

13The estimated covariance for the mean should use a White covariance estimator. If the mean parameters are of
particular interest, it may be more efficient to jointly estimate the parameters of the mean and volatility equations as a
form of GLS (see Chapter 3).
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l(θ ;rt) =−
1
2

log(2π)− 1
2

log(σ2
t )−

(rt−µt)
2

2σ2
t

. (7.62)

The first order condition is,

∂ l(θ ;r)
∂ µt

∂ µt

∂φ
=−

T∑
t=1

(rt−µt)

σ2
t

∂ µt

∂φ
(7.63)

and the second order condition is

∂ 2l(θ ;r)
∂ µt∂σ2

t

∂ µt

∂φ

∂σ2
t

∂ψ
=

T∑
t=1

(rt−µt)

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ
(7.64)

where φ is a parameter of the conditional mean and ψ is a parameter of the conditional variance. For
example, in a simple ARCH(1) model with a constant mean,

rt = µ + εt (7.65)

σ
2
t = ω +α1ε

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1),

φ = µ and ψ can be either ω or α1. Taking expectations of the cross-partial,

E
[

∂ 2l(θ ;r)
∂ µt∂σ2

t

∂ µt

∂φ

∂σ2
t

∂ψ

]
= E

[
T∑

t=1

rt−µt

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ

]
(7.66)

= E

[
Et−1

[
T∑

t=1

rt−µt

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ

]]

= E

[
T∑

t=1

Et−1 [rt−µt ]

σ4
t

∂ µt

∂φ

∂σ2
t

∂ψ

]

= E

[
T∑

t=1

0
σ4

t

∂ µt

∂φ

∂σ2
t

∂ψ

]
= 0

it can be seen that the expectation of the cross derivative is 0. The intuition behind the result follows
from noticing that when the mean model is correct for the conditional expectation of rt , the term
rt−µt has conditional expectation 0 and knowledge of the variance is not needed. This argument is a
similar one used to establish the validity of the OLS estimator when the errors are heteroskedastic.
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7.4 GARCH-in-Mean

The GARCH-in-mean model (GiM) makes a significant change to the role of time-varying volatility
by explicitly relating the level of volatility to the expected return (Engle, Lilien, and Robins, 1987).
A simple GiM model can be specified as

rt = µ +δσ
2
t + εt (7.67)

σ
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1

εt = σtet

et
i.i.d.∼ N(0,1)

although virtually any ARCH-family model could be used to model the conditional variance. The
obvious difference between the GiM and a standard GARCH(1,1) is that the variance appears in the
mean of the return. Note that the shock driving the changes in variance is not the mean return but
still ε2

t−1, and so the ARCH portion of a GiM is unaffected. Other forms of the GiM model have been
employed where the conditional standard deviation or the log of the conditional variance are used in
the mean equation14,

rt = µ +δσt + εt (7.68)

or
rt = µ +δ ln(σ2

t )+ εt (7.69)

Because the variance appears in the mean equation for rt , the mean and variance parameters cannot
be separately estimated. Despite the apparent feedback, processes that follow a GiM are stationary as
long as the variance process is stationary. The conditional variance (σ2

t ) in the conditional mean does
not feedback into the conditional variance process and so behaves like an exogenous regressor.

7.4.1 The S&P 500

Standard asset pricing theory dictates that there is a risk-return trade-off. GARCH-in-mean models
provide a natural method to test whether this is the case. Using the S&P 500 data, three GiM models
were estimated (one for each transformation of the variance in the mean equation), and the results
are presented in table 7.4. Based on these estimates, there does appear to be a trade-off between
mean and variance and higher variances produce higher expected means, although the magnitude is
economically small and the coefficients are only significant at the 10% level.

7.5 Alternative Distributional Assumptions

Despite the strengths of the assumption that the errors are conditionally normal – estimation is simple,
and parameters are strongly consistent for the true parameters – GARCH models can be specified and
estimated with alternative distributional assumptions. The motivation for using something other than
the normal distribution is two-fold. First, a better approximation to the conditional distribution of

14The model for the conditional mean can be extended to include ARMA terms or any other predetermined regressor.
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S&P 500 Garch-in-Mean Estimates
µ δ ω α γ β Log Lik.

σ2 0.004
(0.753)

0.022
(0.074)

0.022
(0.000)

0.000
(0.999)

0.183
(0.000)

0.888
(0.000)

−6773.7

σ −0.034
(0.304)

0.070
(0.087)

0.022
(0.000)

0.000
(0.999)

0.182
(0.000)

0.887
(0.000)

−6773.4

lnσ2 0.038
(0.027)

0.030
(0.126)

0.022
(0.000)

0.000
(0.999)

0.183
(0.000)

0.888
(0.000)

−6773.8

Table 7.4: GARCH-in-mean estimates for the S&P 500 series. δ measures the strength of the
GARCH-in-mean, and so is the most interesting parameter. The volatility process was a standard
GARCH(1,1). P-values are in parentheses.

the standardized returns may improve the precision of the volatility process parameter estimates and,
in the case of MLE, the estimates will be fully efficient. Second, GARCH models are often used in
applications where the choice of the assumed density is plays a larger role such as in Value-at-Risk
estimation or option pricing.

Three distributions stand among the dozens that have been used to estimate the parameters of
GARCH processes. The first is a standardized Student’s t (to have a unit variance for any value ν , see
Bollerslev (1987)) with ν degrees of freedom,

Standardized Student’s t

f (rt ; µ,σ2
t ,ν) =

Γ
(

ν+1
2

)
Γ
(

ν

2

) 1√
π(ν−2)

1
σt

1(
1+ (rt−µ)2

σ2
t (ν−2)

) ν+1
2

(7.70)

where Γ(·) is the gamma function.15 This distribution is always fat-tailed and produces a better fit
than the normal for most asset return series. This distribution is only well defined if ν > 2 since the
variance of a Student’s t with ν ≤ 2 is infinite. The second is the generalized error distribution (GED,
see Nelson (1991)),

Generalized Error Distribution

f (rt ; µ,σ2
t ,ν) =

ν exp
(
−1

2 |
rt−µ

σtλ
|ν
)

σtλ2
ν+1

ν Γ( 1
ν
)

(7.71)

λ =

√√√√2−
2
ν Γ( 1

ν
)

Γ( 3
ν
)

(7.72)

15The standardized Student’s t differs from the usual Student’s t so that it is necessary to scale data by
√

ν

ν−2 if using
functions (such as the CDF) for the regular Student’s t distribution.
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Density of standardized residuals for the S&P 500
Std. Student’s t, ν = 7.2 GED, ν = 1.4

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5

Skewed t, ν = 7.2, λ =−0.06 Empirical (Kernel)

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7.5: The four panels of this figure contain the estimated density for the S&P 500 and the
density implied by the distributions: Student’s t, GED, Hansen’s Skew t and a kernel density plot of
the standardized residuals, êt = εt/σ̂t , along with the PDF of a normal (dotted line) for comparison.
The shape parameters, ν and λ , were jointly estimated with the variance parameters in the Student’s
t, GED, and skewed t.

which nests the normal when ν = 2. The GED is fat-tailed when ν < 2 and thin-tailed when ν > 2. It
is necessary that ν ≥ 1 to use the GED in volatility model estimation to ensure that variance is finite.
The third useful distribution, introduced in Hansen (1994), extends the standardized Student’s t to
allow for skewness of returns

Hansen’s skewed t
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f (εt ; µ,σt ,ν ,λ ) =


bc

1+ 1
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(
b
(
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σt

)
+a

(1−λ )

)2
−(ν+1)/2

, rt−µ

σt
<−a/b

bc

1+ 1
ν−2

(
b
(
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σt
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+a

(1+λ )

)2
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(7.73)

where

a = 4λc
(

ν−2
ν−1

)
,

b =
√

1+3λ 2−a2,

and

c =
Γ
(

ν+1
2

)√
π(ν−2)Γ

(
ν

2

) .
The two shape parameters, ν and λ , control the kurtosis and the skewness, respectively.

These distributions may be better approximations to the actual distribution of the standardized
residuals since they allow for kurtosis greater than that of the normal, an important empirical fact, and,
in the case of the skewed t, skewness in the standardized returns. Chapter 8 applies these distributions
in the context of Value-at-Risk and density forecasting.

7.5.1 Alternative Distribution in Practice

To explore the role of alternative distributional assumptions in the estimation of GARCH models, a
TARCH(1,1,1) was fit to the S&P 500 returns using the conditional normal, the Student’s t, the GED
and Hansen’s skewed t. Figure 7.5 contains the empirical density (constructed with a kernel) and
the fit density of the three distributions. The shape parameters, ν and λ , were jointly estimated with
the conditional variance parameters. Figure 7.6 plots of the estimated conditional variance for both
the S&P 500 and WTI using all four distributional assumptions. The most important aspect of this
figure is that the fit variances are indistinguishable. This is a common finding: estimating models
using alternative distributional assumptions produce little difference in the estimated parameters or
the fitted conditional variances from the volatility model.16

7.6 Model Building

Since ARCH and GARCH models are similar to AR and ARMA models, the Box-Jenkins methodol-
ogy is a natural way to approach the problem. The first step is to analyze the sample ACF and PACF

16While the volatilities are similar, the models do not fit the data equally well. The alternative distributions often
provide a better fit as measured by the log-likelihood and provide a more accurate description of the probability in the
tails of the distribution.
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Conditional Variance and Distributional Assumptions
S&P 500 Annualized Volatility (TARCH(1,1,1))
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Figure 7.6: The choice of the distribution for the standardized innovation makes little difference to
the fit variances or the estimated parameters in most models. The alternative distributions are more
useful in application to Value-at-Risk and Density forecasting where the choice of density plays a
more significant role.

of the squared returns, or if the model for the conditional mean is non-trivial, the sample ACF and
PACF of the estimated residuals, ε̂t , should be examined for heteroskedasticity. Figures 7.7 and 7.8
contains the ACF and PACF for the squared returns of the S&P 500 and WTI respectively. The mod-
els used in selecting the final model are reproduced in tables 7.5 and 7.6 respectively. Both selections
began with a simple GARCH(1,1). The next step was to check if more lags were needed for either the
squared innovation or the lagged variance by fitting a GARCH(2,1) and a GARCH(1,2) to each series.
Neither of these meaningfully improved the fit, and a GARCH(1,1) was assumed to be sufficient to
capture the symmetric dynamics.

The next step in model building is to examine whether the data exhibit any evidence of asym-
metries using a GJR-GARCH(1,1,1). The asymmetry term was significant and so other forms of the
GJR model were explored. All were found to provide little improvement in the fit. Once a GJR-
GARCH(1,1,1) model was decided upon, a TARCH(1,1,1) was fit to examine whether evolution in
variances or standard deviations was more appropriate for the data. Both series preferred the TARCH
to the GJR-GARCH (compare the log-likelihoods), and the TARCH(1,1,1) was selected. In compar-
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α1 α2 γ1 γ2 β1 β2 Log Lik.

GARCH(1,1) 0.102
(0.000)

0.885
(0.000)

−6887.6

GARCH(1,2) 0.102
(0.000)

0.885
(0.000)

0.000
(0.999)

−6887.6

GARCH(2,1) 0.067
(0.003)

0.053
(0.066)

0.864
(0.000)

−6883.5

GJR-GARCH(1,1,1) 0.000
(0.999)

0.185
(0.000)

0.891
(0.000)

−6775.1

GJR-GARCH(1,2,1) 0.000
(0.999)

0.158
(0.000)

0.033
(0.460)

0.887
(0.000)

−6774.5

TARCH(1,1,1)? 0.000
(0.999)

0.172
(0.000)

0.909
(0.000)

−6751.9

TARCH(1,2,1) 0.000
(0.999)

0.165
(0.000)

0.009
(0.786)

0.908
(0.000)

−6751.8

TARCH(2,1,1) 0.000
(0.999)

0.003
(0.936)

0.171
(0.000)

0.907
(0.000)

−6751.9

EGARCH(1,0,1) 0.211
(0.000)

0.979
(0.000)

−6908.4

EGARCH(1,1,1) 0.136
(0.000)

−0.153
(0.000)

0.975
(0.000)

−6766.7

EGARCH(1,2,1) 0.129
(0.000)

−0.213
(0.000)

0.067
(0.045)

0.977
(0.000)

−6761.7

EGARCH(2,1,1) 0.020
(0.651)

0.131
(0.006)

−0.162
(0.000)

0.970
(0.000)

−6757.6

Table 7.5: The models estimated in selecting a final model for the conditional variance of the S&P
500 Index. ? indicates the selected model.

ing alternative specifications, an EGARCH was fit and found to provide a good description of the data.
In both cases, the EGARCH was expanded to include more lags of the shocks or lagged log volatility.
The EGARCH did not improve over the TARCH for the S&P 500, and so the TARCH(1,1,1) was se-
lected. The EGARCH did fit the WTI data better, and so the preferred model is an EGARCH(1,1,1),
although a case could be made for the EGARCH(2,1,1) which provided a better fit. Overfitting is
always a concern, and the opposite signs on α1 and α2 in the EGARCH(2,1,1) are suspicious.

7.6.0.1 Testing for (G)ARCH

Although conditional heteroskedasticity can often be identified by graphical inspection, a formal test
of conditional homoskedasticity is also useful. The standard method to test for ARCH is to use
the ARCH-LM test which is implemented as a regression of squared residuals on lagged squared
residuals. The test directly exploits the AR representation of an ARCH process (Engle, 1982) and is
computed as T times the R2 (LM = T ×R2) from the regression

ε̂
2
t = φ0 +φ1ε̂

2
t−1 + . . .+φPε̂

2
t−P +ηt . (7.74)

The test statistic is asymptotically distributed χ2
P where ε̂t are residuals constructed from the returns

by subtracting the conditional mean. The null hypothesis is H0 : φ1 = . . .= φP = 0 which corresponds
to no persistence in the conditional variance.
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ACF and PACF of squared returns of the S&P 500
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Figure 7.7: ACF and PACF of the squared returns for the S&P 500. The bottom two panels plot the
ACF and PACF of the standardized squared residuals,ê2

t = ε̂2
t /σ̂2

t . The top panels indicate persistence
through both the ACF and PACF. These plots suggest that a GARCH model is needed. The ACF and
PACF of the standardized residuals are consistent with those of a white noise process.

7.7 Forecasting Volatility

Forecasting conditional variances with ARCH-family models ranges from simple for ARCH and
GARCH processes to difficult for non-linear specifications. Consider the simple ARCH(1) process,

εt = σtet (7.75)

et
i.i.d.∼ N(0,1)

σ
2
t = ω +α1ε

2
t−1

Iterating forward, σ2
t+1 = ω +α1ε2

t , and taking conditional expectations, Et [σ
2
t+1] = Et [ω +α1ε2

t ] =
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ACF and PACF of squared returns of WTI
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Figure 7.8: ACF and PACF of the squared returns for WTI. The bottom two panels plot the ACF and
PACF of the standardized squared residuals,ê2

t = ε̂2
t /σ̂2

t . The top panels indicate persistence through
both the ACF and PACF. These plots suggest that a GARCH model is needed. The ACF and PACF of
the standardized residuals are consistent with those of a white noise process. When compared to the
S&P 500 ACF and PACF, the ACF and PACF of the WTI returns indicate less persistence in volatility.

ω +α1ε2
t since all of these quantities are known at time t. This is a property common to all ARCH-

family models: the forecast of σ2
t+1 is known at time t.17

The 2-step ahead forecast follows from an application of the law of iterated expectations,

Et [σ
2
t+2] = Et [ω +α1ε

2
t+1]. (7.76)

= ω +α1Et [ε
2
t+1]

17Not only is this property common to all ARCH-family members, but it is also the defining characteristic of an ARCH
model.
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α1 α2 γ1 γ2 β1 β2 Log Lik.

GARCH(1,1) 0.059
(0.000)

0.934
(0.000)

−11030.1

GARCH(1,2) 0.075
(0.000)

0.585
(0.000)

0.331
(0.027)

−11027.4

GARCH(2,1) 0.059
(0.001)

0.000
(0.999)

0.934
(0.000)

−11030.1

GJR-GARCH(1,1,1) 0.026
(0.008)

0.049
(0.000)

0.945
(0.000)

−11011.9

GJR-GARCH(1,2,1) 0.026
(0.010)

0.049
(0.102)

0.000
(0.999)

0.945
(0.000)

−11011.9

TARCH(1,1,1) 0.030
(0.021)

0.055
(0.000)

0.942
(0.000)

−11005.6

TARCH(1,2,1) 0.030
(0.038)

0.055
(0.048)

0.000
(0.999)

0.942
(0.000)

−11005.6

TARCH(2,1,1) 0.030
(0.186)

0.000
(0.999)

0.055
(0.000)

0.942
(0.000)

−11005.6

EGARCH(1,0,1) 0.148
(0.000)

0.986
(0.000)

−11029.5

EGARCH(1,1,1)† 0.109
(0.000)

−0.050
(0.000)

0.990
(0.000)

−11000.6

EGARCH(1,2,1) 0.109
(0.000)

−0.056
(0.043)

0.006
(0.834)

0.990
(0.000)

−11000.5

EGARCH(2,1,1)? 0.195
(0.000)

−0.101
(0.019)

−0.049
(0.000)

0.992
(0.000)

−10994.4

Table 7.6: The models estimated in selecting a final model for the conditional variance of WTI. ?
indicates the selected model. † indicates a model that could be considered for model selection.

= ω +α1(ω +α1ε
2
t )

= ω +α1ω +α
2
1 ε

2
t

The expression for an h-step ahead forecast can be constructed by repeated substitution and is given
by

Et [σ
2
t+h] =

h−1∑
i=0

α
i
1ω +α

h
1 ε

2
t . (7.77)

An ARCH(1) is an AR(1), and this formula is identical to the expression for the multi-step forecast
of an AR(1).

Forecasts from GARCH(1,1) models are constructed following the same steps. The one-step-
ahead forecast is

Et [σ
2
t+1] = Et [ω +α1ε

2
t +β1σ

2
t ] (7.78)

= ω +α1ε
2
t +β1σ

2
t .

The two-step-ahead forecast is
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Et [σ
2
t+2] = Et [ω +α1ε

2
t+1 +β1σ

2
t+1]

= ω +α1Et [ε
2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [e2
t+1σ

2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [e2
t+1]Et [σ

2
t+1]+β1Et [σ

2
t+1]

= ω +α1 ·1 ·Et [σ
2
t+1]+β1Et [σ

2
t+1]

= ω +α1Et [σ
2
t+1]+β1Et [σ

2
t+1]

= ω +(α1 +β1)Et [σ
2
t+1].

Substituting the one-step-ahead forecast, Et [σ
2
t+1], shows that the forecast only depends on time t

information,

Et [σ
2
t+2] = ω +(α1 +β1)(ω +α1ε

2
t +β1σ

2
t ) (7.79)

= ω +(α1 +β1)ω +(α1 +β1)α1ε
2
t +(α1 +β1)β1σ

2
t .

Note that Et [σ
2
t+3] = ω +(α1 +β1)Et [σ

2
t+2], and so

Et [σ
2
t+3] = ω +(α1 +β1)(ω +(α1 +β1)ω +(α1 +β1)α1ε

2
t +(α1 +β1)β1σ

2
t ) (7.80)

= ω +(α1 +β1)ω +(α1 +β1)
2
ω +(α1 +β1)

2
α1ε

2
t +(α1 +β1)

2
β1σ

2
t .

Repeated substitution reveals a pattern in the multi-step forecasts which is compactly expressed as

Et [σ
2
t+h] =

h−1∑
i=0

(α1 +β1)
i
ω +(α1 +β1)

h−1(α1ε
2
t +β1σ

2
t ). (7.81)

Despite similarities to ARCH and GARCH models, forecasts from GJR-GARCH are complicated
by the presence of the asymmetric term. If the expected value of the squared shock does not depend
on the sign of the return, so that E

[
e2

t |et < 0
]
= E

[
e2

t |et > 0
]
= 1, then the probability that et−1 < 0

appears in the forecasting formula. When the standardized residuals are normal (or any other sym-
metric distribution), then this probability is 1

2 . If the density is unknown, this probability must be
estimated from the model residuals.

In the GJR-GARCH model, the one-step-ahead forecast is

Et [σ
2
t+1] = ω +α1ε

2
t +α1ε

2
t I[εt<0]+β1σ

2
t . (7.82)

The two-step-ahead forecast is

Et [σ
2
t+2] = ω +α1Et [ε

2
t+1]+α1Et [ε

2
t+1I[εt+1<0]]+β1Et [σ

2
t+1] (7.83)

= ω +α1Et [σ
2
t+1]+α1Et [ε

2
t+1|εt+1 < 0]+β1Et [σ

2
t+1]. (7.84)
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Assuming the residuals are conditionally normally distributed, then Et [ε
2
t+1|εt+1 < 0] = 0.5E[σ2

t+1].
Multi-step forecasts from other models in the ARCH-family, particularly those that are not lin-

ear combinations of ε2
t , are nontrivial and generally do not have simple recursive formulas. For

example, consider forecasting the variance from the simplest nonlinear ARCH-family member, a
TARCH(1,0,0) model,

σt = ω +α1|εt−1| (7.85)

As is always the case, the 1-step ahead forecast is known at time t,

Et [σ
2
t+1] = Et [(ω +α1|εt |)2] (7.86)

= Et [ω
2 +2ωα1|εt |+α

2
1 ε

2
t ]

= ω
2 +2ωα1Et [|εt |]+α

2
1 Et [ε

2
t ]

= ω
2 +2ωα1|εt |+α

2
1 ε

2
t

The 2-step ahead forecast is more complicated and is given by

Et [σ
2
t+2] = Et [(ω +α1|εt+1|)2] (7.87)

= Et [ω
2 +2ωα1|εt+1|+α

2
1 ε

2
t+1]

= ω
2 +2ωα1Et [|εt+1|]+α

2
1 Et [ε

2
t+1]

= ω
2 +2ωα1Et [|et+1|σt+1]+α

2
1 Et [e2

t σ
2
t+1]

= ω
2 +2ωα1Et [|et+1|]Et [σt+1]+α

2
1 Et [e2

t ]Et [σ
2
t+1]

= ω
2 +2ωα1Et [|et+1|](ω +α1|εt |)+α

2
1 ·1 · (ω2 +2ωα1|εt |+α

2
1 ε

2
t )

The challenge in multi-step ahead forecasting of a TARCH model arises since the forecast depends
on more than Et [e2

t+h] ≡ 1. In the above example, the forecast depends on both Et [e2
t+1] = 1 and

Et [|et+1|]. When returns are normally distributed, Et [|et+1|] =
√

2
π

, but if the driving innovations
have a different distribution, this expectation will differ. The forecast is then, assuming the conditional
distribution is normal,

Et [σ
2
t+2] = ω

2 +2ωα1

√
2
π
(ω +α1|εt |)+α

2
1 (ω

2 +2ωα1|εt |+α
2
1 ε

2
t ). (7.88)

The difficulty in multi-step forecasting using “nonlinear” GARCH models – those which involve
powers other than two – follows directly from Jensen’s inequality. In the case of TARCH,

Et [σt+h]
2 6= Et [σ

2
t+h] (7.89)

or in the general case of an arbitrary power,

Et [σ
δ
t+h]

2
δ 6= Et [σ

2
t+h]. (7.90)
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7.7.1 Evaluating Volatility Forecasts

The evaluation of volatility forecasts is similar to the evaluation of forecasts from conditional mean
models with one caveat. In standard time series models, once time t + h has arrived, the value of
the variable being forecast is known. However, the value of σ2

t+h is always unknown in volatility
model evaluation and so the realization must be replaced by a proxy. The standard choice is to use the
squared return, r2

t . This proxy is reasonable if the squared conditional mean is small relative to the
variance, a plausible assumption for high-frequency applications to daily or weekly returns. If using
longer horizon measurements of returns, e.g., monthly returns, squared residuals (ε̂2

t ) estimated from
a model for the conditional mean can be used instead. Realized Variance, RV (m)

t , is nn alternative
choice is to use as a proxy for the unobserved volatility (see section 7.8). Once a choice of proxy has
been made, Generalized Mincer-Zarnowitz regressions can be used to assess forecast optimality,

r2
t+h− σ̂

2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt +ηt (7.91)

where z jt are any instruments known at time t. Common choices for z jt include r2
t , |rt |, rt or indicator

variables for the sign of the lagged return. The GMZ regression is testing one key property of a
well-specified model: Et

[
r2
t+h− σ̂2

t+h|t

]
= 0.

The GMZ regression in equation 7.91 has a heteroskedastic variance, and so a more accurate regres-
sion, GMZ-GLS, can be constructed as

r2
t+h− σ̂2

t+h|t

σ̂2
t+h|t

= γ0
1

σ̂2
t+h|t

+ γ11+ γ2
z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+νt (7.92)

r2
t+h

σ̂2
t+h|t
−1 = γ0

1
σ̂2

t+h|t
+ γ11+ γ2

z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+νt (7.93)

by dividing both sized by the time t forecast, σ̂2
t+h|t where νt = ηt/σ̂2

t+h|t . Equation 7.93 shows that
the GMZ-GLS is a regression of the generalized error from a normal likelihood. If one were to use
the Realized Variance as the proxy, the GMZ and GMZ-GLS regressions are

RVt+h− σ̂
2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt +ηt (7.94)

and

RVt+h− σ̂2
t+h|t

σ̂2
t+h|t

= γ0
1

σ̂2
t+h|t

+ γ1
σ̂2

t+h|t

σ̂2
t+h|t

+ γ2
z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+
ηt

σ̂2
t+h|t

. (7.95)

Diebold-Mariano tests can also be used to test the relative performance of two models. A loss
function must be specified when implementing a DM test. Two natural choices for the loss function
are MSE, (

r2
t+h− σ̂

2
t+h|t

)2
(7.96)

and QML-loss (which is the kernel of the normal log-likelihood),
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(
ln(σ̂2

t+h|t)+
r2
t+h

σ̂2
t+h|t

)
. (7.97)

The DM statistic is a t-test of the null H0 : E [δt ] = 0 where

δt =
(

r2
t+h− σ̂

2
A,t+h|t

)2
−
(

r2
t+h− σ̂

2
B,t+h|t

)2
(7.98)

in the case of the MSE loss or

δt =

(
ln(σ̂2

A,t+h|t)+
r2
t+h

σ̂2
A,t+h|t

)
−
(

ln(σ̂2
B,t+h|t)+

r2
t+h

σ̂2
B,t+h|t

)
(7.99)

when using QML-loss. Statistically significant positive values of δ̄ = R−1∑R
r=1 δr indicate that B is a

better model than A while negative values indicate the opposite (recall R is used to denote the number
of out-of-sample observations used to compute the DM statistic). The QML-loss is preferred since
it is a “heteroskedasticity corrected” version of the MSE. For more on the evaluation of volatility
forecasts using MZ regressions see Patton and Sheppard (2009).

7.8 Realized Variance

Realized Variance (RV ) is a new econometric methodology for measuring the variance of asset returns.
RV differs from ARCH-models since it does not require a specific model to measure the volatility.
Realized Variance instead uses a nonparametric estimator of the variance that is computed using ultra
high-frequency data.18

Suppose the log-price process, pt , is continuously available and is driven by a standard Wiener
process with a constant mean and variance,

dpt = µ dt +σ dWt .

The coefficients are normalized so that the return during one day is the difference between p at two
consecutive integers (e.g., p1− p0 is the first day’s return). For the S&P 500 index, µ ≈ .00031 and
σ ≈ .0125, which correspond to 8% and 20% for the annualized mean and volatility, respectively.

Realized Variance is estimated by sampling pt throughout the trading day. Suppose that prices on
day t were sampled on a regular grid of m+1 points, 0,1, . . . ,m and let pi,t denote the ith observation
of the log price. The m-sample Realized Variance on day t is defined

RV (m)
t =

m∑
i=1

(pi,t− pi−1,t)
2 =

m∑
i=1

r2
i,t . (7.100)

Since the price process is a standard Brownian motion, each return is an i.i.d.normal random
variable with mean µ/m and variance σ2/m (or volatility of σ/

√
m). First, consider the expectation

of RV (m)
t ,

18Realized Variance was invented somewhere between 1972 and 1997. However, its introduction to modern econo-
metrics clearly dates to the late 1990s (Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and Labys, 2003;
Barndorff-Nielsen and Shephard, 2004).
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E
[
RV (m)

t

]
= E

[
m∑

i=1

r2
i,t

]
= E

[
m∑

i=1

(
µ

m
+

σ√
m

εi,t

)2
]

(7.101)

where εi,t are i.i.d. standard normal random variables.

E
[
RV (m)

t

]
= E

[
m∑

i=1

(
µ

m
+

σ√
m

εi,t

)2
]

(7.102)

= E

[
m∑

i=1

µ2

m2 +2
µσ

m
3
2

εi,t +
σ2

m
ε

2
i,t

]

= E

[
m∑

i=1

µ2

m2

]
+E

[
m∑

i=1

2
µσ

m
3
2

εi,t

]
+E

[
m∑

i=1

σ2

m
ε

2
i,t

]

=
µ2

m
+

m∑
i=1

2
µσ

m
3
2

E [εi,t ]+
m∑

i=1

σ2

m
E
[
ε

2
i,t
]

=
µ2

m
+2

µσ

m
3
2

m∑
i=1

E [εi,t ]+
σ2

m

m∑
i=1

E
[
ε

2
i,t
]

=
µ2

m
+2

µσ

m
3
2

m∑
i=1

0+
σ2

m

m∑
i=1

1

=
µ2

m
+

σ2

m
m

=
µ2

m
+σ

2

The expected value is nearly σ2, the variance, and it is asymptotically unbiased, limm→∞E
[
RV (m)

t

]
=

σ2. The variance of RV (m)
t can be similarly computed,

V
[
RV (m)

t

]
= V

[
m∑

i=1

µ2

m2 +2
µσ

m
3
2

εi,t +
σ2

m
ε

2
i,t

]
(7.103)

= V

[
m∑

i=1

µ2

m2

]
+V

[
m∑

i=1

2
µσ

m
3
2

εi,t

]
+V

[
m∑

i=1

σ2

m
ε

2
i,t

]
+2Cov

[
m∑

i=1

µ2

m2 ,
m∑

i=1

2
µσ

m
3
2

εi,t

]

+2Cov

[
m∑

i=1

µ2

m2 ,
m∑

i=1

σ2

m
ε

2
i,t

]
+2Cov

[
m∑

i=1

2
µσ

m
3
2

εi,t ,
m∑

i=1

σ2

m
ε

2
i,t

]
.

First, the variance and covariance terms that involve the mean term are all zero,

V

[
m∑

i=1

µ2

m2

]
= Cov

[
m∑

i=1

µ2

m2 ,

m∑
i=1

2
µσ

m
3
2

εi,t

]
= Cov

[
m∑

i=1

µ2

m2 ,

m∑
i=1

σ2

m
ε

2
i,t

]
= 0,
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since µ
2

m2 is a constant. The remaining covariance term also has expectation 0 since εi,t are i.i.d. standard
normal and so have a skewness of 0,

Cov

[
m∑

i=1

2
µσ

m
3
2

εi,t ,
m∑

i=1

σ2

m
ε

2
i,t

]
= 0

The other two terms can be shown to be (left as exercises)

V

[
m∑

i=1

2
µσ

m
3
2

εi,t

]
= 4

µ2σ2

m2

V

[
m∑

i=1

σ2

m
ε

2
i,t

]
= 2

σ4

m

and so

V
[
RV (m)

t

]
= 4

µ2σ2

m2 +2
σ4

m
. (7.104)

The variance is decreasing as m→∞, RV (m)
t is asymptotically unbiased, and so RV (m)

t is a consistent
estimator of σ2.

In the empirically realistic case where the price process has a time-varying drift and stochastic
volatility,

d pt = µtdt +σtdWt ,

RV (m)
t is a consistent estimator of the integrated variance,

lim
m→∞

RV (m)
t

p→
∫ t+1

t
σ

2
s ds. (7.105)

The integrated variance measures the average variance of the measurement interval, usually a day.
If the price process contains jumps, RV (m)

t is still a consistent estimator although its limit is the
quadratic variation rather than the integrated variance, and so

lim
m→∞

RV (m)
t

p→
∫ t+1

t
σ

2
s ds+

∑
t≤1

∆J2
s . (7.106)

where
∑

t≤1 ∆J2
s is the sum of the squared jumps if any. Similar results hold if the price process

exhibits leverage (instantaneous correlation between the price and the variance). The two conditions
for RV (m)

t to be a reasonable method to estimate the integrated variance on day t are essentially that
the price process, pt , is arbitrage-free and that the efficient price is observable. Empirical evidence
suggests that prices of liquid asset are compatible with the first condition. The second condition is
violated since assets trade at either the best bid or best ask price – neither of which is the efficient
price.
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7.8.1 Implementing Realized Variance

In practice, naïve implementations of Realized Variance do not perform well. The most pronounced
challenge is that observed prices are contaminated by noise; there is no singles price, and traded
prices are only observed at the bid and the ask. This feature of asset price transactions produces bid-
ask bounce where consecutive prices oscillate between the two. Consider a simple model of bid-ask
bounce where returns are computed as the log difference in observed prices composed of the true
(unobserved) efficient prices, p∗i,t , contaminated by an independent mean zero shock, νi,t ,

pi,t = p∗i,t +νi,t .

