

Course Structure

- Course presented through two overlapping channel:

1. In-person lectures
2. Notes that accompany the lecture content
\triangleright Read before or after the lecture or when necessary for additional background

- Slides are primary - material presented during lecturers is examinable
- Notes are secondary and provide more background for the slides
- Slides are derived from notes so there is a strong correspondence

Monitoring Your Progress

- Self assessment
- Review questions in printer-friendly version of slides \triangleright Self-assessment
- Multiple choice questions on Canvas made available each week
\triangleright Answers available immediately
- Long-form problem distributed each week
\triangleright Answers presented in a subsequent class
- Marked Assessment
- Empirical projects applying the material in the lectures
- Each empirical assignment will have a written and code component

Basic Notation

$$
Y_{i}=\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+\epsilon_{i},
$$

- Y_{i} : Regressand, Dependent Variable, LHS Variable
- $X_{j, i}$: Regressor, also Independent Variable, RHS Variable, Explanatory Variable
- ϵ_{i} : Innovation, also Shock, Error or Disturbance
- n observations, indexed $i=1,2, \ldots, n$
- k regressors, indexed $j=1,2, \ldots, k$

Usually use matrix notation

- $\mathbf{y}: n \times 1$

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- X: $n \times k$
- $\boldsymbol{\beta}: k \times 1$
- $\epsilon: n \times 1$

More Notation

Row form:

$$
Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}
$$

Column form:

$$
\mathbf{y}=\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\ldots+\beta_{k} \mathbf{x}_{k}+\boldsymbol{\epsilon}_{i}
$$

Throughout the notes and slides:

- Standard math notation indicates a scalar: $y_{i}, x_{i}, \beta, \epsilon_{i}$
- Scalar random variables are upper case: $Y_{i,} X_{i}, Z_{i}$
- Lower case bold math indicates a vector: $\mathbf{y}, \mathbf{x}_{i}, \boldsymbol{\epsilon}, \boldsymbol{\beta}$
- Upper case bold math indicates a matrix: X, A, $\boldsymbol{\Gamma}, \boldsymbol{\Sigma}$

What is a linear regression?

Many specifications can be examined using the tools of linear regression

$$
Y_{i}=\beta X_{i}+\epsilon_{i}
$$

- Two key requirements
- Additive error
- One multiplicative parameter per term

Examples:

- Polynomials
- Level shifts

$$
\begin{gathered}
Y_{i}=\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\epsilon_{i} \\
Y_{i}=\beta_{1} X_{i}+\beta_{2} X_{i} I_{\left[X_{i}>\kappa\right]}+\epsilon_{i}
\end{gathered}
$$

- $I_{\left[X_{i}>\kappa\right]}$ is an indicator variable that takes the value 1 or 0
- $I_{\left[X_{i}>\kappa\right]}=1$ if $X_{i}>\kappa$

■ "Non-linear" relationships

$$
Y_{i}=\beta_{1} \sin X_{i}+\beta_{2} \ln X_{i}+\epsilon_{i}
$$

What cannot be analyzed as a linear regression?

- Non-separable parameters

$$
Y_{i}=\beta_{1} X_{i}^{\beta_{2}}+\epsilon_{i}
$$

- Lots of solutions: Non-linear least squares, Maximum Likelihood, GMM

- ARCH

$$
\begin{gathered}
Y_{t}=\sqrt{\sigma_{t}^{2}} \epsilon_{t} \\
\sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}
\end{gathered}
$$

- Some models can be transformed into a LR

$$
\begin{aligned}
Y_{i}=\beta_{1} X_{i}^{\beta_{2}} \epsilon_{i} \Rightarrow \ln Y_{i} & =\ln \beta_{1}+\beta_{2} \ln X_{i}+\ln \epsilon_{i} \\
\tilde{Y}_{i} & =\tilde{\beta}_{1}+\beta_{2} \tilde{X}_{i}+\tilde{\epsilon}_{i}
\end{aligned}
$$

- Requires non-negativity of Y_{i} and X_{i}

Regression Coefficient Interpretation

- Ceteris Paribus
- Not usually applicable
- Holding other (included) variables constant
- More reasonable

On average

$$
\begin{gathered}
Y_{i}=\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i} \\
\beta_{k} \approx \frac{\partial Y_{i}}{\partial X_{k, i}}
\end{gathered}
$$

More complicated when model nonlinear in X_{i}

$$
\begin{aligned}
\ln Y_{i} & =\beta \ln X_{i} & Y_{i} & =\beta_{1} X_{i}+\beta_{2} X_{i}^{2} \\
\beta & \approx \frac{\partial Y_{i}}{\partial X_{i}} \frac{X_{i}}{Y_{i}}=E_{y, x} & \beta_{1}+2 \beta_{2} X_{i} & \approx \frac{\partial Y_{i}}{\partial X_{i}}
\end{aligned}
$$

What is a model?

- Two competing views
- Data generating process (DGP)
- Model taken as literal
- Simpler to think about
- Implausible for nearly everything we do
- Approximation to probability law (a.k.a. distribution)
- All models are misspecified, but...
- Even misspecified models can aid in understanding important relationships
- Reduces reality to tractable problem
- Some caution is needed
- My favorite example: GARCH model

$$
\begin{gathered}
Y_{t}=\sqrt{\sigma_{t}^{2}} \epsilon_{t} \\
\sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{gathered}
$$

- Relates today's variance to yesterday's variance and the squared return

Example: Approximate Factor Models

- Factor models are widely used in finance
- Capital Asset Pricing Model (CAPM)
- Arbitrage Pricing (APT)
- Risk Exposure
- Basic specification

$$
R_{i}=\mathbf{f}_{i} \boldsymbol{\beta}+\epsilon_{i}
$$

- R_{i} : Return on dependent asset, often excess $\left(R_{i}^{e}\right)$
- $\mathbf{f}_{i}: 1 \times k$ vector of factor innovations
- ϵ_{i} innovation, $\operatorname{corr}\left(\epsilon_{i}, F_{j, i}\right)=0, j=1,2, \ldots, k$
- Special Case: CAPM

$$
\begin{gathered}
R_{i}-R_{i}^{f}=\beta\left(R_{i}^{m}-R_{i}^{f}\right)+\epsilon_{i} \\
R_{i}^{e}=\beta R_{i}^{m e}+\epsilon_{i}
\end{gathered}
$$

Data

- Fama-French 3 factors + Momentum
- $V W M^{e}$ - Excess return on Value-Weighted-Market
- $S M B$ - Return on the size portfolio
- HML - Return on the value portfolio
- MOM - Return on the momentum portfolio
- Size-Value sorted portfolio return data
- Size
- S: Small
- B: Big
- Value
$\triangleright \mathrm{H}$: High BE/ME
\triangleright M: Middle BE/ME
- L: Low BE/ME
- 49 Industry Portfolios
- All returns excess except $S M B$, $H M L, M O M$

Factor Portfolio Summary Statistics

Component Portfolio Summary Statistics

Skewness

Industry Portfolio Summary Statistics

Dummy Variables

Definition (Dummy Variable)

A dummy variable is a variable that takes the value 0 or 1 .

- Value depends on the value of some X variable(s)
- Denoted

$$
I_{[f(\mathbf{x}) \leq c]}
$$

- $f(\mathbf{x})$ is some function of the regressors
- c is an arbitrary constant
- \leq could be anything that would produce a logical expression ($\neq,>$)
- Cannot depend on y_{i}
- Dummies in finance
- Asymmetries: $I_{\left[X_{i}<0\right]}$
- Calendar effects: $I_{\left[X_{i}=1\right]}$ where X_{i} is the month or day of the week
- Structural breaks: $I_{\left[X_{i}>1987\right]}$ where X_{i} is the year

Variable Interactions

- Nonlinearities often introduced through interactions

$$
X_{1, i}^{2}, X_{1, i} X_{2, i} \text { or } X_{1, i}^{2} X_{2, i}
$$

- Interactions can include dummy variables

$$
\begin{gathered}
X_{1, i} I_{\left[X_{1, i}<0\right]}-\text { Asymmetric slope coefficient } \\
X_{1, i} X_{2, i} I_{\left[X_{1, i}<0\right]} I_{\left[X_{2, i}<0\right]}-\text { Asymmetric slope coefficient in (-,-) quadrant }
\end{gathered}
$$

- Interactions, particularly dummy interactions can capture important highly-linear features

Kinked lines
Jumps in lines
Piece-wise linear splines
Polynomial (Tensor) Products

$$
\begin{aligned}
& Y_{i}=\beta_{1}+\beta_{2} X_{i}+\beta_{3} X_{i} I_{\left[X_{i}<0\right]}+\epsilon_{i} \\
& Y_{i}=\beta_{1}+\beta_{2} I_{\left[X_{i}<0\right]}+\beta_{3} X_{i}+\epsilon_{i} \\
& Y_{i}=\beta_{1}+\beta_{2} X_{i}+\beta_{3} X_{i} I_{\left[X_{i}>c\right]}+\left(\beta_{1}+\beta_{2} c-\beta_{3} c\right) I_{\left[X_{i}>c\right]}+\epsilon_{i} \\
& Y_{i}=\beta_{1}+\beta_{2} X_{1, i}+\beta_{3} X_{2, i}+\beta_{4} X_{1, i}^{2}+\beta_{5} X_{2, i}^{2}+\beta_{6} X_{1, i} X_{2, i}+\epsilon_{i}
\end{aligned}
$$

Interaction Variables

- Market Negative: $I_{\left[V W M^{e}<0\right]}$
- Negative Return: $V W M^{e} \times I_{\left[V W M^{e}<0\right]}$
- Squared Return: $\left(V W M^{e}\right)^{2}$

	Market Negative	Negative Return	Squared Returns
Date			
$2019-11$	0	0	14.98
$2019-12$	0	0	7.67
$2020-01$	1	-0.11	0.01
$2020-02$	1	-8.13	66.10
$2020-03$	1	-13.38	179.02
$2020-04$	0	0	186.32
$2020-05$	0	0	31.14
$2020-06$	0	0	6.05
$2020-07$	0	0	33.29
$2020-08$	0	0	58.06

Monthly Dummy Variables

| | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Date | | | | | | | | | | | | |
| $1963-07$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $1963-08$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $1963-09$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| $1963-10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $1963-11$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $1963-12$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $1964-01$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $1964-02$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

A Caveat for Using Dummy Variables

The Dummy Variable Trap

- Cannot include an intercept and all dummies
- $I_{1, i}=1$ if Monday, $I_{2, i}=1$ if Tuesday, etc.
- Problematic specification:

$$
Y_{i}=\beta_{1}+\beta_{2} I_{1, i}+\beta_{3} I_{2, i}+\beta_{4} I_{3, i}+\beta_{5} I_{4, i}+\beta_{6} I_{5, i}+\epsilon_{i}
$$