The shock νi,t captures the difference between the efficient price and the observed prices which are
always on the bid or ask price.

The ith observed return, ri,t can be decomposed into the actual (unobserved) return r∗i,t and an
independent noise term ηi,t = νi,t−νi−1,t ,

pi,t− pi−1,t =
(

p∗i,t +νi,t
)
−
(

p∗i−1,t +νi−1,t
)

(7.107)

pi,t− pi−1,t =
(

p∗i,t− p∗i−1,t
)
+(νi,t−νi−1,t)

ri,t = r∗i,t +ηi,t

The error in the observed return process, ηi,t = νi,t−νi−1,t , is a MA(1) and so is serially correlated.
Computing the RV from returns contaminated by noise has an unambiguous effect on Realized

Variance; RV is biased upward.

RV (m)
t =

m∑
i=1

r2
i,t (7.108)

=

m∑
i=1

(r∗i,t +ηi,t)
2

=

m∑
i=1

r∗i,t
2 +2r∗i,tηi,t +η

2
i,t

≈ R̂V t +mτ
2

where τ2 is the variance of ηi,t and R̂V t is the Realized Variance that would be computed if the
efficient returns could be observed. The bias is increasing in the number of samples (m) and can be
substantial for assets with large bid-ask spreads.
The simplest “solution” to the bias is to avoid the issue using sparse sampling, i.e., not using all
of the observed prices. The noise imposes limits on m to ensure that the bias is small relative to the
integrated variance. In practice the maximum m is always much higher than 1 – a single open-to-close
return – and is typically somewhere between 13 (30-minute returns on a stock listed on the NYSE)
and 390 (1-minute returns), and so even when RV (m)

t is not consistent, it is still a better proxy, often
substantially, for the latent variance on day t than r2

t (the “1-sample Realized Variance”, see Bandi
and Russell (2008)). The signal-to-noise ratio (which measures the ratio of useful information to pure
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Figure 7.9: The four panels of this figure contain a noise-robust version Realized Variance, RV AC1, for
every day the market was open from January 2007 until December 2018 transformed into annualized
volatility. The 15-second RV AC1 is better behaved than the 15-second RV .

noise) is approximately 1 for RV but is between .05 and .1 for r2
t . In other words, RV is 10-20 times

more precise than squared daily returns (Andersen and Bollerslev, 1998).
Another simple and effective method is to filter the data using an MA(1). Transaction data contain a
strong negative MA due to bid-ask bounce, and so RV computed using the errors (ε̂i,t) from a model,

ri,t = θεi−1,t + εi,t (7.109)

eliminates much of the bias. A better method to remove the bias is to use an estimator known as
RV AC1 which is similar to a Newey-West estimator.

RV AC1
t

(m) =

m∑
i=1

r2
i,t +2

m∑
i=2

ri,tri−1,t (7.110)
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Volatility Signature Plots
Volatility Signature Plot for SPY RV
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Figure 7.10: The volatility signature plot for the RV shows a clear trend. Based on visual inspection,
it would be difficult to justify sampling more frequently than 30 seconds. Unlike the volatility signa-
ture plot of the RV , the signature plot of RV AC1 does not monotonically increase with the sampling
frequency except when sampling every second, and the range of the values is considerably smaller
than in the RV signature plot.

In the case of a constant drift, constant volatility Brownian motion subject to bid-ask bounce, this
estimator can be shown to be unbiased, although it is not consistent in large samples. A more general
class of estimators that use a kernel structure that can be tuned to match the characteristics of specific
asset prices and which are consistent as m→∞ even in the presence of noise has been introduced in
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).19

Another problem for Realized Variance is that prices are not available at regular intervals. For-
tunately, this issue has a simple solution: last price interpolation. Last price interpolation sets the
price at time t to the last observed price pτ where τ is the largest time index less where τ ≤ t. Other
interpolation schemes produce bias in RV . Consider, for example, linear interpolation which sets
prices at time-t price to pt = wpτ1 +(1−w)pτ2 where τ1 is the time subscript of the last observed

19The Newey-West estimator is a particular implementation of a broad class of estimators known as kernel variance
estimators. They all share the property that they are weighted sums of autocovariances where a kernel function determines
the weights.
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price before t and τ2 is the time subscript of the first price after time t, and the interpolation weight is
w = (τ2− t)/(τ2− τ1). The averaging of prices in linear interpolation – which effectively produces a
smoother price path than the efficient price path – produces a notable downward bias in RV .

Finally, most markets do not operate 24 hours a day, and RV cannot be computed when markets are
closed. The standard procedure is to augment high-frequency returns with the squared close-to-open
return to construct an estimate of the total variance. The close-to-close (CtC) RV is then defined

RV (m)
CtC,t = r2

CtO,t +RV (m)
t (7.111)

where r2
CtO,t is the return between the close on day t − 1 and the market open on day t. Since the

overnight return is not measured frequently, the adjusted RV must be treated as a random variable
(and not an observable). An improved method to handle the overnight return has been proposed in
Hansen and Lunde (2005) and Hansen and Lunde (2006) which weighs the overnight squared return
by λ1 and the daily Realized Variance by λ2 to produce an estimator with a lower mean-square error,

R̃V
(m)

CtC,t = λ1r2
CtO,t +λ2RV (m)

t .

7.8.2 Modeling RV

If RV is observable, then it can be modeled using standard time series tools such as ARMA models.
This approach has been widely used in the academic literature although there are issues in treating the
RV “as-if” it is the variance. If RV has measurement error, then parameter estimates in ARMA models
suffer from an errors-in-variables problem, and the estimated coefficient are biased (see chapter 4).
Corsi (2009) proposed the heterogeneous autoregression (HAR) as a simple method to capture the
dynamics in RV in a parsimonious model. The standard HAR models the RV as a function of the RV
in the previous day, the average RV over the previous week, and the average RV over the previous
month (22 days). The HAR in levels is then

RVt = φ0 +φ1RVt−1 +φ5RV t−5 +φ22RV t−22 + εt (7.112)

where RV t−5 =
1
5
∑5

i=1 RVt−i and RV t−22 =
1

22
∑2

i=1 2RVt−i (suppressing the (m) terms). The HAR
is also commonly estimated in logs,

lnRVt = φ0 +φ1 lnRVt−1 +φ5 lnRV t−5 +φ22lnRV t−22 + εt . (7.113)

HARs are technically AR(22) models with many parameter restrictions. These restrictions maintain
parsimony while allowing HARs to capture both the high degree of persistence in volatility (through
the 22-day moving average) and short term dynamics (through the 1-day and 5-day terms).

The alternative is to model RV using ARCH-family models, which can be interpreted as multi-
plicative error models for any non-negative process, not only squared returns (Engle, 2002a).20 Stan-
dard statistical software can be used to model RV as an ARCH process by defining r̃t = sign(rt)

√
RVt

where sign(rt) is 1 if the end-of-day return is positive or -1 otherwise. The transformed RV , r̃t , is the
signed square root of the Realized Variance on day t. Any ARCH-family model can be applied to these

20ARCH-family models have, for example, been successfully applied to both durations (time between trades) and
hazards (number of trades in an interval of time), two non-negative processes.
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transformed values. For example, when modeling the variance evolution as a GJR-GARCH(1,1,1)
process,

σ
2
t = ω +α1r̃2

t−1 + γ1r̃2
t−1I[r̃t−1<0]+β1σ

2
t−1 (7.114)

which is equivalently expressed in terms of Realized Variance as

σ
2
t = ω +α1RVt−1 + γ1RVt−1I[rt−1<0]+β1σ

2
t−1. (7.115)

Maximum likelihood estimation, assuming normally distributed errors, can be used to estimate
the parameters of this model. This procedure solves the errors-in-variables problem present when
RV is treated as observable and facilitates modeling RV using standard software. Inference and the
method to build a model are unaffected by the change from end-of-day returns to the transformed RV .

7.8.3 Realized Variance of the S&P 500

Returns on S&P 500 Depository Receipts, known as SPiDeRs (NYSEARCA:SPY) is used to illustrate
the gains and pitfalls of RV . Price data was taken from TAQ and includes every transaction between
January 2007 until December 2018, a total of 3,020 days. SPDRs track the S&P 500 and are among
the most liquid assets in the U.S. market with an average volume of 150 million shares per day. There
were more than 100,000 trades on a typical day throughout the sample, which is more than 4 per
second. TAQ data contain errors, and observations were filtered by removing the prices outside the
daily high or low from an audited database. Only trade prices that occurred during the usual trading
hours of 9:30 – 16:00 were retained.

The primary tool for examining different Realized Variance estimators is the volatility signature
plot.

Definition 7.10 (Volatility Signature Plot). The volatility signature plot displays the time-series aver-
age of Realized Variance

RV (m)
t = T−1

T∑
t=1

RV (m)
t

as a function of the number of samples, m. An equivalent representation displays the amount of time,
whether in calendar time or tick time (number of trades between observations) along the X-axis.

Figures 7.11 and 7.9 contain plots of the annualized volatility constructed from the RV and RV AC1.
The estimates have been annualized to facilitate interpretation. Figures 7.11 shows that the 15-second
RV is larger than the RV sampled at 1, 5 or 15 minutes and that the 1 and 5 minute RV are less noisy
than the 15-minute RV . These plots provide some evidence that sampling more frequently than 15
minutes may be desirable. The two figures show that there is a reduction in the scale of the 15-second
RV AC1 relative to the 15-second RV . The 15-second RV is heavily influenced by the noise in the data
(bid-ask bounce) while the RV AC1 is less affected.

Figures 7.10 and 7.10 contain the annualized volatility signature plot for RV and RV AC1, respec-
tively. The dashed horizontal line depicts the volatility computed using the standard variance esti-
mator computed from open-to-close returns. There is a striking difference between the two figures.
The RV volatility signature plot diverges when sampling more frequently than 30 seconds while the
RV AC1 plot is flat except at the highest sample frequency. RV AC1 appears to allow sampling every 5
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Figure 7.11: The four panels of this figure contain the Realized Variance for every day the market
was open from January 2007 until December 2018. The estimated RV have been transformed into

annualized volatility (
√

252 ·RV (m)
t ). While these plots appear superficially similar, the 1- and 5-

minute RV are the most precise and the 15-second RV is biased upward.

seconds – 6 times more frequently than RV . This is a common finding when comparing RV AC1 to RV
across a wide range of asset price data.

7.9 Implied Volatility and VIX

Implied volatility differs from other measures in that it is both market-based and forward-looking.
Implied volatility was originally conceived as the “solution” to the Black-Scholes options pricing
formula where all values except the volatility are observable. Recall that the Black-Scholes formula
is derived from an assuming that stock prices follow a geometric Brownian motion plus drift,
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dSt = µStdt +σStdWt (7.116)

where St is the time t stock prices, µ is the drift, σ is the (constant) volatility, and dWt is a Wiener
process. Under some additional assumptions sufficient to ensure no arbitrage, the price of a call option
can be shown to be

Ct(T,K) =StΦ(d1)+Ke−rT
Φ(d2) (7.117)

d1 =
ln(St/K)+

(
r+σ2/2

)
T

σ
√

T

d2 =
ln(St/K)+

(
r−σ2/2

)
T

σ
√

T

where K is the strike price, T is the time to maturity, reported in years, r is the risk-free interest
rate, and Φ(·) is the normal CDF. The price of a call option is monotonic in the volatility, and so the
formula can be inverted to express the volatility as a function of the call price and other observables.
The implied volatility,

σ
Implied
t = g(Ct(T,K),St ,K,T,r) , (7.118)

is the expected volatility between t and T under the risk-neutral measure (which is the same as under
the physical when volatility is constant).21

7.9.1 The smile

When computing the Black-Scholes implied volatility across a range of strikes, the volatility usually
resembles a “smile” (higher IV for out-of-the-money options than in the money) or “smirk” (higher
IV for out-of-the-money puts). This pattern emerges since asset returns are heavy-tailed (“smile”) and
skewed (“smirk”). The BSIV is derived under an assumption that the asset price follows a geometric
Brownian motion so that the log returns are assumed to be normal. The smile reflects misspecification
of the model underlying the Black-Scholes option pricing formula. Figure 7.12 shows the smile in
the BSIV for SPY out-of-the-month options on January 15, 2017. The x-axis rescaled from the strike
price to moneyness by dividing the strike by the spot price. The current spot price is 100, smaller
values indicate strikes below the current price (out-of-the-money puts), and positive values are strikes
above the current price (out-of-the-money calls).

7.9.2 Model-Free Volatility

B-S implied volatility suffers from three key issues:

• Derived under constant volatility: The returns on most asset prices exhibit conditional het-
eroskedasticity, and time-variation in the volatility of returns generates heavy tails which in-
creases the probability of a large asset price change.

21The implied volatility is computed by numerically inverting the B-S pricing formula, or using some other approxi-
mation..
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Figure 7.12: Plot of the Black-Scholes implied volatility “smile” on January 15, 2018, based on
options on SPY expiring on February 2, 2018.

• Leverage effects are ruled out: Leverage, or negative correlation between the price and volatility
of an asset, can generate negative skewness. This feature of asset prices increases the probability
of extreme negative returns relative to the log-normal price process assumed in the B-S option
pricing formula.

• No jumps: Jumps are also an empirical fact of most asset prices. Jumps, like time-varying
volatility, increase the chance of seeing an extreme return.

The consequences of these limits are that, contrary to what the model underlying the B-S implies, B-S
implied volatilities are not constant across strike prices, and so cannot be interpreted as market-based
estimated of volatility.

Model-free implied volatility (MFIV) was been developed as an alternative to B-S implied volatil-
ity by Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000) with an important extension
to jump processes and practical implementation details provided by Jiang and Tian (2005). These
estimators build on Breeden and Litzenberger (1978) which contains key result that demonstrates
how option prices are related to the risk-neutral measure – the distribution of asset price returns after
removing risk premia. Suppose that the risk-neutral measure Q exists and is unique. Then, under the
risk-neutral measure, it must be the case that



7.9 Implied Volatility and VIX 463

∂St

St
= σ(t, ·)dWt (7.119)

is a martingale where σ(t, ·) is a (possibly) time-varying volatility process that may depend on the
stock price or other state variables. From the relationship, the price of a call option can be computed
as

C(t,K) = EQ

[
(St−K)+

]
(7.120)

for t > 0, K > 0 where the function (x)+ = max(x,0). Thus

C(t,K) =

∫ ∞
K

(St−K)φt(St)dSt (7.121)

where φt(·) is the risk-neutral measure. Differentiating with respect to K,

∂C(t,K)

∂K
=−

∫ ∞
K

φt(St)dSt . (7.122)

Differentiating this expression again with respect to K (note K in the lower integral bound),

∂ 2C(t,K)

∂K2 = φt(K), (7.123)

and so that the risk-neutral density can be recovered from options prices. This result provides a basis
for nonparametrically estimating the risk-neutral density from observed options prices (see, e.g., Aït-
Sahalia and Lo (1998)). Another consequence of this result is that the expected (under Q) variation
in a stock price over the interval [t1, t2] measure can be recovered from

EQ

[∫ t2

t1

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t2,K)−C(t1,K)

K2 dK. (7.124)

This expression cannot be directly implemented to recover the expected volatility since it requires a
continuum of strike prices.

Equation 7.124 assumes that the risk-free rate is 0. When it is not, a similar result can be derived
using the forward price

EF

[∫ t2

t1

(
∂Ft

Ft

)2
]
= 2

∫ ∞
0

CF(t2,K)−CF(t1,K)

K2 dK (7.125)

where F is the forward probability measure – that is, the probability measure where the forward
price is a martingale and CF(·, ·) is used to denote that this option is defined on the forward price.
Additionally, when t1 is 0, as is usually the case, the expression simplifies to

EF

[∫ t

0

(
∂Ft

Ft

)2
]
= 2

∫ ∞
0

CF(t,K)− (F0−K)+

K2 dK. (7.126)

A number of important caveats are needed for employing this relationship to compute MFIV from
option prices:
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• Spot rather than forward prices. Because spot prices are usually used rather than forwards, the
dependent variable needs to be redefined. If interest rates are non-stochastic, then define B(0,T )
to be the price of a bond today that pays $1 time T . Thus, F0 = S0/B(0,T ), is the forward price
and CF(T,K) = C(T,K)/B(0,T ) is the forward option price. With the assumption of non-
stochastic interest rates, the model-free implied volatility can be expressed

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K)/B(0,T )− (S0/B(0,T )−K)+

K2 dK (7.127)

or equivalently using a change of variables as

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K/B(0,T ))− (S0−K)+

K2 dK. (7.128)

• Discretization. Because only finitely many options prices are available, the integral must be
approximated using a discrete grid. Thus the approximation

EF

[∫ t

0

(
∂St

St

)2
]
= 2

∫ ∞
0

C(t,K/B(0,T ))− (S0−K)+

K2 dK (7.129)

≈
M∑

m=1

[g(T,Km)+g(T,Km−1)] (Km−Km−1) (7.130)

The is used where

g(T,K) =
C(t,K/B(0,T ))− (S0−K)+

K2 (7.131)

If the option tree is rich, this should not pose a significant issue. For option trees on individual
firms, asset-specific study (for example, using data-calibrated Monte Carlo experiment) may be
needed to ascertain whether the MFIV is a good estimate of the volatility under the forward
measure.

• Maximum and minimum strike prices. The integral cannot be implemented from 0 to∞, and
so the implied volatility has a downward bias due to the effect of the tails. In rich options trees,
such as for the S&P 500, this issue is minor.

7.9.3 VIX

The VIX – Volatility Index – is a volatility measure produced by the Chicago Board Options Exchange
(CBOE). It is computed using a “model-free” like estimator which uses both call and put prices.22

The VIX is an estimator of the price of a variance swap, which applies put-call parity to the previous
expression to produce

2
T

exp(rT )

(∫ F0

0

P(t,K/B(0,T ))
K2 dK +

∫ ∞
F0

C(t,K/B(0,T ))
K2 dK

)
.

22The VIX is based exclusively on out-of-the-money prices, so calls are used for strikes above the current price and
puts are used for strikes below the current price.
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The term (S0−K)+drops out of this expression since it only used out-of-the-money options.
The VIX is computed according to

σ
2 =

2
T

exp(rT )
N∑

i=1

∆Ki

K2
i

Q(Ki)−
1
T

(
F0

K0
−1
)2

(7.132)

where T is the time to expiration of the options used, F0 is the forward price which is computed from
index option prices, Ki is the strike of the ith out-of-the-money option, ∆Ki = (Ki+1−Ki−1)/2 is half
of the distance of the interval surrounding the option with a strike price of Ki, K0 is the strike of the
option immediately below the forward level, F0, r is the risk-free rate and Q(Ki) is the mid-point of
the bid and ask for the call or put used at strike Ki. The forward index price is extracted using put-call
parity as F0 = K0 + exp(rT )(C0−P0) where K0 is the strike price where the price difference between
put and call is smallest, and C0 and P0 are, respectively, the call and put prices at this node. The VIX
is typically calculated from options at the two maturities closes to the 30-day horizon (for example
28- and 35-days when using options that expire weekly). More details on the implementation of the
VIX can be found in the CBOE whitepaper (CBOE, 2003).
The first term in the formula for the VIX can be viewed as

∆Ki

K2
i

Q(Ki) =
∆Ki

Ki︸︷︷︸
% width of interval

× Q(Ki)

Ki︸ ︷︷ ︸
% option premium

,

so that the implied variance depends on only the option premium as a percent of the strike price. The
division in the second term by K0 similarly transforms the forward price to a percentage of strike
measure. Each of these terms is width time height (premium), and so the VIX is the area below the
out-of-the-money option pricing curve. When volatility is higher, all options are more valuable, and
so there is more area below the curve. Figure 7.13 illustrates this area using option prices computed
from the Black-Scholes formula for volatilities of 20% and 60%.

7.9.4 Computing the VIX from Black-Scholes prices

Put and call options values were computed from the Black-Scholes option pricing formula for an
underlying with a price of $100, an option time to maturity of a month (T = 1/12), a volatility of 20%,
and a risk-free rate of 2%. Figure 7.13 plots the put and call options values from the Black-Scholes
formula. The solid lines indicate the options that are out-of-the-money – puts with strike prices below
$100 or calls with strikes above $100 – that are used to compute the VIX. The dotted lines show the
option prices that are in-the-money. The values in Table 7.7 show all strikes where the out-of-the-
month option price was at least $0.01. These values are marked in Figure 7.13. The VIX is computed
using the out-of-the-money option price Q(Ki) rescaled by 2/T exp(rT )∆Ki/K2

i = 2/1/12 exp(.02/12)×
4/Ki since the strikes are measured every $4. The final line shows the total – 0.0430. The VIX index
computed from these values is then 100×

√
0.0430−3.338×10−5% = 20.75%, which is close to

the true value of 20%. The second term in the square root is the adjustment 1/T (F/K0−1)2 which is
small. The small difference between the MFIV and the true volatility of 20% is due to discretization
error since the strikes are only observed every $4 and truncation error since only options with values
larger than $0.01 were used. The bottom panel of Figure 7.13 plots the option prices and highlights
the area estimated by the VIX formula when the asset price volatility is 60%.



466 Univariate Volatility Modeling

20% Volatility

60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140
Strike Price

0

1

2

3

4

O
p

ti
o

n
P

ri
ce

Put Option Price

Call Option Price

VIX Area

60% Volatility

60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140
Strike Price

0

2

4

6

8

10

O
p

ti
o

n
P

ri
ce

Put Option Price

Call Option Price

VIX Area

Figure 7.13: Option prices generated from the Black-Scholes pricing formula for an underlying with a
price of $100 with a volatility of 20% or 60% (bottom). The options expire in 1 month (T = 1/12), and
the risk-free rate is 2%. The solid lines show the out-of-the-money options that are used to compute
the VIX. The solid markers show the values where the option price to be at least $0.01 using a $4 grid
of strike prices.
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Strike Call Put Abs. Diff. VIX Contrib.

88 12.17 0.02 12.15 0.0002483
92 8.33 0.17 8.15 0.0019314
96 4.92 0.76 4.16 0.0079299
100 2.39 2.22 0.17 0.0221168
104 0.91 4.74 3.83 0.0080904
108 0.27 8.09 7.82 0.0022259
112 0.06 11.88 11.81 0.0004599
116 0.01 15.82 15.81 7.146e-05

Total 0.0430742

Table 7.7: Option prices generated from the Black-Scholes pricing formula for an underlying with a
price of $100 with a volatility of 20%. The options expire in 1 month (T = 1/12), and the risk-free
rate is 2%. The third column shows the absolute difference which is used to determine K0 in the
VIX formula. The final column contains the contribution of each option to the VIX as measured by
2/T exp(rT )∆Ki/K2

i ×Q(Ki).

7.9.5 Empirical Relationships

The daily VIX series from January 1990 until December 2018 is plotted in Figure 7.14 against a
22-day forward moving average computed as

σ
MA
t =

√
252
22

∑
i=021

r2
t+i.

The second panel shows the difference between these two series. The VIX is consistently, but not uni-
formly, higher than the forward volatility. This relationship highlights both a feature and a drawback
of using a measure of the volatility computed under the risk-neutral measure: it captures a (possi-
bly) time-varying risk premium. This risk premium captures investor compensation for changes in
volatility (volatility of volatility) and jump risks.

7.A Kurtosis of an ARCH(1)

The necessary steps to derive the kurtosis of an ARCH(1) process are

E[ε4
t ] = E[Et−1[ε

4
t ]] (7.133)

= E[3(ω +α1ε
2
t−1)

2]

= 3E[(ω +α1ε
2
t−1)

2]

= 3E[ω2 +2ωα1ε
2
t−1 +α

2
1 ε

4
t−1]

= 3
(
ω

2 +ωα1E[ε2
t−1]+α

2
1 E[ε4

t−1]
)

= 3ω
2 +6ωα1E[ε2

t−1]+3α
2
1 E[ε4

t−1].
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VIX and alternative measures of volatility
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Figure 7.14: Plots of the VIX against a TARCH-based estimate of the volatility (top panel) and a 22-
day forward moving average (bottom panel). The VIX is consistently above both measures reflecting
the presence of a risk premium that compensates for time-varying volatility and jumps in the market
return.

Using µ4 to represent the expectation of the fourth power of εt (µ4 = E[ε4
t ]),

E[ε4
t ]−3α

2
1 E[ε4

t−1] = 3ω
2 +6ωα1E[ε2

t−1] (7.134)

µ4−3α
2
1 µ4 = 3ω

2 +6ωα1σ̄
2

µ4(1−3α
2
1 ) = 3ω

2 +6ωα1σ̄
2

µ4 =
3ω2 +6ωα1σ̄2

1−3α2
1

µ4 =
3ω2 +6ωα1

ω

1−α1

1−3α2
1

µ4 =
3ω2(1+2 α1

1−α1
)

1−3α2
1
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µ4 =
3ω2(1+α1)

(1−3α2
1 )(1−α1)

.

This derivation makes use of the same principals as the intuitive proof and the identity that σ̄2 =
ω/(1−α1). The final form highlights two important issues: first, µ4 (and thus the kurtosis) is only

finite if 1−3α2
1 > 0 which requires that α1 <

√
1
3 ≈ .577, and second, the kurtosis, κ = E[ε4

t ]

E[ε2
t ]

2 =
µ4
σ̄2 ,

is always greater than 3 since

κ =
E[ε4

t ]

E[ε2
t ]

2 (7.135)

=

3ω
2(1+α1)

(1−3α2
1 )(1−α1)

ω2

(1−α1)2

=
3(1−α1)(1+α1)

(1−3α2
1 )

=
3(1−α2

1 )

(1−3α2
1 )

> 3.

Finally, the variance of ε2
t can be computed noting that for any variable Y , V[Y ] = E[Y 2]−E[Y ]2, and

so

V[ε2
t ] = E[ε4

t ]−E[ε2
t ]

2 (7.136)

=
3ω2(1+α1)

(1−3α2
1 )(1−α1)

− ω2

(1−α1)2

=
3ω2(1+α1)(1−α1)

2

(1−3α2
1 )(1−α1)(1−α1)2 −

ω2(1−3α2
1 )(1−α1)

(1−3α2
1 )(1−α1)(1−α1)2

=
3ω2(1+α1)(1−α1)

2−ω2(1−3α2
1 )(1−α1)

(1−3α2
1 )(1−α1)(1−α1)2

=
3ω2(1+α1)(1−α1)−ω2(1−3α2

1 )

(1−3α2
1 )(1−α1)2

=
3ω2(1−α2

1 )−ω2(1−3α2
1 )

(1−3α2
1 )(1−α1)2

=
3ω2(1−α2

1 )−3ω2(1
3 −α2
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(1−3α2
1 )(1−α1)2

=
3ω2[(1−α2

1 )− (1
3 −α2

1 )]

(1−3α2
1 )(1−α1)2

=
2ω2

(1−3α2
1 )(1−α1)2

=

(
ω

1−α1

)2 2
(1−3α2

1 )
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=
2σ̄4

(1−3α2
1 )

The variance of the squared returns depends on the unconditional level of the variance, σ̄2, and the
innovation term (α1) squared.

7.B Kurtosis of a GARCH(1,1)

First, note that E[σ2
t − ε2

t ] = 0, so thatV[σ2
t − ε2

t ] = E[(σ2
t − ε2

t )
2]. This term can be expanded to

E[ε4
t ]−2E[ε2

t σ2
t ]+E[σ4

t ] which can be shown to be 2E[σ4
t ] since

E[ε4
t ] = E[Et−1[e4

t σ
4
t ]] (7.137)

= E[Et−1[e4
t ]σ

4
t ]

= E[3σ
4
t ]

= 3E[σ4
t ]

and

E[ε2
t σ

2
t ] = E[Et−1[e2

t σ
2
t ]σ

2
t ] (7.138)

= E[σ2
t σ

2
t ]

= E[σ4
t ]

so

E[ε4
t ]−2E[ε2

t σ
2
t ]+E[σ4

t ] = 3E[σ4
t ]−2E[σ4

t ]+E[σ4
t ] (7.139)

= 2E[σ4
t ]

The only remaining step is to complete the tedious derivation of the expectation of this fourth
power,

E[σ4
t ] = E[(σ2

t )
2] (7.140)

= E[(ω +α1ε
2
t−1 +β1σ

2
t−1)

2]

= E[ω2 +2ωα1ε
2
t−1 +2ωβ1σ

2
t−1 +2α1β1ε

2
t−1σ

2
t−1 +α

2
1 ε

4
t−1 +β

2
1 σ

4
t−1]

= ω
2 +2ωα1E[ε2

t−1]+2ωβ1E[σ2
t−1]+2α1β1E[ε2

t−1σ
2
t−1]+α

2
1 E[ε4

t−1]+β
2
1 E[σ4

t−1]

Noting that

• E[ε2
t−1] = E[Et−2[ε

2
t−1]] = E[Et−2[e2

t−1σ2
t−1]] = E[σ2

t−1Et−2[e2
t−1]] = E[σ2

t−1] = σ̄2

• E[ε2
t−1σ2

t−1] = E[Et−2[ε
2
t−1]σ

2
t−1] = E[Et−2[e2

t−1σ2
t−1]σ

2
t−1] = E[Et−2[e2

t−1]σ
2
t−1σ2

t−1] = E[σ4
t ]
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• E[ε4
t−1] = E[Et−2[ε

4
t−1]] = E[Et−2[e4

t−1σ4
t−1]] = 3E[σ4

t−1]

the final expression for E[σ4
t ] can be arrived at

E[σ4
t ] = ω

2 +2ωα1E[ε2
t−1]+2ωβ1E[σ2

t−1]+2α1β1E[ε2
t−1σ

2
t−1]+α

2
1 E[ε4

t−1]+β
2
1 E[σ4

t−1] (7.141)

= ω
2 +2ωα1σ̄

2 +2ωβ1σ̄
2 +2α1β1E[σ4

t−1]+3α
2
1 E[σ4

t−1]+β
2
1 E[σ4

t−1].

E[σ4
t ] can be solved for (replacing E[σ4

t ] with µ4),

µ4 = ω
2 +2ωα1σ̄

2 +2ωβ1σ̄
2 +2α1β1µ4 +3α

2
1 µ4 +β

2
1 µ4 (7.142)

µ4−2α1β1µ4−3α
2
1 µ4−β

2
1 µ4 = ω

2 +2ωα1σ̄
2 +2ωβ1σ̄

2

µ4(1−2α1β1−3α
2
1 −β

2
1 ) = ω

2 +2ωα1σ̄
2 +2ωβ1σ̄

2

µ4 =
ω2 +2ωα1σ̄2 +2ωβ1σ̄2

1−2α1β1−3α2
1 −β 2

1

finally substituting σ̄2 = ω/(1−α1−β1) and returning to the original derivation,

E[ε4
t ] =

3(1+α1 +β1)

(1−α1−β1)(1−2α1β1−3α2
1 −β 2

1 )
, (7.143)

and the kurtosis, κ = E[ε4
t ]

E[ε2
t ]

2 =
µ4
σ̄2 , which simplifies to

κ =
3(1+α1 +β1)(1−α1−β1)

1−2α1β1−3α2
1 −β 2

1
> 3. (7.144)

Exercises

Exercise 7.1. What is Realized Variance and why is it useful?

Exercise 7.2. Suppose rt = σtεt where σ2
t = ω +αr2

t−1 +βσ2
t−1, and εt

i.i.d.∼ N (0,1). What conditions
are required on the parameters ω , α , and β for rt to be covariance stationary?

Exercise 7.3. What is Realized Variance?

Exercise 7.4. Discuss the properties of the generalized forecast error from a correctly specified
volatility model.

Exercise 7.5. Outline the steps the in Mincer-Zarnowitz framework to objectively evaluate a sequence
of variance forecasts

{
σ̂2

t+1|t

}
.

Exercise 7.6. How do you use a likelihood function to estimate an ARCH model?

Exercise 7.7. Why are Bollerslev-Wooldridge standard errors important when testing coefficients in
ARCH models?
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Exercise 7.8. Why does the Black-Scholes implied volatility vary across strikes?

Exercise 7.9. Suppose we model log-prices at time t, written pt , as an ARCH(1) process

pt |Ft−1 ∼ N(pt−1,σ
2
t ),

where Ft denotes the information up to and including time t and

σ
2
t = α +β (pt−1− pt−2)

2 .

1. Is pt a martingale?

2. What is
E
[
σ

2
t
]
?

3. For s > 0, Calculate
Cov

[
(pt− pt−1)

2 ,(pt−s− pt−1−s)
2
]

4. Comment on the importance of this result from a practical perspective.

5. How can the ARCH(1) model be generalized better capture the variance dynamics of asset
prices?

6. In the ARCH(1) case, what can you say about the properties of

pt+s|Ft−1,

for s > 0, i.e., the multi-step ahead forecast of prices?

Exercise 7.10. Derive explicit relationships between the parameters of an APARCH(1,1,1),

rt = µt + εt

σ
δ
t = ω +α1 (|εt−1|+ γ1εt−1)

δ +β1σ
δ
t−1

εt = σtet

et
i.i.d.∼ N(0,1),

and:

1. ARCH(1)

2. GARCH(1,1)

3. AVGARCH(1,1)

4. TARCH(1,1,1)

5. GJR-GARCH(1,1,1)
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Exercise 7.11. Consider the following GJR-GARCH process,

rt = ρrt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1 + γε

2
t−1I[εt−1<0]+βσ

2
t−1

et
i.i.d.∼ N(0,1)

where Et [·] = E[·|Ft ] is the time t conditional expectation and Vt [·] = V[·|Ft ] is the time t conditional
variance.

1. What conditions are necessary for this process to be covariance stationary?

Assume these conditions hold in the remaining questions. Note: If you cannot answer one or
more of these questions for an arbitrary γ , you can assume that γ = 0 and receive partial credit.

2. What is E[rt+1]?

3. What is Et [rt+1]?

4. What is V[rt+1]?

5. What is Vt [rt+1]?

6. What is Vt [rt+2]?

Exercise 7.12. Let rt follow a GARCH process

rt = σtet

σ
2
t = ω +αr2

t−1 +βσ
2
t−1

et
i.i.d.∼ N(0,1)

1. What are the values of the following quantities?

(a) E[rt+1]

(b) Et [rt+1]

(c) V[rt+1]

(d) Vt [rt+1]

(e) ρ1 = Corr [rt ,rt−1]

2. What is E[(r2
t − σ̄2)(r2

t−1− σ̄2)] where σ̄ = E[σ2
t ]. Hint: Consider the relationship to ARMA

models.

3. Describe the h-step ahead forecast from this model.

Exercise 7.13. Let rt follow an ARCH process

rt = σtet

σ
2
t = ω +α1r2

t−1

et
i.i.d.∼ N(0,1)



474 Univariate Volatility Modeling

1. What are the values of the following quantities?

(a) E[rt+1]

(b) Et [rt+1]

(c) V[rt+1]

(d) Vt [rt+1]

(e) ρ1 = Corr [rt ,rt−1]

2. What is E[(r2
t − σ̄2)(r2

t−1− σ̄2)] where σ̄ = E[σ2
t ]. Hint: Think about the AR duality.

3. Describe the h-step ahead forecast from this model.

Exercise 7.14. Consider an EGARCH(1,1,1) model:

lnσ
2
t = ω +α1

(
|et−1|−

√
2
π

)
+ γ1et−1 +β1 lnσ

2
t−1

where et
i.i.d.∼ N(0,1).

1. What are the required conditions on the model parameters for this process to be covariance
stationary?

2. What is the one-step-ahead forecast of σ2
t , Et

[
σ2

t+1
]
?

3. What is the most you can say about the two-step-ahead forecast of σ2
t (Et

[
σ2

t+2
]
)?

Exercise 7.15. Answer the following questions:

1. Describe three fundamentally different procedures to estimate the volatility over some interval.
What the strengths and weaknesses of each?

2. Why is Realized Variance useful when evaluating a volatility model?

3. What considerations are important when computing Realized Variance?

Exercise 7.16. Consider a general volatility specification for an asset return rt :

rt |Ft−1 ∼ N
(
0,σ2

t
)

and let et ≡
rt

σt

so et |Ft−1
i.i.d.∼ N (0,1)

1. Find the conditional kurtosis of the returns:

Kurtt−1 [rt ]≡
Et−1

[
(rt−Et−1 [rt ])

4
]

(Vt−1 [rt ])
2
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2. Show that if V
[
σ2

t
]
> 0, then the unconditional kurtosis of the returns,

Kurt [rt ]≡
E
[
(rt−E [rt ])

4
]

(V [rt ])
2

is greater than 3.

3. Find the conditional skewness of the returns:

Skewt−1 [rt ]≡
Et−1

[
(rt−Et−1 [rt ])

3
]

(Vt−1 [rt ])
3/2

4. Find the unconditional skewness of the returns:

Skew [rt ]≡
E
[
(rt−E [rt ])

3
]

(V [rt ])
3/2

Exercise 7.17. Answer the following questions:

1. Describe three fundamentally different procedures to estimate the volatility over some interval.
What are the strengths and weaknesses of each?

2. Why does the Black-Scholes implied volatility vary across strikes?

3. Consider the following GJR-GARCH process,

rt = µ +ρrt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1 + γε

2
t−1I[εt−1<0]+βσ

2
t−1

et
i.i.d.∼ N(0,1)

where Et [·] = E[·|Ft ] is the time t conditional expectation and Vt [·] = V[·|Ft ] is the time t
conditional variance.

(a) What conditions are necessary for this process to be covariance stationary?

Assume these conditions hold in the remaining questions.

(b) What is E[rt+1]?

(c) What is Et [rt+1]?

(d) What is Et [rt+2]?

(e) What is V[rt+1]?

(f) What is Vt [rt+1]?

(g) What is Vt [rt+2]?
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Exercise 7.18. Answer the following questions about variance estimation.

1. What is Realized Variance?

2. How is Realized Variance estimated?

3. Describe two models which are appropriate for modeling Realized Variance.

4. What is an Exponential Weighted Moving Average (EWMA)?

5. Suppose an ARCH model for the conditional variance of daily returns was fit

rt+1 = µ +σt+1et+1

σ
2
t+1 = ω +α1ε

2
t +α2ε

2
t−1

et
i.i.d.∼ N(0,1)

What are the forecasts for t +1, t +2 and t +3 given the current (time t) information set?

6. Suppose an EWMA was used instead for the model of conditional variance with smoothing
parameter = .94. What are the forecasts for t + 1, t + 2 and t + 3 given the current (time t)
information set?

7. Compare the ARCH(2) and EWMA forecasts when the forecast horizon is large (e.g., Et
[
σ2

t+h

]
for large h).

8. What is VIX?

Exercise 7.19. Suppose {Yt} is covariance stationary and can be described by the following process:

yt = φ1yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

what are the values of the following quantities:

1. Et [Yt+1]

2. Et [Yt+2]

3. limh→∞Et [Yt+h]

4. Vt [εt+1]

5. Vt [Yt+1]

6. Vt [Yt+2]

7. limh→∞Vt [εt+h]
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Exercise 7.20. Answer the following questions:
Suppose {yt} is covariance stationary and can be described by the following process:

yt = φ0 +θ1εt−1 +θ2εt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +βσ

2
t−1

et
i.i.d.∼ N (0,1)

what are the values of the following quantities:

1. Et [Yt+1]

2. Et [Yt+2]

3. limh→∞Et [Yt+h]

4. Vt [εt+1]

5. Vt [Yt+2]

6. limh→∞Vt [εt+h]

Exercise 7.21. Consider the AR(2)-ARCH(2) model

Yt = φ0 +φ1yt−1 +φ2yt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +α2ε

2
t−2

et
i.i.d.∼ N (0,1)

1. What conditions are required for φ0, φ1 and, φ2 for the model to be covariance stationary?

2. What conditions are required for ω, α1, and α2 for the model to be covariance stationary?

3. Show that {εt} is a white noise process.

4. Are εt and εt−s independent for s 6= 0?

5. What are the values of the following quantities:

(a) E [Yt ]

(b) Et [Yt+1]

(c) Et [Yt+2]

(d) Vt [Yt+1]

(e) Vt [Yt+2]
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Exercise 7.22. Suppose {Yt} is covariance stationary and can be described by the following process:

Yt = φ1Yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

1. What are the values of the following quantities:

(a) Et [Yt+1]

(b) Et [Yt+2]

(c) limh→∞Et [Yt+h]

(d) Vt [εt+1]

(e) Vt [Yt+1]

(f) Vt [Yt+2]

(g) V [Yt+1]

Exercise 7.23. Consider the MA(2)-GARCH(1,1) model

Yt = φ0 +θ1εt−1 +φ2εt−2 + εt

εt = σtet

σ
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1

et
i.i.d.∼ N (0,1)

1. What conditions are required for φ0, θ1, and θ2 for the model to be covariance stationary?

2. What conditions are required for ω,α1, and β1 for the model to be covariance stationary?

3. Show that {εt} is a white noise process.

4. Are εt and εt−1 independent?

5. What are the values of the following quantities:

(a) E [Yt ]

(b) Et [Yt+1]

(c) Et [Yt+2]

(d) limh→∞Et [Yt+h]

(e) Vt [Yt+1]

(f) Vt [Yt+2]
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Exercise 7.24. Suppose {Yt} is covariance stationary and can be described by the following process:

Yt = φ0 +φ1Yt−1 +θ1εt−1 + εt

εt = σtet

σ
2
t = ω +αε

2
t−1

et
i.i.d.∼ N (0,1)

What are the values of the following quantities:

1. E [Yt+1]

2. Et [Yt+1]

3. Et [Yt+2]

4. limh→∞Et [Yt+h]

5. Vt [εt+1]

6. Vt [Yt+1]

7. Vt [Yt+2]

8. V [Yt+1]

Exercise 7.25. If lnRVt is modeled as a HAR

lnRVt = 0.1+0.4lnRVt−1 +0.3lnRVt−1:5 +0.22lnRVt−1:22 + εt

where εt
i.i.d.∼ N(0,σ2) where lnRVt−1:h = h−1∑h

i=1 lnRVt−i is the average of h lags of lnRV .

1. What is Et [lnRVt+1]?

2. What is Et [lnRVt+2]?

3. What is limh→∞Et [lnRVt+h]?

4. What is the conditional distribution of the 2-step forecast error, lnRVt+2−Et [lnRVt+2]?

5. What is Et [RVt+1]?

6. What is Et [RVt+2]?

Exercise 7.26. DefineR̃t = sgn(Rt)
√

RVt where Rt is the close-to-close return and RVt is the realized
variance on day t. Suppose this time series is modeled as a GARCH(1,1)

σ
2
t+1 = 0.1+0.25R̃2

t +0.7σ
2
t

R̃t+1|Ft ∼ N
(
0,σ2

t+1
)

where εt ∼ N(0,σ2) where lnRVt−1:h = h−1∑h
i=1 lnRVt−i is the average of h lags of lnRV .
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1. What is Et [RVt+1]?

2. What is Et [RVt+2]?

3. What is Et
[
σ2

t+1
]
?

4. What is limh→∞Et [RVt+h]?

5. What alternative models are commonly used to model Realized Variance?



Chapter 8

Value-at-Risk, Expected Shortfall and
Density Forecasting

Alternative references for this chapter include Christoffersen (2003), which is a highly accessible
introduction, Gourieroux and Jasiak (2009), who provide additional technical details, and, McNeil,
Frey, and Embrechts (2005), who provide a comprehensive and technical treatment of risk measure-
ment.

The American Heritage Dictionary, Fourth Edition, defines risk as “the possibility of suffering
harm or loss; danger.” In finance, harm or loss has a specific meaning: decreases in the value of a
portfolio. This chapter introduces three methods used to assess the riskiness of a portfolio: Value-at-
Risk (VaR), Expected Shortfall, and modeling the entire density of the portfolio’s return.

8.1 Defining Risk

Portfolios are exposed to multiple distinct sources of risk. The most important sources of risk can be
classified into one of six categories.

Market Risk

Market risk describes the uncertainty about the future price of an asset due to changes in fundamen-
tals or beliefs. For example, market risk captures changes in asset prices due to macroeconomics
announcements such as FOMC policy rate updates or non-farm payroll releases.

Liquidity risk

Liquidity risk complements market risk by measuring the loss involved if a position must be rapidly
unwound. For example, if a fund wished to sell 20,000,000 shares of IBM on a single day, which
has a typical daily volume of 5,000,000, this sale would be expected to have a substantial effect on
the price. Liquidity risk is distinct from market risk since it represents a transitory distortion due to
transaction pressure.
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Credit Risk

Credit risk, also known as default risk, covers cases where a 3rd party is unable to pay per previously
agreed to terms. Holders of corporate bonds are exposed to credit risk since the bond issuer may not
be able to make some or all of the scheduled coupon payments.

Counterparty Risk

Counterparty risk extends credit risk to instruments other than bonds and captures the event that a
counterparty to a transaction, for example, the seller of an option contract, is unable to complete the
transaction at expiration. Counterparty risk was a significant factor in the financial crisis of 2008
where the protection offered in Credit Default Swaps (CDS) was not available when the underlying
assets defaulted.

Model Risk

Model risk represents an econometric form of risk that measures the uncertainty about the correct form
of the model used to compute the price of the asset or the asset’s riskiness. Model risk is particularly
important when prices of assets are primarily determined by a model rather than in a liquid market,
as was the case in the Mortgage Backed Securities (MBS) market in 2007.

Estimation Risk

Estimation risk captures an aspect of risk that is present whenever estimated parameters are used
in econometric models to price securities or assess risk. Estimation risk is distinct from model risk
since it is present even if a model when correctly specified. In many practical applications, parameter
estimation error can result in a substantial misstatement of risk. Model and estimation risk are always
present and are generally substitutes – parsimonious models are more likely to be misspecified but
may have less parameter estimation uncertainty.

This chapter deals exclusively with market risk. Liquidity, credit risk and counterparty risk all
require specialized treatment beyond the scope of this course. Model evaluation, especially out-of-
sample evaluation, is the primary tool for assessing model and estimation risks.

8.2 Value-at-Risk (VaR)

The most widely reported measure of risk is Value-at-Risk (VaR). The VaR of a portfolio is a measure
of the risk in the left tail of portfolio’s return over some period, often a day or a week. VaR provides a
more sensible measure of the risk of the portfolio than variance since it focuses on losses. VaR is not a
perfect measure of risk, and the issues with VaR are detailed in the context of coherent risk measures
(section 8.8).

8.2.1 Value-at-Risk Defined

The VaR of a portfolio measures the value (in £, $, C, ¥, . . .) which an investor would lose with some
small probability, usually between 1 and 10%, over a specified horizon. Because the VaR represents
a potential loss, it is usually a positive number.
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A graphical representation of Value-at-Risk

9.7 9.8 9.9 10.0 10.1 10.2 10.3
Portfolio Value (£ mil)

5% VaR

Previous Wealth

Expected Wealth

Distribution of Wealth

5% quantile

Value-at-Risk

Figure 8.1: A graphical representation of Value-at-Risk. The VaR is represented by the magnitude of
the horizontal bar and measures the distance between the value of the portfolio in the current period
and the α-quantile of the portfolio value distribution. In this example, α = 5%, the value of the
portfolio’s assets is £10,000,000, and returns are N(.001, .0152).

Definition 8.1 (Value-at-Risk). The α Value-at-Risk (VaR) of a portfolio is defined as the largest
change in the portfolio such that the probability that the loss in portfolio value over a specified horizon
is greater than the VaR is α ,

Pr(Rt <−VaR) = α (8.1)

where Rt =Wt−Wt−1 is the change in the value of the portfolio, Wt and the time span depends on the
application (e.g., one day or two weeks).

For example, if an investor had a portfolio value of £10,000,000 and had a daily portfolio return which
was N(.001, .0152) (annualized mean of 25%, volatility of 23.8%), the daily α Value-at-Risk of this
portfolio is

£10,000,000(−.001− .015Φ
−1(α)) = £236,728.04
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where Φ−1(·) is the inverse CDF of a standard normal. This expression may appear backward – it
is not. The negative sign on the mean indicates that increases in the mean decrease the VaR. The
negative sign on the standard deviation term indicates that increases in the volatility raise the VaR
since for α < .5, Φ−1(α) < 0. It is often more useful to express Value-at-Risk as a percentage of
the portfolio value – e.g., 1.5% – rather than in units of currency since to remove the initial value
portfolio from the measure.

Definition 8.2 (Percentage Value-at-Risk). The α percentage Value-at-Risk (%VaR) of a portfolio is
defined as the largest return such that the probability that the return on the portfolio over a specified
horizon is less than −1×%VaR is α ,

Pr(rt <−%VaR) = α (8.2)

where rt = (Wt−Wt−1)/Wt−1 is the return of the portfolio. %VaR can be equivalently defined as
%VaR= VaR/Wt−1.

Since percentage VaR and VaR only differ by the current value of the portfolio, the remainder of
the chapter focuses on percentage VaR.

8.2.2 The relationship between VaR and quantiles

Understanding that VaR and quantiles are fundamentally related provides a key insight. If r is the
return on a portfolio, the α-VaR is −1×qα(r) where qα(r) is the α-quantile of the portfolio’s return.
In most cases α is chosen to be some small quantile – 1, 5 or 10% – and so qα(r) is a negative
number.1

8.3 Conditional Value-at-Risk

Most applications of VaR are used to measure risk over short horizons, and so require a conditional
Value-at-Risk. Conditioning employs information up to time t to produce a VaR in period t +h.

Definition 8.3 (Conditional Value-at-Risk). The conditional α Value-at-Risk is defined as

Pr(rt+1 <−VaRt+1|t |Ft) = α (8.3)

where rt+1 =
Wt+1−Wt

Wt
is the time t + 1 return on a portfolio. Since t is an arbitrary measure of time,

t +1 also refers to an arbitrary unit of time (e.g., one day, two weeks, or a month)

Most conditional models for VaR forecast the density directly, although some only attempt to esti-
mate the required quantile of the time t+1 return distribution. Five standard methods are presented in
the order of the strength of the assumptions required to justify the method, from strongest to weakest.

1It is theoretically possible for VaR to be negative. If the VaR of a portfolio is negative, either the portfolio has no risk,
the portfolio manager extremely skillful, or most likely the model used to compute the VaR is badly misspecified.
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8.3.1 RiskMetrics©

The RiskMetrics group has produced a simple, robust method for producing conditional VaR. The
basic structure of the RiskMetrics model relies on a restricted GARCH(1,1) where α + β = 1 and
ω = 0. The estimate of the portfolio’s variance is

σ
2
t+1 = (1−λ )r2

t +λσ
2
t , (8.4)

where rt is the (percentage) return on the portfolio in period t. In the RiskMetrics specification σ2
t+1

follows an EWMA which places weight λ j(1−λ ) on r2
t− j.

2 The RiskMetrics model does not include
a conditional mean of the portfolio return, and so is only applicable to assets with returns that are
close to zero. The restriction limits the applicability to applications where the risk-measurement
horizon is short (e.g., one day to one month). The VaR is constructed from the α-quantile of a normal
distribution,

VaRt+1 =−σt+1Φ
−1(α) (8.5)

where Φ−1(·) is the inverse normal CDF. The RiskMetrics model has are no parameters to estimate; λ

has been calibrated to .94 for daily data, 0.97 for weekly data, and .99 for monthly data.3 This model
can also be extended to multiple assets using by replacing the squared return with the outer product
of a vector of returns, rtr′t , and σ2

t+1 with a matrix, Σt+1. The limitations of the RiskMetrics model
are that the parameters aren’t estimated (which is also an advantage), the model does not account for
a leverage effect, and the VaR follows a random walk since λ +(1−λ ) = 1.

8.3.2 Parametric ARCH Models

Parametric ARCH-family models provide a complete description of the future return distribution, and
so can be applied to estimate the VaR of a portfolio. This model is highly adaptable since the mean,
variance and distribution can all be tailored to the portfolio’s historical returns. For simplicity, this
example uses a constant mean and has a GARCH(1,1) variance process.4

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ F(0,1)

where F(0,1) is used to indicate that the distribution of innovations need not be normally distributed
but must have mean 0 and variance 1. For example, F could be a standardized Student’s t with
ν degrees of freedom or Hansen’s skewed t with a degree of freedom parameter ν and asymmetry

2An EWMA differs from a standard moving average in two ways. First, an EWMA places relatively more weight on
recent observations than on observation in the distant past. Second, EWMAs depend on the entire history rather than a
fixed-length window.

3The suggested coefficients for λ are based on a large study of the RiskMetrics model across different asset classes.
4The use of α1 in ARCH models has been avoided to avoid confusion with the α in the VaR.
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parameter λ . The parameters of the model are estimated using maximum likelihood and the time t
conditional VaR is

VaRt+1 =−µ̂− σ̂t+1F−1
α

where F−1
α is the α-quantile of the distribution of et+1. The flexibility to build a model by specifying

the mean, variance and distributions is the strength of this approach. The limitations of this procedure
are that implementations require knowledge of a density family which includes F – if the distribution
is misspecified then the quantile used is wrong – and that the residuals must come from a location-
scale family. The second limitation imposes that all of the dynamics of returns can be summarized by
a time-varying mean and variance, and so higher order moments must be time invariant.

8.3.3 Semiparametric ARCH Models/Filtered Historical Simulation

Semiparametric estimation mixes parametric mean and variance models with nonparametric estima-
tors of the distribution.5 Again, consider a constant mean GARCH(1,1) model

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1)

where G(0,1) is an unknown distribution with mean zero and variance 1. Conditional VaR estimates
from semiparametric models are also known as filtered Historical Simulation, due to their similarity
to Historical Simulation (see ). The ARCH model filters the return data by removing the conditional
mean and volatility.

When the distribution of the standardized residuals G(·) is unknown, maximum likelihood esti-
mation cannot be used to estimate model parameters. Recall that assuming a normal distribution for
the standardized residuals, even if misspecified, produces estimates which are strongly consistent, and
so ω , γ1 and β1 converge to their true values for most any G(·). The model is estimated using QMLE
by assuming that the errors are normally distributed and then the Value-at-Risk for the α-quantile can
be computed

VaRt+1(α) =−µ̂− σ̂t+1Ĝ−1
α (8.6)

where Ĝ−1
α is the empirical α-quantile of of the standardized returns, {êt+1}. To estimate this quantile,

define êt+1 = ε̂t+1/σ̂t+1. and order the errors such that

ê1 < ê2 < .. . < ên−1 < ên.

Here n replaces T to indicate the residuals are no longer time ordered. Ĝ−1
α = êbαnc or Ĝ−1

α = êdαne
where bxc and dxe denote the floor (largest integer smaller than) and ceiling (smallest integer larger

5Semiparametric estimators combine parametric and nonparametric estimators in a single model. In time-series appli-
cations, semiparametric estimators have parametric models for the dynamics of the mean and variance but use a nonpara-
metric estimator of the distribution of the residuals.
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than) of x.6 The estimate of G−1 is the α-quantile of the empirical distribution of êt+1 which is the
value in position αn of the ordered standardized residuals.

Semiparametric ARCH models provide one clear advantage over their parametric ARCH cousins;
the quantile, and hence the VaR, is consistent under weaker conditions since the density of the stan-
dardized residuals does not have to be assumed. The primary disadvantage of the semiparametric
approach is that Ĝ−1

α may be poorly estimated – especially if α is very small (e.g., 1%). Semipara-
metric ARCH models also share the limitation they are only applicable when returns are generated by
a location-scale distribution.

8.3.4 Cornish-Fisher Approximation

The Cornish-Fisher estimator of VaR lies between fully parametric model and the semiparametric
model. The setup is identical to that of the semiparametric model,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γε

2
t +βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1)

where G(·) is an unknown distribution. The model parameters are estimated by QML assuming that
the conditional distribution of residuals is normal to produce standardized residuals, êt+1 = ε̂t+1/σ̂t+1.
The Cornish-Fisher approximation is a Taylor-series-like expansion of the α-quantile around the α-
quantile of a normal and is given by

VaRt+1 =−µ−σt+1G−1
CF(α) (8.7)

G−1
CF(α)≡Φ

−1(α)+
ς

6

([
Φ
−1(α)

]2−1
)
+ (8.8)

κ−3
24

([
Φ
−1(α)

]3−3Φ
−1(α)

)
− ς2

36

(
2
[
Φ
−1(α)

]3−5Φ
−1(α)

)
where ς and κ are the skewness and kurtosis of êt+1, respectively. From the expression for G−1

CF(α),
negative skewness and excess kurtosis (κ > 3, the kurtosis of a normal) decrease the estimated quan-
tile and increases the VaR. The Cornish-Fisher approximation shares the strength of the semipara-
metric distribution in that it can be accurate without a parametric assumption. However, unlike the
semiparametric estimator, Cornish-Fisher estimators are not necessarily consistent which may be a
drawback. Additionally, estimates of higher-order moments of standardized residuals may be prob-
lematic or, in very heavy-tailed distributions, the third and fourth moments may not even exist.

6When estimating a quantile from discrete data and not smoothing, the is quantile “set valued” and defined as any
point between êbαnc and êdαne, inclusive.
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8.3.5 Conditional Autoregressive Value-at-Risk (CaViaR)

Engle and Manganelli (2004) developed a family of ARCH-like models to estimate the conditional
Value-at-Risk using quantile regression. CaViaR models have a similar structure to GARCH models.
The α-quantile of the return distribution, F−1

α,t+1, is modeled as a weighted average of a constant, the
previous value of the quantile, and a shock (or surprise). The shock can take many forms although a
“HIT ”, defined as an exceedance of the previous Value-at-Risk, is the most natural.

HITt+1 = I[rt+1<F−1
t+1]
−α (8.9)

where rt+1 the (percentage) return and F−1
α,t+1 is the time t α-quantile of this distribution. When

F−1
α,t+1 is the conditional quantile of the return distribution, then a HIT is mean zero Et

[
I[rt+1<F−1

α,t+1]

]
=

Pr
(

rt+1 < F−1
α,t+1

)
= α .

Defining qt+1 as the time t +1 α-quantile of returns, the evolution in a standard CaViaR model is
defined by

qt+1 = ω + γHITt +βqt . (8.10)

Other forms that have been explored include the symmetric absolute value,

qt+1 = ω + γ|rt |+βqt . (8.11)

the asymmetric absolute value,

qt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βqt (8.12)

the indirect GARCH,

qt+1 =
(
ω + γr2

t +βq2
t
) 1

2 . (8.13)

The parameters of CaViaR models are estimated by minimizing the “tick” loss function

argmin
θ

T−1
T∑

t=1

α(rt−qt)(1− I[rt<qt ])︸ ︷︷ ︸
Positive errors

+(1−α)(qt− rt)I[rt<qt ]︸ ︷︷ ︸
Negative Errors

= (8.14)

argmin
θ

T−1
T∑

t=1

α(rt−qt)+(qt− rt)I[rt<qt ]

where I[rt<qt ] is an indicator variable which is 1 if rt < qt and 0 otherwise. The loss function is linear
in the error rt − qt and has a slope of α for positive errors and 1−α for negative errors. Estimation
of the parameters is complicated since the objective function may is non-differentiable and has many
flat spots. Derivative-free methods, such as the Nelder-Mead simplex method or genetic algorithms,
can be used to overcome this difficulty. The VaR in a CaViaR framework is then

VaRt+1 =−qt+1 =−F̂−1
t+1 (8.15)
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CaViaR model does not specify a distribution of returns or any moments, and so its use is jus-
tified under much weaker assumptions than other VaR estimators. Additionally, its parametric form
provides reasonable convergence of the unknown parameters. The main drawbacks of the CaViaR
modeling strategy are that it may produce out-of-order quantiles (i.e., 5% VaR is less than 10% VaR)
and that estimation of the model parameters is challenging.

8.3.6 Weighted Historical Simulation

Weighted historical simulation constructs an empirical distribution where recent returns are given
more weight than returns further in the past. The estimator is nonparametric since that no specific
assumptions about either distribution or the dynamics of returns are made.

Weights are assigned using an exponentially declining function. If returns are available from
i = 1, . . . , t, then the weight given to data point i is

wi = λ
t−i (1−λ )/

(
1−λ

t) , i = 1,2, . . . , t.

Typical values for λ range from .99 to .995. When λ = .99, 99% of the weight occurs in the most
recent 450 data points – .995 changes this to the most recent 900 data points. Smaller values of
lambda produce a VaR that is more “local” while larger values produce VaR estimates based most of
the historical sample.

The weighted empirical CDF is then

Ĝt(r) =
t∑

i=1

wiI[ri<r].

The conditional VaR is then computed as the solution to

VaRt+1 = min
r

Ĝ(r)≥ α

which chooses the smallest value of r where the there is at least α probability below in the weighted
cumulative distribution.

8.3.7 Example: Conditional Value-at-Risk for the S&P 500

The concepts of VaR is illustrated using S&P 500 returns from January 1, 1999, until December 31,
2018. A variety of models have been estimated that all produce similar VaR estimates. Alternative
distributional assumptions generally produce similar volatility parameter estimates in ARCH models,
and so VaR estimates only differ due to differences in the quantiles. Table 8.1 reports parameter es-
timates from these models. The volatility parameters of the TARCH models were virtually identical
across all three distributional assumptions. The degree of freedom parameter ν̂ ≈ 8 in both the stan-
dardized Student’s t and the skewed t indicating that the standardizes residuals are leptokurtotic, and
λ̂ ≈−.1, from the skewed t, indicating some negative skewness. The CaViaR estimates indicate little
change in the conditional quantile for positive shock, a substantial increase in the VaR when the return
is negative, and that the conditional quantile is highly persistent. The table also contains estimated
quantiles using the parametric, semiparametric and Cornish-Fisher expansion of the normal. Since
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VaR using RiskMetrics
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VaR using TARCH(1,1,1) with Skewed t errors
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2%
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VaR using Asym. Absolute Value CaViaR

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

2%
4%
6%
8%

10%

Figure 8.2: The figure contains the estimated 5% VaR for the S&P 500 using data from 1999 until the
end of 2018. While these three models have different specifications for the evolution of the conditional
VaR, the estimated VaRs are remarkably similar.

the fit conditional variances were nearly identical, the only meaningful difference in the VaRs comes
from the differences in these quantiles. These are all qualitatively similar except at 1%.

Figure 8.2 plots the fitted VaRs from the RiskMetrics model, a TARCH with skewed t errors and an
asymmetric absolute value CaViaR. All three plots appear very similar, and the TARCH and CaViaR
model fits are virtually identical. This similarity is due to the common structure of the dynamics
and the values of the estimated parameters. Figure 8.3 plots the conditional VaRs for the weighted
Historical Simulation estimator for three values of the smoothing parameter λ . The three values of
λ , 0.95, 0.99, and 0.995, places 90% of the weight on the most recent 45, 230 and 2280 observations,
respectively. The different values of the smoothing parameter produce meaningfully different condi-
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VaR using Weighted Historical Simulation

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

2%
4%
6%
8%

10%
λ = 0.95

λ = 0.99

λ = 0.999

Figure 8.3: The estimated 5% VaR for the S&P 500 using weighted Historical Simulation for
λ ∈ {0.95,0.99,0.999}. The three values of λ place 90% of the weight on the most recent 45,
230, and 2280 observations, respectively. Larger values of the decay parameter λ produce smoother
conditional VaR estimates.

Model Parameters
TARCH(1,1,1)

σt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βσt
ω γ1 γ2 β ν λ

Normal 0.026 0.000 0.172 0.909
Student’s t 0.020 0.000 0.173 0.913 7.926
Skew t 0.022 0.000 0.179 0.910 8.520 -0.123

CaViaR
qt+1 = ω + γ1|rt |+ γ2|rt |I[rt<0]+βqt

ω γ1 γ2 β

Asym CaViaR 0.035 0.002 0.290 0.910

Estimated Quantiles from Parametric and Semi-parametric TARCH models
Semiparam. Normal Stud. t Skew t CF

1% -2.656 -2.326 -2.510 -2.674 -2.918
5% -1.705 -1.645 -1.610 -1.688 -1.739
10% -1.265 -1.282 -1.209 -1.247 -1.237

Table 8.1: Estimated model parameters and quantiles. The choice of distribution for the standardized
shocks makes little difference in the parameters of the TARCH process, and so the fit conditional
variances are virtually identical. The only difference in the VaRs from these three specifications
comes from the estimates of the quantiles of the standardized returns (bottom panel).

tional VaR estimates. The smallest value appears to produce the conditional VaR estimates are most
similar to those depicted in Figure 8.2.



492 Value-at-Risk, Expected Shortfall and Density Forecasting

8.4 Unconditional Value at Risk

While the conditional VaR is often the object of interest, there may be situations which call for the
unconditional VaR (also known as marginal VaR). Unconditional VaR expands the set of choices from
the conditional to include models that do not make use of conditioning information to estimate the
VaR directly from the historical return data.

8.4.1 Parametric Estimation

The simplest form of unconditional VaR specifies a complete parametric model for the unconditional
distribution of returns. The VaR is then computed from the α-quantile of this distribution. For
example, if rt ∼ N(µ,σ2), then the α-VaR is

VaR =−µ−σΦ
−1(α). (8.16)

The parameters of the distribution are estimated using Maximum likelihood with the usual estimators,

µ̂ = T−1
T∑

t=1

rt σ̂
2 = T−1

T∑
t=1

(rt− µ̂)2

In a general parametric VaR model, some distribution for returns which depends on a set of unknown
parameters θ is assumed, rt ∼ F(θ) and parameters are estimated by maximum likelihood. The VaR
is then −F−1

α , where F−1
α is the α-quantile of the estimated distribution. The advantages and disad-

vantages to parametric unconditional VaR are identical to parametric conditional VaR. The models
are parsimonious, and the parameters estimates are precise yet finding a specification general enough
to capture the true distribution is difficult.

8.4.2 Nonparametric Estimation/Historical Simulation

At the other end of the spectrum is a simple nonparametric estimate of the unconditional VaR known
as Historical Simulation. As was the case in the semiparametric conditional VaR, the first step is to
sort the returns so that

r1 < r2 < .. . < rn−1 < rn

where n = T is used to denote an ordering not based on time. The VaR is estimated using rbαnc or
rdαne (or any value between the two). The estimate of the VaR is the α-quantile of the empirical
distribution of {rt},

VaR =−Ĝ−1
α (8.17)

where Ĝ−1
α is the estimated quantile. The empirical CDF is defined

G(r) = T−1
T∑

t=1

I[rt<r]

where I[r<rt ] is an indicator function that takes the value 1 if r is less than rt , and so this function
counts the percentage of returns which are smaller than r.
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Historical simulation estimates are rough, and a single new data point may produce very different
VaR estimates when the sample size is small. Smoothing the estimated quantile using a kernel density
generally improves the precision of the estimate when compared to one calculated directly on the
sorted returns. Smoothing the distribution is most beneficial when the sample size is small. See
section 8.7.2 for more details.