- $\sum_{j=1}^{5} I_{j, i}=1$ always
- Perfect Collinearity: Cannot estimate model
- Solution 1: Remove the constant

$$
Y_{i}=\beta_{1} I_{1, i}+\beta_{2} I_{2, i}+\beta_{3} I_{3, i}+\beta_{4} I_{4, i}+\beta_{5} I_{5, i}+\epsilon_{i}
$$

- Solution 2: Remove one dummy

$$
Y_{i}=\beta_{1}+\beta_{2} I_{2, i}+\beta_{3} I_{3, i}+\beta_{4} I_{4, i}+\beta_{5} I_{5, i}+\epsilon_{i}
$$

- Interpretation changes, models identical
- Most software will produce an error or warning

Review Questions

- In what sense is linear regression linear?
- What are the requirements for a model to be a linear regression?
- What is the effect on Y for a small change in $X\left(\partial Y / \partial X_{j}\right)$ in the following models?
- $Y_{i}=\beta_{1}+\beta_{2} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{1}+\beta_{2} \exp \left(X_{i}\right)+\epsilon_{i}$
- $\ln Y_{i}=\beta_{1}+\beta_{2} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{1}+\beta_{2} X_{1, i}+\beta_{3} X_{1, i} X_{2, i}+\epsilon_{i}$
- What is the dummy variable trap and what alternatives are there to avoid it?
- How are the parameters is a model with a constant and $q-1$ dummies related to the parameters in a model with the full set of q dummies?
- How can linear regression be used to approximate a non-linear but smooth relationship between Y_{i} and \mathbf{x}_{i} ?

Estimating the unknown parameters

- Many possible ways to estimate $\boldsymbol{\beta}$
- Take k data points and solve (Gaussian Elimination)
\triangleright Exact and simple solution
- Doesn't work if $n>k$
- Minimize the maximum error
\triangleright Maximum Score
\triangleright Computationally challenging
- Minimize the average error
\triangleright Many solutions
- Minimize some non-negative function of the errors
\triangleright Least squares

$$
\begin{aligned}
& \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right)^{2} \\
& \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left|Y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right|
\end{aligned}
$$

\triangleright Least absolute deviations

Calculus of Least Squares

- Formal problem

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right)^{2}=\sum_{i=1}^{n} \epsilon_{i}^{2}
$$

- Matrix equivalent

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\boldsymbol{\epsilon}^{\prime} \boldsymbol{\epsilon}
$$

- k First Order Conditions (F.O.C)

$$
\begin{aligned}
-2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}) & =-2 \mathbf{X}^{\prime} \hat{\boldsymbol{\epsilon}}=\mathbf{0} \\
\Rightarrow-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}} & =\mathbf{0}
\end{aligned}
$$

- Solve for $\boldsymbol{\beta}$ to get LS estimator, denoted $\hat{\boldsymbol{\beta}}$

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Second derivative is always positive definite as long as $\operatorname{rank}(\mathbf{X})=k$.

$$
2 \mathbf{X}^{\prime} \mathbf{X}
$$

Standard Regression Summary Information

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right)^{2}
$$

Benchmark Model
$R_{i}^{e}=\beta_{c}+\beta_{V W M} V W M_{i}^{e}+\beta_{S M B} S M B_{i}+\beta_{H M L} H M L_{i}+\beta_{M O M} M O M_{i}+\epsilon_{i}$

Least Absolute Deviations (LAD)

$\hat{\boldsymbol{\beta}}_{L A D}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|Y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right\|$					
	$\hat{\beta}$	s.e. $(\hat{\beta})$	T	$\operatorname{Pr}(T)$	Conf. Int.
Const.	-0.0306	0.044	-0.696	0.487	$[-0.117,0.056]$
$V W M^{e}$	1.0716	0.010	103.257	0.000	$[1.051,1.092]$
$S M B$	0.0161	0.015	1.090	0.276	$[-0.013,0.045]$
$H M L$	0.7503	0.016	47.702	0.000	$[0.719,0.781]$
$M O M$	-0.0272	0.011	-2.581	0.010	$[-0.048,-0.007]$

Other estimators

- Fit values

$$
\hat{Y}_{i}=\mathbf{x}_{i} \hat{\boldsymbol{\beta}}
$$

- Estimated errors

$$
\hat{\epsilon}_{i}=Y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}=Y_{i}-\hat{Y}_{i}
$$

- Error variance estimator

$$
s^{2}=\frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{n-k} \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{n}
$$

- $n-k$ is a degree of freedom correction
- $\hat{\epsilon}_{i}$ are too close to zero.

Linear vs. Nonlinear Fit

Features of the OLS estimator

- Only assumption needed for estimation

$$
\operatorname{rank}(\mathbf{X})=k \Rightarrow \mathbf{X}^{\prime} \mathbf{X} \text { is invertible }
$$

- Estimated errors are orthogonal to X

$$
\mathbf{X}^{\prime} \hat{\boldsymbol{\epsilon}}=\mathbf{0} \text { or for each variables, } \sum_{i=1}^{n} X_{i j} \hat{\epsilon}_{i}=0, j=1,2, \ldots, k
$$

- If model includes a constant, estimated errors have mean 0

$$
\sum_{i=1}^{n} \hat{\epsilon}_{i}=0
$$

- Closed under linear transformations to either \mathbf{X} or \mathbf{y}

Linear: $a \mathbf{z}, a$ nonzero

- Closed under affine transformation to \mathbf{X} or \mathbf{y} if model has constant Affine: $a \mathbf{z}+c, a$ nonzero

Factor Loadings

Industry Portfolios

Factor Loadings

Component Portfolios

HML

MOM

Evidence of Nonlinearity

Assessing fit

Next step: Does my model fit?

- A few preliminaries

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \text { Total Sum of Squares (TSS) } \\
& \sum_{i=1}^{n}\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}-\overline{\mathbf{x}} \hat{\boldsymbol{\beta}}\right)^{2} \text { Regression Sum of Squares (RSS) } \\
& \sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)^{2} \text { Sum of Squared Errors (SSE) }
\end{aligned}
$$

- ι is a $k \times 1$ vector of 1 s .
- Note: $\bar{y}=\overline{\mathbf{x}} \hat{\boldsymbol{\beta}}$ if the model contains a constant

$$
T S S=R S S+S S E
$$

- Can form ratios of explained and unexplained

$$
R^{2}=\frac{R S S}{T S S}=1-\frac{S S E}{T S S}
$$

Uncentered $R^{2}: R_{u}^{2}$

- Usual R^{2} is formally known as centered $R^{2}\left(R_{c}^{2}\right)$
- Only appropriate if model contains a constant
- Alternative definition for models without constant

$$
\begin{gathered}
\sum_{i=1}^{n} Y_{i}^{2} \text { Uncentered Total Sum of Squares }\left(\mathrm{TSS}_{\mathrm{U}}\right) \\
\sum_{i=1}^{n}\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)^{2} \text { Uncentered Regression Sum of Squares }\left(\mathrm{RSS}_{\mathrm{U}}\right) \\
\sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)^{2} \text { Uncentered Sum of Squares Errors }\left(\mathrm{SSE}_{\mathrm{U}}\right)
\end{gathered}
$$

- Uncentered $R^{2}: R_{u}^{2}$
- Warning: Most software packages return R_{c}^{2} for any model
- Inference based on R_{c}^{2} when the model does not contain a constant will be wrong!
- Warning: Using the wrong definition can produce nonsensical and/or misleading numbers

The limitation of R^{2}

- R^{2} has one crucial shortcoming:
- Adding variables cannot decrease the R^{2}
- Limits usefulness for selecting models : Bigger model always preferred
- Enter \bar{R}^{2}

$$
\bar{R}^{2}=1-\frac{\frac{S S E}{n-k}}{\frac{T S S}{n-1}}=1-\frac{s^{2}}{s_{y}^{2}}=1-\frac{S S E}{T S S} \frac{n-1}{n-k}=1-\left(1-R^{2}\right) \frac{n-1}{n-k}
$$

- \bar{R}^{2} is read as "Adjusted $R^{2 "}$
- \bar{R}^{2} increases if and only if the estimated error variance decreases
- Adding noise variables should generally decrease \bar{R}^{2}
- Caveat: For large n, penalty is essentially nonexistent
- Much better way to do model selection coming later...

Model Fit

- Reference

$$
R_{i}^{e}=\alpha+\beta_{V W M} V W M^{e}+\beta_{S M B} S M B+\beta_{H M L} H M L+\beta_{M O M} M O M+\epsilon_{i}
$$

- Add Shift: $R_{i}^{e} \rightarrow R_{i}^{e}+99$
- Rescaled: $R_{i}^{e} \rightarrow \pi R_{i}^{e}$
- Different LHS: $R_{i}^{e} \rightarrow R_{i}^{e}-V W M^{e}-H M L$
- No Constant: $R_{i}^{e} \rightarrow R_{i}^{e}+99, \alpha$ excluded from model

	Reference	Add. Shift	Rescaled	Diff. LHS	No. Const.
R^{2}	95.4%	95.4%	95.4%	38.2%	8.8%
\bar{R}^{2}	95.4%	95.4%	95.4%	37.8%	8.3%

Model Fit

Review Questions

- Does OLS suffer from local minima?
- Why might someone prefer a different objective function to the least squares?
- Why is it the case that the estimated residuals $\hat{\epsilon}$ are exactly orthogonal to the regressors \mathbf{X} (i.e., $\mathrm{X}^{\prime} \hat{\epsilon}=0$)?
- How are the model parameters γ related to the parameters β in the two following regression where \mathbf{C} is a k by k full-rank matrix?

$$
Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i} \text { and } Y_{i}=\left(\mathbf{x}_{i} \mathbf{C}\right) \gamma+\epsilon_{i}
$$

- What does R^{2} measure?
- When is it appropriate to use centered R^{2} instead of uncentered R^{2} ?
- Why is R^{2} not suitable for choosing a model?
- Why might $\overline{\mathrm{R}}_{\mathrm{U}}^{2}$ not be much better than $\mathrm{R}_{\mathrm{U}}^{2}$ when choosing between nested models?

Making sense of estimators

- Only one assumption in 30 slides
- $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular (Identification)
- More needed to make any statements about unknown parameters
- Two standard setups:
- Classical (also Small Sample, Finite Sample, Exact)
\triangleright Make strong assumptions \Rightarrow get clear results
\triangleright Easier to work with
\triangleright Implausible for most finance data
- Asymptotic (also Large Sample)
\triangleright Make weak assumptions \Rightarrow hope distribution close
\triangleright Requires limits and convergence notions
\triangleright Plausible for many financial problems
\triangleright Extensions to make applicable to most finance problem
- We'll cover only the Asymptotic framework since the Classical framework is not appropriate for most financial data.