The advantage of nonparametric estimates of VaR is that they are generally consistent under min-
imal assumptions about the distribution of returns and that they are trivial to compute. The disadvan-
tage is that the VaR estimates can be poorly estimated – or equivalently that very large samples are
needed for estimated quantiles to be accurate – particularly for 1% VaRs (or smaller).

8.4.3 Parametric Monte Carlo

Parametric Monte Carlo is meaningfully different from either parametric or nonparametric estimation
of the unconditional distribution. Rather than fit a model to the returns directly, parametric Monte
Carlo fits a parsimonious conditional model. This model is then used to simulate the unconditional
distribution. For example, suppose that returns followed an AR(1) with GARCH(1,1) errors and
normal innovations,

rt+1 = φ0 +φ1rt + εt+1

σ
2
t+1 = ω + γε

2
t +βσ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1).

Parametric Monte Carlo is implemented by first estimating the parameters of the model, θ̂ =
[φ̂0, φ̂1, ω̂, γ̂, β̂ ]′, and then simulating a long sample {r̃t} from the process (generally much longer
than the actual number of data points available). The VaR from this model is the α-quantile of the
simulated data.

VaR =− ˆ̃G−1
α (8.18)

where ˆ̃G−1
α is the empirical α-quantile of the simulated data, {r̃t}. Generally, the amount of simulated

data should be sufficiently large that the empirical quantile is an accurate estimate of the quantile
of the unconditional distribution. There are two advantages to parametric Monte Carlo over other
unconditional VaR estimators. First, this procedure exploits conditioning information that is ignored
by the other estimators. Second, parsimonious conditional models, e.g., ARCH models with leverage,
can generate rich families of unconditional distributions that are difficult to parameterize directly.
The drawback of this procedure is that an incorrect conditional specification leads to an inconsistent
estimate of the unconditional VaR.

8.4.4 Example: Unconditional Value-at-Risk for the S&P 500

Using the S&P 500 data, 3 unconditional parametric models, a normal, a Student’s t and a skewed t
were estimated. Estimates of the unconditional VaR using the Cornish-Fisher estimator and a Histori-
cal Simulation (nonparametric) estimator were also included. Estimates are reported in Table 8.2. The
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Unconditional Value-at-Risk
HS Normal Stud. t Skew t CF

1% VaR 3.313 2.767 3.480 3.684 5.165
5% VaR 1.854 1.949 1.702 1.788 1.754
10% VaR 1.296 1.514 1.150 1.201 0.781

Table 8.2: Unconditional VaR of S&P 500 returns estimated assuming returns are Normal, Student’s
t or skewed t, using a Cornish-Fisher transformation or using a nonparametric quantile estimator.
While the 5% and 10% VaR are similar, the estimates of the 1% VaR differ.

unconditional VaR estimates are similar except for the estimate computed using the Cornish-Fisher
expansion. The kurtosis of the data was very high (23) which resulted in a very large 1% quantile.
The others are broadly similar with the most substantial differences occurring at the 1% VaR. Figure
8.4 shows the estimated unconditional distribution from the normal and skewed t distributions and a
nonparametric kernel density estimator. The key quantiles are similar despite meaningful differences
in their shapes.

8.5 Evaluating VaR models

The process of evaluating the performance of VaR models is virtually identical to that of evaluating
the specification of models of the conditional mean or variance. The key insight into VaR model
evaluation comes from the tick loss function,

T∑
t=1

α(rt−F−1
α,t )(1− I[rt<F−1

α,t ]
)+(1−α)(F−1

α,t − rt)I[rt<F−1
α,t ]

(8.19)

where rt is the return in period t and F−1
t is α-quantile of the return distribution in period t. The

generalized error can be directly computed from this loss function by differentiating with respect to
VaR, and is

get = I[rt<F−1
α,t ]
−α (8.20)

which is the time-t “HIT” (HITt).7 When there is a VaR exceedance, HITt = 1−α and when there is
no exceedance, HITt =−α . If the model is correct, then α of the HIT s should be (1−α) and (1−α)
should be −α , so that

7The generalized error extends the concept of an error in a linear regression or linear time-series model to nonlinear
estimators. Suppose a loss function is specified as L

(
Yt+1,Ŷt+1|t

)
, then the generalized error is the derivative of the loss

function with respect to the second argument, that is

get =
L
(
Yt+1,Ŷt+1|t

)
∂Ŷt+1|t

(8.21)

where it is assumed that the loss function is differentiable at this point.
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Unconditional Density of the S&P 500

−4 −3 −2 −1 0 1 2 3 4

Normal

Skew t

Nonparametric

Figure 8.4: Plot of the S&P 500 returns as well as a parametric density using Hansen’s skewed t and
a nonparametric density estimator constructed using a kernel.

α(1−α)−α(1−α) = 0,

and the mean of HITt should be 0. Moreover, when the VaR is conditional on time t information ,
Et [HITt+1] = 0 which follows from the properties of optimal forecasts (see chapter 4).
A test that the conditional expectation is zero can be implemented using a generalized Mincer-
Zarnowitz (GMZ) regression of HITt+1|t on any time t available variable. For example, the estimated
quantile F−1

t+1|t for t +1 could be included (since it is in the time-t information set) as well as lagged
HIT s to construct the regression model,

HITt+1|t = γ0 + γ1F−1
t+1|t + γ2HITt + γ3HITt−1 + . . .+ γKHITt−K+2 +ηt

If the model is correctly specified, all of the coefficients should be zero and the null H0 : γ = 0 can be
tested against an alternative that H1 : γ j 6= 0 for some j. If the null is rejected, then either the average
number of violations is wrong, so that γ0 6= 0, or the VaR violations are predictable (γ j 6= 0 for j≥ 1).
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8.5.1 Likelihood Evaluation

VaR forecast evaluation can be improved by noting that VaR violations, I[rt<F−1
α,t ]

, are Bernoulli ran-
dom variables which takes the value 1 with probability α and takes the value 0 with probability 1−α .
A more powerful test can be constructed using a likelihood ratio test using the Bernoulli random vari-
ables H̃IT t = I[rt<F−1

α,t ]
. Under the null that the model is correctly specified, the likelihood function of

a series of H̃IT s is

f (H̃IT ; p) =
T∏

t=1

pH̃IT t (1− p)1−H̃IT t

and the log-likelihood is

l(p; H̃IT ) =
T∑

t=1

H̃IT t ln(p)+(1− H̃IT t) ln(1− p).

If the model is correctly specified, p = α and a likelihood ratio test can be performed as

LR = 2(l(p̂; H̃IT )− l(p = α; H̃IT )) (8.22)

where p̂ = T−1∑T
t=1 H̃IT t is the maximum likelihood estimator of p under the alternative. The test

has a single restriction and so has an asymptotic χ2
1 distribution.

The likelihood-based test for unconditionally correct VaR can be extended to a test of condition-
ally correct VaR by examining the dependence of HIT s. This testing strategy uses the properties of a
Markov chain of Bernoulli random variables. A Markov chain is a modeling device which an ARMA
model that models random variables which take on a finite number of values – such as a HIT . A
simple 1st order binary valued Markov chain produces Bernoulli random variables which are not nec-
essarily independent. It is characterized by a transition matrix which contains the probability that the
state stays the same. In a 1st order binary valued Markov chain, the transition matrix is given by[

p00 p01
p10 p11

]
=

[
p00 1− p00

1− p11 p11

]
,

where pi j is the probability that the next observation takes value j given that this observation has
value i. For example, p10 indicates that the probability that the next observation is a not a HIT given
the current observation is a HIT . In a correctly specified model, the probability of a HIT in the current
period should not depend on whether the previous period was a HIT or not. In other words, the
sequence {HITt} is i.i.d. so that p00 = 1−α and p11 = α in a correctly specified model.

Define the following quantities,

n00 =

T−1∑
t=1

(1− H̃IT t)(1− H̃IT t+1)

n10 =
T−1∑
t=1

H̃IT t(1− H̃IT t+1)
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n01 =

T−1∑
t=1

(1− H̃IT t)H̃IT t+1

n11 =
T−1∑
t=1

H̃IT tH̃IT t+1

where ni j counts the number of times H̃IT t+1 = i after H̃IT t = j.
The log-likelihood for the sequence two VaR exceedances is

l(p; H̃IT ) = n00 ln(p00)+n01 ln(1− p00)+n11 ln(p11)+n10 ln(1− p11)

where p11 is the probability of two consecutive HIT s and p00 is the probability of two sequential
periods without a HIT . The null is H0 : p11 = 1− p00 = α . The maximum likelihood estimates of p00
and p11 are

p̂00 =
n00

n00 +n01

p̂11 =
n11

n11 +n10

and the null hypothesis can be tested using the likelihood ratio

LR = 2(l(p̂00, p̂11; H̃IT )− l(p00 = 1−α, p11 = α; H̃IT )). (8.23)

This test has an asymptotic χ2
2 distribution since there are two restrictions under the null.

This framework can be extended to include conditioning information by specifying a probit or
logit for H̃IT t using any time-t available information. Both of these models are known as limited
dependent variable models since the left-hand-side variables are always 0 or 1. For example, a speci-
fication test could be constructed using K lags of HIT , a constant and the forecast quantile as

H̃IT t+1|t = γ0 + γ1Ft+1|t + γ2H̃IT t + γ3H̃IT t−1 + . . .+ γKH̃IT t−K+1.

Parameters are computed by maximizing the Bernoulli log-likelihood, which requires the esti-
mated probabilities to satisfy

0≤ γ0 + γ1Ft+1|t + γ2H̃IT t + γ3H̃IT t−1 + . . .+ γKH̃IT t−K+1 ≤ 1.

This restriction is imposed using one of two transformations, the normal CDF (Φ(z)) which produces
the probit model or the logistic function (ez/(1+ ez)) which produces the logit model. Generally the
choice between these two makes little difference. If Xt = [1 Ft+1|t H̃IT t H̃IT t−1 . . . H̃IT t−K+1], the
model for H̃IT is

H̃IT t+1|t = Φ(Xtγ)

where the normal CDF is used to map from (−∞,∞) to (0,1), and so the model is a conditional
probability model. The log-likelihood is
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l(γ; H̃IT ,X) =

T∑
t=1

H̃IT t ln(Φ(Xtγ))− (1− H̃IT t) ln(1−Φ(Xtγ)). (8.24)

The likelihood ratio for testing the null H0 : γ0 = Φ−1(α),γ j = 0 for all j = 1,2, . . . ,K against an
alternative H1 = γ0 6= Φ−1(α) or γ j 6= 0 for some j = 1,2, . . . ,K can be computed

LR = 2
(

l(γ̂; H̃IT )− l(γ0; H̃IT )
)

(8.25)

where γ0 is the value under the null (γ = 0) and γ̂ is the estimator under the alternative (i.e., the
unrestricted estimator from the probit).

8.5.2 Relative Comparisons

Diebold-Mariano tests can be used to rank the relative performance of VaR forecasting models (Diebold
and Mariano, 1995). DM tests of VaR models are virtually identical to DM tests on the forecasts from
two conditional mean or conditional variance models. The only important difference is the use of
the VaR-specific tick loss function. If L(rt+1,VaRt+1|t) is a loss function defined over VaR, then a
Diebold-Mariano test statistic can be computed

DM =
d√

V̂
[
d
] (8.26)

where

dt = L(rt+1,VaRA
t+1|t)−L(rt+1,VaRB

t+1|t),

VaRA and VaRB are the Value-at-Risks from models A and B respectively, d = R−1∑M+R
t=M+1 dt , M (for

modeling) is the number of observations used in the model building and estimation, R (for reserve)

is the number of observations held back for model evaluation, and
√

V̂
[
d
]

is the long-run variance
of dt which requires the use of a HAC covariance estimator (e.g., Newey-West). Recall that DM is
asymptotically normally distributed. The null is equal accuracy, H0 : E [dt ] = 0, and the composite
alternative is HA

1 : E [dt ] < 0 and HB
1 : E [dt ] > 0. Large negative values (less than -2) indicate model

A is superior while large positive values indicate the opposite; values close to zero indicate neither
forecasting model outperforms the other.

Ideally the loss function, L(·), should reflect the user’s preference over VaR forecast errors. In
some circumstances there is no obvious choice, and the tick loss function,

L(rt+1,VaRt+1|t) = α(rt+1−VaRt+1|t)(1− I[rt+1<VaRt+1|t ])+(1−α)(VaRt+1|t− rt+1)I[rt+1<VaRt+1|t ]

(8.27)
is a theoretically sound choice. When the distribution of returns is continuous, the tick-loss is uniquely
minimized at the conditional quantile. The tick-loss function has the same interpretation in a VaR
model as the mean square error (MSE) does in conditional mean model evaluation or the QLIK loss
function in volatility models evaluation.
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8.6 Expected Shortfall

Expected shortfall – also known as tail VaR – combines aspects of VaR with additional information
about the distribution of returns in the tail.8

Definition 8.4 (Expected Shortfall). Expected Shortfall (ES) is defined as the expected value of the
portfolio loss given a Value-at-Risk exceedance has occurred. The unconditional Expected Shortfall
is defined

ES = E
[

Wt+1−Wt

Wt

∣∣∣∣Wt+1−Wt

Wt
<−VaR

]
(8.28)

= E [rt+1|rt+1 <−VaR]

where Wt , is the value of the assets in the portfolio.9

The conditional, and generally more useful, Expected Shortfall is similarly defined.

Definition 8.5 (Conditional Expected Shortfall). Conditional Expected Shortfall is defined

ESt+1 = Et [rt+1|rt+1 <−VaRt+1] . (8.29)

where rt+1 return on a portfolio at time t +1. Since t is an arbitrary measure of time, t +1 also refers
to an arbitrary unit of time (day, two-weeks, 5 years, etc.)

Because the computation of Expected Shortfall requires both a quantile and an expectation, they
are generally computed from density models, either parametric or semiparametric, rather than models
focused on only the ES.

8.6.1 Evaluating Expected Shortfall models

Expected Shortfall models can be evaluated using standard techniques since Expected Shortfall is a
conditional mean,

Et [ESt+1] = Et [rt+1|rt+1 <−VaRt+1].

A generalized Mincer-Zarnowitz regression can be used to test whether this mean is zero. Let
I[rt<VaRt ] indicate that the portfolio return was less than the VaR. The GMZ regression for testing
Expected Shortfall is

(ESt+1|t− rt+1)I[rt+1<−VaRt+1|t ] = Xtγ (8.30)

8Expected Shortfall is a special case of a broader class of statistics known as exceedance measures. Exceedance
measures all describe a common statistic conditional on one or more variables being in their tail. Expected short-
fall it is an exceedance mean. Other exceedance measures which have been studied include exceedance variance,
V[X |X < qα ], exceedance correlation, Corr(X ,Y |X < qα,X ,Y < qα,Y ), and exceedance β , Cov(X ,Y |X < qα,X ,Y <

qα,Y )/(V[X |X < qα,X ]V[Y |Y < qα,Y ])
1
2 where qα,· is the α-quantile of the distribution of X or Y .

9Just like VaR, Expected Shortfall can be equivalently defined in terms of returns or in terms of wealth. For consistency
with the VaR discussion, Expected Shortfall is presented here using the return.
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where Xt , as always, is any set of time t measurable instruments. The natural choices for Xt include
a constant and ESt+1|t , the forecast Expected Shortfall. Any other time-t measurable regressors that
capture important characteristics of the tail, such as recent volatility or the VaR forecast (VaRt+1), may
also be useful in evaluating Expected Shortfall models. If the Expected Shortfall model is correct, the
null that none of the regressors are useful in predicting the difference, H0 : γ = 0, should not be
rejected. If the left-hand side term – the Expected Shortfall “surprise” – in eq. (8.30) is predictable,
then the model can be improved.

Despite the simplicity of the GMZ regression framework to evaluate Expected Shortfall, their
evaluation is difficult due to the scarcity of data available to evaluate the exceedance mean; Expected
Shortfall can only be measured when there is a VaR exceedance and so 4 years of data would only
produce 50 observations where this was true. The lack of data about the tail makes evaluating Ex-
pected Shortfall models difficult and can lead to a failure to reject in many cases even when using
misspecified Expected Shortfall models.

8.7 Density Forecasting

Value-at-Risk, a quantile, provides a narrow view into the riskiness of an asset. More importantly,
VaR may not adequately describe the types of risk relevant to a forecast consumer. A density forecast,
in contrast, summarizes everything there is to know about the riskiness of the asset. Density forecasts
nest both VaR and Expected Shortfall as special cases.

In light of this relationship, it is not apparent that VaR or Expected Shortfall should be used.
Density forecasting suffers from three distinct challenges:

• The density contains all of the information about the random variable being studied, and so a
flexible form is generally needed. The cost of this flexibility is increased parameter estima-
tion error which can be magnified when computing the expectation of nonlinear functions of a
forecast density of future asset prices (e.g., pricing an option).

• Multi-step density forecasts are rarely analytically tractable since densities do not time aggre-
gate, except in special cases that are too simple for most applications.

• Unless the user has preferences over the entire distribution, density forecasts inefficiently utilize
information.

8.7.1 Density Forecasts from ARCH models

Density forecasting from ARCH models is identical to VaR forecasting from ARCH models. For
simplicity, a model with a constant mean and GARCH(1,1) variances is used,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1).
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where G(0,1) is used to indicate that the distribution of innovations need not be normal but must
have mean 0 and variance 1. In practice, the mean and variance can be modeled using richer pa-
rameterizations that have been tailored so the historical data. Standard choices for G(·) include the
standardized Student’s t, the generalized error distribution, and Hansen’s skewed t. The 1-step ahead
density forecast is then

F̂t+1|t
d
= G(µ̂, σ̂2

t+1|t) (8.31)

where F(·) is the distribution of returns. This follow directly from the original model where rt+1 =

µ +σt+1et+1 and et+1
i.i.d.∼ G(0,1).

8.7.2 Semiparametric Density forecasting

Semiparametric density forecasting is also similar to its VaR counterpart. The model begins by as-
suming that innovations are generated according to some unknown distribution G(·),

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ G(0,1).

and estimates of σ̂2
t are computed assuming that the innovations are conditionally normal. The justi-

fication for this choice follows from the strong consistency of the variance parameter estimates even
when the innovations are not normal. Using the estimated variances, standardized innovations are
computed as êt = ε̂t/σ̂t . The final step is to compute the distribution. The simplest method to accom-
plish this is to compute the empirical CDF as

G(e) = T−1
T∑

t=1

I[êt<e]. (8.32)

The function returns the percentage of the standardized residuals smaller than the value e. This
method is trivial but has some limitations. First, the PDF does not exist since G(·) is not differen-
tiable. This property makes some applications difficult, although a histogram provides a simple, but
imprecise, method to work around the non-differentiability of the empirical CDF. Second, the CDF is
jagged and is generally an inefficient estimator, particularly in the tails.

An alternative, more accurate estimator can be constructed using a kernel to smooth the density.
A kernel density is a local average of the number of êt in a small neighborhood of e. The more
standardized residuals in this neighborhood, the higher the probability in the region, and the larger
the value of the kernel density. The kernel density estimator is defined

g(e) =
1

T h

T∑
t=1

K
(

êt− e
h

)
(8.33)

where K(·) can be one of many kernels – the choice of which usually makes little difference. The two
most common are the Gaussian,
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K(x) =
1√
2π

exp(−x2/2), (8.34)

and the Epanechnikov,

K(x) =
{ 3

4(1− x2) −1≤ x≤ 1
0 otherwise

. (8.35)

The choice of the bandwidth h determines the width of the window used to smooth the density. It
plays a more substantial role than the choice of the kernel in the accuracy of a density estimate. In
practice, Silverman’s bandwidth,

h = 1.06σT−
1
5 , (8.36)

is widely used where σ is the standard deviation of êt (which is theoretically 1, but may differ if the
model is misspecified). However, larger or smaller bandwidths can be used to produce smoother or
rougher densities, respectively. The magnitude of the bandwidth represents a bias-variance tradeoff –
a small bandwidth has little bias but is very jagged (high variance), while a large bandwidth produces
an estimate with substantial bias but very smooth (low variance). If the CDF is needed, g(e) can be
integrated using numerical techniques such as a trapezoidal approximation to the Riemann integral.

Finally, the density forecast is constructed by scaling the distribution G by σt+1|t and adding the
mean. The top panel of Figure 8.5 contains a plot of the empirical CDF and kernel smoothed CDF
of TARCH(1,1,1)-standardized S&P 500 returns in 2018. The empirical CDF is jagged, and there are
some large gaps in the observed returns. The bottom panel shows the histogram of the standardized
returns where each bin contains 10 returns, and the smoothed kernel density estimate computed using
Silverman’s bandwidth and a Gaussian kernel.

8.7.3 Multi-step density forecasting and the fan plot

Multi-step ahead density forecasts do not time aggregate. For example, consider a simple GARCH(1,1)
model with normal innovations,

rt+1 = µ + εt+1

σ
2
t+1 = ω + γ1ε

2
t +β1σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1).

The 1-step ahead density forecast of returns is

rt+1|Ft ∼ N(µ,σ2
t+1|t). (8.37)

Since innovations are conditionally normal and Et

[
σ2

t+2|t

]
is simple to compute, it is tempting con-

struct a 2-step ahead forecast also using a normal,

rt+2|Ft ∼ N(µ,σ2
t+2|t). (8.38)

This forecast is not correct since the 2-step ahead distribution is a variance-mixture of normals and so
is itself non-normal. This reason for the difference is that σ2

t+2|t , unlike σ2
t+1|t , is a random variable
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Empirical and Smoothed Distribution of the S&P 500
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Figure 8.5: The top panel shows the rough empirical and smoothed empirical CDF for standardized
returns of the S&P 500 in 2018 (standardized by a TARCH(1,1,1)). The bottom panel shows the
histogram of the standardized returns using bins with 10 observations each and the smoothed kernel
density.

and the uncertainty in σ2
t+2|tmust be integrated out to determine the distribution of rt+2. The correct

form of the 2-step ahead density forecast is

rt+2|Ft ∼
∫ ∞
−∞

φ(µ,σ2(et+1)t+2|t+1)φ(et+1)det+1.

where φ(·) is a normal probability density function and σ2(et+1)t+2|t+1 reflects the explicit depen-
dence of σ2

t+2|t+1 on et+1. While this expression is fairly complicated, a simpler way to view it is as
a mixture of normal random variables where the probability of getting a specific normal depends on
w(e) = φ(et+1),

rt+2|Ft ∼
∫ ∞
−∞

w(e) f (µ,σ(et+1)t+2|t+1)de.

Unless w(e) is constant, the resulting distribution is not a normal. The top panel in Figure 8.6 contains
the naïve 10-step ahead forecast and the correct 10-step ahead forecast for a simple GARCH(1,1)
process,
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Multi-step density forecasts
10-step ahead density
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Figure 8.6: Naïve and correct 10-step ahead density forecasts from a simulated GARCH(1,1) model.
The correct density forecasts have substantially fatter tails then the naïve forecast as evidenced by the
central peak and cross-over of the density in the tails.

rt+1 = εt+1

σ
2
t+1 = .02+ .2ε

2
t + .78σ

2
t

εt+1 = σt+1et+1

et+1
i.i.d.∼ N(0,1)

where ε2
t = σt = σ̄ = 1 and hence Et [σt+h] = 1 for all h. The bottom panel contains the plot of the

density of a cumulative 10-day return (the sum of the 10 1-day returns). In this case the naïve model
assumes that

rt+h|Ft ∼ N(µ,σt+h|t)

for h = 1,2, . . . ,10. The correct forecast has heavier tails than the naïve forecast which can be verified
by checking that the solid line is above the dashed line in the extremes.
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Fan plot of the forecasts of an AR(2)
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Figure 8.7: Future density of a persistent AR(2) with i.i.d. standard normal increments. Darker regions
indicate higher probability while progressively lighter regions indicate less likely events.

Fan Plots

A fan plot is a graphical tool to convey information about future changes in uncertainty. The Bank of
England has popularized these representations as a method to convey the uncertainty about the future
of the economy. Figure 8.7 contains a fan plot of the forecast density for a persistent AR(2) with
i.i.d. standard normal increments.10 Darker regions indicate higher probability while progressively
lighter regions indicate less likely events.

8.7.4 Quantile-Quantile (QQ) plots

A Quantile-Quantile, or QQ, plot is a graphical tool that is used to assess the fit of a density or a
density forecast. Suppose a set of standardized residuals êt are assumed to have a distribution F . The

10The density was generated from the AR(2) Yt = 1.8Yt−1− 0.81Yt−2 + εt where the final two in-sample values are
YT = 4.83 and YT−1 = 1.37.
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QQ plots of S&P 500 returns
Normal Student’s t, ν = 5.8
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GED, ν = 1.25 Skewed t, ν = 6.3,λ =−0.19
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Figure 8.8: QQ plots of the studentized S&P 500 returns against fitted Normal, Student’s t, GED and
Skewed t distributions. Points along the 45o indicate a good distributional fit.

QQ plot is generated by ordering the standardized residuals,

ê1 < ê2 < .. . < ên−1 < ên

and then plotting the ordered residual ê j (x-axis) against its hypothetical value (y-axis) if the correct

distribution were F , which is the inverse CDF evaluated at j
T+1 ,

(
F−1

(
j

T+1

))
. This graphical as-

sessment of a distribution is formalized in the Kolmogorov-Smirnov test. Figure 8.8 contains 4 QQ
plots for monthly S&P 500 returns against a normal, a Student’s t, a skewed t, and a GED. The MLE
of the density parameters were used to produce the QQ plots. The normal appears to be badly mis-
specified in the tails – as evidenced through deviations from the 45o line. The other models appear
adequate for the monthly returns. The skewed t performs especially well in the lower tail.
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8.7.5 Evaluating Density Forecasts

All density evaluation strategies are derived from a basic property of continuous random variables: if
x ∼ F , then u ≡ F(x) ∼U(0,1). That is, for any continuous random variable X , the cumulant of X
has a Uniform distribution over [0,1]. The opposite of this results is also true, if U ∼ Uniform(0,1),
F−1(U) = X ∼ F .11

Theorem 8.1 (Probability Integral Transform). Let a random variable X have a continuous, increas-
ing CDF FX(x) and define Y = FX(X). Then Y is uniformly distributed and Pr(Y ≤ y) = y, 0 < y < 1.

Theorem 8.1. For any y ∈ (0,1), Y = FX(X), and so

FY (y) = Pr(Y ≤ y) = Pr(FX(X)≤ y)

= Pr(F−1
X (FX(X))≤ F−1

X (y)) Since F−1
X is increasing

= Pr(X ≤ F−1
X (y)) Invertible since strictly increasing

= FX(F−1
X (y)) Definition of FX

= y

The proof shows that Pr(FX(X) ≤ y) = y and so Y = FX(X) must be a uniform random variable (by
definition).

The Kolmogorov-Smirnov (KS) test exploits this property of residuals from the correct distribu-
tion to test whether a set of observed data are compatible with a specified distribution F . The test
statistic is calculated by first computing the probability integral transformed residuals ût = F(êt)
from the standardized residuals and then sorting them

u1 < u2 < .. . < un−1 < un.

The KS test statistic is then computed from

KS = max
τ

∣∣∣∣∣
τ∑

i=1

I[u j<
τ

T ]
− 1

T

∣∣∣∣∣ (8.39)

= max
τ

∣∣∣∣∣
(

τ∑
i=1

I[u j<
τ

T ]

)
− τ

T

∣∣∣∣∣
The test statistic finds the maximum deviation between the number of u j less than τ

T and the expected
number of observations which should be less than τ

T . Since the probability integral transformed
residuals should be Uniform(0,1) when the model is correctly specified, the number of probability
integral transformed residuals expected to be less than τ

T is τ

T . The distribution of the KS test is
nonstandard and simulated critical values are available in most software packages.

11The latter result can be used as the basis of a random number generator. To generate a random number with a CDF
of F , first generate a uniform value, u, and then compute the inverse CDF of u to produce a random number from F ,
y = F−1(u). If the inverse CDF is not available in closed form, monotonicity of the CDF allows for quick, precise
numerical inversion.
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KS test of normal and standardized t4 when the data are normal
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Figure 8.9: A KS test with simulated normal and t3 data. In both cases, the null is that the data have
normal distributions. The data generated from the t3 crosses the confidence boundary indicating a
rejection of this specification. An accurate density forecast should produce a cumulative distribution
close to the 45o line.

The KS test has a graphical interpretation as a QQ plot of the probability integral transformed
residuals against a uniform. Figure 8.9 contains a representation of the KS test using data from two
series: the first is standard normal and the second is a standardized Student’s t3. 95% confidence
bands are denoted with dotted lines. The data from both series were assumed to be from a standard
normal. The KS test rejects normality of the t3 data as evidenced by the cumulants just crossing the
confidence band.

Parameter Estimation Error and the KS Test

The critical values supplied by most packages do not account for parameter estimation error. KS
tests on in-sample data from models with estimated parameters are less likely to reject than if the true
parameters are known. For example, if a sample of 1000 random variables are i.i.d. standard normal
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and the mean and variance are known to be 0 and 1, the 90, 95 and 99% CVs for the KS test are
0.0387, 0.0428, and 0.0512. If the parameters are not known and must be estimated, the 90, 95 and
99% CVs are reduced to 0.0263, 0.0285, 0.0331. Thus, the desired size of 10% (corresponding to a
90% critical value) has an actual size closer to 0.1%. Using the wrong critical value distorts the size
of the test and lowers the test’s power – the test statistic is unlikely to reject the null hypothesis in
many instances where it should.

The solution to this problem is simple. Since the KS-test requires knowledge of the entire distri-
bution, it is simple to simulate a sample with length T , to estimate the parameters, and to compute the
KS test of the simulated standardized residuals (where the residuals are using estimated parameters).
These steps can be repeated B times (B> 1000, possibly larger) and then the correct critical values can
be computed from the empirical 90, 95 or 99% quantiles from KSb, b = 1,2, . . . ,B. These quantiles
are the correct values to use under the null while accounting for parameter estimation uncertainty.

8.7.6 Evaluating conditional density forecasts

In a direct analogue to the unconditional case, if Xt+1|Ft ∼F , then ût+1≡F(x̂t+1)|Ft
i.i.d.∼U(0,1). That

is, the probability integral transformed residuals are conditionally i.i.d.Uniform(0,1). While this con-
dition is simple and easy to interpret, direct implementation of a test is not. The Berkowitz (2001)
test works around this by further transforming the probability integral transformed residuals into nor-
mals using the inverse Normal CDF . Specifically if ût+1 = Ft+1|t(êt+1) are the residuals standardized
by their forecast distributions, the Berkowitz test computes Ŷt+1 = Φ−1(ût+1) = Φ−1(Ft+1|t(êt+1))

which have the property, under the null of a correct specification that Ŷt
i.i.d.∼ N(0,1) – an i.i.d. sequence

of standard normal random variables.
Berkowitz proposes using a regression model to test the Yt for i.i.d.N(0,1). The test is implement-

ing by estimating the parameters of

Yt = φ0 +φ1Yt−1 +ηt

via maximum likelihood. The Berkowitz test is computing using the likelihood ratio test

LR = 2(l(θ̂ ;Y)− l(θ 0;Y))∼ χ
2
3 (8.40)

where θ 0 are the parameters if the null is true, φ0 = φ1 = 0 and σ2 = 1 (3 restrictions). In other words,
that the Yt are independent normal random variables with a variance of 1. As is always the case in
tests of conditional models, the regression model can be augmented to include any time t−1 available
instrument and a more general specification is

Yt = Xtγ +ηt

where Xt may contains a constant, lagged Yt or anything else relevant for evaluating a density forecast.
In the general specification, the null is H0 : γ = 0,σ2 = 1 and the alternative is the unrestricted estimate
from the alternative specification. The likelihood ratio test statistic in the general case would have a
χ2

K+1 distribution where K is the number of elements in Xt (the +1 comes from the restriction that
σ2 = 1).
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8.8 Coherent Risk Measures

With multiple measures of risk available, which should be chosen: variance, VaR, or Expected Short-
fall? Recent research into risk measurement has identified four desirable properties of any risk mea-
sure. Let ρ be any measure of risk, e.g., VaR or ES, that maps the riskiness of a portfolio to the
reserves required to cover regularly occurring losses. P, P1 and P2 are portfolios of assets.

Drift Invariance

The requires reserved for portfolio P satisfies

ρ (P+C) = ρ (P)− c

That is, adding a portfolio C with a constant return c to P decreases the required reserved by that
amount.

Homogeneity

The required reserved are linear homogeneous,

ρ(λP) = λρ(P) for any λ > 0. (8.41)

The homogeneity property states that the required reserves of two portfolios with the same relative
holdings of assets depends linearly on the scale – doubling the size of a portfolio while not altering its
relative composition generates twice the risk, and requires twice the reserves to cover regular losses.

Monotonicity

If P1 first-order stochastically dominates P2 (P1 FOSD P2), the required reserves for P1 must be less
than those of P2since

ρ(P1)≤ ρ(P2). (8.42)

If P1 FOSD P2 then the value of portfolio P1 is larger than the value of portfolio P2 in every state of
the world, and so the portfolio must be less risky.

Subadditivity

The required reserves for the combination of two portfolios is less than the required reserves for each
treated separately

ρ(P1 +P2)≤ ρ(P1)+ρ(P2). (8.43)

Definition 8.6 (Coherent Risk Measure). Any risk measure which satisfies these four properties is
coherent.

Coherency seems like a good thing for a risk measure. The first three conditions are indisputable.
For example, in the third, if P1 FOSD P2, then P1 always has a higher return, and so must be less risky.
The last is somewhat controversial.
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Theorem 8.2 (Value-at-Risk is not Coherent). Value-at-Risk is not coherent since it fails the subad-
ditivity criteria. It is possible to have a VaR which is superadditive where the Value-at-Risk of the
combined portfolio is greater than the sum of the Values-at-Risk of either portfolio.

Examples of the superadditivity of VaR usually require a portfolio for non-linear exposures. The
simplest example where subadditivity fails is in portfolios of defaults bonds. Suppose P1 and P2
are portfolios where each contains a single bond with a face value of $1,000 paying 0% interest.
The bonds in the portfolios are from two companies. Assume that the default of one company is
independent of the default of the other and that each company defaults with probability 3%. If a
company defaults, only 60% of the bond value is recovered. The 5% VaR of both P1 and P2 is 0 since
the companies pays the full $1,000 97% of the time. The VaR of P3 = 50%×P1+50%×P2, however,
is $200 since at least one company defaults 5.91% of the time. The distribution of P3 is:

Probability Portfolio Value
0.09% $600
5.82% $800

94.09% $1,000

Expected Shortfall, on the other hand, is a coherent measure of risk.

Theorem 8.3 (Expected Shortfall is Coherent). Expected shortfall is a coherent risk measure.

The proof that Expected Shortfall is coherent is straight forward in specific models (for example,
if the returns are jointly normally distributed). The proof for an arbitrary distribution is challenging
and provides little intuition. However, coherency alone does not make Expected Shortfall a better
choice than VaR for measuring portfolio risk. VaR has many advantages as a risk measure: it only
requires the modeling of a quantile of the return distribution, VaR always exists and is finite, and there
are many well-established methodologies for accurately estimating VaR. Expected Shortfall requires
an estimate of the mean in the tail which is more difficult to estimate accurately than the VaR. The
ES may not exist in some cases if the distribution is very heavy-tailed. Additionally, in most realistic
cases, increases in the Expected Shortfall is accompanied with increases in the VaR, and so these two
measures often agree about the risk in a portfolio.

Shorter Problems

Exercise 8.1. Discuss any properties the generalized error should have when evaluating Value-at-Risk
models.

Exercise 8.2. Define and contrast Historical Simulation and Filtered Historical Simulation?

Exercise 8.3. Define Expected Shortfall. How does this extend the idea of Value-at-Risk? Why is it
preferred to Value-at-Risk?

Exercise 8.4. Why are HITs useful for testing a Value-at-Risk model?

Exercise 8.5. Define conditional Value-at-Risk. Describe two methods for estimating this and com-
pare their strengths and weaknesses.

Exercise 8.6. How are Value-at-Risk forecasts assessed? Describe two methods that can be sued to
detect flawed Value-at-Risk models.
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Exercise 8.7. Precisely answer the following questions.

1. What is VaR?

2. What is Expected Shortfall?

3. Describe two methods to estimate the VaR of a portfolio? Compare the strengths and weak-
nesses of these two approaches.

4. Suppose two bankers provide you with VaR forecasts (which are different) and you can get data
on the actual portfolio returns. How could you test for superiority? What is meant by better
forecast in this situation?

Exercise 8.8. The figure below plots the daily returns on IBM from 1 January 2007 to 31 December
2007 (251 trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first
model (denoted “HS”) uses Historical Simulation with a 250-day window of data. The second model
uses a GARCH(1,1) model, assuming that daily returns have a constant conditional mean, and are
conditionally Normally distributed (denoted “Normal-GARCH” in the figure).
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Daily returns on IBM in 2007, with 5% VaR forecasts
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1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative to
the Historical Simulation model and the Normal-GARCH model.

2. For each of the two VaR forecasts in the figure, a sequence of HIT variables was constructed:

HIT HS
t = 1

{
rt ≤ V̂aR

HS
t

}
HIT GARCH

t = 1
{

rt ≤ V̂aR
GARCH
t

}
where 1{rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a
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and the following regression was run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0956

(0.0186)
+ut

HIT GARCH
t = 0.0438

(0.0129)
+ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts from
these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.1018

(0.0196)
−0.0601

(0.0634)
HIT HS

t−1 +ut

HIT GARCH
t = 0.0418

(0.0133)
+0.0491

(0.0634)
HIT GARCH

t−1 +ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 6.9679 for the first regression, and 0.8113 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

q 95% critical value
1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96

Exercise 8.9. Figure 8.10 plots the daily returns from 1 January 2008 to 31 December 2008 (252
trading days), along with 5% Value-at-Risk (VaR) forecasts from two models. The first model (de-
noted “HS”) uses historical simulation with a 250-day window of data. The second model uses a
GARCH(1,1) model, assuming that daily returns have a constant conditional mean, and are condi-
tionally Normally distributed (denoted “Normal-GARCH” in the figure).

1. Briefly describe one other model for VaR forecasting, and discuss its pros and cons relative to
the Historical Simulation model and the Normal-GARCH model.
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2. For each of the two VaR forecasts in the figure, a sequence of HIT variables was constructed:

HIT HS
t = 1

{
rt ≤ V̂aR

HS
t

}
HIT GARCH

t = 1
{

rt ≤ V̂aR
GARCH
t

}
where 1{rt ≤ a} =

{
1, if rt ≤ a
0, if rt > a

and the following regression was run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0555

(0.0144)
+ut

HIT GARCH
t = 0.0277

(0.0103)
+ut

(a) How can we use the above regression output to test the accuracy of the VaR forecasts from
these two models?

(b) What do the tests tell us?

3. Another set of regressions was also run (standard errors are in parentheses below the parameter
estimates):

HIT HS
t = 0.0462

(0.0136)
+0.1845

(0.1176)
HIT HS

t−1 +ut

HIT GARCH
t = 0.0285

(0.0106)
−0.0233

(0.0201)
HIT GARCH

t−1 +ut

A joint test that the intercept is 0.05 and the slope coefficient is zero yielded a chi-squared
statistic of 8.330 for the first regression, and 4.668 for the second regression.

(a) Why are these regressions potentially useful?

(b) What do the results tell us? (The 95% critical values for a chi-squared variable with q
degrees of freedom are given below:)

4. Comment on the similarities and differences between what you found when testing using only
a constant and when using a constant and the lagged HIT .

q 95% critical value
1 3.84
2 5.99
3 7.81
4 9.49
5 11.07

10 18.31
25 37.65

249 286.81
250 287.88
251 288.96
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Figure 8.10: Returns, Historical Simulation VaR and Normal GARCH VaR.

Exercise 8.10. Answer the following question:

1. Assume that X is distributed according to some distribution F that is continuous and strictly
increasing. Define U ≡ F (X) . Show that U ∼ Uniform(0,1) .

2. Assume that V ∼Uni f orm(0,1) , and that G is some continuous and strictly increasing distri-
bution function. If we define Y ≡ G−1 (V ), show that Y ∼ G.

For the next two parts, consider the problem of forecasting the time taken for the price of a
particular asset (Pt) to reach some threshold (P∗). Denote the time (in days) taken for the
asset to reach the threshold as Zt . Assume that the true distribution of Zt is Exponential with
parameter β ∈ (0,∞) :

Zt ∼ Exponential(β )

so F (z;β ) =

{
1− exp{−β z} , z≥ 0

0, z < 0

Now consider a forecaster who gets the distribution correct, but the parameter wrong. Denote
her distribution forecast as F̂ (z) = Exponential

(
β̂

)
.
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3. If we define U ≡ F̂ (Z) , show that Pr [U ≤ u] = 1− (1−u)β/β̂ for u ∈ (0,1) , and interpret.

4. Now think about the case where β̂ is an estimate of β , such that β̂
p→ β as n→∞. Show that

Pr [U ≤ u]
p→ u as n→∞, and interpret.

Exercise 8.11. A Value-at-Risk model was fit to some return data, and the series of 5% VaR violations
was computed. Denote these H̃IT t . The total number of observations was T = 50, and the total
number of violations was 4.

1. Test the null that the model has unconditionally correct coverage using a t-test.

2. Test the null that the model has unconditionally correct coverage using a LR test. The likelihood
for a Bernoulli(p) random Y is

f (y; p) = py (1− p)1−y .

The following regression was estimated

H̃IT t = 0.0205+0.7081H̃IT t−1 + η̂t

The estimated asymptotic covariance of the parameters is

σ̂
2
Σ̂
−1
XX =

[
0.0350 −0.0350
−0.0350 0.5001

]
, and Σ̂

−1
XX ŜΣ̂

−1
XX =

[
0.0216 −0.0216
−0.0216 2.8466

]

where σ̂2 = 1
T
∑T

t=1 η̂2
t , Σ̂XX = 1

T X′X and Ŝ = 1
T
∑T

t=1 η̂2
t X′tXt .

3. Is there evidence that the model is dynamically misspecified, ignoring the unconditional rate of
violations?

4. Compute a joint test that the model is completely correctly specified. Note that[
a b
b c

]−1

=
1

ac−b2

[
c −b
−b a

]
.

Note: The 5% critical values of a χ2
v are

ν CV
1 3.84
2 5.99
3 7.81

47 64.0
48 65.1
49 66.3
50 67.5

Exercise 8.12. Suppose you have a sample of 500 observations to evaluate a Value-at-Risk model
using Out-of-Sample forecasts. You observe 36 95% VaR violations in this period.
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1. What features the VaR violations of a correctly specified VaR model have?

2. Perform a test that the model is well specified using the sample average.

3. The likelihood of a Bernoulli(p) random variable is

L(y; p) = yp (1− y)(1−p) .

How can you use this likelihood to implement a better test? Compute the test statistic and draw
conclusions about the accuracy of the model.

4. Explain the differences between these two approaches.

5. Fully describe one method that would allow you to use the time series of VaR violations to test
whether the model has correctly specified dynamics.
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Chapter 9

Multivariate Volatility, Dependence and
Copulas

Modeling the conditional covariance of the assets in a portfolio is more challenging
than modeling the variance of the portfolio. There are two challenges unique to the
multivariate problem: ensuring that the conditional covariance is positive definite
and finding a parsimonious specification that limits the number of model parameters
in applications to large portfolios. This chapter covers standard moving-average co-
variance models, multivariate ARCH and Realized Covariance. While correlations
are a key component of portfolio optimization, these measures are insufficient to
fully characterize the joint behavior of asset returns, especially when markets are
turbulent. This chapter introduces leading alternative measures of cross-asset de-
pendence and then concludes with an introduction to a general framework for mod-
eling multivariate returns using copulas.

9.1 Introduction

Multivariate volatility or covariance modeling is a crucial ingredient in modern portfolio management.
It is applied to many important tasks, including:

• Portfolio Construction - Classic Markowitz (1959) portfolio construction requires an estimate
of the covariance of returns, along with the expected returns of the assets, to determine the op-
timal portfolio weights. The Markowitz problem finds the portfolio with the minimum variance
subject to achieving a required expected return. Alternatively, the Markowitz problem can be
formulated as maximizing the expected mean of the portfolio given a constraint on the volatility
of the portfolio.

• Portfolio Sensitivity Analysis - Many portfolios are constructed using objectives other than
those in the Markowitz optimization problem. For example, fund managers may be selecting
investment opportunities based on beliefs about fundamental imbalances between a firm and
its competitors. Accurate measurement of asset return covariance is essential when assessing
the portfolio’s sensitivity to new positions. The sensitivity to the existing portfolio may be the
deciding factor when evaluating multiple investment opportunities that have similar risk-return
characteristics.
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• Value-at-Risk - Naive α−VaR estimators scale the standard deviation of a portfolio by a con-
stant value that depends on the quantile α . The conditional covariance allows the VaR sensitiv-
ity of the positions in the portfolio to be examined.

• Credit Pricing - Many credit products are written on a basket of bonds, and the correlation
between the defaults of the underlying bonds is essential when determining the value of the
derivative.

• Correlation Trading - Recent financial innovations allow correlation to be directly traded. The
traded correlation is formally an equicorrelation (See 9.3.5). These products allow accurate
correlation predictions to be used as the basis of a profitable trading strategy.

This chapter begins with an overview of simple, static estimators of covariance which are widely
used. Attention then turns to dynamic models of conditional covariance based on the ARCH frame-
work. Realized covariance, which exploits ultra-high frequency data in the same manner as realized
variance, is then introduced as an improved estimator of the covariance. This chapter concludes with
an examination of non-linear dependence measures and copulas, a recent introduction to financial
econometrics that enables complex multivariate models to be flexibly constructed.

9.2 Preliminaries

Most volatility models are built using either returns, which is appropriate if the time horizon is small
and the conditional mean is small relative to the conditional volatility or demeaned returns when using
longer time-spans or if working with series with a non-trivial mean (e.g., electricity prices). The k by
1 vector of returns is denoted rt , and the demeaned returns are ε t = rt−µ t where µ t ≡ Et−1 [rt ] is the
conditional mean.

The conditional covariance, Σt ≡ Et−1 [ε tε
′
t ], is assumed to be a k by k positive definite ma-

trix. Some models make use of devolatilized residuals defined as ui,t = εi,t/σi,t , i = 1,2, . . . ,k, or
in matrix notation ut = ε t �σ t where � denoted Hadamard division (element-by-element) and σ t
is a k by vector of conditional standard deviations. Multivariate standardized residuals, which are

both devolatilized and decorrelated, are defined et = Σ
− 1

2
t ε t so that Et−1 [ete′t ] = Ik. Some models

explicitly parameterize the conditional correlation, Et−1 [utu′t ] ≡ Rt = Σt � (σ tσ
′
t), or equivalently

Rt = D−1
t ΣtD−1

t where

Dt =


σ1,t 0 . . . 0
0 σ2,t . . . 0
...

...
...

...
0 0 . . . σk,t


and so Σt = DtRtDt .

Some models use a factor structure to reduce the dimension of the estimation problem. The p by
1 vector of factors is denoted ft and the factor returns are assumed to be mean 0 , or demeaned if
the assumption of conditional mean 0 is inappropriate. The conditional covariance of the factors is
denoted Σ

f
t ≡ Et−1 [ftf′t ].

This chapter focuses exclusively on models capable of predicting the time-t covariance using
information in Ft−1. Multi-step forecasting is possible from many models in this chapter by direct
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recursion, simulation or bootstrapping. Alternatively, direct forecasting techniques can be used to
mix higher frequency data (e.g., daily) with longer forecast horizons (e.g., 2-week or one month).

9.2.1 Synchronization

Synchronization is a significant concern when measuring and modeling covariance, and non-synchronous
returns can occur for a variety of reasons:

• Market opening and closing time differences – Most assets trade in liquid markets for only a
fraction of the day. Differences in market hours frequently occur when modeling the return of
assets that trade in different venues. The NYSE closes at either 20:00 or 21:00 GMT, depending
on whether the U.S. east coast is using Eastern Standard or Daylight Time (EDT or EST). The
London Stock Exchange closes at 15:30 or 16:30 GMT, depending on whether the U.K. is on
British Summer Time (BST). Changes in U.S. equity prices that occur after the LSE closes are
not reflected in U.K. equity prices until the next trading day.

Even within the same geographic region markets have different trading hours. Common U.S.
equities trade from 9:30 until 16:00 EDT/EST time. U.S. government bond futures are traded
using open outcry from 7:20 a.m. to 14:00. Light Sweet Crude futures trade 9:00 - 14:30 in an
open outcry session. Closing prices, which are computed at the end of the trading day, do not
reflect the same information in these three markets.

• Market closures due to public holidays – Markets are closed for public holidays which dif-
fer across geographies. Closures can even differ across markets, especially across asset class,
within a country due to historical conventions.

• Delays in opening or closing – Assets that trade on the same exchange may be subject to open-
ing or closing delays. For example, the gap between the first-to-open and the last-to-open
stock in the S&P 500 can be as long as 15 minutes. While the range of closing times of the
constituents is narrower, these are also not perfectly synchronized. These seemingly small dif-
ferences lead to challenges when measuring the covariance using intra-daily (high-frequency)
returns.

• Illiquidity/Stale Prices - Some assets trade more than others. The most liquid stock in the S&P
500 has a daily volume that is typically at least 100 times larger than the least liquid. Illiquidity
is problematic when measuring covariance using intra-daily data.1

There are three solutions to address biases that arise when modeling non-synchronous data. The first
is to use relatively low-frequency returns. When using daily data, the NYSE and LSE are typically
simultaneously open for 2 hours of 61/2 hour U.S. trading day (30%). Using multi-day returns partially
mitigates the lack of standardized opening hours since developments in U.S. equities on one day affect
prices in London on the next day. For example, when using 2-day returns, it is as if 8.5 out of the 13
trading hours are synchronous (65%). When using weekly returns (5-day), 28 out of 32.5 hours are
synchronized (86%). The downside of aggregating returns is the loss of data: parameter estimators

1On February 26, 2010, the most liquid S&P 500 company was Bank of America (BAC) which had a volume of
96,352,600. The least liquid S&P 500 company was the Washington Post (WPO) which had a volume of 21,000. IMS
Healthcare (RX) was acquired by another company, and so did not trade.
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are less efficient when and low-frequency return measurement makes it difficult to adjust portfolios
for change in risk due to recent news.

The second solution is to use synchronized prices (also known as pseudo-closing prices). Syn-
chronized prices are collected when all markets are simultaneously open. For example, if using prices
of NYSE and LSE listed firms, returns constructed using prices sampled 1 hour before the LSE closes,
which typically corresponds to 10:30 Eastern time, are synchronized. Daily returns constructed from
these prices should capture all of the covariance between these assets. This approach is only a partial
solution since many markets overlap in their trading hours, and so it is not applicable when measuring
the covariance of a broad internationally diversified portfolio.

The third solution is to synchronize the non-synchronous returns using a vector moving average
(Burns, Engle, and Mezrich, 1998). Suppose returns are ordered so that the first to close is in position
1, the second to close is in position 2, and so on until the last to close is in position k. With this
ordering, returns on day t+1 for asset i may be correlated with the return on day t for asset j whenever
j > i, and that the return on day t +1 should not be correlated with the day t return on asset j when
j ≤ i.

For example, consider modeling the leading equity index of the Australian Stock Exchange (UTC
0:00 - 6:10), the London Stock Exchange (UTC 8:00 - 16:30), NYSE (UTC 14:30 - 21:30) and Tokyo
Stock Exchange (UTC 18:00 - 0:00 (+1 day)). The ASX closes before any of the others open. News
from the ASX on day t appears in the LSE, NYSE, and TSE on the same day. The LSE opens
second and so innovations in the LSE on day t may be correlated with changes on the ASX on t +1.
Similarly, innovations in New York after UTC 16:30 affect t +1 returns in the ASX and LSE. Finally,
news which comes out when the TSE is open shows up in the day t +1 return in the 3 other markets.
This leads to a triangular structure in a vector moving average,

rASX
t

rLSE
t

rNY SE
t

rT SE
t

=


0 θ12 θ13 θ14
0 0 θ23 θ24
0 0 0 θ34
0 0 0 0




εASX
t−1

εLSE
t−1

εNY SE
t−1

εT SE
t−1

+


εASX
t

εLSE
t

εNY SE
t

εT SE
t

 (9.1)

The recursive structure of this system simplifies estimation since rT SE
t = εT SE

t , and so the model for
rNY SE
t is a MA(1)-X. Given estimates of εNY SE

t , the model for rLSE
t is also a MA(1)-X. This recursive

MA(1)-X structure applies to the remaining assets in the model.
In vector form, this adjustment model is

rt = Θε t−1 + ε t

where rt is the k by 1 vector of nonsynchronous returns. Synchronized returns, r̂t are constructed
using the VMA parameters as

r̂t = (Ik +Θ)ε t .

Θ captures any components in asset return j correlated with the return to asset return i when market
i closes later than the where j. In essence this procedure “brings forward” the fraction of the return
which has not yet occurred when asset j closes. Finally, the conditional covariance of ε t is Σt , and
so the covariance of the synchronized returns is Et−1 [r̂t r̂t ] = (Ik +Θ)Σt (Ik +Θ)′. Implementing this
adjustment requires fitting the conditional covariance to the residual from the VMA, ε t , rather than to
returns directly.
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9.3 Simple Models of Multivariate Volatility

Many simple models that rely on closed-form parameter estimators are widely used as benchmarks.
These models are localized using rolling-windows, and so have a limited ability to adapt to changing
market conditions.

9.3.1 Moving Average Covariance

The n-period moving average is the simplest covariance estimator.

Definition 9.1 (n-period Moving Average Covariance). The n-period moving average covariance is
defined

Σt = n−1
n∑

i=1

ε t−iε
′
t−i (9.2)

When returns are measured daily, standard choices for n are 22 (monthly), 66 (quarterly), or 252
(annual). When returns are measured monthly, standard choices for n are 12 (annual) or 60. When
variance and correlations are time-varying, moving average covariances are imprecise measures; they
simultaneously give too little weight to recent observations and place too much on observations in the
distant past.

9.3.2 Exponentially Weighted Moving Average Covariance

Exponentially weighted moving averages (EWMA) are an alternative to moving average covariance
estimators and allow for more weight on recent information. EWMAs have been popularized in the
volatility literature by RiskMetrics, which is introduced as a standard VaR model in chapter 8.

Definition 9.2 (Exponentially Weighted Moving Average Covariance). The EWMA covariance is
defined recursively as

Σt = (1−λ )ε t−1ε
′
t−1 +λΣt−1 (9.3)

for λ ∈ (0,1). EWMA covariance is equivalently defined through the infinite moving average

Σt = (1−λ )

∞∑
i=1

λ
i−1

ε t−iε
′
t−i. (9.4)

An EWMA covariance estimator depends on an initial value for Σ1, which is usually set to the average
covariance over the first m days for some m> k or to the full-sample covariance. The single remaining
parameter, λ , is usually to a value close to 1.

Definition 9.3 (RiskMetrics 1994 Covariance). The RiskMetrics 1994 Covariance is computed as an
EWMA with λ = .94 for daily data or λ = .99 for monthly (J.P.Morgan/Reuters, 1996).

The RiskMetrics EWMA estimator, formally known as RM1994, has been updated to RM2006.
The improved covariance estimator uses a model with a longer memory than RM1996. Long memory
processes have weights that decay hyperbolically (w∝ i−α , α > 0) rather than exponentially (w∝ λ i).
The new methodology extends the 1994 methodology by computing the volatility as a weighted sum
of EWMAs (eq. 9.5, line 1) rather than a single EWMA (eq. 9.3). This structure simplifies estima-
tion since incorporating a new observation into the conditional covariance only requires updating the
values of a small number of EWMAs.
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Definition 9.4 (RiskMetrics 2006 Covariance). The RiskMetrics 2006 Covariance is computed as

Σt =
m∑

i=1

wiΣi,t (9.5)

Σi,t = (1−λi)ε t−1ε
′
t−1 +λiΣi,t−1

wi =
1
C
(1− ln(τi)/ln(τ0))

λi = exp(−1/τi)

τi = τ1ρ
i−1, i = 1,2, . . . ,m

where C is a constant that ensures that
∑m

i=1 wi = 1.

The 2006 update is a 3-parameter model that includes a logarithmic decay factor, τ0 (1560), a
lower cut-off, τ1 (4), and an upper cutoff τmax (512), where the suggested values are in parentheses.
One additional parameter, ρ , is required to operationalize the model, and RiskMetrics suggests

√
2

(Zumbach, 2007). 2

Both RiskMetrics covariance estimators can be expressed as weighted averages of the outer-
products of shocks, Σt =

∑∞
i=1 γiε t−iε

′
t−1, for a set of weights {γi}. Figure 9.1 contains a plot of

the weights on the 120 most recent observations from both estimators. The updated methodology
places both more weight on recent data and more weight on values in the distant past relative to the
RM1996 model. Computing the number of periods before 99% of the weight is accumulated, or
minn

∑n
i=0 γi ≥ .99, is a simple method to compare the two methodologies. In RM1994, 99% of the

weight accumulates in 75 observations when λ = 0.94 – the RM2006 methodology takes 619 days.
The first 75 weights in the RM2006 model contain 83% of the weight, and so 1/6 of the total weight
is assigned to returns more than 2 months in the past.

9.3.3 Observable Factor Covariance

The n-period factor model assumes that returns are generated by a strict factor structure and is closely
related to the CAP-M (Sharpe, 1964; Lintner, 1965; Black, 1972), the intertemporal CAP-M (Merton,
1973) and Arbitrage Pricing Theory (Roll, 1977). Moving average factor covariance estimators are
restricted moving average covariance estimators where the covariance between assets is attributed to
common exposure to a set of factors. The model postulates that the return on the ithasset is generated
by a set of p observable factors with returns ft , an p by 1 set of asset-specific factor loadings, β i and
an idiosyncratic shock ηi,t ,

εi,t = f′tβ i,t +ηi,t .

The k by 1 vector of returns is compactly described as

2τmax does not directly appear in the RM2006 framework, but is implicitly included since

m = 1+
ln
(

τmax
τ1

)
lnρ

.



9.3 Simple Models of Multivariate Volatility 525

Weights in RiskMetrics Estimators
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Figure 9.1: These two lines show the weights assigned to the lagged outer-product of returns (ε tε
′
t) in

the 1994 and 2006 versions of the RiskMetrics methodology. The 2006 version places more weight
on recent shocks and more weight on shocks in the distant past relative to the 1994 methodology.

ε t = β ft +η t

where β is a k by p matrix of factor loadings and η t is a k by 1 vector of idiosyncratic shocks.
The shocks are assumed to be white noise, cross-sectionally uncorrelated (Et−1

[
ηi,tη j,t

]
= 0) and

uncorrelated with the factors.

Definition 9.5 (n-period Factor Covariance). The n-period factor covariance is defined as

Σt = βΣ
f
t β
′+Ωt (9.6)
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where Σ
f
t = n−1∑n

i=1 ft−if′t−i is the n-period moving covariance of the factors,

β t =

(
n∑

i=1

ft−if′t−i

)−1 n∑
i=1

ft−iε
′
t−i

is the p by k matrix of factor loadings and Ωt is a diagonal matrix with ω2
j,t = n−1∑n

i=1 η2
j,t−i in the

jthdiagonal position where ηi,t = εi,t− f′tβ i are regression residuals.

Imposing a factor structure on the covariance has one key advantage: factor covariance estimators are
positive definite when the number of periods used to estimate the factor covariance is larger than the
number of factors (n > p). The standard moving average covariance estimator is only positive definite
when the number of observations is larger than the number of assets (n > k). This feature facilitates
application of factor covariance estimators in very large portfolios.

Structure can be imposed on the factor loadings estimator to improve covariance estimates in
heterogeneous portfolios. Loadings on unrelated factors can be restricted to zero. For example,
suppose a portfolio hold of equity and credit instruments, and that a total of 5 factors are used to
model the covariance – on common to all assets, two specific to equities and two specific to bonds.
The factor covariance is a 5 by 5 matrix, and the factor loadings for all assets have only three non-
zero coefficients: the common factor and two asset-class specific factors. Zero restrictions on the
factor loadings allow for application to large, complex portfolios, even in cases where many factors
are needed to capture the systematic risk components in the portfolio.

9.3.4 Principal Component Covariance

Principal component analysis (PCA) is a statistical technique that decomposes a T by k matrix Y into
a T by k set of orthogonal (uncorrelated) factors, F, and a k by k set of normalized weights (or factor
loadings), β . Formally the principal component problem is defined as the solution

argmin
β ,F

(kT )−1
k∑

i=1

T∑
t=1

(yi,t− ftβ i)
2 subject to β

′
β = Ik (9.7)

where ft is a 1 by k vector of common factors and β i is a k by 1 vector of factor loadings. The solution
to the principal component objective function can be computed from an eigenvalue decomposition of
the outer product of Y, ϒ = Y′Y =

∑T
t=1 yty′t .

Definition 9.6 (Orthonormal Matrix). A k-dimensional orthonormal matrix U satisfies U′U = Ik, and
so U′ = U−1.

Definition 9.7 (Eigenvalues). The eigenvalues of a real, symmetric matrix k by k matrix A are the k
solutions to

|λ Ik−A|= 0 (9.8)

where | · | is the determinant function.

Definition 9.8 (Eigenvectors). A k by 1 vector u is an eigenvector corresponding to an eigenvalue λ

of a real, symmetric matrix k by k matrix A if

Au = λu (9.9)
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Theorem 9.1 (Spectral Decomposition Theorem). A real, symmetric matrix A can be factored into
A = UΛU′ where U is an orthonormal matrix (U′ = U−1) containing the eigenvectors of A in its
columns and Λ is a diagonal matrix with the eigenvalues λ1, λ2,. . .,λk of A along its diagonal.

Since Y′Y = ϒ is real and symmetric with eigenvalues Λ = diag(λi)i=1,...,k, the factors can be
computed using the eigenvectors,

Y′Y = UΛU′

U′Y′YU = U′UΛU′U
(YU)′ (YU) = Λ since U′ = U−1

F′F = Λ.

F = YU is the T by k matrix of factors and β = U′ is the k by k matrix of factor loadings. Additionally
Fβ = FU′ = YUU′ = Y.3

The construction of the factor returns is the only difference between PCA-based covariance esti-
mators and factor estimators. Factor estimators use observable portfolio returns to measure common
exposure. In PCA-based covariance models, the factors are estimated from the returns, and so addi-
tional assets are not needed to measure common exposures.

Definition 9.9 (n-period Principal Component Covariance). The n-period principal component co-
variance is defined as

Σt = β
′
tΣ

f
t β t +Ωt (9.10)

where Σ
f
t = n−1∑n

i=1 ft−if′t−i is the n-period moving covariance of first p principal component factors.
β̂ t is the p by k matrix of principal component loadings corresponding to the first p factors. Ωt is a
diagonal matrix with diagonal elements ω2

j,t+1 = n−1∑n
i=1 η2

j,t−1 where ηi,t = ri,t − f′tβ i,t are the
residuals from a p-factor principal component analysis.

The number of factors, p, is the only parameter used to implement a PCA covariance estimator.
The simple approach is to use a fixed number of factors based on experience or empirical regularities,
e.g., selecting three factors when modeling with equity returns. The leading data-based approach is
to select the number of factors by minimizing an information criterion such as those proposed in Bai
and Ng (2002),

IC(p) = ln(V (p, f̂p))+ p
k+T

kT
ln
(

kT
k+T

)
where

V (p, f̂p) = (kT )−1
k∑

i=1

T∑
t=1

η
2
i,t (9.11)

= (kT )−1
k∑

i=1

T∑
t=1

(
ri,t−β

p
i fp

t
)2 (9.12)

3The factors and factor loadings are only identified up to ±1.
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Principal Component Analysis of the S&P 500

k = 378 1 2 3 4 5 6 7 8 9 10

Partial R2 0.327 0.038 0.035 0.025 0.023 0.018 0.015 0.010 0.010 0.008
Cumulative R2 0.327 0.366 0.401 0.426 0.449 0.467 0.482 0.492 0.502 0.510

Table 9.1: Percentage of variance explained by the first 10 eigenvalues of the outer product matrix of
S&P 500 returns. Returns on an asset are included if the asset is in the S&P 500 for 50% of the sample
(k reports the number of firms that satisfy this criterion). The second line contains the cumulative R2

of a p-factor model for the first 10 factors.

where β
p
i are the p factor loadings for asset i, and fp

t are the first p factors. The Bai and Ng in-
formation criterion is similar to other information criteria such as the HQIC or BIC. The first term,
ln(V (p, f̂p)), measures the fit of a p-component model. Increasing p always improves the fit, and
p = max(k,T ) always perfectly explains the observed data. The second term, p k+T

kT ln
( kT

k+T

)
, is a

penalty that increases in p. Trading off these two leads to a consistent choice of p in data sets that are
both long (large T ) and wide (large k).

9.3.4.1 Interpreting the components

Factors extracted using PCA can be easily interpreted in terms of their contribution to total variance
using R2. This interpretation is possible since the factors are orthogonal, and so the R2 of a model
including p < k factors is the sum of the R2 of the p factors. Suppose the eigenvalues are ordered
from largest to smallest and so λ1 ≥ λ2 ≥ . . . ≥ λk and that the factors associated with eigenvalue i
are ordered such that it appears in column i of F. The R2 associated with factor i is then

λi

λ1 +λ2 + . . .+λk
,

and the cumulative R2 of including p < k factors is

λ1 +λ2 + . . .+λp

λ1 +λ2 + . . .+λk
.

Cumulative R2 is often used to select a subset of the k factors for model building. For example,
in equity return data, it is not uncommon for 3–5 factors to explain 30-50% of the total variation in a
large panel of equity returns.

9.3.4.2 Alternative methods

Principal components are often computed on either the covariance matrix of Y or the correlation
matrix of Y. Using the covariance matrix is equivalent to building a model with an intercept,

yi,t = αi + ftβ i (9.13)

which differs from the principal components extracted from the outer product which is equivalent to
the model
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yi,t = ftβ i. (9.14)

When working with asset return data, the difference between principal components extracted from
the outer product and the covariance is negligible except in certain markets (e.g., electricity markets)
or when using low-frequency returns (e.g., a month or more).