The assumptions

Assumption (Linearity)

$Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$

- Model is correct and conformable to requirements of linear regression
- Strong (kind of)

Assumption (Stationary Ergodicity)

$\left\{\left(\mathbf{x}_{i}, \epsilon_{i}\right)\right\}$ is a strictly stationary and ergodic sequence.

- Distribution of ($\mathbf{x}_{i}, \epsilon_{i}$) does not change across observations
- Allows for applications to time-series data
- Allows for i.i.d. data as a special case

The assumptions

Assumption (Rank)

$\mathrm{E}\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]=\mathbf{\Sigma}_{\mathbf{X x}}$ is nonsingular and finite.

- Needed to ensure estimator is well defined in large samples
- Rules out some types of regressors
- Functions of time
- Unit roots (random walks)

Assumption (Moment Existence)

$\mathrm{E}\left[X_{j, i}^{4}\right]<\infty, i=1,2, \ldots, j=1,2, \ldots, k$ and $\mathrm{E}\left[\epsilon_{i}^{2}\right]=\sigma^{2}<\infty, i=1,2, \ldots$.

- Needed to estimate parameter covariances
- Rules out very heavy-tailed data

The assumptions

Assumption (Martingale Difference)

$\left\{\mathbf{x}_{i}^{\prime} \epsilon_{i}, \mathcal{F}_{i}\right\}$ is a martingale difference sequence, $\mathrm{E}\left[\left(X_{j, i} \epsilon_{i}\right)^{2}\right]<\infty j=1,2, \ldots, k, i=1,2 \ldots$ and $\mathbf{S}=\mathrm{V}\left[n^{-\frac{1}{2}} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right]$ is finite and nonsingular.

- Provides conditions for a central limit theorem to hold

Definition (Martingale Difference Sequence)

Let $\left\{\mathbf{z}_{i}\right\}$ be a vector stochastic process and \mathcal{F}_{i} be the information set corresponding to observation i containing all information available when observation i was collected except $\mathbf{z}_{i} .\left\{\mathbf{z}_{i}, \mathcal{F}_{i}\right\}$ is a martingale difference sequence if

$$
\mathrm{E}\left[\mathbf{z}_{i} \mid \mathcal{F}_{i}\right]=\mathbf{0}
$$

Large Sample Properties

$$
\hat{\boldsymbol{\beta}}_{n}=\left(n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}\left(n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}^{\prime} Y_{i}\right)
$$

Theorem (Consistency of $\hat{\boldsymbol{\beta}}$)
Under these assumptions

$$
\hat{\boldsymbol{\beta}}_{n} \xrightarrow{p} \boldsymbol{\beta}
$$

- Consistency means that the estimate will be close - eventually - to the population value
- Without further results it is a very weak condition

Large Sample Properties

Theorem (Asymptotic Distribution of $\hat{\beta}$)

Under these assumptions

$$
\begin{equation*}
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{d} N\left(0, \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1}\right) \tag{1}
\end{equation*}
$$

where $\boldsymbol{\Sigma}_{\mathbf{X X}}=\mathrm{E}\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]$ and $\mathbf{S}=\mathrm{V}\left[n^{-1 / 2} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right]$.

- CLT is a strong result that will form the basis of the inference we can make on β
- What good is a CLT?

Estimating the parameter covariance

- Before making inference, the covariance of $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ must be estimated

Theorem (Asymptotic Covariance Consistency)

Under the large sample assumptions,

$$
\begin{aligned}
\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}} & =n^{-1} \mathbf{X}^{\prime} \mathbf{X} \xrightarrow{p} \boldsymbol{\Sigma}_{\mathbf{X X}} \\
\hat{\mathbf{S}} & =n^{-1} \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \xrightarrow{p} \mathbf{S} \\
& =n^{-1}\left(\mathbf{X}^{\prime} \hat{\mathbf{E}} \mathbf{X}\right)
\end{aligned}
$$

and

$$
\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \xrightarrow{p} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1}
$$

where $\hat{\mathbf{E}}=\operatorname{diag}\left(\hat{\epsilon}_{1}^{2}, \ldots, \hat{\epsilon}_{n}^{2}\right)$.

Covariance

	Const.	$V W M^{e}$	$S M B$	$H M L$	$M O M$
Const.	0.001860	-0.000171	0.000079	-0.000157	-0.000154
$V W M^{e}$	-0.000171	0.000133	-0.000060	0.000039	0.000019
$S M B$	0.000079	-0.000060	0.000297	0.000042	0.000019
$H M L$	-0.000157	0.000039	0.000042	0.000441	0.000122
$M O M$	-0.000154	0.000019	0.000019	0.000122	0.000181

Correlation

	Const.	$V W M^{e}$	$S M B$	$H M L$	$M O M$
Const.	-	-34.3%	10.6%	-17.3%	-26.5%
$V W M^{e}$	-34.3%	-	-29.9%	16.1%	12.3%
$S M B$	10.6%	-29.9%	-	11.5%	8.2%
$H M L$	-17.3%	16.1%	11.5%	-	43.2%
$M O M$	-26.5%	12.3%	8.2%	43.2%	-

Bootstrap Estimation of Parameter Covariance

1. Residual Bootstrap

- Appropriate when data are conditionally homoskedastic
- Separate selection of \mathbf{x}_{i} and $\hat{\epsilon}_{i}$ when constructing bootstrap \tilde{Y}_{i}

2. Non-parametric Bootstrap

- Works under more general conditions
- Resamples $\left\{Y_{i}, \mathbf{x}_{i}\right\}$ as a pair
- Both are for data where the errors are not cross-sectionally correlated

Bootstraping Heteroskedastic Data

Algorithm (Nonparametric Bootstrap Regression Covariance)

1. Generate a sets of n uniform integers $\left\{U_{i}\right\}_{i=1}^{n}$ on $[1,2, \ldots, n]$.
2. Construct a simulated sample $\left\{Y_{u_{i}}, \mathbf{x}_{u_{i}}\right\}$.
3. Estimate the parameters of interest using $Y_{u_{i}}=\mathbf{x}_{u_{i}} \boldsymbol{\beta}+\epsilon_{u_{i}}$, and denote the estimate $\tilde{\boldsymbol{\beta}}_{b}$.
4. Repeat steps 1 through 3 a total of B times.
5. Estimate the variance of $\hat{\boldsymbol{\beta}}$ using

$$
\widehat{\mathrm{V}}[\hat{\boldsymbol{\beta}}]=\mathrm{B}^{-1} \sum_{b=1}^{B}\left(\tilde{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\beta}}\right)\left(\tilde{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\beta}}\right)^{\prime} \text { or } \mathrm{B}^{-1} \sum_{b=1}^{B}\left(\tilde{\boldsymbol{\beta}}_{j}-\tilde{\boldsymbol{\beta}}\right)\left(\tilde{\boldsymbol{\beta}}_{j}-\tilde{\boldsymbol{\beta}}\right)^{\prime}
$$

Bootstrap Iterations

	Const.	$V W M^{e}$	$S M B$	$H M L$	$M O M$
b					
1	-0.032329	1.073407	-0.002263	0.747751	-0.059899
2	-0.098095	1.082409	0.047483	0.750626	-0.023940
3	-0.037763	1.085002	0.036935	0.776792	-0.025469
4	-0.019000	1.083847	-0.002470	0.689036	-0.053007
5	-0.052940	1.067186	0.032972	0.783204	-0.034621

Estimator Correlation

Bootstrap

Review Questions

- How do heavy tails in the residual affect OLS estimators?
- What is ruled out by the martingale difference assumption?
- Since samples are always finite, what use is a CLT?
- Why is the sandwich covariance estimator needed with heteroskedastic data?
- How do you use the bootstrap to estimate the covariance of regression parameters?
- Is the bootstrap covariance estimator better than the closed-form estimator?

Elements of a hypothesis test

Definition (Null Hypothesis)

The null hypothesis, denoted H_{0}, is a statement about the population values of some parameters to be tested. The null hypothesis is also known as the maintained hypothesis.

- Null is important because it determines the conditions under which the distribution of $\hat{\boldsymbol{\beta}}$ must be known

Definition (Alternative Hypothesis)

The alternative hypothesis, denoted H_{1}, is a complementary hypothesis to the null and determines the range of values of the population parameter that should lead to rejection of the null.

- Alternative is important because it determines the conditions where the null should be rejected

$$
H_{0}: \lambda_{\text {Market }}=0, H_{1}: \lambda_{\text {Market }}>0 \text { or } H_{1}: \lambda_{\text {Market }} \neq 0
$$

Elements of a hypothesis test

Definition (Hypothesis Test)

A hypothesis test is a rule that specifies the values where H_{0} should be rejected in favor of H_{1}.

- The test embeds a test statistic and a rule which determines if H_{0} can be rejected
- Note: Failing to reject the null does not mean the null is accepted.

Definition (Critical Value)

The critical value for an α-sized test, denoted C_{α}, is the value where a test statistic, T, indicates rejection of the null hypothesis when the null is true.

- CV is the value where the null is just rejected
- CV is usually a point although can be a set

Elements of a hypothesis test

Definition (Rejection Region)

The rejection region is the region where $T>C_{\alpha}$.

Definition (Type I Error)

A Type I error is the event that the null is rejected when the null is actually valid.

- Controlling the Type I is the basis of frequentist testing
- Note: Occurs only when null is true

Definition (Size)

The size or level of a test, denoted α, is the probability of rejecting the null when the null is true. The size is also the probability of a Type I error.

- Size represents the preference for being wrong and rejecting true null

Elements of a hypothesis test

Definition (Type II Error)

A Type II error is the event that the null is not rejected when the alternative is true.

- A Type II occurs when the null is not rejected when it should be

Definition (Power)

The power of the test is the probability of rejecting the null when the alternative is true. The power is equivalently defined as 1 minus the probability of a Type II error.

- High power tests can discriminate between the null and the alternative with a relatively small amount of data

Type I \& II Errors, Size and Power

- Size and power can be related to correct and incorrect decisions

Decision

H_{0}	not reject H_{0}	Reject H_{0}
	Correct	Type I Error (Size)
H_{1}	Type II Error	Correct (Power)

Review Questions

- Does an alternative hypothesis always exactly complement a null?
- What determines the size you should use when performing a hypothesis test?
- If you conclude that a hedge fund generates abnormally high returns when it is no better than a passive benchmark, are you making a Type I or II error?
- If I give you a test for a disease, and conclude that you do not have it when you do, am I making a Type I or II error?
- How are size and power related to the two types of errors?