Principal components can also be extracted from the sample correlation matrix of Y which is
equivalent to the model

yi,t− ȳi

σ̂i
= ftβ i (9.15)

where ȳi = T−1∑T
t=1 yi,t is the mean of yi and σ̂i is the sample standard deviation of yi. PCA is

usually run on the correlation matrix when a subset of the series in Y have variances which are much
larger than the others. In cases where the variances differ greatly, principal components extracted
from the outer product or covariance place more weight on the high variance series – fitting these
high variance series produces the largest decrease in overall residual variance and the largest in R2

for a fixed p. Using the correlation focuses the PCA estimator on the common (or systemic) variation
rather than the variation of a small number of high variance asset returns.

9.3.5 Equicorrelation

Equicorrelation, like factor models, is a restricted covariance estimator. The equicorrelation estimator
assumes that the covariance between any two assets can be expressed as ρσiσ j where σi and σ j are
the volatilities of assets i and j, respectively. The correlation parameter is not indexed by i or j,
and it is common to all assets. This estimator is misspecified whenever k > 2, and is generally only
appropriate for assets where the majority of the pairwise correlations are homogeneous and positive.4

Definition 9.10 (n-period Moving Average Equicorrelation Covariance). The n-period moving aver-
age equicorrelation covariance is defined as

Σt =


σ2

1,t ρtσ1,tσ2,t ρtσ1,tσ3,t . . . ρtσ1,tσk,t

ρtσ1,tσ2,t σ2
2,t ρtσ2,tσ3,t . . . ρtσ2,tσk,t

...
...

...
...

...
ρtσ1,tσk,t ρtσ2,tσk,t ρtσ3,tσk,t . . . σ2

k,t

 (9.16)

where σ2
j,t = n−1∑n

i=1 ε2
j,t and ρt is estimated using one of the estimators below.

The equicorrelation can be estimated using a moment-based estimator or a maximum-likelihood
estimator. Define εp,t as the equally weighted portfolio return. It is straightforward to see that

E[ε2
p,t ] = k−2

k∑
j=1

σ
2
j,t +2k−2

k∑
o=1

k∑
q=o+1

ρσo,tσq,t (9.17)

= k−2
k∑

j=1

σ
2
j,t +2ρk−2

k∑
o=1

k∑
q=o+1

σo,tσq,t

4The positivity constraint is needed to ensure that the covariance is positive definite which requires ρ ∈
(−1/(k−1),1), and so for k moderately large, the lower bound is effectively 0.
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if the correlations among all of the pairs of assets are identical. The moment-based estimator replaces
population values with estimates,

σ
2
j,t = n−1

n∑
i=1

ε
2
j,t−i, j = 1,2, . . . ,k, p,

and the equicorrelation is estimated using

ρt =
σ2

p,t− k−2∑k
j=1 σ2

j,t

2k−2
∑k

o=1
∑k

q=o+1 σo,tσq,t
.

Maximum likelihood, assuming returns are multivariate Gaussian, can alternatively be used to
estimate the equicorrelation using standardized residuals u j,t = ε j,t/σ j,t . The estimator for ρ can be
found by maximizing the likelihood

L(ρt ;u) =−1
2

n∑
i=1

k ln2π + ln |Rt |+u′t−iR
−1
t ut−i (9.18)

=
n∑

i=1

k ln2π + ln
(
(1−ρt)

k−1 (1+(k−1)ρt)
)

+
1

(1−ρt)

 k∑
j=1

u2
j,t−i−

ρt

1+(k−1)ρt

 k∑
q=1

uq,t−i

2


where ut is a k by 1 vector of standardized residuals and Rt is a correlation matrix with all non-
diagonal elements equal to ρ . This likelihood is computationally similar to univariate likelihood for
any k and so maximization is very fast even when k is large.5

9.3.6 Application: S&P 500

The S&P 500 is used to illustrate the moving-average covariance estimators. The CRSP database
provides daily return data for all constituents of the S&P 500. The sample runs from January 1, 1984,
until December 31, 2018. The returns on firms are included in the data set is available for at least
50% of the sample.6

Table 9.1 contains the number of assets which meet this criterion (k) and both the partial and
cumulative R2 for the first 10 principal components. The first explains a substantial amount of the
data (32.7%) and the next four combine to explain 42.6% of the cross-sectional variation. If returns
did not follow a factor structure, then each principal component is expected to explain approximately
0.25% of the variation. Table 9.2 contains the full-sample equicorrelation, 1-factor R2 using the S&P

5The computation speed of the likelihood can be increased by pre-computing
∑k

j=1 u2
j,t−i and

∑k
q=1 uq,t−i.

6The Expectations-Maximization algorithm allows PCA to be applied in data sets containing missing values. The
algorithm begins with a guess for the missing values, usually the mean of the non-missing values for each variable. The
augmented data set is then used to estimate a p factor model (the maximization step). The missing values are then replaced
with the fitted p components (the expectations step). These two steps are repeated until the process converges in the sense
that the change in the fitted values for the missing coefficients is small.
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Correlation Measures for the S&P 500

k = 378 Equicorrelation 1-Factor R2 (S&P 500) 3-Factor R2 (Fama-French)
0.291 0.282 0.313

Table 9.2: Full sample correlation measures of the S&P 500. Returns on an asset are included if the
asset is in the S&P 500 for more than 50% of the sample (k reports the number of firms that satisfy
this criterion). The 1-factor R2 is from a model using the return on the S&P 500, and the 3-factor R2

is from a model that uses the returns on the 3 Fama-French portfolios.

500 index as the observable factor and the 3-factor R2 using the 3 Fama-French portfolios as factors.7

The average correlation and the 1-factor fit is similar to that in the 1-factor PCA model, although
the 3 Fama-French factors do not appear to work as well as the 3 factors estimated from the data.
The difference between the 1- and 3-factor observable and PCA models is due to the lack of cross-
sectional variation in firm size among the components of the S&P 500 when compared to all assets in
CRSP.

Figure 9.2 contains a plot of the 1-year moving average equicorrelation and 1- and 3-factor PCA
R2. Each component asset is included in the calculation if all returns are present in the 1-year window.
Periods of high volatility, such as the end of the dot-com bubble and late 2008, also have a high
correlation. The three lines broadly agree about the changes and only differ in level. Figure 9.3
contains plots of the R2 from the 1-factor PCA and the 1-factor model which uses the S&P500 return
(top panel) and the 3-factor PCA and the 3 Fama-French factors (bottom panel). The dynamics in
all series are similar, and only the levels differ. PCA selects the factors to maximizes the fit in the
cross-section, and so must produce a higher R2 than the observable models for a given number of
factors.

9.4 Multivariate ARCH Models

9.4.1 Vector GARCH (vec)

The Vector GARCH model uses a specification that naturally extends the univariate GARCH model
to a model of the conditional covariance (Bollerslev, Engle, and Wooldridge, 1988). The model is
defined using the vec of the conditional covariance, which stacks the elements of the covariance into
a vector.

Definition 9.11 (Vector GARCH). The covariance in a vector GARCH(1,1) model (vec) evolves
according to

vec(Σt) = vec(C)+Avec
(
ε t−1ε

′
t−1
)
+Bvec(Σt−1) (9.19)

= vec(C)+Avec
(

Σ
1/2
t−1et

(
Σ

1/2
t−1et

)′)
+Bvec(Σt−1) (9.20)

7These estimators are computed using missing values. The observable factor models are estimated using only the
common sample where the factor and the individual asset are present. The equicorrelation is estimated by standardizing
each series to have mean 0 and unit variance, and then computing the MLE of the correlation of these values treated as if
they are a single series.
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1-Year Rolling Window Correlation Measures for the S&P 500

1988 1992 1996 2000 2004 2008 2012 2016

0.2

0.4

0.6

0.8
PCA 3-Factor

PCA 1-Factor

Equicorrelation

Figure 9.2: Three views of the average correlation of the S&P 500. The PCA measures are the R2 of
models with 1 and 3 factors. Each estimate is computed using a 1-year rolling window and is plotted
against the center of the rolling window. All three measures roughly agree about the changes in the
average correlation.

where C is a k by k positive definite matrix and both A and B are k2 by k2 parameter matrices. Σ
1/2
t−1

is a matrix square root and {et} is a sequence of i.i.d. random variables with mean 0 and covariance
Ik, such as a standard multivariate normal.

See eq. 5.9 for the definition of the vec operator. The vec allows each square or cross-product
to influence each term in the conditional covariance. To understand the richness of the specification,
consider the evolution of the conditional covariance in a bivariate model,
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Observable and Principal Component Correlation Measures for the S&P 500
1-Factor Models

1988 1992 1996 2000 2004 2008 2012 2016

0.2

0.4

0.6

0.8
PCA 1-Factor

Observable 1-Factor (S&P 500)

3-Factor Models
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Observable 3-Factor (FF)

Figure 9.3: The top panel plots the R2 for 1-factor PCA and an observable factor model which uses
the return on the S&P 500 as the observable factor. The bottom contains the same for 3-factor PCA
and the Fama-French 3-factor model. Each estimate is computed using a 1-year rolling window and
is plotted against the center of the rolling window.
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2,t−1

+


b11 b12 b12 b13
b21 b22 b22 b23
b21 b22 b22 b23
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


σ11,t−1
σ12,t−1
σ12,t−1
σ22,t−1

 .
The repeated elements are needed to ensure that the conditional covariance is symmetric.

The vec operator stacks the elements of the covariance matrix and the outer products of returns.
The evolution of the conditional variance of the first asset,

σ11,t = c11 +a11ε
2
1,t−1 +2a12ε1,t−1ε2,t−1 +a13ε

2
2,t−1 +b11σ11,t−1 +2b12σ12,t−1 +b13σ22,t−1,

depends on both past squared returns and the cross-product. In practice, it is difficult to use the vector
GARCH model since it is challenging to determine the restrictions on A and B necessary to guarantee
that Σt is positive definite.
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The diagonal vec model has been more successful, primarily because it is relatively straight for-
ward to find conditions which ensure that the conditional covariance is positive semi-definite. The
diagonal vec model restricts A and B to be diagonal matrices so that the elements of Σt evolve ac-
cording to

Σt = C+ Ã� ε t−1ε
′
t−1 + B̃�Σt−1 (9.21)

where Ã and B̃ are symmetric parameter matrices and � the is Hadamard product operator.8 All
elements of Σt evolve using GARCH(1,1)-like dynamics, so that

σi j,t = ci j + ãi jεi,t−1ε j,t−1 + b̃i jσi j,t−1.

The diagonal vec still requires restrictions on the parameters to ensure that the conditional covariance
is positive definite. Ding and Engle (2001) develop one set of sufficient constraints on the parameters
in the Matrix GARCH model (see section 9.4.3).

9.4.2 BEKK GARCH

The BEKK (Baba, Engle, Kraft, and Kroner) GARCH model directly addresses the difficulties in
determining constraints on the parameters in a vec specification (Engle and Kroner, 1995). BEKK
models rely on two results from linear algebra to ensure that the conditional covariance is positive
definite: quadratic forms are positive semi-definite, and the sum of a positive semi-definite matrix
and a positive definite matrix is positive definite.

Definition 9.14 (BEKK GARCH). The covariance in a BEKK GARCH(1,1) model evolves according
to

Σt = CC′+Aε t−1ε
′
t−1A′+BΣt−1B′ (9.22)

where C is a k by k lower triangular matrix and A and B are k by k parameter matrices.

The BEKK is a restricted version of the vec specification where A⊗A and B⊗B control the
response to recent news and the smoothing, respectively,

vec(Σt) = vec
(
CC′

)
+A⊗Avec

(
ε t−1ε

′
t−1
)
+B⊗Bvec(Σt−1) . (9.23)

The elements of Σt depend on all cross-products. For example, in a bivariate BEKK,

8

Definition 9.12 (Hadamard Product). Let A and B be matrices with the same size. The Hadamard product of A and B,
denoted A�B, is the matrix with ijthelement ai jbi j.

Definition 9.13 (Hadamard Quotient). Let A and B be matrices with the same size. The Hadamard quotient of A and B,
denoted A�B, is the matrix with ijthelement ai j/bi j.
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[
σ11,t σ12,t
σ12,t σ22,t

]
=

[
c11 0
c12 c22

][
c11 0
c21 c22

]′
(9.24)

+

[
a11 a12
a21 a22

][
ε2

1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

][
a11 a12
a21 a22

]′
+

[
b11 b12
b21 b22

][
σ11,t−1 σ12,t−1
σ12,t−1 σ22,t−1

][
b11 b12
b21 b22

]′
.

The conditional variance of the first asset is

σ11,t = c2
11 +a2

11ε
2
1,t−1 +2a11a12ε1,t−1ε2,t−1 +a2

12ε
2
2,t−1 +b2

11σ11,t−1 +2b11b12σ12,t−1 +b2
12σ22,t−1.

The other conditional variance and the conditional covariance have similar forms that depend on both
squared returns and the cross-product. Estimation of full BEKK models is difficult in portfolios with
only a moderate number of assets since as the number of parameters in the model is (5k2 + k)/2, and
so is usually only appropriate for k ≤ 5.

The diagonal BEKK partially addresses the growth rate in the number of parameters by restricting
A and B to be diagonal matrices,

Definition 9.15 (Diagonal BEKK GARCH). The covariance in a diagonal BEKK GARCH(1,1)
model evolves according to

Σt = CC′+ Ãε t−1ε
′
t−1Ã′+ B̃Σt−1B̃′. (9.25)

where C is a k by k lower triangular matrix and Ã and B̃ are diagonal parameter matrices.

The conditional covariances in a diagonal BEKK evolve according to

σi j,t = c̃i j +aia jεi,t−1ε j,t−1 +bib jσi j,t−1 (9.26)

where c̃i j is the ijthelement of CC′. This specification is similar to the diagonal vec except that the
parameters are shared across series.

The scalar BEKK further restricts the parameter matrices to be common across all assets and is a
particularly simple (and restrictive) model.

Definition 9.16 (Scalar BEKK GARCH). The covariance in a scalar BEKK GARCH(1,1) model
evolves according to

Σt = CC′+a2
ε t−1ε t−1 +b2

Σt−1 (9.27)

where C is a k by k lower triangular matrix and a and b are scalar parameters.

The scalar BEKK has one further advantage: it can be covariance targeted, which simplifies parameter
estimation. Covariance targeting replaces the intercept (CC′) with a consistent estimator, (1− a2−
b2)Σ, where Σ is the long-run covariance, E [Σt ]. Σ is estimated using the outer product of returns,
Σ̂ = T−1∑T

t=1 ε tε
′
t . The two remaining parameters, a and b, are then estimated conditioning on the

estimate of the unconditional covariance of returns,
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Σt = (1−a2−b2)Σ̂+a2
ε t−1ε t−1 +b2

Σt−1. (9.28)

This 2-step estimator reduces the number of parameters that need to be simultaneously estimated
using numerical methods from 2+ k(k + 1)/2 to 2. The reduction in the parameter space allows
covariance-targeted scalar BEKK models to be applied in large portfolios (k > 50).

9.4.3 Matrix GARCH (M-GARCH)

Matrix GARCH imposes structure on the parameters of a diagonal vec that ensure that the estimated
conditional covariances are positive definite (Ding and Engle, 2001).

Definition 9.17 (Matrix GARCH). The covariance in a Matrix GARCH(1,1) model evolves according
to

Σt = CC′+AA′� ε t−1ε
′
t−1 +BB′�Σt−1 (9.29)

where C, A and B are lower triangular matrices.

Ding and Engle (2001) show that if U and V are positive semi-definite matrices, then U�V is
also. Combining this result with the result that quadratic forms are positive semi-definite ensures that
Σt is positive definite if C has full rank. The diagonal Matrix GARCH, which restricts A and B to be
vectors, is equivalent to the diagonal BEKK model.

Definition 9.18 (Diagonal Matrix GARCH). The covariance in a diagonal Matrix GARCH(1,1)
model evolves according to

Σt = CC′+aa′� ε t−1ε
′
t−1 +bb′�Σt−1 (9.30)

where C is a lower triangular matrix and a and b are k by 1 parameter vectors. The scalar version of
the Matrix GARCH is identical to the scalar BEKK.

9.4.4 Constant Conditional Correlation (CCC) GARCH

Constant Conditional Correlation GARCH Bollerslev (1990) uses a different approach to modeling
the conditional covariance. CCC GARCH decomposes the conditional covariance into k conditional
variances and the conditional correlation, which is assumed to be constant,

Σt = DtRDt . (9.31)

Dt is a diagonal matrix composed of the conditional standard deviations,

Dt =


σ1,t 0 0 . . . 0
0 σ2,t 0 . . . 0
0 0 σ3,t . . . 0
...

...
...

...
...

0 0 0 . . . σk,t

 (9.32)
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where σi,t =
√

σii,t is the standard deviation the ithasset return. The conditional variances are typically
modeled using GARCH(1,1) models,

σii,t = ωi +αiε
2
i,t−1 +βiσii,t−1 (9.33)

where ui,t−1 is the ith element of ut = R
1
2 et and {et} is a sequence of i.i.d. random variables with mean

0 and covariance Ik. Other specifications, such as TARCH or EGARCH, can also be used to model
the conditional variance. It is even possible to model the conditional variances using different models
for each asset, which is a a distinct advantage over vec and related models which impose common
structure. The conditional correlation is constant

R =


1 ρ12 ρ13 . . . ρ1k

ρ12 1 ρ23 . . . ρ2k
ρ13 ρ23 1 . . . ρ3k

...
...

...
...

...
ρ1k ρ2k ρ3k . . . 1

 . (9.34)

The conditional covariance matrix is constructed from the conditional standard deviations and the
conditional correlation, and so all of the dynamics in the conditional covariance are attributable to
changes in the conditional variances.

Σt =


σ11,t ρ12σ1,tσ2,t ρ13σ1,tσ3,t . . . ρ1kσ1,tσk,t

ρ12σ1,tσ2,t σ22,t ρ23σ2,tσ3,t . . . ρ2kσ2,tσk,t
ρ13σ1,tσ3,t ρ23σ2,tσ3,t σ33,t . . . ρ3kσ3,tσk,t

...
...

...
...

...
ρ1kσ1,tσk,t ρ2kσ2,tσk,t ρ3kσ3,tσk,t . . . σkk,t

 . (9.35)

Bollerslev (1990) shows that the CCC GARCH model can be estimated in two steps. The first
fits k conditional variance models (e.g., GARCH) and produces the vector of standardized residuals
ut where ui,t = εi,t/

√
σ̂ii,t . The second step estimates the constant conditional correlation using the

standard correlation estimator applied to the standardized residuals.

Definition 9.19 (Constant Conditional Correlation GARCH). The covariance in a constant condi-
tional correlation GARCH model evolves according to

Σt =


σ11,t ρ12σ1,tσ2,t ρ13σ1,tσ3,t . . . ρ1kσ1,tσk,t

ρ12σ1,tσ2,t σ22,t ρ23σ2,tσ3,t . . . ρ2kσ2,tσk,t
ρ13σ1,tσ3,t ρ23σ2,tσ3,t σ33,t . . . ρ3kσ3,tσk,t

...
...

...
...

...
ρ1kσ1,tσk,t ρ2kσ2,tσk,t ρ3kσ3,tσk,t . . . σkk,t

 (9.36)

where σii,t , i= 1,2, . . . ,k evolve according to some univariate GARCH process, usually a GARCH(1,1).

9.4.5 Dynamic Conditional Correlation (DCC)

Dynamic Conditional Correlation extends CCC GARCH by introducing scalar BEKK-like dynamics
to the conditional correlations, and so R in the CCC is replaced with Rt in the DCC (Engle, 2002b)
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Definition 9.20 (Dynamic Conditional Correlation GARCH). The covariance in a Dynamic Condi-
tional Correlation (DCC)-GARCH model evolves according to

Σt = DtRtDt . (9.37)

where
Rt = Q∗t QtQ∗t , (9.38)

Qt = (1−a−b)R+aut−1u′t−1 +bQt−1, (9.39)

= (1−a−b)R+a
(

R
1
2
t−1et−1

)(
R

1
2
t−1et−1

)′
+bQt−1, (9.40)

Q∗t = (Qt� Ik)
− 1

2 (9.41)

ut is the k by 1 vector of standardized returns (ui,t = εi,t/
√

σ̂ii,t) and � denotes Hadamard multipli-
cation (element-by-element). {et} are a sequence of i.i.d. innovations with mean 0 and covariance Ik.
Dt is a diagonal matrix with the conditional standard deviation of asset i on the ithdiagonal position.
The conditional variance, σii,t , i = 1,2, . . . ,k, evolve according to some univariate GARCH process
for asset i, usually a GARCH(1,1) and are identical to eq. 9.33.

The Qt processresembles a covariance targeting BEKK (eq. 9.28). Eqs. 9.38 and 9.41 are needed
to ensure that Rt is a correlation matrix with diagonal elements equal to 1. This structure allows
for three-step estimation. The first two steps are identical to those in the CCC GARCH model. The
third step conditions on the estimate of the long-run correlation when estimating the parameters of
the dynamics, a and b.9

9.4.6 Orthogonal GARCH (OGARCH)

The principal components of a T by k matrix of returns ε are defined as F = εU where U is the matrix
of eigenvectors of the outer product of ε . Orthogonal GARCH uses the first p principal components
to model the conditional covariance by assuming that the factors are conditionally uncorrelated.10

Definition 9.21 (Orthogonal GARCH). The covariance in an orthogonal GARCH (OGARCH) model
evolves according to

Σt = βΣ
f
t β
′+Ω (9.42)

where β is the k by p matrix of factor loadings corresponding to the p factors with the highest total
R2. The conditional covariance of the factors is assumed diagonal,

Σ
f
t =


ψ2

1,t 0 0 . . . 0
0 ψ2

2,t 0 . . . 0
0 0 ψ2

3,t . . . 0
...

...
...

...
...

0 0 0 . . . ψ2
l,t

 , (9.43)

9The three-step estimator is biased, even in large samples. Only two-step estimation – where the variances are first
estimated, and then all correlation parameters are jointly estimated – produces consistent parameter estimates in DCC
models.

10Principal components are estimated using the outer-product or the unconditional covariance of returns, and so only
guarantee that the factors are unconditionally uncorrelated.
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and the conditional variance of each factor follows a GARCH(1,1) process (other models possible)

ψ
2
i,t = ϕi +αi f 2

i,t−1 +βiψ
2
i,t−1 (9.44)

= ϕi +αiψ
2
i,t−1e2

t,t−1 +βiψ
2
i,t−1 (9.45)

where {et} is a sequence of i.i.d. innovations with mean 0 and covariance Ik.
The conditional covariance of the residuals is assumed to be constant and diagonal,

Ω =


ω2

1 0 0 . . . 0
0 ω2

2 0 . . . 0
0 0 ω2

3 . . . 0
...

...
...

...
...

0 0 0 . . . ω2
l

 , (9.46)

where each variance is estimated using the residuals from the p factor model,

ω
2
i =

T∑
t=1

η
2
i,t =

T∑
t=1

(εi,t− ftβ i)
2 . (9.47)

Variants of the standard OGARCH model include parameterizations where the number of factors
is equal to the number of assets, and so Ω = 0, and a specification which replaces Ω with Ωt where
each ω2

i,t follows a univariate GARCH process.

9.4.7 Conditional Asymmetries

Standard multivariate ARCH models are symmetric since they only depend on the outer product of
returns, and so have news impact curves that are identical for ε t and −ε t . Most models can be
modified to allow for conditional asymmetries in covariance, a feature that may be important when
modeling returns in some asset classes, e.g., equities. Define ζ t = ε t � I[εt<0] where I[εt<0] is a k by
1 vector of indicator variables where the ithposition is 1 if ri,t < 0. An asymmetric BEKK model can
be constructed as

Σt = CC′+Aε t−1ε
′
t−1A′+Gζ t−1ζ

′
t−1G′+BΣt−1B′ (9.48)

where G is a k by k matrix of parameters that measure the sensitivity to “bad” news. When k = 1, this
model reduces to a GJR-GARCH(1,1,1) model for the variance. Diagonal and scalar BEKK models
can be similarly adapted.

An asymmetric version of Matrix GARCH can be similarly constructed so that

Σt = CC′+AA′� ε t−1ε
′
t−1 +GG′�ζ t−1ζ

′
t−1 +BB′�Σt−1 (9.49)

where G is a lower triangular parameter matrix. The dynamics of the covariances in the asymmetric
Matrix GARCH process are

σi j,t = c̃i j + ãi jri,t−1r j,t−1 + g̃i jri,t−1r j,t−1Ii,t−1I j,t−1 + b̃i jσi j,−t1

where c̃i j is the ijthelement of CC′ and ãi j, g̃i j and b̃i j are similarly defined. All conditional variances
follow GJR-GARCH(1,1,1) models, and covariances evolve using similar dynamics driven by cross
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products of returns. The asymmetry only has an effect on the conditional covariance between two
assets if both markets experience “bad” news (negative returns). Cappiello, Engle, and Sheppard
(2006) propose an asymmetric extension to the DCC model.

9.4.8 Fitting Multivariate GARCH Models

Returns are typically assumed to be conditionally multivariate normal, and so model parameters are
estimated by maximizing the corresponding likelihood function,

f (ε t ;θ) = (2π)−
k
2 |Σt |−

1
2 exp

(
−1

2
ε
′
tΣ
−1
t ε t

)
(9.50)

where θ contains the collection of parameters in the model. Estimation is, in principle, a simple
problem. In practice, parameter estimation is only straight-forward when the number of assets is
relatively small (less than 10) or when the model is tightly parameterized (e.g., scalar BEKK). The
log-likelihood in larger, more complex models is difficult to optimize for two reasons. First, the likeli-
hood is relatively flat and so finding its maximum value is difficult for optimization software. Second,
the computational cost of evaluating the log-likelihood is increasing in the number of unknown pa-
rameters and grows at rate k3 in most multivariate ARCH models.

Many models have been designed to use multi-stage estimation to avoid these problems, including:

• Covariance Targeting BEKK: The intercept is concentrated out using the sample covariance of
returns, and so only the parameters governing the dynamics of the conditional covariance need
to be estimated using numerical methods.

• Constant Conditional Correlation: Fitting a CCC GARCH involves fitting k univariate GARCH
models and then using a closed-form estimator of the constant conditional correlation.

• Dynamic Conditional Correlation: Fitting a DCC GARCH combines the first stage of the CCC
GARCH with correlation targeting similar to that in covariance targeting BEKK.

• Orthogonal GARCH: Orthogonal GARCH only involves fitting p≤ k univariate GARCH mod-
els and uses a closed-form estimator of the idiosyncratic variance.

9.4.9 Application: Mutual Fund Returns

Three mutual funds are used to illustrate the differences (and similarities) of multivariate ARCH
models. The three funds are:

• Oakmark I (OAKMX), a large-cap fund;

• Fidelity Small Cap Stock (FSLCX), a small-cap fund which seeks to invest in firms with capi-
talizations similar to those in the Russell 2000 or S&P 600; and

• Wasatch-Hoisington US Treasury (WHOSX), a fund which invests at least 90% of AUM in
U.S. Treasury securities.
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CCC GARCH Correlation
Large Cap Small Cap Bond

Large Cap 1 0.718 −0.258
Small Cap 0.718 1 −0.259
Bond −0.258 −0.259 1

Unconditional Correlation
Large Cap Small Cap Bond

Large Cap 1 0.803 −0.306
Small Cap 0.803 1 −0.305
Bond −0.306 −0.305 1

Table 9.3: The top panel reports the estimates of the conditional correlation from a CCC GARCH
model for three mutual funds spanning large-cap stocks (OAKMX), small-cap stocks (FSLCX), and
long government bond returns (WHOSX). The bottom panel contains the estimtes of the unconditional
correlation computed from the unfiltered returns.

All data comes from the CRSP database, and data between January 1, 1998, and December 31, 2018,
is used to estimate model parameters. Table 9.3 contains the estimated correlation from the CCC-
GARCH model where each volatility series is modeled using a GARCH(1,1). The correlations be-
tween these assets are large and positive for the equity funds and negative, on average, between the
equity funds and the bond fund. The bottom panel reports the unconditional correlation of the returns.
These values are all larger in magnitude than the conditional correlations. The conditional volatilities
of the three series tend to comove, and the periods with high volatility have a disproportionate impact
on the estimated covariance.

Table 9.4 contains the parameters of the dynamics of six models: the DCC, scalar BEKK, an asym-
metric scalar BEKK, Matrix GARCH and the asymmetric extension of the Matrix GARCH model.
The estimates of the parameters in the DCC are typical – the two parameters sum to nearly 1 and α

is smaller in magnitude than the values typically found in volatility models. These estimates indicate
that correlation is very persistent but less dynamic than volatility. The parameters in the scalar BEKK
and asymmetric scalar BEKK are similar to what one typically finds in a volatility model, although
the asymmetry is weak. The Matrix GARCH parameters are fairly homogeneous although the trea-
sury fund is less responsive to news (i.e., has smaller coefficient in AA′). In the asymmetric Matrix
GARCH model, the response to “bad” news is not homogeneous. The equities have large asymme-
tries while the bond fund does not. This heterogeneity explains the small asymmetry parameter in the
asymmetric scalar BEKK.

Figure 9.4 plots the annualized volatility for these series from four models: the CCC (standard
GARCH(1,1)), the two RiskMetrics methodologies, and the asymmetric scalar BEKK. All volatilities
are similar which is surprising given the differences in the models. Figures 9.5, 9.6 and 9.7 plot the
correlations as fit from 6 different models. Aside from the correlation estimated in the CCC GARCH
(which is constant), the estimated correlations are also substantially similar.
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Multivariate GARCH Model Estimates

α γ β

DCC 0.009
(3.4)

– 0.990
(4.9)

Scalar BEKK 0.062
(143.0)

– 0.918
(89.6)

Asym. Scalar BEKK 0.056
(158.9)

0.021
(84.7)

0.911
(65.8)

AA′ GG′ BB′

0.092
(5.37)

0.090
(6.03)

0.048
(2.34)

– – – 0.875
(36.74)

0.885
(32.35)

0.910
(14.62)

Matrix GARCH 0.090
(6.03)

0.087
(5.06)

0.047
(2.85)

– – – 0.885
(32.35)

0.895
(30.99)

0.921
(20.78)

0.048
(2.34)

0.047
(2.85)

0.043
(6.20)

– – – 0.910
(14.62)

0.921
(20.78)

0.947
(111.86)

0.073
(2.86)

0.068
(4.33)

0.050
(2.51)

0.038
(0.99)

0.042
(1.35)

−0.007
(−0.31)

0.872
(30.58)

0.883
(23.59)

0.908
(15.76)

Asymmetric Matrix GARCH 0.068
(4.33)

0.063
(1.44)

0.048
(2.68)

0.042
(1.35)

0.047
(1.50)

−0.008
(−0.44)

0.883
(23.59)

0.893
(17.55)

0.919
(19.18)

0.050
(2.51)

0.048
(2.68)

0.043
(6.38)

−0.007
(−0.31)

−0.008
(−0.44)

0.001
(0.08)

0.908
(15.76)

0.919
(19.18)

0.946
(69.10)

Table 9.4: Parameter estimates (t-stats in parenthesis) from multivariate ARCH models for three
mutual funds representing distinct investment styles: small-cap stocks (FSLCX), large-cap stocks
(OAKMX), and long government bond returns (WHOSX). The top panel contains results for DCC,
scalar BEKK and asymmetric scalar BEKK. The bottom panel contains estimation results for Matrix
GARCH and the asymmetric extension to the Matrix GARCH model.

9.5 Realized Covariance

Realized Covariance uses ultra-high-frequency data (trade data) to estimate the integrated covariance
over some period, usually a day. Suppose prices followed a k-variate continuous time diffusion,

dpt = µ tdt +ΩtdWt

where µ t is the instantaneous drift, Σt = ΩtΩ
′
t is the instantaneous covariance, and dWt is a k-variate

Brownian motion. Realized Covariance estimates∫ 1

0
Σsds

where the bounds 0 and 1 represent the (arbitrary) interval over which the covariance is estimated.
The integrated covariance is the multivariate analog of the integrated variance introduced in Chapter
7.11

Realized covariance is computed using the outer-product of high-frequency returns.

11In the presence of jumps, Realized Covariance estimates the quadratic covariation, which is the integrated covariance
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Figure 9.4: The three panels plot the estimated annualized volatility of the three mutual funds.

plus the outer product of the jumps ∫ 1

0
Σsds+

∑
0≤s≤1

∆ps∆p′s,

where ∆ps are the jumps.
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Figure 9.5: The three panels show the estimated conditional correlation between the large-cap fund
and the small-cap fund from 6 models.

Definition 9.22 (Realized Covariance). The m-sample Realized Covariance is defined

RC(m)
t =

m∑
i=1

ri,tr′i,t = (pi,t−pi−1,t)(pi,t−pi−1,t)
′ , (9.51)

where ri,t is the ithreturn on day t.



9.5 Realized Covariance 545

Small-Cap - Long Government Bond Correlation
Conditional Correlation Models

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-1.0

-0.5

0.0

0.5

1.0
CCC

DCC

RiskMetrics

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-1.0

-0.5

0.0

0.5

1.0
RM 1996

RM 2006

BEKK Models

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-1.0

-0.5

0.0

0.5

1.0
Scalar BEKK

Asym. Scalar BEKK

Figure 9.6: The three panels show the estimated conditional correlation between the small-cap fund
and the bond fund from 6 models.