Hypothesis testing in regressions

- Distribution theory allows for inference
- Hypothesis

$$
H_{0}: \mathbf{R}(\boldsymbol{\beta})=0
$$

- $\mathbf{R}(\cdot)$ is a function from $\mathbb{R}^{k} \rightarrow \mathbb{R}^{m}, m \leq k$
- All equality hypotheses can be written this way

$$
H_{0}:\left(\beta_{1}-1\right)\left(\beta_{2}-1\right)=0 \quad H_{0}: \frac{\beta_{1} \beta_{2}}{\beta_{1}+\beta_{2}}-1=0
$$

- Linear Equality Hypotheses (LEH)

$$
H_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{r}=0 \text { or in long hand, } \sum_{j=1}^{k} R_{i, j} \beta_{j}=r_{i}, i=1,2, \ldots, m
$$

- \mathbf{R} is an m by k matrix
- \mathbf{r} is an m by 1 vector
- Attention limited to linear hypotheses in this chapter
- Nonlinear hypotheses examined in GMM notes

What is a linear hypothesis

3-Factor FF Model: $B H_{i}^{e}=\beta_{1}+\beta_{2} V W M_{i}^{e}+\beta_{3} S M B_{i}+\beta_{4} H M L_{i}+\epsilon_{i}$

- $H_{0}: \beta_{2}=0[$ Market Neutral]
- $\mathbf{R}=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
- $\mathbf{r}=0$
- $H_{0}: \beta_{2}+\beta_{3}=1$
- $\mathbf{R}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
- $\mathbf{r}=1$
- $H_{0}: \beta_{3}=\beta_{4}=0$ [CAPM with nonzero intercept]
- $\mathbf{R}=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- $\mathbf{r}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\prime}$
- $H_{0}: \beta_{1}=0, \beta_{2}=1, \beta_{2}+\beta_{3}+\beta_{4}=1$
- $\mathbf{R}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$
- $\mathbf{r}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\prime}$

Estimating linear regressions subject to LER

- Linear regressions subject to linear equality constraints can always be directly estimated using a transformed regression

$$
\begin{aligned}
B H_{i}^{e} & =\beta_{1}+\beta_{2} V W M_{i}^{e}+\beta_{3} S M B_{i}+\beta_{4} H M L_{i}+\epsilon_{i} \\
& H_{0}: \beta_{1}=0, \beta_{2}=1, \beta_{2}+\beta_{3}+\beta_{4}=1 \\
& \Rightarrow \beta_{2}=1-\beta_{3}-\beta_{4} \\
& \Rightarrow 1=1-\beta_{3}-\beta_{4} \\
& \Rightarrow \beta_{3}=-\beta_{4} B H_{i}^{e}
\end{aligned}
$$

- Combine to produce restricted model

$$
\begin{aligned}
B H_{i}^{e} & =\mathbf{0}+\mathbf{1} V W M_{i}^{e}+\beta_{3} S M B_{i}-\beta_{3} H M L_{i}+\epsilon_{i} \\
B H_{i}^{e}-\mathbf{V W M}_{\mathbf{i}}^{\mathrm{e}} & =\beta_{3}\left(\mathbf{S M B}_{\mathbf{i}}-\mathbf{H M L}_{\mathbf{i}}\right)+\epsilon_{i} \\
\tilde{R}_{i} & =\beta_{3} \tilde{R}_{i}^{P}+\epsilon_{i}
\end{aligned}
$$

3 Major Categories of Tests

- Wald
- Directly tests magnitude of $\mathbf{R} \boldsymbol{\beta}-\mathbf{r}$
- t-test is a special case
- Estimation only under alternative (unrestricted model)
- Lagrange Multiplier (LM)
- Also Score test or Rao test
- Tests how close to a minimum the sum of squared errors is if the null is true
- Estimation only under null (restricted model)
- Likelihood Ratio (LR)
- Tests magnitude of log-likelihood difference between the null and alternative
- Invariant to reparameterization
\triangleright Good thing!
- Estimation under both null and alternative
- Close to LM in asymptotic framework

Visualizing the three tests

Review Questions

- What is a linear equality restriction?
- In a model with 4 explanatory variables, X_{1}, X_{2}, X_{3} and X_{4}, write the restricted model for the null $H_{0}: \sum_{i=1}^{4} \beta_{i}=0 \cap \sum_{i=2}^{4} \beta_{i}=1$.
- What are the three categories of tests?
- What quantity is tested in Wald tests?
- What quantity is tested in Likelihood Ratio tests?
- What quantity is tested in Lagrange Multiplier tests?

Refresher: Normal Random Variables

- A univariate normal RV can be transformed to have any mean and variance

$$
Y \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \frac{Y-\mu}{\sigma} \sim N(0,1)
$$

- Same logic extends to m-dimensional multivariate normal random variables

$$
\begin{aligned}
\mathbf{y} & \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathbf{y}-\boldsymbol{\mu} & \sim N(\mathbf{0}, \boldsymbol{\Sigma}) \\
\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{y}-\boldsymbol{\mu}) & \sim N(\mathbf{0}, \mathbf{I})
\end{aligned}
$$

- Uses property that positive definite matrix has a square root: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{1 / 2}\left(\boldsymbol{\Sigma}^{1 / 2}\right)^{\prime}$

$$
\operatorname{Cov}\left[\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{y}-\boldsymbol{\mu})\right]=\boldsymbol{\Sigma}^{-1 / 2} \operatorname{Cov}[(\mathbf{y}-\boldsymbol{\mu})]\left(\boldsymbol{\Sigma}^{-1 / 2}\right)^{\prime}=\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{-1 / 2}\right)^{\prime}=\mathbf{I}
$$

- If $\mathbf{z} \equiv \boldsymbol{\Sigma}^{-1 / 2}(\mathbf{y}-\boldsymbol{\mu}) \sim N(\mathbf{0}, \mathbf{I})$ is multivariate standard normally distributed, then

$$
\mathbf{z}^{\prime} \mathbf{z}=\sum_{i=1}^{m} z_{i}^{2} \sim \chi_{m}^{2}
$$

t-tests

- Single linear hypothesis: $H_{0}: \mathbf{R} \boldsymbol{\beta}=r$

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1}\right) \Rightarrow \sqrt{n}(\mathbf{R} \hat{\boldsymbol{\beta}}-r) \xrightarrow{d} N\left(\mathbf{0}, \mathbf{R} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{R}^{\prime}\right)
$$

- Note: Under the null $H_{0}: \mathbf{R} \boldsymbol{\beta}=r$
- Transform to standard normal random variable

$$
z=\sqrt{n} \frac{\mathbf{R} \hat{\boldsymbol{\beta}}-r}{\sqrt{\mathbf{R} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{R}^{\prime}}}
$$

- Infeasible: Depends on unknown covariance
- Construct a feasible version using the estimate

$$
t=\sqrt{n} \frac{\mathbf{R} \hat{\boldsymbol{\beta}}-r}{\sqrt{\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \mathbf{R}^{\prime}}}
$$

- Estimated variance of $\mathbf{R} \hat{\boldsymbol{\beta}}$
- Note: Asymptotic distribution is unaffected since covariance estimator is consistent

t-test and t-stat

Unique property of t-tests

- Easily test one-sided alternatives

$$
H_{0}: \beta_{1}=0 \text { vs. } H_{1}: \beta_{1}>0
$$

- More powerful if you know the sign (e.g. risk premia)
t-stat

Definition (t-stat)

The t-stat of a coefficient $\hat{\beta}_{k}$ is test of $H_{0}: \beta_{k}=0$ against $H_{0}: \beta_{k} \neq 0$, and is computed

$$
\sqrt{n} \frac{\hat{\beta}_{k}}{\sqrt{\left.\left(\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1}\right)_{[k k]}\right]}}
$$

- Single most common statistic
- Reported for nearly every coefficient

Distribution and rejection region

Implementing a t Test

Algorithm (t-test)

1. Estimate the unrestricted model $y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$
2. Estimate the parameter covariance using $\hat{\boldsymbol{\Sigma}}_{\mathbf{X x}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X x}}^{-1}$
3. Construct the restriction matrix, \mathbf{R}, and the value of the restriction, r, from null
4. Compute

$$
t=\sqrt{n} \frac{\mathbf{R} \hat{\boldsymbol{\beta}}_{n}-r}{\sqrt{v}}, \quad v=\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \mathbf{R}^{\prime}
$$

5. Make decision (C_{α} is the upper tail $\alpha-\operatorname{CV}$ from $N(0,1)$):
a. 1-sided Upper: Reject the null if $t>C_{\alpha}$
b. 1-sided Lower: Reject the null if $t<-C_{\alpha}$
c. 2-sided: Reject the null if $|t|>C_{\alpha / 2}$

Note: Software automatically adjusts for sample size and returns $\hat{\mathbf{\Sigma}}_{\mathbf{x} \mathbf{x}}^{-1} \hat{\mathbf{s}} \hat{\mathbf{\Sigma}}_{\mathbf{x} \mathbf{x}}^{-1} / n$

t-statistics

$H_{0}: \beta_{j}=0, H_{1}: \beta_{j} \neq 0$

t-test statistics

Wald tests

- Wald tests examine validity of one or more equality restriction by measuring magnitude of $\mathbf{R} \boldsymbol{\beta}-\mathbf{r}$
- For same reasons as t-test, under the null

$$
\sqrt{n}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \xrightarrow{d} N\left(\mathbf{0}, \mathbf{R} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{R}^{\prime}\right)
$$

- Standardized and squared

$$
W=n(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \boldsymbol{\Sigma}_{\mathbf{X X}}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \xrightarrow{d} \chi_{m}^{2}
$$

- Again, this is infeasible, so use the feasible version

$$
W=n(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \xrightarrow{d} \chi_{m}^{2}
$$

Bivariate confidence sets

No Correlation

Negative Correlation

Positive Correlation

Different Variances

Implementing a Wald Test

Algorithm (Large Sample Wald Test)

1. Estimate the unrestricted model $y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$.
2. Estimate the parameter covariance using $\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1}$ where

$$
\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}=n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}, \quad \hat{\mathbf{S}}=n^{-1} \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}
$$

3. Construct the restriction matrix, \mathbf{R}, and the value of the restriction, \mathbf{r}, from the null hypothesis.
4. Compute $W=n\left(\mathbf{R} \hat{\boldsymbol{\beta}}_{n}-\mathbf{r}\right)^{\prime}\left[\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \mathbf{R}^{\prime}\right]^{-1}\left(\mathbf{R} \hat{\boldsymbol{\beta}}_{n}-\mathbf{r}\right)$.
5. Reject the null if $W>C_{\alpha}$ where C_{α} is the critical value from a χ_{m}^{2} using a size of α.

Wald Test Statistics

$H_{0}: \beta_{S M B}=\beta_{H M L}=\beta_{M O M}=0$

Wald Statistics

Review Questions

- What is the difference between a t-test and a t-stat?
- Why is the distribution of a Wald test χ_{m}^{2} ?
- What determines the degree of freedom in the Wald test distribution?
- What is the relationship between a t-test and a Wald test of the same null and alternative?
- What advantage does a t-test have over a Wald test for testing a single restriction?
- Why can we not use $2 t$-tests instead of a Wald to test two restrictions?
- In a test with $m>1$ restrictions, what happens to a Wald test if $m-1$ of the restrictions are valid and only one is violated?

Lagrange Multiplier (LM) tests

- LM tests examine shadow price of the constraint (null)

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \text { subject to } \mathbf{R} \boldsymbol{\beta}-\mathbf{r}=0 .
$$

- Lagrangian

$$
\mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\lambda})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+(\mathbf{R} \boldsymbol{\beta}-\mathbf{r})^{\prime} \boldsymbol{\lambda}
$$

- If null true, then $\boldsymbol{\lambda} \approx \mathbf{0}$
- FOC:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=-2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \tilde{\boldsymbol{\beta}})+\mathbf{R}^{\prime} \tilde{\boldsymbol{\lambda}}=\mathbf{0} \\
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}}=\mathbf{R} \tilde{\boldsymbol{\beta}}-\mathbf{r}=\mathbf{0}
\end{aligned}
$$

- A few minutes of matrix algebra later

$$
\begin{aligned}
& \tilde{\boldsymbol{\lambda}}=2\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \\
& \tilde{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})
\end{aligned}
$$

- $\hat{\boldsymbol{\beta}}$ is the OLS estimator, $\tilde{\boldsymbol{\beta}}$ is the estimator computed under the null

Why LM tests are also known as score tests...

$$
\tilde{\boldsymbol{\lambda}}=2\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})
$$

- $\tilde{\boldsymbol{\lambda}}$ is just a function of normal random variables (via $\hat{\boldsymbol{\beta}}$, the OLS estimator)
- Alternatively,

$$
\mathbf{R}^{\prime} \tilde{\boldsymbol{\lambda}}=-2 \mathbf{X}^{\prime} \tilde{\boldsymbol{\epsilon}}
$$

- \mathbf{R} has rank m, so $\mathbf{R}^{\prime} \boldsymbol{\lambda} \approx \mathbf{0} \Leftrightarrow \mathbf{X}^{\prime} \tilde{\boldsymbol{\epsilon}} \approx \mathbf{0}$
- $\tilde{\boldsymbol{\epsilon}}$ are the estimated residuals under the null
- Under the assumptions,

$$
\sqrt{n} \tilde{\mathbf{s}}=\sqrt{n}\left(n^{-1} \mathbf{X}^{\prime} \tilde{\boldsymbol{\epsilon}}\right) \xrightarrow{d} N(\mathbf{0}, \mathbf{S})
$$

- We know how to test multivariate normal random variables for equality to 0

$$
L M=n \tilde{\mathbf{s}}^{\prime} \mathbf{S}^{-1} \tilde{\mathbf{s}} \xrightarrow{d} \chi_{m}^{2}
$$

- But we always have to use the feasible version,

$$
L M=n \tilde{\mathbf{s}}^{\prime} \hat{\tilde{\mathbf{S}}}^{-1} \tilde{\mathbf{s}}=n \tilde{\mathbf{s}}^{\prime}\left(n^{-1} \mathbf{X}^{\prime} \tilde{\mathbf{E}} \mathbf{X}\right)^{-1} \tilde{\mathbf{s}} \xrightarrow{d} \chi_{m}^{2}
$$

Note: $\hat{\tilde{\mathbf{S}}}$ (and $\tilde{\mathbf{E}}$) is estimated using the errors from the restricted regression.

Implementing a LM test

Algorithm (Large Sample Lagrange Multiplier Test)

1. Form the unrestricted model, $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$.
2. Impose the null on the unrestricted model and estimate the restricted model, $Y_{i}=\tilde{\mathbf{x}}_{i} \boldsymbol{\beta}+\epsilon_{i}$.
3. Compute the residuals from the restricted regression, $\tilde{\epsilon}_{i}=Y_{i}-\tilde{\mathbf{x}}_{i} \tilde{\boldsymbol{\beta}}$.
4. Construct the score using the residuals from the restricted regression from both models, $\tilde{\mathbf{s}}_{i}=\mathbf{x}_{i}^{\prime} \tilde{\epsilon}_{i}$ where x_{i} are the regressors from the unrestricted model.
5. Estimate the average score and the covariance of the score,

$$
\begin{equation*}
\tilde{\mathbf{s}}=n^{-1} \sum_{i=1}^{n} \tilde{\mathbf{s}}_{i}, \quad \hat{\tilde{\mathbf{S}}}=n^{-1} \sum_{i=1}^{n} \tilde{\mathbf{s}}_{i} \tilde{\mathbf{s}}_{i}^{\prime} \tag{2}
\end{equation*}
$$

6. Compute the $L M$ test statistic as $L M=n \tilde{\mathbf{s}}^{\prime} \hat{\tilde{\mathbf{S}}}^{-1} \tilde{\mathbf{s}}$ and compare to the critical value from a χ_{m}^{2} using a size of α.

Lagrange Multiplier (LM) Test Statistics

$H_{0}: \beta_{S M B}=\beta_{H M L}=\beta_{M O M}=0$
LM test statistics

Likelihood ratio (LR) tests

- A "large" sample LR test can be constructed using a test statistic that looks like the LM test
- Formally the large-sample LR is based on testing whether the difference of the scores, evaluated at the restricted and unrestricted parameters, is large - in a statistically meaningful sense
- Suppose \mathbf{S} is known, then

$$
\begin{gathered}
n(\tilde{\mathbf{s}}-\hat{\mathbf{s}})^{\prime} \mathbf{S}^{-1}(\tilde{\mathbf{s}}-\hat{\mathbf{s}})=n(\tilde{\mathbf{s}}-\mathbf{0})^{\prime} \mathbf{S}^{-1}(\tilde{\mathbf{s}}-\mathbf{0}) \quad(\text { Why? }) \\
n \tilde{\mathbf{s}}^{\prime} \mathbf{S}^{-1} \tilde{\mathbf{s}} \xrightarrow{d} \chi_{m}^{2}
\end{gathered}
$$

- Leads to definition of large sample LR - identical to LM but uses a difference variance estimator

$$
L R=n \tilde{\mathbf{s}}^{\prime} \hat{\mathbf{S}}^{-1} \tilde{\mathbf{s}} \xrightarrow{d} \chi_{m}^{2}
$$

Note: $\hat{\mathbf{S}}$ (and $\hat{\mathbf{E}}$) is estimated using the errors from the unrestricted regression.

- $\hat{\mathbf{S}}$ is estimated under the alternative and $\tilde{\mathbf{S}}$ is estimated under the null
- $\hat{\mathbf{S}}$ is usually "smaller" than $\tilde{\mathbf{S}} \Rightarrow L R$ is usually larger than $L M$

Implementing a LR test

Algorithm (Large Sample Likelihood Ratio Test)

1. Estimate the unrestricted model $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$.
2. Impose the null on the unrestricted model and estimate the restricted model, $Y_{i}=\tilde{\mathbf{x}}_{i} \boldsymbol{\beta}+\epsilon_{i}$.
3. Compute the residuals from the restricted regression, $\tilde{\epsilon}_{i}=y_{i}-\tilde{\mathbf{x}}_{i} \tilde{\boldsymbol{\beta}}$, and from the unrestricted regression, $\hat{\epsilon}_{i}=y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}$.
4. Construct the score from both models, $\tilde{\mathbf{s}}_{i}=\mathbf{x}_{i}^{\prime} \tilde{\epsilon}_{i}$ and $\hat{\mathbf{s}}_{i}=\mathbf{x}_{i}{ }^{\prime} \hat{\epsilon}_{i}$, where in both cases \mathbf{x}_{i} are the regressors from the unrestricted model.
5. Estimate the average score and the covariance of the score,

$$
\begin{equation*}
\tilde{\mathbf{s}}=n^{-1} \sum_{i=1}^{n} \tilde{\mathbf{s}}_{i}, \quad \hat{\mathbf{S}}=n^{-1} \sum_{i=1}^{n} \hat{\mathbf{s}}_{i} \hat{\mathbf{S}}_{i}^{\prime} \tag{3}
\end{equation*}
$$

6. Compute the $L R$ test statistic as $L R=n \tilde{\mathbf{s}}^{\prime} \hat{\mathbf{S}}^{-1} \tilde{\mathbf{s}}$ and compare to the critical value from a χ_{m}^{2} using a size of α.

Asymptotic Likelihood Ratio (LR) Test Statistics

$H_{0}: \beta_{S M B}=\beta_{H M L}=\beta_{M O M}=0$

LR test statistics

Likelihood ratio (LR) tests (Classic Assumptions)

- If null is close to alternative, log-likelihood should be similar under both

$$
L R=-2 \ln \left(\frac{\max _{\boldsymbol{\beta}, \sigma^{2}} f\left(\mathbf{y} \mid \mathbf{X} ; \boldsymbol{\beta}, \sigma^{2}\right) \text { subject to } \quad \mathbf{R} \boldsymbol{\beta}=\mathbf{r}}{\max _{\boldsymbol{\beta}, \sigma^{2}} f\left(\mathbf{y} \mid \mathbf{X} ; \boldsymbol{\beta}, \sigma^{2}\right)}\right)
$$

- A little simple algebra later...

$$
L R=n \ln \left(\frac{S S E_{R}}{S S E_{U}}\right)=n \ln \left(\frac{s_{R}^{2}}{s_{U}^{2}}\right)
$$

- In classical setup, distribution $L R$ is

$$
\frac{n-k}{m}\left[\exp \left(\frac{L R}{n}\right)-1\right] \sim F_{m, n-k}
$$

- Although $m \times L R \rightarrow \chi_{m}^{2}$ as $n \rightarrow \infty$

Warning: The distribution of the LR critically relies on homoskedasticity and normality

F-statistics

$H_{0}:$ All $\beta_{j}=0$ except constant
F-Statistics

Comparing the three tests

- Asymptotically all are equivalent
- Rule of thumb: $W \approx L R>L M$ since W and $L R$ use errors estimated under the alternative
- Larger test statistics are good since all have same distribution \Rightarrow more power
- If derived from MLE (Classical Assumptions: normality, homoskedasticity), an exact relationship:

$$
W=L R>L M
$$

- In some contexts (not linear regression) ease of estimation is a useful criteria to prefer one test over the others
- Easy estimation of null: LM
- Easy estimation of alternative: Wald
- Easy to estimate both: LR or Wald

Comparing the three

Comparing the Three Test Statistics

Review Questions

- What quantity is tested in a large sample LR test?
- What quantity is tested in a large sample LM test?
- What is the key difference between the large-sample LR and LM tests?
- When is the classic LR test valid?
- What is the relationship between a $F_{m, n-k}$ distribution when n is large and a χ_{m}^{2} ?
- Which models have to be estimated when implementing each of the three tests?