Prices should, in principle, be sampled as frequently as possible to maximize the precision of the
Realized Covariance estimator. In practice, frequent sampling is not possible since:

• Prices, especially transaction prices (trades), are contaminated by noise (e.g., bid-ask bounce).

• Prices are not perfectly synchronized. For example, if asset i trades at 10:00:00 and the last
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Large-Cap - Long Government Bond Correlation
Conditional Correlation Models
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Figure 9.7: The three panels show the estimated conditional correlation between the large-cap fund
and the bond fund from 6 models.

trade of asset j occurs at 9:59:50, then the estimated covariance is biased towards 0.

The conventional method to address these two concerns is to sample relatively infrequently, for ex-
ample, every 5 minutes.

The standard Realized Covariance estimator can be improved using subsampling. For example,
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suppose prices are available every minute, but that microstructure concerns (noise and synchroniza-
tion) limit sampling to 10-minute returns. The subsampled Realized Covariance uses all 10-minute
returns, not just non-overlapping ones, to estimate the covariance.

Definition 9.23 (Subsampled Realized Covariance). The subsampled Realized Covariance estimator
is defined

RC(m,n)
t,SS =

m
n(m−n+1)

m−n+1∑
i=1

n∑
j=1

ri+ j−1,tr′i+ j−1,t (9.52)

=
1
n

n∑
j=1

m
(m−n+1)

m−n+1∑
i=1

ri+ j−1,tr′i+ j−1,t

=
1
n

n∑
j=1

R̃C j,t ,

where there are m high-frequency returns available and the selected sampling time is based on n
returns.

For example, suppose data is available from 9:30:00 to 16:00:00, and that prices are sampled every
minute. The standard Realized Covariance uses returns constructed from prices sampled at 9:30:00,
9:40:00, 9:50:00, . . .. The subsampled Realized Covariance uses returns computed from all 10-minute
windows, i.e., 9:30:00 and 9:40:00, 9:31:00 and 9:41:00, 9:32:00 and 9:42:00, and so on. In this
example, m is the number of 1-minute returns available over a 6.5 hour day (390), and n is the number
of 1-minute returns in the desired sampling frequency of 10-minutes (10).

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) propose an alternative method to esti-
mate the integrated covariance known as a Realized Kernel. It is superficially similar to Realized
Covariance except that Realized Kernels use a weighting function similar to that in the Newey and
West (1987) covariance estimator.

Definition 9.24 (Realized Kernel). The Realized Kernel is defined as

RKt = Γ0 +
h∑

i=1

K
(

i
H +1

)(
Γi +Γ

′
i
)

(9.53)

Γ j =

m̃∑
i= j+1

r̃i,t r̃′i− j,t

where r̃ are refresh time returns, m̃ is the number of refresh time returns, K(·) is a kernel weighting
function and H is a parameter which controls the bandwidth.

Refresh time returns are needed to ensure that prices are not overly stale, and are constructed by
sampling prices using last-price interpolation only after all assets have traded. For example, Table 9.5
contains a set of simulated trade times for SPY, a leading ETF that tracks the S&P 500, and GLD, an
ETF that tracks the price of gold. A tick (X) indicates that a trade occurs at the timestamp in the first
column. A tick in the refresh column indicates that this timestamp is a refresh time. The final two
columns contain the timestamps of the prices used to compute the refresh-time returns.
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Trade Time SPY GLD Refresh SPY Time GLD Time

9:30:00 X X X 9:30:00 9:30:00
9:30:01 X X X 9:30:01 9:30:01
9:30:02
9:30:03 X
9:30:04 X
9:30:05 X X 9:30:04 9:30:05
9:30:06 X
9:30:07 X
9:30:08 X X 9:30:08 9:30:07

Table 9.5: This table illustrates refresh-time price construction. Prices are sampled after all assets have
traded using last-price interpolation. Refresh-time sampling usually eliminated some of the data, e.g.,
the 9:30:03 trade of SPY and prices are not perfectly synchronized, e.g., the 9:30:08 refresh-time
price which uses the SPY price from 9:30:08 and the GLD price from 9:30:07.

The recommended kernel is Parzen’s kernel,

K(x) =


1−6x2 +6x3 0 > x≥ 1

2
2(1− x)3 1

2 > x≥ 1
0 x > 1

(9.54)

The bandwidth parameter, H, plays a crucial role in the accuracy of Realized Kernels. A discussion of
the estimation of the bandwidth is beyond the scope of these notes. See Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) for detailed
discussions.

9.5.1 Realized Correlation and Beta

Realized Correlation is the realized analog of the usual correlation estimator, and is defined using the
Realized Covariance.

Definition 9.25 (Realized Correlation). The realized correlation between two series is defined

RCorr =
RCi j√

RCiiRC j j

where RCi j is the Realized Covariance between assets i and j and RCii and RC j j are the realized
variances of assets i and j, respectively.

Realized Betas are similarly defined, only using the definition of a regression β (which is a func-
tion of the covariance).

Definition 9.26 (Realized Beta). Suppose RCt is a k+1 by k+1 Realized Covariance matrix for an
asset and a set of observable factors where the asset is in position 1, so that the Realized Covariance
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can be partitioned

RC =

[
RCii RC′f i
RC f i RC f f

]
where RCii is the Realized Variance of the asset, RCi f is the k by 1 vector of Realized Covariance
between the asset and the factors, and RC f f is the k by k Realized Covariance of the factors. The
Realized Beta is defined

Rβ = RC−1
f f RC f i.

In the usual case where there is only one factor, usually the market, the realized beta is the ratio
of the Realized Covariance between the asset and the market to the variance of the market. Realized
Betas are similar to other realized measures in that they are model free and, as long as prices can be
sampled frequently and have little market microstructure noise, are accurate measures of the exposure
to changes in the market.

9.5.2 Modeling Realized Covariance

Modified multivariate ARCH models can be used to modeling and forecast Realized Covariance and
Realized Kernels . The basic assumption is that the mean of the Realized Covariance, conditional on
the time t−1 information, is Σt ,

RCt |Ft−1 ∼ F (Σt ,υ) (9.55)

where F(·, ·) is some distribution with conditional mean Σt which may depend on other parameters
unrelated to the mean which are contained in υ . This assumption implies that the Realized Covariance
is driven by a matrix-valued shock which has conditional expectation Ik,

RCt = Σ
1
2
t ΞΣ

1
2
t

where Ξ
i.i.d.∼ F (I, υ̃) and υ̃ is used to denote that these parameters are related to but different from

those in eq. 9.55. This assumption is identical to the one made when modeling realized variance as a
non-negative process with a multiplicative error (MEM) where it is assumed that RVt = σ2

t ξt = σtξtσt

where ξt
i.i.d.∼ F(1,υ).

Most multivariate ARCH models can be adapted by replacing the outer product of the shocks with
the Realized Covariance. For example, consider the standard BEKK model,

Σt = CC′+Art−1rt−1A′+BΣt−1B′.

The BEKK can be viewed as a multiplicative error model and used for Realized Covariance by spec-
ifying the dynamics as

Σt = CC′+ARCt−1A′+BΣt−1B′.

Other ARCH models can be similarly adapted by replacing the outer product of returns by the Re-
alized Covariance or Realized Kernel. Estimation is no more difficult than the estimation of the
parameters in a multivariate ARCH model, and the parameters can be estimated by maximizing the
Wishart log-likelihood. See Noureldin, Shephard, and Sheppard (2012) for details.
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Figure 9.8: The average number of daily transactions in each month of the sample for the three ETFs:
SPDR S&P 500 ETF, SPDR Gold Trust (GLD), and iShares 7-10 Year Treasury Bond ETF.

9.5.3 Application: ETF Realized Covariance

Exchange-traded funds have emerged as popular instruments that facilitate investing in assets that
are often difficult to access for retail investors. They trade like stocks but are backed by other assets
or derivative securities. Three ETFs are used to highlight some of the issues unique to Realized
Covariance that are not important when modeling a single asset. The funds used are the SPDR S&P
500 ETF (SPY), which tracks the S&P 500, SPDR Gold Trust (GLD), which aims to track to the spot
price of gold, and iShares 7-10 Year Treasury Bond ETF (IEF), which tracks the return on intermediate
maturity U.S. government debt. The data used in this application run from the start of 2008 until the
end of 2018. The estimators are implemented using only transaction data (trades) that are available
during the normal trading hours of 9:30 (Eastern/US) to 16:00.

Figure 9.8 shows the average number of transactions per day for the three ETFs. There are sub-
stantial differences in the liquidity of the three funds. IEF trades about 800 times per day, on average,
over the sample. In some months, the average number of transaction is as low as 250, while in pe-
riods of higher liquidity the fund is traded over 1,000 times per day. The S&P 500-tracking ETF
consistently trades over 80,000 times per day. The U.S. trading day last 6.5 hours and so the time
between trades ranges between 30 and 90 seconds for IEF and is less than half a second for SPY. The
liquidity of the least liquid asset always serves an upper bound for the sampling frequency used when
estimating RC. In this application, sampling more frequently than 30 seconds is likely to produce a
sharp reduction in covariance and correlation for pairs involving IEF. GLD’s liquidity is consistently
between IEF and SPY and trades typically occur every 3 seconds.

Figure 9.9 contains two signature plots. The top is known as the pseudo-correlation signature and
plots the time-averaged Realized Covariance standardized by the average cross-product of realized
volatilities sampled at a single (conservative) frequency.

Definition 9.27 (Pseudo-Correlation Signature Plot). The pseudo-correlation signature plot displays
the time-series average of Realized Covariance

RCorr
(m)
i j,t =

T−1∑T
t=1 RC(m)

i j,t

RVoli×RVol j
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where m is the number of samples and RVol• =
√

T−1
∑T

t=1 RC(q)
••,t is a the square root of the av-

erage Realized Variance using q-samples. q is chosen to produce an accurate RV that is free from
microstructure effects. An equivalent representation displays the amount of time, either in calendar
time or tick time (number of trades between observations) along the x-axis.

The pseudo-correlations all diverge from 0 as the sampling interval grows. The pseudo-correlation
between the Gold and the S&P 500 ETFs appears to reach its long-run level when sampling prices
every 2 minutes. This sampling interval is surprisingly long considering that the slower of these two
assets, GLD, trades about every 3 seconds on average. The pseudo-correlations involving the U.S.
bond ETF continue to move away from 0 until the sample interval is 10 minutes, which reflects the
lower liquidity in this ETF.

The slow convergence of both series is known as the Epps Effect (Epps, 1979). Epps first doc-
umented that correlations converge to 0 as the sampling frequency increases. There are two reasons
why the correlations converge to zero as the sampling frequency increases: the numerator (covari-
ance) reducing in magnitude or the denominator increasing due to bid-ask bounce. The bottom panel
of Figure 9.9 plots the annualized cross-volatility signature of the two series. The cross-volatility sig-
natures are remarkably flat, and so the changes in the pseudo-correlation signature are due to changes
in the covariances.

Definition 9.28 (Cross-volatility Signature Plot). The cross-volatility signature plot displays the square-
root of the time-series average of of the product of two Realized Variances,

XVol
(m)
i j,t =

√√√√T−1
T∑

t=1

RV (m)
i,t ×

√√√√T−1
T∑

t=1

RV (m)
j,t

where m is the number of samples and RV (m)
•,t = RC(m)

••,t are the diagonal elements of the Realized
Covariance matrix. An equivalent representation displays the amount of time, whether in calendar
time or tick time (number of trades between observations) along the X-axis. It is often presented in
annualized terms,

Ann.XVol
(m)
i j,t =

√
252×XVol

(m)
i j,t .

The pseudo-correlation signature plot can be misleading if covariance does not consistently have
the same sign. For example, suppose two assets have a long-run correlation near 0 but have persis-
tent deviations where their correlation is either positive or negative for long periods. The pseudo-
correlation signature may appear flat for all sampling times even though the correlation is not well
estimated. An alternative is to use a R2-signature plot which is defined by transforming the Realized
Covariances into the Realized β and an idiosyncratic variance. In the model Yi = α +βXi + εi, the
variance of the idiosyncratic residual is V [Y ]−β 2V [X ]. Scaling this variance by the variance of Y

produces V[Y ]−β
2V[X ]

V[Y ] = 1−R2.

The R2 signature plot displays the scaled average residual variance,

R2(m)

i j,t = 1−
T−1∑T

t=1 RC(m)
ii,t −

(
RC(m)

i j,t

)2
/RC(m)

j j,t

T−1
∑T

t=1 RC(m)
ii,t

= 1−
T−1∑T

t=1 RC(m)
ii,t −

(
Rβ

(m)
i j,t

)2
RC(m)

j j,t

T−1
∑T

t=1 RC(m)
ii,t

where RC(m)
t is the m-sample Realized Covariance in month j.
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The R2 could be low if the variance components were large, which may happen if the returns are
contaminated by market microstructure noise, or if the β is not accurately measured.

Finally, Figure 9.10 shows the estimated correlations of these ETFs. The dashed line shows the av-
erage correlation computed by transforming the time-averaged Realized Covariance to a correlation.
The S&P 500 tracking ETF is negativity correlated, on average, with both Gold and U.S. Treasuries.
The correlation is unusually low near the start of 2016 and is also near the bottom of its range at the
end of 2018. Gold and Treasuries, on the other hand, were highly correlated in 2017 and only returned
to their long-run level towards the end of the sample.

9.6 Measuring Dependence

Covariance does not completely characterize the dependence between asset returns. It only mea-
sures the linear dependence between the returns and so may be misleading if assets have nonlinear
relationships.

9.6.1 Linear Dependence

Linear or Pearson correlation is the most common measure of dependence.

Definition 9.29 (Linear (Pearson) Correlation). The linear (Pearson) correlation between two random
variables X and Y is

ρ =
Cov [X ,Y ]√
V [X ]V [Y ]

. (9.56)

The sample correlation estimator is

ρ̂ =

∑T
t=1 (Xt− µ̂x)(Yt− µ̂y)√∑T

t=1 (Ys− µ̂x)
2∑T

s=1 (Yt− µ̂y)
2
. (9.57)

where µ̂x and µ̂y are the sample means of Xt and Yt , respectively.
Linear correlation measures the strength of the linear relationship between standardized versions

of X and Y . Correlation is invariant to affine increasing transformations of X or Y (i.e., a+bY,b > 0).
It is not, however, invariant to non-linear transformations, even when the non-linear transformation
is order preserving (e.g., the log of a non-negative random variable). Linear correlation is also insuf-
ficient to characterize the dependence between two random variables, except when X and Y follow
a bivariate normal distribution. Moreover, two distributions can have the same correlation yet have
different behavior during extreme events.

9.6.2 Non-linear Dependence

Many measures have been designed to overcome the shortcomings of linear correlation as a measure
of risk. These are broadly classified as measures of non-linear dependence.
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Figure 9.9: The top panel contains the pseudo-correlation signature for the three assets pairs de-
fined as the ratio of the average covariance sampled at different frequencies standardized by a single,
fixed-sampling interval cross-product of volatilities. The middle panel plots an alternative sign-free
signature plot constructed by squaring the realized correlations. The bottom plot shows the average
annualized cross-volatility for average Realized Variances sampled at different frequencies.
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Figure 9.10: Plot of the Realized Correlations between the three ETFs: SPDR S&P 500, SPDR
Gold Trust, and iShares 7-10 Year Treasury Bond ETF. All realized correlations are estimated using
RCSS based on 15-minute returns subsampled from prices sampled every 5 seconds (m = 4,680,
n = 26). The markers show the weekly realized correlation computed from weekly-averaged Realized
Covariances.
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9.6.2.1 Rank Correlation

Rank correlation, also known as Spearman correlation, is an alternative measure of dependence which
can assess the strength of a relationship and is robust to certain non-linear transformations. Suppose
X and Y are random variables, X i.i.d.∼ N(0,1) and Y ≡ Xλ where λ is odd. If λ = 1 then Y = X
and the linear correlation is 1. If λ = 3 the correlation is .77. If λ = 5 then the correlation is only
.48, despite Y being a function of only X . As λ increases, the correlation becomes arbitrarily small
despite the perfect dependence between X and Y . Rank correlation is robust to increasing non-linear
transformations, and the rank correlation between X and Y is 1 for any odd power λ .

Definition 9.30 (Rank (Spearman) Correlation). The rank (Spearman) correlation between two ran-
dom variables X and Y is

ρs(X ,Y ) = Corr(FX(X),FY (Y )) =
Cov [FX(X),FY (Y )]√
V [FX(X)]V [FY (Y )]

= 12Cov [FX(X),FY (Y )] (9.58)

where the final identity uses the fact that the variance of a Uniform(0,1) is 1
12 .

The rank correlation measures the correlation between the probability integral transforms of X
and Y . The use of the probability integral transform means that rank correlation is preserved un-
der strictly increasing transformations (decreasing monotonic changes the sign), and so ρs(X ,Y ) =
ρs(T1(X),T2(Y )) when T1 and T2 are any strictly increasing functions.

The sample analog of the Spearman correlation makes use of the empirical ranks of the observed
data. Define RX ,i to be the rank of Xi, where a rank of 1 corresponds to the smallest value, a rank
of n corresponds to the largest value, where any ties are all assigned the average value of the ranks
associated with the values in the tied group. Define Ry,i in an identical fashion on Yi. The sample rank
correlation between X and Y is computed as the sample correlation of the ranks,

ρ̂s =

∑n
i=1

(
RX ,i
n+1 − 1

2

)(
RY,i
n+1 − 1

2

)
√∑n

i=1

(
RX ,i
n+1 − 1

2

)2
√∑n

j=1

(
RY,i
n+1 − 1

2

)2
=

∑n
i=1
(
RX ,i− n+1

2

)(
RY,i− n+1

2

)√∑n
i=1
(
RX ,i− n+1

2

)2
√∑n

j=1
(
RY, j− n+1

2

)2

where RX ,i
n+1 is the empirical quantile of Xi.

9.6.2.2 Kendall’s τ

Kendall’s τ is an alternative measure of non-linear dependence which is based on the idea of concor-
dance. Concordance is defined using the signs of pairs of random variables.

Definition 9.31 (Concordant Pair). The pairs of random variables (Xi,Yi) and (X j,Yj) are concordant
if sgn

(
Xi−X j

)
= sgn

(
Yi−Y j

)
where sgn(·) is the sign function which returns -1 for negative values,

0 for zero, and +1 for positive values (equivalently defined as sgn
((

Xi−X j
)(

Yi−Yj
))

).

If a pair is not concordant, then it is discordant.

Definition 9.32 (Kendall’s τ). Kendall τ is defined

τ = Pr
(
sgn
(
Xi−X j

)
= sgn

(
Yi−Y j

))
−Pr

(
sgn
(
Xi−X j

)
6= sgn

(
Yi−Yj

))
(9.59)



556 Multivariate Volatility, Dependence and Copulas

Dependence Measures for Weekly FTSE and S&P 500 Returns

Linear (Pearson) 0.678
(0.027)

Rank (Spearman) 0.613
(0.031)

Kendall’s τ 0.446
(0.027)

Table 9.6: Linear and rank correlation and Kendall’s τ (bootstrap std. error in parenthesis) for weekly
returns for the S&P 500 and FTSE 100.

The estimator of Kendall’s τ uses the sample analogs to the probabilities in the definition. Defined
nc =

∑n
i=1
∑n

j=i+1 I[sgn(Xi−X j)=sgn(Yi−Y j)] as the count of the concordant pairs and nd =
1
2n(n−1)−nc

as the count of discordant pairs. The estimator of τ is

τ =
nc−nd

1
2n(n−1)

(9.60)

=
nc

1
2n(n−1)

− nd
1
2n(n−1)

(9.61)

= P̂r
(
sgn
(
Xi−X j

)
= sgn

(
Yi−Y j

))
− P̂r

(
sgn
(
Xi−X j

)
6= sgn

(
Yi−Yj

))
(9.62)

where P̂r denotes the empirical probability. Kendall’s τ measures the difference between the probabil-
ity a pair is concordant, nc/(

1
2n(n−1)) and the probability a pair is discordant nd/(

1
2n(n−1)). Since

τ is the difference between two probabilities it must fall in [−1,1] where -1 indicates that all pairs are
discordant, 1 indicates that all pairs are concordant, and τ is increasing as the concordance between
the pairs increases. Like rank correlation, Kendall’s τ is also invariant to increasing transformation
since a pair that is concordant before the transformation (i.e., Xi > X j and Yi > Y j) is also concordant
after a strictly increasing transformation (i.e., T1(Xi)> T1(X j) and T2(Yi)> T2(Yj)).

9.6.2.3 Exceedance Correlations and Betas

Exceedance correlation, like expected shortfall, is one of many exceedance measures which can be
constructed by computing expected values conditional on exceeding some threshold. Exceedance
correlation measures the correlation between the variables conditional on both variables taking values
in their upper or lower tail.

Definition 9.33 (Exceedance Correlation). The exceedance correlation at level κ is defined as

ρ
+(κ) = Corr [X ,Y |X > κ,Y > κ] (9.63)

ρ
−(κ) = Corr [X ,Y |X <−κ,Y <−κ] (9.64)

Exceedance correlation is computed using the standard (linear) correlation estimator on the subset
of data where both X > κ and Y > κ (positive) or X <−κ and Y <−κ . Exceedance correlation can
also be defined using series specific cutoff points such as κX and κY , which are often used if the series
do not have the same variance. Series-specific thresholds are often set using quantiles of X and Y
(e.g., the 10% quantile of each). Alternatively, exceedance correlations can be computed with data
transformed to have unit variance. Sample exceedance correlations are computed as

ρ̂
+(κ) =

σ̂+
xy(κ)

σ̂
+
x (κ)σ̂+

y (κ)
, ρ̂
−(κ) =

σ̂−xy(κ)

σ̂
−
x (κ)σ̂−y (κ)

(9.65)
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Rolling Dependence Measures for the S&P 500 and FTSE
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Figure 9.11: Plot of rolling linear correlation, rank correlation and Kendall’s τ between weekly returns
on the S&P 500 and the FTSE estimated using 1-year moving windows. The measures broadly agree
about the changes in dependence but not the level.

where

σ̂
+
XY (κ) =

∑T
t=1
(
Xt−µ

+
X (κ)

)(
Yt−µ

+
Y (κ)

)
I[Xt>κ∩Yt>κ]

T+
κ

σ̂
−
XY (κ) =

∑T
t=1
(
Xt−µ

−
X (κ)

)(
Yt−µ

−
Y (κ)

)
I[Xt<−κ∩Yt<−κ]

T−κ

µ̂
+
X (κ) =

∑t
t=1 XtI[Xt>κ∩Yt>κ]

T+
κ

, σ̂
2+
X (κ) =

∑t
t=1
(
Xt− µ̂

+
X (κ)

)2 I[Xt>κ∩Yt>κ]

T+
κ

µ̂
−
X (κ) =

∑t
t=1 XtI[Xt<−κ∩Yt<−κ]

T−κ
, σ̂

2−
X (κ) =

∑t
t=1
(
Xt− µ̂

−
X (κ)

)2 I[Xt<−κ∩Yt<−κ]

T−κ

T+
κ =

T∑
t=1

I[Xt>κ∩Yt>κ], T−κ =
T∑

t=1

I[Xt<−κ∩Yt<−κ]

where the quantities for Y are similarly defined. Exceedance correlation can only be estimated if the
region where X < κ and Y < κ is populated with data, and it is possible for some assets that this region
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Exceedance Correlation for the S&P 500 and FTSE
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Figure 9.12: Plot of the exceedance correlations with 95% bootstrap confidence intervals for weekly
returns on the S&P 500 and FTSE (each series is divided by its sample standard deviation). There is
a substantial asymmetry between the positive and negative exceedance correlations.

is empty. Empty regions may occur when measuring the exceedance correlation between assets that
have strong negative dependence (e.g., equity and bond returns).

Inference can be conducted using the bootstrap or using analytical methods. Hong, Tu, and Zhou
(2007) show that inference on exceedance correlations can be conducted by viewing these estimators
as method of moments estimators. Define the standardized exceedance residuals as,

X̃+
t (κ) =

Xt−µ+
x (κ)

σ
+
X (κ)

, X̃−t (κ) =
Xt−µ

−
X (κ)

σ
−
X (κ)

,

Ỹ+
t (κ) =

Yt−µ
+
Y (κ)

σ
+
Y (κ)

, Ỹ−t (κ) =
Yt−µ

−
Y (κ)

σ
−
Y (κ)

.

These form the basis of the moment conditions,

T
T+

κ

(
X̃+(κ)Ỹ+(κ)−ρ

+(κ)
)

I[Xt>κ∩Yt>κ] (9.66)

T
T−κ

(
X̃−(κ)Ỹ−(κ)−ρ

−(κ)
)

I[Xt<−κ∩Yt<−κ].
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Inference on a vector of exceedance correlation can be conducted by stacking the moment conditions
and using a HAC covariance estimator such as the Newey and West (1987) estimator. Suppose κ is a
vector of thresholds κ1,κ2, . . . ,κn, then

√
T
(

ρ̂+(κ)−ρ+(κ)
ρ̂−(κ)−ρ−(κ)

)
d→ N (0,Ω)

Ω can be estimated using the moment conditions,

Ω̂ = Γ̂0 +

L∑
l=1

w j

(
Γ̂l + Γ̂

′
l

)
(9.67)

where wl = 1− l
L+1 ,

Γ̂ j =
T∑

t= j+1

ξ tξ t− j

and

ξ t = T



1
T+

κ1

(
X̃+(κ1)Ỹ+(κ1)−ρ+(κ)

)
I[Xt>κ1∩Yt>κ1]

...
1

T+
κn

(
X̃+(κn)Ỹ+(κn)−ρ+(κn)

)
I[Xt>κn∩Yt>κn]

1
T−κ1

(
X̃−(κ1)Ỹ−(κ1)−ρ−(κ)

)
I[Xt>κ1∩Yt>κ1]

...
1

T−κn

(
X̃−(κn)Ỹ−(κn)−ρ−(κn)

)
I[Xt>κn∩Yt>κn]


.

Exceedance beta is similarly defined, only using the ratio of an exceedance covariance to an
exceedance variance.

Definition 9.34 (Exceedance Beta). The exceedance beta at level κ is defined as

β
+(κ) =

Cov(X ,Y |X > κ,Y > κ)

V(X |X > κ,Y > κ)
=

σ
+
Y (κ)

σ
+
X (κ)

ρ
+(κ) (9.68)

β
−(κ) =

Cov(X ,Y |X <−κ,Y <−κ)

V(X |X <−κ,Y <−κ)
=

σ
−
Y (κ)

σ
−
X (κ)

ρ
−(κ)

Sample exceedance betas are computed using the sample analogs,

β̂
+(κ) =

σ̂
+
XY (κ)

σ̂
2+
X (κ)

, and β̂
−(κ) =

σ̂
−
XY (κ)

σ̂
2−
X (κ)

, (9.69)

and inference can be conducted in an analogous manner to exceedance correlations using a HAC
estimator and the moment conditions
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T
T+

κ

(
σ
+
Y (κ)

σ
+
X (κ)

X̃+(κ)Ỹ+(κ)−β
+(κ)

)
I[Xt>κ∩Yt>κ] (9.70)

T
T−κ

(
σ
−
Y (κ)

σ
−
X (κ)

X̃−(κ)Ỹ−(κ)−β
−(κ)

)
I[Xt<−κ∩Yt<−κ].

9.6.3 Application: Dependence between the S&P 500 and the FTSE 100

Daily data for the entire history of both the S&P 500 and the FTSE 100 is provided by Yahoo!
Finance. Table 9.6 contains the three correlations and standard errors computed using the bootstrap
where weekly returns are used to bias due to nonsynchronous returns (all overlapping 5-day returns
are used to estimate all estimators). The linear correlation is the largest, followed by the rank and
Kendall’s τ . Figure 9.11 plots these same three measures only using 252-day moving averages. The
three measures broadly agree about changes in the level of dependence.

Figure 9.12 plots the negative and positive exceedance correlation along with 95% confidence
intervals computed using the bootstrap. The exceedance thresholds are chosen using quantiles of
each series. The negative exceedance correlation is computed for thresholds less than or equal to
50%, and positive is computed for thresholds greater than or equal to 50%. The correlation between
these markets differs substantially depending on the sign of the returns.

9.6.4 Application: Asymmetric Dependence from Simple Models

Asymmetric dependence can be generated from simple models. The simulated data in both panels of
figure 9.13 is from a standard CAP-M calibrated to match a typical S&P 500 stock. The market return
is simulated from a standardized t6 with the same variance as the S&P 500 in the past ten years. The
idiosyncratic variance is similarly calibrated to the cross-section of idiosyncratic variances.

The simulated data in the top panel is computed from

ri,t = rm,t + εi,t

where εi,t is i.i.d.normally distributed and has the same variance as the average idiosyncratic vari-
ance in the cross-section of S&P 500 constituents. The simulated data shown in the bottom panel is
generated according to

ri,t = rm,t + zi,tεi,t

where zi,t = exp
(
−10rm,tI[rm,t<0]

)
introduce heteroskedasticity so that the idiosyncratic variance is

smaller on days where the market is down. This simple change introduces asymmetric dependence
between positive and negative returns.

9.7 Copulas

Copulas are a relatively new tool in financial econometrics that have applications in risk management
and credit and derivative pricing. Copulas allow a distribution to be decomposed where the depen-
dence between assets is separated from the marginal distribution of each asset. Recall that a k-variate
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Simulated Returns with Symmetric and Asymmetric Dependence
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Figure 9.13: These graphs show simulated returns from a CAP-M where the market has a t6 distri-
bution with the same variance as the S&P 500. The idiosyncratic shock is normally distributed with
mean 0, and its variance matches the variance of the idiosyncratic errors of the S&P 500 constituents.
The asymmetric dependence is introduced through idiosyncratic error heteroskedasticity where the
error variance is σε exp

(
1/2rmI[rm<0]

)
. The idiosyncratic component has a smaller variance when the

market return is negative than when the market return is positive.

random variable X has a cumulative distribution function F(x1,x2, . . . ,xk) which maps from the do-
main of X to [0,1]. The distribution function contains all of the information about the probability
of observing different values of X, and while there are many distribution functions, most are fairly
symmetric and rigid. For example, the multivariate Student’s t requires all margins to have the same
degree-of-freedom parameter, and so the chance of seeing extreme returns – more then 3σ away from
the mean – must be the same for all assets. While this assumption may be reasonable when modeling
equity index returns, extremely heavy tails are not plausible in other asset classes, e.g., bond or foreign
exchange returns. Copulas provide a flexible mechanism to model the marginal distributions sepa-
rately from the dependence structure, and so provide a richer framework for specifying multivariate
distributions than the standard set of multivariate distribution functions.

Recall the definition of the marginal distribution of X1.

Definition 9.35 (Marginal Density). Let X = (X1,X2, . . . ,Xk) be a k-variate random variable with joint
density fX(X). The marginal density of Xi is defined

fi (xi) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fX(x)dx1 . . .dxi−1dxi+1 . . .dxk.
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The marginal density contains only information about the probability of observing values of Xi.
For example, if X is a bivariate random variable with continuous support, then the marginal density
of X1 is

f1 (x1) =

∫ ∞
−∞

fX (x1,x2)dx2.

The marginal distribution,

F1 (x1) =

∫ x1

−∞
f1 (s)ds,

contains all of the information about the probability of observing values of X1, and importantly
FX1 (X1) ∼ U(0,1). The transformation removes the information contained in the marginal distri-
bution about the probability of observing different values of X1.

This probability integral transformation applies to both X1 and X2, and so U1 = FX1 (x1) and U2 =
FX2 (x2) only information about the dependence between the two random variables. The distribution
that describes the dependence is known as a copula, and so applications built with copulas allow
information in marginal distributions to be cleanly separated from the dependence between random
variables. This decomposition provides a flexible framework for constructing precise models of both
the marginal distributions and the dependence.

9.7.1 Basic Theory

A copula is a distribution function for a random variable where each margin is uniform [0,1].

Definition 9.36 (Copula). A k-dimensional copula is a distribution function on [0,1]k with standard
uniform marginal distributions, and is denoted C(u1,u2, . . . ,uk).

All copulas all satisfy four fundamental properties:

• C(u1,u2, . . . ,uk) is increasing in each component ui;

• C(0, . . . ,u j, . . . ,0) = 0;

• C(1, . . . ,u j, . . . ,1) = u j; and

• for all u≤ v where inequality holds on a point-by-point basis, the probability of the hypercube
bound with corners u and v is non-negative.

Sklar’s theorem provides the critical insight that explains how a joint distribution is related to its
marginal distributions and the copula that link them. (Sklar, 1959).

Theorem 9.2 (Sklar’s Theorem). Let F be a k-variate joint distribution with marginal distributions
F1,F2,. . .,Fk. Then there exists a copula C : [0,1]k→ [0,1] such that for all x1,x2,. . .,xk,

F (x1,x2, . . . ,xk) = C (F1(x1),F2(x2), . . . ,Fk(xk))

= C (u1,u2, . . .uk) .