Heteroskedasticity

- Heteroskedasticity:
- hetero: Different
- skedannumi: To scatter
- Heteroskedasticity is pervasive in financial data
- Usual covariance estimator (previously given) allows for Heteroskedasticity of unknown form
- Tempting to always use "Heteroskedasticity Robust Covariance" estimator
- Also known as White's Covariance (Eicker/Huber) estimator
- Finite sample properties are generally worse if data are homoskedastic
- If data are homoskedastic can use a simpler estimator
- Required condition for simpler estimator:

$$
\mathrm{E}\left[\epsilon_{i}^{2} X_{j, i} X_{l, i} \mid X_{j, i}, X_{l, i}\right]=\mathrm{E}\left[\epsilon_{i}^{2}\right] X_{j, i} X_{l, i}
$$

for $i=1,2, \ldots, n, j=1,2, \ldots, k$, and $l=1,2, \ldots, k$ to justify simpler estimator.

Testing for heteroskedasticity

White's Estimator
Heteroskedasticity Robust

$$
\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1}
$$

Classic Estimator

Requires Homoskedasticity

$$
\hat{\sigma}^{2} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1}
$$

- White's Covariance estimator has worse finite sample properties
- Should be avoided if homoskedasticity plausible

White's test

- Implemented using an auxiliary regression

$$
\hat{\epsilon}_{i}^{2}=\mathbf{z}_{i} \boldsymbol{\gamma}+\eta_{i}
$$

- \mathbf{z}_{i} consist of all cross products of $X_{i, p} X_{i, q}$ for $p, q \in\{1,2, \ldots, k\}, p \neq q$
- LM test that all coefficients on parameters (except the constant) are zero

$$
H_{0}: \gamma_{2}=\gamma_{3}=\ldots=\gamma_{k \cdot(k+1) / 2}=\mathbf{0}
$$

- $Z_{1, i}=1$ is always a constant - never tested

Implementing White's Test for Heteroskedasticity

Algorithm (White's Test for Heteroskedasticity)

1. Fit the model $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$
2. Construct the fit residuals $\hat{\epsilon}_{i}=Y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}$
3. Construct the auxiliary regressors \mathbf{z}_{i} where the $k(k+1) / 2$ elements of \mathbf{z}_{i} are computed from $X_{i, o} X_{i, p}$ for $o=1,2, \ldots, k, p=o, o+1, \ldots, k$.
4. Estimate the auxiliary regression $\hat{\epsilon}_{i}^{2}=\mathbf{z}_{i} \boldsymbol{\gamma}+\eta_{i}$
5. Compute White's Test statistic as $n R^{2}$ where the R^{2} is from the auxiliary regression and compare to the critical value at size α from a $\chi_{k(k+1) / 2-1}^{2}$.

Note: This algorithm assumes the model contains a constant. If the original model does not contain a constant, then \mathbf{z}_{i} should be augmented with a constant, and the asymptotic distribution is a $\chi_{k(k+1) / 2}^{2}$.

White's Test for Heteroskedasticity

Base model is CAPM

Estimating the parameter covariance (Homoskedasticity)

Theorem (Homoskedastic CLT)

Under the large sample assumptions, and if the errors are homoskedastic,

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{d} N\left(0, \sigma^{2} \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}^{-1}\right)
$$

where $\boldsymbol{\Sigma}_{\mathbf{X X}}=\mathrm{E}\left[\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right]$ and $\sigma^{2}=\mathrm{V}\left[\epsilon_{i}\right]$

Theorem (Homoskedastic Covariance Estimator)

Under the large sample assumptions, and if the errors are homoskedastic,

$$
\hat{\sigma}^{2} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}} \xrightarrow{-1} \sigma^{2} \boldsymbol{\Sigma}_{\mathbf{X X}}^{-1}
$$

- Homoskedasticity justifies the "usual" estimator $\hat{\sigma}^{2}\left(n^{-1} \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- When using financial data this is the "unusual" estimator

Comparing t-statistics

MOM

Bootstraping Homoskedastic Data

Algorithm (Residual Bootstrap Regression Covariance)

1. Generate 2 sets of n uniform integers $\left\{U_{1, i}\right\}_{i=1}^{n}$ and $\left\{U_{2, i}\right\}_{i=1}^{n}$ on $[1,2, \ldots, n]$.
2. Construct a simulated sample $\left\{\tilde{Y}_{u_{1, i}}=\mathbf{x}_{u_{1, i}} \hat{\boldsymbol{\beta}}+\hat{\epsilon}_{u_{2, i}}\right\}$.
3. Estimate the parameters of interest using $\tilde{Y}_{u_{1, i}}=\mathbf{x}_{u_{1, i}} \boldsymbol{\beta}+\tilde{\epsilon}_{u_{1, i}}$, and denote the estimate $\tilde{\boldsymbol{\beta}}_{b}$.
4. Repeat steps 1 through 3 a total of B times.
5. Estimate the variance of $\hat{\boldsymbol{\beta}}$ using

$$
\widehat{\mathrm{V}}[\hat{\boldsymbol{\beta}}]=\mathrm{B}^{-1} \sum_{b=1}^{B}\left(\tilde{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\beta}}\right)\left(\tilde{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\beta}}\right)^{\prime} \text { or } \mathrm{B}^{-1} \sum_{b=1}^{B}\left(\tilde{\boldsymbol{\beta}}_{j}-\tilde{\boldsymbol{\beta}}\right)\left(\tilde{\boldsymbol{\beta}}_{j}-\tilde{\tilde{\boldsymbol{\beta}}}\right)^{\prime}
$$

Review Questions

- What is the intuition behind White's test?
- In a model with k regressors, how many regressors are used in White's test? Does it matter if one is a constant?
- Why should consider testing for heteroskedasticity and using the simpler estimator if heteroskedasticity is not found?
- What are the key differences when bootstrapping covariance when the data are homoskedastic when compared to heteroskedastic data?

Problems with models

What happens when the assumptions are violated?

- Model misspecified
- Omitted variables
- Extraneous Variables
- Functional Form
- Heteroskedasticity
- Too few moments
- Errors correlated with regressors
- Rare in Asset Pricing and Risk Management
- Common on Corporate Finance

Not enough moments

- Too few moments causes problems for both $\hat{\boldsymbol{\beta}}$ and t-stats
- Consistency requires 2 moments for $\mathbf{x}_{i}, 1$ for ϵ_{i}
- Consistent estimation of variance requires 4 moments of \mathbf{x}_{i} and 2 of ϵ_{i}
- Fewer than 2 moments of \mathbf{x}_{i}
- Slopes can still be consistent
- Intercepts cannot
- Fewer than 1 for ϵ_{i}
- $\hat{\boldsymbol{\beta}}$ is inconsistent

$$
\triangleright \text { Too much noise! }
$$

- Between 2 and 4 moments of \mathbf{x}_{i} or 1 and 2 of ϵ_{i}
- Tests are inconsistent

Omitted Variables

What if the linearity assumption is violated?

- Omitted variables

> Correct Model
> Model Estimated

$$
\begin{aligned}
y_{i} & =\mathbf{x}_{1, i} \boldsymbol{\beta}_{1}+\mathbf{x}_{2, i} \boldsymbol{\beta}_{2}+\epsilon_{i} \\
y_{i} & =\mathbf{x}_{1, i} \boldsymbol{\beta}_{1}+\epsilon_{i}
\end{aligned}
$$

- Can show

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{1} \xrightarrow{p} \boldsymbol{\beta}_{1}+\boldsymbol{\delta}^{\prime} \boldsymbol{\beta}_{2} \\
& \mathbf{x}_{2, i}=\mathbf{x}_{1, i} \boldsymbol{\delta}+\boldsymbol{\nu}_{i}
\end{aligned}
$$

- $\hat{\boldsymbol{\beta}}_{1}$ captures any portion of Y_{i} explainable by $\mathbf{x}_{1, i}$
- $\boldsymbol{\beta}_{1}$ from model
- $\boldsymbol{\beta}_{2}$ through correlation between $\mathrm{x}_{1, i}$ and $\mathrm{x}_{2, i}$
- Two cases where omitted variables do not produce bias
- $\mathbf{x}_{1, i}$ and $\mathrm{x}_{2, i}$ uncorrelated, .e.g, some dummy variable models
\triangleright Estimated variance remains inconsistent
- $\boldsymbol{\beta}_{2}=\mathbf{0}$: Model correct

Extraneous Variables

Correct model
Model Estimated

$$
\begin{aligned}
& Y_{i}=\mathbf{x}_{1, i} \boldsymbol{\beta}_{1}+\epsilon_{i} \\
& Y_{i}=\mathbf{x}_{1, i} \boldsymbol{\beta}_{1}+\mathbf{x}_{2, i} \boldsymbol{\beta}_{2}+\epsilon_{i}
\end{aligned}
$$

- Can show:

$$
\hat{\boldsymbol{\beta}}_{1} \xrightarrow{p} \boldsymbol{\beta}_{1}
$$

- No problem, right?
- Including extraneous regressors increase parameter uncertainty
- Excluding marginally relevant regressors reduces parameter uncertainty but increases chance model is misspecified
- Bias-Variance Trade off
- Smaller models reduce variance, even if introducing bias
- Large models have less bias
- Related to model selection...

Heteroskedasticity

- Common problem across most financial data sets
- Asset returns
- Firm characteristics
- Executive compensation
- Solution 1: Heteroskedasticity robust covariance estimator

$$
\hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1}
$$

- Partial Solution 2 : Use data transformations
- Ratios:
\triangleright Volume vs. Turnover (Volume/Shares Outstanding)
- Logs: Volume vs. ln Volume
\triangleright Volume $=$ Size \cdot Shock
$\triangleright \ln$ Volume $=\ln$ Size $+\ln$ Shock

GLS and FGLS

Solution 3: Generalized Least Squares (GLS)

$$
\begin{gathered}
\hat{\boldsymbol{\beta}}_{n}^{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}^{-1} \mathbf{y}, \quad \mathbf{W} \text { is } n \times n \text { positive definite } \\
\hat{\boldsymbol{\beta}}_{n}^{\text {GLS }} \xrightarrow{p} \boldsymbol{\beta}
\end{gathered}
$$

- Can choose \mathbf{W} cleverly so that $\mathbf{W}^{-\frac{1}{2}} \boldsymbol{\epsilon}$ is homoskedastic and uncorrelated
- $\hat{\boldsymbol{\beta}}^{\text {GLS }}$ is asymptotically efficient
- In practice \mathbf{W} is unknown, but can be estimated

$$
\begin{aligned}
\hat{\epsilon}_{i}^{2} & =\mathbf{z}_{i} \boldsymbol{\gamma}+\eta_{i} \\
\hat{\mathbf{W}} & =\operatorname{diag}\left(\mathbf{z}_{i} \hat{\gamma}\right)
\end{aligned}
$$

- Resulting estimator is Feasible GLS (FGLS)
- Still asymptotically efficient
- Small sample properties are not assured - may be quite bad
- Compromise implementation: Use pre-specified but potentially sub-optimal W
- Example: Diagonal which ignores any potential correlation
- Requires alternative estimator of parameter covariance, similar to White (notes)

Review Questions

- What is the consequence of x_{i} having too few moments?
- When do omitted variables not bias the coefficients of included regressors?
- What determines the bias when variables are omitted?
- What is always biased when a model omits variables?
- What are the consequences of unnecessary variables in a regression?
- Why does GLS improve parameter estimation efficiency when data are heteroskedastic when compared to OLS?
- How can GLS be used when the form of heteroskedasticity is not used?
- How can GLS be used when to improve parameter estimates when the covariance matrix cannot be completely characterized?

Model Building

- The Black Art of econometric analysis
- Many rules and procedures
- Most contradictory
- Always a trade-off between bias and variance in finite sample
- Better models usually have a finance or economic theory behind them
- Three distinct steps
- Model Selection
- Specification Checking
- Model Evaluation using pseudo out-of-sample (OOS) evaluation \triangleright Common to use actual out-of-sample data in trading models

Strategies

- General to Specific
- Fit largest specification
- Drop largest p-val
- Refit
- Stop if all p-values indicate significance at size α
$\triangleright \alpha$ is the econometrician's choice
- Specific to General
- Fit all specifications that include a single explanatory variable
- Include variable with the smallest p-val
- Starting from this model, test all other variables by adding in one-at-a-time
- Stop if no p-val of an excluded variable indicates significance at size α

Information Criteria

- Information Criteria
- Akaike Information Criterion (AIC)

$$
A I C=\ln \hat{\sigma}^{2}+2 \frac{k}{n}
$$

- Schwartz (Bayesian) Information Criterion (SIC/BIC)

$$
B I C=\ln \hat{\sigma}^{2}+k \frac{\ln n}{n}
$$

- Both have versions suitable for likelihood based estimation
- Reward for better fit: Reduce $\ln \hat{\sigma}^{2}$
- Penalty for more parameters: $2 \frac{k}{n}$ or $k \frac{\ln n}{n}$
- Choose model with smallest IC
- AIC has fixed penalty \Rightarrow inclusion of extraneous variables
- BIC has larger penalty if $\ln n>2(n>7)$

Information Criteria Model Selection

Cross-Validation

- Use $100-m \%$ to estimate parameters, evaluate using remaining $m \%$
- $m=100 \times k^{-1}$ in k-fold cross-validation

Algorithm (k-fold cross-validation)

1. For each model:
a. Randomly divide observations into k-equally sized blocks, $\mathcal{S}_{j}, j=1, \ldots, k$
b. For $j=1, \ldots, k$ estimate $\hat{\boldsymbol{\beta}}_{j}$ by excluding the observations in block j
c. Compute cross-validated SSE using observations in block j and $\hat{\boldsymbol{\beta}}_{j}$

$$
\operatorname{SSE}_{x v}=\sum_{j=1}^{k} \sum_{i \in \mathcal{S}_{j}}\left(y_{i}-\mathbf{x}_{i} \hat{\boldsymbol{\beta}}_{j}\right)^{2}
$$

2. Select model with lowest cross-validated SSE

- Typical values for k are 5 or 10

Cross-validation Model Selection

Review Questions

- Why might Specific-to-General select a model with an insignificant coefficient?
- Why do many model selection methods select models that are too large, even when the sample size is large?
- Why might General-to-Specific model selection be a better choice than Specific-to-General?
- How is an information criterion used to select a model?
- What are the key differences between the AIC and the BIC?
- What are the steps needed to select a regression model using k-fol cross-validation?

Specification Analysis

- Is a selected model any good?

$$
Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}
$$

Common Specification Tests

- Stability Test: Chow

$$
Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+I_{[i>C]} \mathbf{x}_{i} \boldsymbol{\gamma}+\epsilon_{i}
$$

- $H_{0}: \gamma=\mathbf{0}$
- Nonlinearity Test: Ramsey's RESET

$$
Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\gamma_{1} \hat{Y}_{i}^{2}+\gamma_{2} \hat{Y}_{i}^{3}+\ldots+\gamma_{L-1} \hat{Y}_{i}^{L}+\epsilon_{i}
$$

- $H_{0}: \gamma=\mathbf{0}$
- Recursive and/or Rolling Estimation
- Influence Function
- Influence: $\mathbf{x}_{i}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{\prime} \Leftarrow$ Normalized length of \mathbf{x}_{i}
- Normality Tests: Jarque-Bera

$$
J B=n\left(\frac{s k^{2}}{6}+\frac{(\kappa-3)^{2}}{24}\right) \sim \chi_{2}^{2}
$$

Implementing a Chow \& RESET Tests

Algorithm (Chow Test)

1. Estimate the model $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+I_{[i>C]} \mathbf{x}_{i} \boldsymbol{\gamma}+\epsilon_{i}$.
2. Test the null $H_{0}: \gamma=0$ against the alternative $H_{1}: \gamma_{i} \neq 0$, for some i, using a Wald, LM or LR test using a χ_{k}^{2} test.

Note: Chow tests can only be used when the break date is known. Taking the maximum Chow test statistic over multiple possible break dates changes the distribution of the test statistic under the null of no break.

Algorithm (RESET Test)

1. Estimate the model $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$ and construct the fit values, $\hat{Y}_{i}=\mathbf{x}_{i} \hat{\boldsymbol{\beta}}$.
2. Re-estimate the model $Y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\gamma_{1} \hat{Y}_{i}^{2}+\gamma_{2} \hat{Y}_{i}^{3}+\ldots+\epsilon_{i}$.
3. Test the null $H_{0}: \gamma_{1}=\gamma_{2}=\ldots=\gamma_{m}=0$ against the alternative $H_{1}: \gamma_{i} \neq 0$, for some i, using a Wald, LM or LR test, all of which have a χ_{m}^{2} distribution.

Chow Test for Structural Change

October 1987 Break
Chow Test Statistics

Ramsey's RESET Test for Neglected Nonlinearity

RESET Statistics

Evidence of Nonlinear Relationship

	$\hat{\beta}$	s.e.($\hat{\beta}$)	Z	$\operatorname{Pr}(Z)$	Conf. Int.
Const.	0.2857	0.225	1.268	0.205	[-0.156, 0.727]
$V W M^{e}$	0.4594	0.089	5.154	0.000	[0.285, 0.634]
$\left(V W M^{e}\right)^{2}$	0.0159	0.007	2.240	0.025	[0.002, 0.030]
$V W M^{e} \times I_{\left[V W M^{e}<0\right]}$	0.3524	0.188	1.870	0.061	[-0.017, 0.722]
SMB	-0.1972	0.048	-4.087	0.000	[-0.292, -0.103]
HML	0.3470	0.060	5.810	0.000	[0.230, 0.464]
MOM	0.0611	0.039	1.578	0.114	[-0.015, 0.137]

Rolling Window Estimation

60-month window

Outliers

- Outliers happen for a number of reasons
- Data entry errors
- Funds "blowing-up"
- Hyper-inflation
- Often interested in results which are "robust" to some outliers
- Three common options
- Trimming
- Windsorization
- (Iteratively) Reweighted Least Squares (IRWLS)
- Similar to GLS, only uses functions based on "outlyingness" of error

Trimming

- Trimming involves removing observations
- Removal must be based on values of ϵ_{i} not Y_{i}
- Removal based on Y_{i} can lead to bias
- Requires initial estimate of $\hat{\boldsymbol{\beta}}$, denoted $\tilde{\boldsymbol{\beta}}$
- Could include full sample, but sensitive to outliers, especially if extreme
- Use a subsample that you believe is "good"
- Choose subsamples at random and use a "typical" value
- Construct residuals $\tilde{\epsilon}_{i}=Y_{i}-\mathbf{x}_{i} \tilde{\boldsymbol{\beta}}$ and delete observations if $\tilde{\epsilon}_{i}<\hat{q}_{\alpha}$ or $\tilde{\epsilon}_{i}>\hat{q}_{1-\alpha}$ for some small α (typically 2.5\% or 5\%)
- \hat{q}_{α} is the α-quantile of the empirical distribution of $\tilde{\epsilon}_{i}$
- Estimate final $\hat{\boldsymbol{\beta}}$ using OLS on remaining (non-trimmed) data

Correct and Incorrect Trimming

- Removal based on Y_{i} leads to bias

Correct Trimming

Windsorization

- Windsorization involves replacing outliers with less outlying observations
- Like trimming, removal must be based on values of ϵ_{i} not Y_{i}
- Requires initial estimate of $\hat{\boldsymbol{\beta}}$, denoted $\tilde{\boldsymbol{\beta}}$
- Construct residuals $\tilde{\epsilon}_{i}=Y_{i}-\mathbf{x}_{i} \tilde{\boldsymbol{\beta}}$
- Reconstruct Y_{i} as

$$
Y_{i}= \begin{cases}\mathbf{x}_{i} \tilde{\boldsymbol{\beta}}+\hat{q}_{\alpha} & \tilde{\epsilon}_{i}<\hat{q}_{\alpha} \\ Y_{i} & \hat{q}_{\alpha} \leq \tilde{\epsilon}_{i} \leq \hat{q}_{1-\alpha} \\ \mathbf{x}_{i} \tilde{\boldsymbol{\beta}}+\hat{q}_{1-\alpha} & \tilde{\epsilon}_{i} \geq \hat{q}_{1-\alpha}\end{cases}
$$

- Estimate final $\hat{\boldsymbol{\beta}}$ using OLS the reconstructed data

Correct and Incorrect Windsorization

- Removal based on Y_{i} leads to bias

Correct Windsorization

Incorrect Windsorization

Rolling and Recursive Regressions

- Parameter stability is often an important concern
- Rolling regressions are an easy method to examine parameter stability

$$
\hat{\boldsymbol{\beta}}_{i}=\left(\sum_{i=j}^{j+m} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}\left(\sum_{i=j}^{j+m} \mathbf{x}_{i}^{\prime} Y_{i}\right), j=1,2, \ldots, n-m
$$

- Constructing confidence intervals formally is difficult
- Approximate method computes full sample covariance matrix, and then scales by n / m to reflect the smaller sample used
- Similar to building a confidence interval under a null that the parameters are constant
- Recursive regression is defined similarly only using an expanding window

$$
\hat{\boldsymbol{\beta}}_{i}=\left(\sum_{i=1}^{j} \mathbf{x}_{i}^{\prime} \mathbf{x}_{i}\right)^{-1}\left(\sum_{i=1}^{j} \mathbf{x}_{i}^{\prime} Y_{i}\right), j=m, m+1, \ldots, n
$$

- Similar issues with confidence intervals
- Often hard to observe variation in $\boldsymbol{\beta}$ near the end of the sample if n is large

Review Questions

- What is a Chow test, and what type of misspecification does it detect?
- What is a RESET test, and what type of misspecification does it detect?
- How might the plot of the estimated coefficients from a rolling or recursive regression show a model specification issue?
- What is the difference between trimming and Windsorization?
- Why does trimming and Windsorization lead to bias when the values of Y_{i} are used to trim or Windsorize?