Additionally, if the margins are continuous then C is unique.
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Sklar’s has two important implications. First, it ensures that the copula is unique whenever the mar-
gins are continuous, which is usually the case in financial applications. Second, it shows that a copula
can be constructed from any distribution function that has known marginal distributions. Suppose
F (x1,x2, . . . ,xk) is a known distribution function, and that the marginal distribution function of the
ithvariable is denoted Fi(·). Further assume that the marginal distribution function is invertible, and
denote the inverse as F−1

i (·). The copula implicitly defined by F is

C(u1,u2, . . . ,uk) = F
(
F−1

1 (u1),F−1
2 (u2), . . . ,F−1

k (uk)
)
.

This relationship allows for many standard distribution functions to be used as the basis for a copula,
and appears in the definition of the Gaussian and the Student’s t copulas.

Copulas are distribution functions for k-variate uniforms, and like all distribution functions they
may (or may not) have an associated density. A copula is a k-variate distribution, and so when
the copula density exists it can be derived by differentiating the distribution with respect to each
component random variable,

c(u1,u2, . . . ,uk) =
∂ kC (u1,u2, . . . ,uk)

∂u1∂u2 . . .∂uk
. (9.71)

9.7.2 Tail Dependence

One final measure of dependence, tail dependence, is useful in understanding risks in portfolios and
for comparing copulas. Tail dependence is more of a theoretical construction than a measure that is
directly estimated (although it is possible to estimate tail dependence).

Definition 9.37 (Tail Dependence). The upper and lower tail dependence, τU and τL respectively, are
defined as the conditional probability of an extreme event,

τ
U = lim

u→1−
Pr
[
X > F−1

X (u)|Y > F−1
Y (u)

]
(9.72)

τ
L = lim

u→0+
Pr [X < FX(u)|Y < FY (u)] (9.73)

where the limits are taken from above for τU and below for τL.

Tail dependence measures the probability X takes an extreme value given Y takes an extreme
value. The dependence between a portfolio and assets used as hedges is particularly important when
the portfolio suffers a loss day, and so has a return in its lower tail.

Lower tail dependence takes a particularly simple form when working in copulas, and is defined

τ
L = lim

u→0+

C(u,u)
u

(9.74)

τ
U = lim

u→1−

1−2u+C (u,u)
1−u

(9.75)

The coefficient of tail dependence is always in [0,1] since it is a probability. When τU (τL) is 0, then
the two series are upper (lower) tail-independent. When the value is nonzero, the random variables
are tail-dependent and higher values indicate more dependence during extreme events.
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9.7.3 Copulas

A large number of copulas have been developed. Some, such as the Gaussian, are implicitly defined
from standard distributions. Others have been designed only for uniform random variables. In all
expressions for the copulas, Ui ∼U(0,1) are uniform random variables.

9.7.3.1 Independence Copula

The simplest copula is the independence copula which depends only on the product of the input
values.

Definition 9.38 (Independence Copula). The independence copula is

C (u1,u2, . . . ,uk) =

k∏
i=1

ui (9.76)

The independence copula has no parameters.

9.7.3.2 Comonotonicity Copula

The copula with the most dependence is known as the comonotonicity copula.

Definition 9.39 (Comonotonicity Copula). The comonotonicity copula is

C (u1,u2, . . . ,uk) = min(u1,u2, . . . ,uk) (9.77)

The dependence in this copula is perfect. The comonotonicity does not have an associated copula
density.

9.7.3.3 Gaussian Copula

The Gaussian (normal) copula is implicitly defined using the k-variate Gaussian distribution, Φk (·),
and the univariate Gaussian distribution, Φ(·).
Definition 9.40 (Gaussian Copula). The Gaussian copula is

C (u1,u2, . . . ,uk) = Φk
(
Φ
−1(u1),Φ

−1(u2), . . . ,Φ
−1(uk)

)
(9.78)

where Φ−1(·) is the inverse of the univariate Gaussian distribution function.

Recall that if U is a uniform random variable then X = Φ−1(U) is distributed standard normal.
This transformation allows the Gaussian copula density to be implicitly defined using the inverse
distribution function. The Gaussian copula density is

c(u1,u2, . . . ,uk) =
(2π)−

k
2 |R|−

1
2 exp

(
−1

2η ′R−1η
)

φ (Φ−1 (u1)) . . .φ (Φ−1 (uk))
(9.79)

where η = Φ−1(u) is a k by 1 vector where ηi = Φ−1(ui), R is a correlation matrix and φ (·) is the
normal PDF. The extra terms in the denominator are present in all implicitly defined copulas since the
joint density is the product of the marginal densities and the copula density.

f1 (x1) . . . fk (xk)c(u1, . . . ,uk) = f (x1,x2, . . . ,xk)

c(u1, . . . ,uk) =
f (x1,x2, . . . ,xk)

f1 (x1) . . . fk (xk)
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9.7.3.4 Student’s t Copula

The Student’s t copula is also implicitly defined using the multivariate Student’s t distribution.

Definition 9.41 (Student’s Copula). The Student’s t copula is

C (u1,u2, . . . ,uk) = tk,ν
(
t−1
ν (u1), t−1

ν (u2), . . . , t−1
ν (uk)

)
(9.80)

where tk,ν(·) is the k-variate Student’s t distribution function with ν degrees of freedom and t−1
ν is the

inverse of the univariate Student’s t distribution function with ν degrees of freedom.

Note that while the Student’s t distribution is superficially similar to a normal distribution, vari-
ables that are distributed multivariate tν are substantially more dependent if ν is small (3 – 8). A
multivariate Student’s t is defined as a multivariate normal divided by a single, common, indepen-
dent χ2

ν standardized to have mean 1. When ν is small, the chance of seeing a small value in the
denominator is large, and since this divisor is common, all series tend to take relatively large values
simultaneously.

9.7.3.5 Clayton Copula

The Clayton copula exhibits asymmetric dependence for most parameter values. The lower tail is
more dependent than the upper tail, and so it may be appropriate for modeling the returns of some
financial assets, e.g., equities.

Definition 9.42 (Clayton Copula). The Clayton copula is

C (u1,u2) =
(

u−θ

1 +u−θ

2 −1
)−1/θ

, θ > 0 (9.81)

The Clayton copula limits to the independence copula when θ → 0. The copula density can be found
by differentiating the Copula with respect to u1 and u2, and so is

c(u1,u2) = (θ +1)u−θ−1
1 u−θ−1

2

(
u−θ

1 +u−θ

2 −1
)−1/θ−2

.

9.7.3.6 Gumbel and Rotated Gumbel Copula

The Gumbel copula exhibits asymmetric dependence in the upper tail rather than the lower tail.

Definition 9.43 (Gumbel Copula). The Gumbel copula is

C (u1,u2) = exp
[
−
(
(− lnu1)

θ +(− lnu2)
θ
)1/θ

]
, θ ≥ 1 (9.82)

The Gumbel copula exhibits upper tail dependence that is increasing in θ . It approaches to the inde-
pendence copula as θ → 1. Because upper tail dependence is relatively rare among financial assets, a
“rotated” version of the Gumbel is more useful when modeling financial asset returns.

Let C(u1,u2) be a bivariate copula. The rotated version12 of the copula is given by

CR (u1,u2) = u1 +u2−1+C (1−u1,1−u2) .

12The rotated copula is commonly known as the survival copula, since rather than computing the probability of observ-
ing values smaller than (u1,u2), it computes the probability of seeing values larger than (u1,u2).
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Using this definition allows the rotated Gumbel copula to capture lower tail dependence rather
than upper tail dependence.

Definition 9.44 (Rotated Gumbel Copula). The rotated Gumbel copula is

CR (u1,u2) = u1 +u2−1+ exp
[
−
(
(− ln(1−u1))

θ +(− ln(1−u2))
θ
)1/θ

]
, θ ≥ 1 (9.83)

The rotated Gumbel is the Gumbel copula using 1− u1 and 1− u2 as its arguments. The extra
terms are used to satisfy the four properties of a copula. The rotated Gumbel copula density is tedious
to compute but is presented here.

The rotated Gumbel copula density is

c(u1,u2) =

exp
[
−
(
(− ln(1−u1))

θ +(− ln(1−u2))
θ
)1/θ

]
((− ln(1−u1))(− ln(1−u2)))

θ−1

(1−u1)(1−u2)((− ln(1−u1))+(− ln(1−u2)))
2−1/θ

×
((

(− ln(1−u1))
θ +(− ln(1−u2))

θ
)1/θ

+θ −1
)
.

This copula density is identical to the Gumbel copula density only using 1−u1 and 1−u2 as its
arguments. The rotation moves values near zero, where the dependence is low, to be near one, where
the dependence is higher.

9.7.3.7 Joe-Clayton Copula

The Joe-Clayton copula allows for asymmetric dependence is both tails.

Definition 9.45 (Joe-Clayton Copula). The Joe-Clayton copula is

C (u1,u2) = 1−
(

1−
[(

1− (1−u1)
θU
)−θL

+
(

1− (1−u2)
θU
)−θL−1

]−1/θL
)1/θU

(9.84)

where the two parameters, θL and θU are directly related to lower and upper tail dependence through

θL =− 1
log2 (τ

L)
, θU =

1
log2 (2− τU)

where both coefficients of tail dependence satisfy 0 < τ i < 1, i = L,U .

Deriving the density of a Joe-Clayton copula is a straightforward, but tedious, calculation. The
Joe-Clayton copula is not symmetric, even when the same values for τL and τU are used. This
asymmetry may be acceptable, but if symmetry is preferred a symmetrized copula can be constructed
by averaging a copula with its rotated counterpart.

Definition 9.46 (Symmetrized Copula). Let C (u1,u2) be an asymmetric bivariate copula. The sym-
metrized version of the copula is given by

CS (u1,u2) =
1
2
(
C (u1,u2)+CR (1−u1,1−u2)

)
(9.85)

If C(u1,u2) is already symmetric, then C(u1,u2) =CR(1−u1,1−u2) and so the CS (u1,u2) must
also be symmetric. The copula density, assuming it exists, is

cS (u1,u2) =
1
2
(
c(u1,u2)+ cR (1−u1,1−u2)

)
.
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Copula τL τU Notes

Gaussian 0 0 |ρ|< 1
Students t 2tν+1 (w) 2tν+1 (w) w =−

√
ν +1

√
1−ρ/

√
1+ρ

Clayton 2−
1
θ 0

Gumbel 0 2−2
1
θ Rotated Swaps τL and τU

Symmetrized Gumbel 1−2
1−θ

θ 1−2
1−θ

θ

Joe-Clayton 2−
1

θL 2−2
1

θU Also Symmetrized JC

Table 9.7: The relationship between parameter values and tail dependence for the copulas in section
9.7.3. tν+1 (·) is the CDF of a univariate Student’s t distribution with ν +1 degree of freedom.

9.7.4 Tail Dependence in Copulas

The copulas presented in the previous section all have different functional forms, and so produce dif-
ferent distributions. One simple method to compare the different forms is through the tail dependence.
Table 9.7 show the relationship between the tail dependence in the different copulas and their param-
eters. The Gaussian has no tail dependence except in the extreme case when |ρ| = 1, in which case
tail dependence is 1 in both tails. Other copulas, such as the Clayton and Gumbel, have asymmetric
tail dependence.

9.7.5 Visualizing Copulas

Copulas are defined on the unit hypercube (or unit square in a bivariate copula), and so one obvious
method to inspect the difference between two is to plot the distribution function or the density on its
default domain. This visualization method does not facilitate inspecting the tail dependence which
occurs in the small squares of in [0,0.05]× [0,0.05] and [.95,1]× [.95,1], lower and upper 5% of each
margin. Transforming the marginal distribution of each series to be standard normal is a superior
method to visualize the dependence in the copula. This visualization ensures that any differences are
attributable to the copula while distributing the interesting aspects over a wider range of values. It
also projects the dependence structure into a familiar space that more closely resembles two financial
asset returns.

Figure 9.14 contains plots of 4 copulas. The top two panels show the independence copula and
the comonotonicity copula as distributions on [0,1]× [0,1] where curves are isoprobability lines. In
distribution space, high dependence appears as an “L” shape and independence appears as a parabola.
The bottom two figures contain the normal copula distribution and the Gaussian copula density us-
ing normal margins, where in both cases the correlation is ρ = 0.5. The Gaussian copula is more
dependent than the independence copula – a special case of the Gaussian copula when ρ = 0 – but
less dependent than the comonotonicity copula (except when ρ = 1). The density has both a Gaus-
sian copula and Gaussian margins, and so depicts a bivariate normal. The density function shows the
dependence between the two series in a more transparent manner.13

Figure 9.15 contains plots of 4 copulas depicted as densities with standard normal marginal distri-

13Some copulas do not have a copula density, and in these cases, the copula distribution is the only visualization option.
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butions. The upper left panel contains the Clayton density which has lower-tail dependence (θ = 1.5).
The upper right shows the symmetrized Joe-Clayton where τL = τU = 0.5, which has both upper and
lower tail dependence. The bottom two panels show the rotated Gumbel and symmetrized Gumbel
where θ = 1.5. The rotated Gumbel is similar to the Clayton copula although it is not identical.

Copula Distributions and Densities
Independence Comonotonicity
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Figure 9.14: The top left panel shows the isoprobability curves of an independence copula. The top
right panel shows the isoprobability curves of the comonotonicity copula, which has perfect depen-
dence. The bottom panels contain the Gaussian copula, where the left depicts the copula in distri-
bution space ([0,1]× [0,1]) and the right shows the copula density using standard normal marginal
distributions. The correlation of the Gaussian copula is estimated using weekly returns on the S&P
500 and FTSE 100.

9.7.6 Estimation of Copula models

A copula-based model is a joint distribution, and so parameters can be estimated using maximum
likelihood. As long as the copula density exists, and the parameters of the margins are distinct from
the parameters of the copula (which is almost always the case), the likelihood of a k-variate random
variable Y can be written as

f (yt ;θ ,ψ) = f1(y1,t ;θ 1) f2(y2,t ;θ 2) . . . fk(yk,t ;θ k)c
(
u1,t ,u2,t , . . . ,uk,t ;ψ

)
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Copula Densities with Standard Normal Margins
Clayton, θ = 1.27 Symmetrized Joe-Clayton, τL = 0.51, τH = 0.41
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Figure 9.15: These for panels all depict copulas as densities using standard normal margins. All
differences in appearance can be attributed to the differences in the copulas. The top left panel con-
tains the Clayton copula density. The top right contains the symmetrized Joe-Clayton. The bottom
panels contain the rotated Gumbel which has lower tail dependence and the symmetrized Gumbel.
The parameter values are estimated from weekly returns on the S&P 500 and FTSE 100.

where u j,t =F−1
j
(
y j,t ;θ j

)
are the probability integral transformed observations, θ j are the parameters

specific to marginal model j and ψ are the parameters of the copula. The log likelihood is then the
sum of the marginal log likelihoods and the copula log likelihood,

l (θ ,ψ;y) = ln f1(y1;θ 1)+ ln f2(y2;θ 2)+ . . .+ ln fk(yk;θ k)+ lnc(u1,u2, . . . ,uk;ψ) .

This decomposition allows for consistent estimation of the parameters in two steps:

1. For each margin j, estimate θ j using quasi maximum likelihood as the solution to

argmax
θ j

T∑
t=1

ln f j
(
y j,t ;θ j

)
.

When fitting models using copulas it is also important to verify that the marginal models are
adequate using the diagnostics for univariate densities described in chapter 8.
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2. Using the probability integral transformed residuals evaluated at the estimated paraeters, û j,t =

F−1 (y j,t ; θ̂ j
)
, estimate the parameters of the copula as

argmax
ψ

T∑
t=1

lnc
(
û1,t , û2,t , . . . , ûk,t ;ψ

)
.

This two-step procedure is not efficient in the sense that the parameter estimates are consistent but
have higher variance than if all parameters are simultaneously estimated. In practice, the reduction in
precision is typically small. If parameter estimation accuracy is an important consideration, then the
two-step estimator can be used as a starting value for an estimator which simultaneously estimates all
parameters. Standard errors can be computed from the two-step estimation procedure by treating it
as a two-step GMM problem where the scores of the marginal log likelihoods and the copula are the
moment conditions (See section 6.10 for a discussion).

An alternative estimation procedure uses nonparametric models for the margins. Nonparametric
margins are typically employed when characterizing the distribution of the margins are not partic-
ularly important, and so the first step can be replaced through the use of the empirical CDF. The
empirical CDF estimates the û j,t = rank(y j,t)/(T +1) where rank is the ordinal rank of observation t
among the T observations. The empirical CDF is uniform by construction. Using the empirical CDF
is not generally appropriate when the data have time-series dependence (e.g., volatility clustering) or
when forecasting is an important consideration.

9.7.7 Application: Dependence between the S&P 500 and the FTSE 100

The use of copulas is illustrated using returns of the S&P 500 and the FTSE 100. Weekly returns are
used to mitigate issues with non-synchronous closing times. The first example uses the empirical CDF
to transform the returns so that the model focuses on the unconditional dependence between the two
series. The upper left panel of figure 9.16 contains a scatter plot of the ECDF transformed residuals.
The residuals tend to cluster around the 45o line indicating positive dependence (correlation). There
are clusters of observations near (0,0) and (1,1) that indicating the returns have tail dependence.
The normal, students t, Clayton, rotated Gumbel, symmetrized Gumbel and symmetric Joe-Clayton
copulas are all estimated. Parameter estimates and copula log-likelihoods are reported in Table 9.8.
The Joe-Clayton fits the data the best, followed by the symmetrized Gumbel and then the rotated
Gumbel. The Clayton and the Gaussian both appear to fit the data substantially worse than the others.
In the Joe-Clayton, both tails appear to have some dependence, although returns in the lower tails are
substantially more dependent.

Copulas can also be used in conditional density models. Combining a constant copula with dy-
namic models of each margin is similar to using a CCC-GARCH model to estimate the conditional
covariance. A conditional joint density model is built using TARCH(1,1,1) volatilities with skew t
errors for each index return series. The copulas are estimated using the conditionally transformed
residuals ûi,t = F

(
ri,t ; σ̂2

t , ν̂ , λ̂
)

where σ2
t is the conditional variance, ν is the degree of freedom,

and λ captures the skewness in the standardized residuals. Parameter estimates are reported in Table
9.9. The top panel reports the parameter estimates from the TARCH model. Both series have per-
sistent volatility although the leverage effect is stronger in the S&P 500 than it is in the FTSE 100.
Standardized residuals in the S&P 500 are heavier tailed, and both are negatively skewed.
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Dependence Measures for Weekly FTSE and S&P 500 Returns

Copula θ1 θ2 Log. Lik. τL τU

Gaussian 0.645 -486.9 0 0
Clayton 1.275 -460.2 0.581 0
Rot. Gumbel 1.805 -526.2 0.532 0
Sym. Gumbel 1.828 -529.5 0.270 0.270
Sym. Joe-Clayton 0.518 0.417 -539.9 0.518 0.417

Table 9.8: Parameter estimates for the unconditional copula between weekly returns on the S&P 500
and the FTSE 100. Marginal distributions are estimated using empirical CDFs. For the Gaussian
copula, θ1 is the correlation, and in the Joe-Clayton θ1 is τL and θ2 is τU . The third column reports
the log likelihood from the copula density. The final two columns report the estimated lower and
upper tail dependence.

The parameter estimates using the conditional marginals all indicate less dependence than those
estimated using the empirical CDF. This reduction in dependence is due to synchronization between
the volatility of the two markets. Coordinated periods of high volatility leads to large returns in both
series at the same time, even when the standardized shock is only moderately large. Unconditional
models use data from both high and low volatility periods. Volatility and dependence are linked in
financial markets, and so ignoring conditional information tends to higher unconditional dependence
than conditional dependence. This phenomenon is similar to the generation of heavy tails in the
unconditional distribution of a single asset return – mixing periods of high and low volatility produced
heavy tails. The difference in the dependence shows up in the parameter values in the copulas, and in
the estimated tail indices, which are uniformly smaller than in their unconditional counterparts. The
changes in dependence also appear through the reduction in the improvement in the log-likelihoods
of the dependent copulas relative to the Gaussian.

Figure 9.16 contains some diagnostic plots related to fitting the conditional copula. The top right
panel contains the scatter plot of the probability integral transformed residuals using from the TARCH.
While these appear similar to the plot from the empirical CDF, the amount of clustering near (0,0)
and (1,1) is slightly lower. The bottom left panel contains a QQ plot of the actual returns against the
expected returns using the estimated degree of freedom and skewness parameters. These curves are
straight except for the most extreme observations, and so indicate an acceptable fit. The bottom right
plot contains the annualized volatility series for the two assets where the coordination in the condi-
tional volatilities is apparent. It also appears the coordination in volatility cycles has strengthened
post-2000.

9.7.8 Dynamic Copulas

This chapter has focused on static copulas of the form C (u1,u2;θ). It is possible to model depen-
dence using conditional copulas where the copula parameters evolve through time, C (u1,u2;θ t), us-
ing GARCH-like dynamics. Patton (2006) first used this structure in an application to exchange rates.
The primary difficulty in specifying dynamic copula models is in determining the form of the “shock”.
In ARCH-type volatility models ε2

t = (rt−µ)2 is the natural shock since its conditional expectation
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Conditional Copula Estimates for Weekly FTSE and S&P 500 Returns

Index α1 γ1 β1 ν λ

S&P 500 0.026 0.178 0.855 8.924 -0.231
FTSE 100 0.038 0.145 0.861 8.293 -0.138

Copula θ1 θ2 Log. Lik. τL τU

Gaussian 0.621 -439.1 0 0
Clayton 1.126 -399.6 0.540 0
Rot. Gumbel 1.713 -452.4 0.501 0
Sym. Gumbel 1.754 -452.7 0.258 0.258
Sym. Joe-Clayton 0.475 0.357 -448.5 0.475 0.357

Table 9.9: Parameter estimates for the conditional copula between weekly returns on the S&P 500
and the FTSE 100. Marginal distributions are estimated using a TARCH(1,1,1) with Hansen’s Skew t
error. Parameter estimates from the marginal models are reported in the top panel. The bottom panel
contains parameter estimates from copulas fit using the conditionally probability integral transformed
residuals. For the Gaussian copula, θ1 is the correlation, and in the Joe-Clayton θ1 is τL and θ2 is τU .
The third column reports the log likelihood from the copula density. The final two columns report the
estimated lower and upper tail dependence.

is the variance, Et−1
[
ε2

t
]
= σ2

t . In most copula models there is no obvious equivalent. Creal, Koop-
man, and Lucas (2013) have recently developed a general framework which can be used to construct
a natural shock even in complex models, and have applied their methodology to estimate conditional
copulas.

DCC can also be used as a dynamic Gaussian copula where the first step is modified from fit-
ting the conditional variance to fitting the conditional distribution. Probability integral transformed
residuals from the first step are then transformed to be Gaussian, and these are used to estimate the
correlation parameters in the second step of the DCC estimator. The combined model has flexible
marginal distributions and a Gaussian copula.

9.A Bootstrap Standard Errors

The Bootstrap is a computational tool that has a variety of uses, including estimating standard errors
and simulating returns. It is particularly useful when evaluating expressions for asymptotic standard
errors that are complex. This appendix provides a very brief introduction to bootstrap standard errors.
The key intuition that underlies the bootstrap is simple. If {rt} is a sample of T data points from
some unknown joint distribution F , then {rt} can be used to simulate (via re-sampling) from the
unknown distribution F . The name bootstrap comes from the expression “To pull yourself up by your
bootstraps”, a seemingly impossible task, much like simulating values from an unknown distribution.

There are many implementations of the bootstrap, and each uses a different sampling scheme when
generating bootstrap samples. The assumed data generating process determines which bootstraps
are applicable. Bootstrap methods can be classified as parametric or non-parametric. Parametric
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S&P 500 - FTSE 100 Diagnostics
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Figure 9.16: These four panels show diagnostics from fitting copulas to weekly returns on the S&P
500 and FTSE 100. The top two panels contain plots of the probability integral transformed residuals.
The left panel shows the PITs constructed using the empirical CDF, and so depicts the unconditional
dependence. The right contains the PITs from a TARCH(1,1,1) with Skew t errors. The bottom left
contains a QQ plot of the data against the typical value from a Skew t. The bottom right plot contains
the fit annualized volatility for the two indices.

bootstraps resample model residuals. Nonparametric bootstraps directly resample from the observed
data and so do not rely on a model. In many applications both types of bootstraps are valid, and the
choice between the two is similar to the choice between parametric and non-parametric estimators:
parametric estimators are precise but may be misleading if the model is misspecified while non-
parametric estimators are consistent but may require larger samples to be reliable. This appendix
describes three bootstraps and one method to compute standard errors using a nonparametric bootstrap
method. Comprehensive treatments of the bootstrap can be found in Efron and Tibshirani (1998) and
Chernick (2008).

The i.i.d.bootstrap uses the simplest sampling scheme and is applicable when the data are i.i.d.,
or more generally when the model errors are not serially correlated.14

14The definition of the model error depends on the statistic of interest. For example, when bootstrapping the sample
mean, the i.i.d.bootstrap can be used if the data are serially uncorrelated. When bootstrapping a variance estimator, the
squared deviations must be uncorrelated. In applications of ML, the scores from the model must be serially uncorrelated.
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Algorithm 9.1 (IID Bootstrap). 1. Draw T indices τi = dTuie where ui
i.i.d.∼ U(0,1) and d·e is the

ceiling operator.

2. Construct an artificial time series using the indices {τi}T
i=1,

yτ1 yτ2 . . . yτT .

3. Repeat steps 1–2 a total of B times.

It is implausible to assume that the data are i.i.d. in most applications in finance, and so a bootstrap
designed for dependent data is required. The two most common bootstraps for dependent data are the
Circular Block Bootstrap and the Stationary Bootstrap (Politis and Romano, 1994). The Circular
Block Bootstrap is based on the idea of drawing blocks of data which are sufficiently long so that the
blocks are approximately i.i.d.

Algorithm 9.2 (Circular Block Bootstrap).

1. Draw τ1 = dTue where u i.i.d.∼ U(0,1).

2. For i = 2, . . . ,T , if i mod m 6= 0, τi = τi−1 +1 where wrapping is used so that if τi−1 = T then
τi = 1. If i mod m = 0 when τi = dTue where u i.i.d.∼ U(0,1).

3. Construct an artificial time series using the indices {τi}T
i=1.

4. Repeat steps 1 – 3 a total of B times.

The Stationary Bootstrap is closely related to the block bootstrap. The only difference is that it uses
blocks with lengths that are exponentially distributed with an average length of m.

Algorithm 9.3 (Stationary Bootstrap).

1. Draw τ1 = dTue where u i.i.d.∼ U(0,1).

2. For i = 2, . . . ,T , draw a standard uniform v i.i.d.∼ U(0,1). If v > 1/m, τi = τi−1 +1, where wrap-
ping is used so that if τi−1 = T then τi = 1 . If v≤ 1/m, τidTue where u i.i.d.∼ U(0,1)

3. Construct an artificial time series using the indices {τi}T
i=1.

4. Repeat steps 1 – 3 a total of B times.

In both the Circular Block Bootstrap and the Stationary Bootstrap, the block length should be
chosen to capture most of the dependence in the data. The block size should not be larger than√

T . Patton, Politis, and White (2009) provide a data-based method to select the block size in these
bootstraps.

The re-sampled data are then used to make inference on statistics of interest.

Additionally, when using a nonparametric bootstrap, the i.i.d.bootstrap is only applicable when the model does not impose
a time-series structure (i.e., the model is not an ARMA or GARCH).
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Algorithm 9.4 (Bootstrap Parameter Covariance Estimation). 1. Begin by computing the statistic
of interest θ̂ using the original sample.

2. Using a bootstrap appropriate for the dependence in the data, estimate the statistic of interest
on the B artificial samples, and denote these estimates as θ̃ j, j = 1,2, . . . ,B.

3. Construct confidence intervals using:

(a) (Inference using standard deviation) Estimate the variance of θ̂ −θ 0 as

B−1
B∑

b=1

(
θ̃ b− θ̂

)2

(b) (Inference using symmetric quantiles) Construct bootstrap errors as ηb = θ̃ b− θ̂ , and
construct the 1−α confidence interval (θ̂ ± q̄α/2) using the 1−α/2 quantile of |ηb|,
denoted q̄1−α/2.

(c) (Inference using asymmetric quantiles) Construct bootstrap errors as ηb = θ̃ b− θ̂ , and
construct the 1−α confidence interval (θ̂−qα/2, θ̂ +q1−α/2) using the α/2 and 1−α/2
quantile of ηb, denoted qα/2 and q1−α/2, respectively. The confidence interval can be
equivalently defined as (q̃α/2, q̃1−α/2) where q̃α/2 is the α/2 quantile of the estimators

computed from the bootstrap samples,
{

θ̃ j
}B

j=1, and q̃1−α/2 is similarly defined using the
1−α/2 quantile.

The bootstrap confidence intervals in this chapter are all computed using this algorithm and a station-
ary bootstrap with m∝

√
T .

Warning: The bootstrap is broadly applicable in cases where parameters are asymptotically nor-
mal such as in regression with stationary data. They are either not appropriate or require special
construction in many situations where estimators have non-standard distributions, e.g., unit roots, and
so before computing bootstrap standard errors, it is useful to verify that the bootstrap produces valid
inference. In cases where the bootstrap fails, subsampling, a more general statistical technique can be
used to make correct inference.

Shorter Problems

Problem 9.1. Describe the observable factor covariance model and the exponentially weighted mov-
ing average covariance model. Discuss the relative strengths and weaknesses of these two models.

Problem 9.2. Describe one multivariate GARCH model and one multivariate volatility model which
is not a GARCH specification. Describe the relative strengths and weaknesses of these two models.

Problem 9.3. Discuss three alternative models for conditional covariance.

Problem 9.4. What is Exceedance Correlation?

Problem 9.5. Compare and contrast linear and rank correlation.
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Longer Questions

Exercise 9.1. Answer the following questions about covariance modeling

1. Describe the similarities between the RiskMetrics 1994 and RiskMetrics 2006 methodologies.

2. Describe two multivariate GARCH models. What are the strengths and weaknesses of these
models?

3. Other than linear correlation, describe two other measures of dependence.

4. What is Realized Covariance?

5. What are the important considerations when estimating covariance using Realized Covariance?

Exercise 9.2. Answer the following questions.

1. Briefly outline two applications in finance where a multivariate volatility models are useful.

2. Describe two of the main problems faced in multivariate volatility modeling, using two different
models to illustrate these problems.

3. Recall that, in a bivariate application, the BEKK model of a time-varying conditional covariance
matrix is: [

σ11,t σ12,t
σ12,t σ22,t

]
≡ Σt = CC′+Aε t−1ε

′
t−1A′+BΣt−1B′

where C is a lower triangular matrix, and ε ′t ≡ [ε1,t ,ε2,t ] is the vector of residuals. Using the
result that vec(QRS) = (S′⊗Q)vec(R), where⊗ is the Kronecker product, re-write the BEKK
model for vec(Σt) rather than Σt .

4. Estimating this model on two-day returns on the S&P 500 index and the FTSE 100 index over
the period 4 April 1984 to 30 December 2008, we find

Ĉ =

[
0.15 0
0.19 0.20

]
, B̂ =

[
0.97 −0.01
−0.01 0.92

]
, Â =

[
0.25 0.03
0.05 0.32

]
.

Using your answer from (c), compute the (1,1) element of the coefficient matrix on vec(Σt−1) .

Exercise 9.3. Answer the following questions.

1. For a set of two asset returns, recall that the BEKK model for a time-varying conditional co-
variance matrix is: [

h11t h12t
h12t h22t

]
≡ Σt = CC′+BΣt−1B′+Aε t−1ε

′
t−1A′

where C is a lower triangular matrix, and ε ′t ≡ [ε1t ,ε2t ] is the vector of residuals.

2. Describe two of the main problems faced in multivariate volatility modeling, and how the
BEKK model overcomes or does not overcome these problems.
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3. Using the result that vec(QRS) = (S′⊗Q)vec(R), where⊗ is the Kronecker product, re-write
the BEKK model for vec(Σt) rather than Σt .

4. Estimating this model on two-day returns on the S&P 500 index and the FTSE 100 index over
the period 4 April 1984 to 30 December 2008, we find

Ĉ =

[
0.15 0
0.19 0.20

]
, B̂ =

[
0.97 −0.01
−0.01 0.92

]
, Â =

[
0.25 0.03
0.05 0.32

]
.

Using your answer from (b), compute the estimated intercept vector in the vec(Σt) representa-
tion of the BEKK model. (Hint: this vector is 4×1.)

5. Computing “exceedance correlations” on the two-day returns on the S&P 500 index and the
FTSE 100 index, we obtain Figure 9.17. Describe what exceedance correlations are, and what
feature(s) of the data they are designed to measure.

6. What does the figure tell us about the dependence between returns on the S&P 500 index and
returns on the FTSE 100 index?

Exercise 9.4. Answer the following questions about covariance modeling:

1. Describe the RiskMetrics 1994 methodology for modeling the conditional covariance.

2. How does the RiskMetrics 2006 methodology differ from the 1994 methodology for modeling
the conditional covariance?

3. Describe one multivariate GARCH model. What are the strengths and weaknesses of the
model?

4. How is the 5% portfolio VaR computed when using the RiskMetrics 1994 methodology?

5. Other than linear correlation, describe two measures of dependence.

6. What is Realized Covariance?

7. What are the important considerations when estimating covariance using Realized Covariance?
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100 index. Line with circles uses data from April 1984 to December 1989; line with stars uses data
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