Regression and Machine Learning

- Many machine learning methods are modifications of regression analysis
- Best Subset Regression
- Stepwise Regression
- Ridge Regression and LASSO
- Regression Trees and Random Forests
- Principal Component Regression (PCR) and Partial Least Squares (PLS)
- Key design concerns for ML algorithms:
- Work well in scenarios where the number of variables available p is large relative to the sample size n
$\triangleright k \leq p$ is the number of variables in a specific model
- Explicitly make bias-variance trade-off to optimize out-of-sample performance
- Perform model selection using methods that have been rigorously statistically analyzed

Empirical Application

- ML is well suited to prediction problems
- Focus on tracking portfolio construction
- Target: $V W M^{e}$
- Assets: 49 Industry portfolios
- Full, unrestricted model

$$
V W M_{i}^{e}=\sum_{j=1}^{49} \beta_{j} R_{i, j}^{e}+\epsilon_{i}
$$

- ML methods differ:
- Which components of β are set to exactly 0
- How the remaining components are estimated

Best Subset Regression

Selecting the best model from all distinct models

- Consider all 2^{p} models

Algorithm (Best Subset Regression)

Select the preferred model using:

1. For each $k=0,1, \ldots, p$ find the model containing k variables that minimizes the SSE
2. Select the best model from the $p+1$ models selected in the first step by minimizing a criterion

- Common choices include cross-validated SSE, AIC or BIC

3. Estimate model parameters of preferred model using OLS

- In practice only feasible when the number of available variables $p \lesssim 25$
- Preferred model parameters are still estimated using OLS and so may over fit the in-sample data
- Note: Combinations of reasonable models likely perform the best single model

Best Subset Regression

Randomly selected set of 15 industry portfolios

Forward Stepwise Regression

- When p is large, Best Subset Regression is infeasible
- Forward Stepwise adds 1 variable at a time to build a sequence of $p+1$ models

Algorithm (Forward Stepwise Regression)

Select the preferred model using:

1. Initialize \mathcal{M}_{0} with only a constant
2. For $i=1, \ldots, p$ estimate all $p-i+1$ models that add a single variable to model \mathcal{M}_{i-1} and select the model the minimizes the SSE as \mathcal{M}_{i}
3. Select the best model from the $p+1$ models selected in the first step by minimizing a criterion
4. Estimate model parameters of preferred model using OLS

- Only requires fitting $O\left(p^{2}\right)$ models rather than 2^{p} models
- Path dependence means that it may not find the model as Best Subset Regression

Forward Stepwise Regression

Backward Stepwise Regression

- Backward Stepwise removes 1 variable at a time to build a sequence of $p+1$ models

Algorithm (Backward Stepwise Regression)

Select the preferred model using:

1. Initialize \mathcal{M}_{p} with all variables including a constant
2. For $i=p-1, \ldots, 0$ estimate all i models that remove a single variable from model \mathcal{M}_{i+1} and select the model the minimizes the SSE as \mathcal{M}_{i}
3. Select the best model from the $p+1$ models selected in the first step by minimizing a criterion
4. Estimate model parameters of preferred model using OLS

- Same complexity as forward stepwise: $O\left(p^{2}\right)$
- Generally selects a different model than forward stepwise regression

Backward Stepwise Regression

Hybrid Approaches

Combining Forward and Backward Stepwise Regression

- Forward and backward can be combined to produce alternative collections of candidate models
- Multiple passes may better approximate Best Subset Regression

Algorithm (Hybrid Stepwise Selection (2-Level))

Select the preferred model using:

1. For $k=3, \ldots, p-2$, use forward select a model with k variables
2. Use backward to select $k-1$ candidate models from the k-variable model
3. Select the preferred model from all candidate models by minimizing a criterion
4. Estimate model parameters of preferred model using OLS

- Two passes produces a set of $O\left(p^{2}\right)$ candidate models
- In general m-passes produces a set of $O\left(p^{m}\right)$ candidate models

Hybrid Stepwise Regression

Review Questions

- What features distinguish regression in Machine Learning from classical regression analysis?
- How does Best Subset Regression select a model and estimate its parameters?
- How are Forward and Backward Stepwise Regression similar to Specific-to-General and General-to-Specific model selection?

Ridge Regression

- Fit a modified least squares problem

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \text { subject to } \sum_{j=1}^{k} \beta_{j}^{2} \leq \omega .
$$

- Equivalent formulation

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\lambda \sum_{j=1}^{k} \beta_{j}^{2}
$$

- Analytical solution

$$
\hat{\boldsymbol{\beta}}^{\text {Ridge }}=\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}_{k}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Solution is well-defined even if $p>n$
- In practice complementary to model selection
- Shrinks parameters toward 0 when compared to OLS

$$
\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}_{k}>\mathbf{X}^{\prime} \mathbf{X} \Rightarrow\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}_{k}\right)^{-1}<\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Choosing λ

- λ is a tuning parameter that controls the bias-variance trade-off
- Small λ produces estimates that are similar to OLS and so have only small bias
- Large λ produces estimates with a stronger shrinkage towards 0
- For any fixed value of λ, as $n \rightarrow \infty$ the information in $\mathbf{X}^{\prime} \mathbf{X}$ dominates the shrinkage $\lambda \mathbf{I}_{k}$ so that the estimator converges to OLS
- λ is selected by minimizing the cross-validated SSE across a reasonable grid of values $\lambda_{1}, \ldots, \lambda_{m}$
Important: Regressors should be standardized before selecting an optimal λ

$$
\tilde{X}_{i, j}=\frac{X_{i, j}-\bar{X}_{j}}{\hat{\sigma}_{j}}
$$

Ridge Regression Penalty Optimization

Ridge Regression

The Effect of Penalization in Ridge Regression

LASSO

Least Absolute Shrinkage and Selection Operator

- LASSO is also defined as a constrained least squares problem

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \text { subject to } \sum_{j=1}^{k}\left|\beta_{j}\right|<\omega
$$

- Equivalent formulation

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\lambda \sum_{j=1}^{k}\left|\beta_{j}\right|
$$

- Key difference is swap from L_{2} (quadratic) penalty to L_{1} (absolute value) penalty
- Shape of penalty near $\beta_{j} \approx 0$ make a large difference
- LASSO tends to estimate coefficients that are exactly 0
- This is the selection component of LASSO
- Also shrinks non-zero coefficient
- Ridge does not estimate coefficients to be exactly zero (in general)

LASSO

- Calibration of λ is identical to calibration in Ridge Regression
- Common to use Post-LASSO parameter estimation

1. Optimize λ and select variables with non-zero coefficient using LASSO
2. Exclude variables with 0 coefficient and re-estimate model using OLS

- OLS parameter inference and hypothesis testing is valid in Post-LASSO
- Many variants of LASSO
- Elastic net: Combine L_{1} and L_{2} penalties
- Adaptive LASSO: Consistent Model Selection and Parameter Estimation
- Group LASSO: Selection across groups of variables rather than individual variables
- Graphical LASSO: Network estimation
- Prior LASSO: Selection and shrinkage around a non-zero target

Ridge Regression and LASSO

Ridge Regression

__Ridge Penalty
-I Iso SSE

LASSO

LASSO Regression Penalty Optimization

The LASSO Penalty and Path

131

LASSO Parameter Estimation

The Effect of Penalization in LASSO Regression

Review Questions

- How are Ridge Regression and LASSO similar? How are they different?
- How is the tuning parameter λ selected in Ridge Regression and LASSO?
- What does the term selection operator mean in the acronym LASSO?

Regression Trees

- Regression trees built models that rely exclusively on indicator functions.
- A tree is built starting from a root node and splitting the data into two buckets considering all possible splits based on the values of regressors

Algorithm (Regression Tree)

Initialize the tree with a single node (root) that contains all data points. Repeat until the stopping criterion is met:

1. For each non-terminal node in the tree, compute the split that minimizes the SSE by splitting the data by each regressor
2. Split the node that shows the largest reduction in SSE into two child nodes

- This process of splitting a node into two leaves continues until a stopping criterion is met:
- A maximum depth is reached
- The number of nodes d is reached
- The number of observations in all terminal nodes falls below some threshold
- The reduction in SSE for further splits in all terminal nodes falls below some threshold
- The latter two conditions may also stop individual nodes from being further split

Basic Regression Tree Application

- Tree estimated on $B H^{e}$ using four factors
- Only first three levels visualized

Regression Tree as a Regression

First two levels of $B H^{e}$ regression tree

- Regression trees build dummy-variable regressions
$B H^{e}=\beta_{1} I_{\left[V W M_{i}^{e} \leq-7.17\right]}+\beta_{2} I_{\left[-7.17<V W M_{i}^{e} \leq-0.81\right]}+\beta_{3} I_{\left[-0.81<V W M_{i}^{e} \leq 3.78\right]}+\beta_{4} I_{\left[V W M^{e}>3.78\right]}+\epsilon_{i}$

Regression tree visualization

		$\begin{gathered} \text { BusSv }<=-0.38 \\ \text { mse }=19.784 \\ \text { samples }=686 \\ \text { value }=0.555 \end{gathered}$	
$\begin{gathered} \text { BusSv }<=-6.055 \\ \text { mse }=12.467 \\ \text { samples }=268 \\ \text { value }=-3.406 \end{gathered}$		$\begin{gathered} \text { Fin }<=6.335 \\ \text { mse }=7.969 \\ \text { samples }=418 \\ \text { value }=3.094 \end{gathered}$	
		\downarrow	V
mse $=12.561$	$\mathrm{mse}=4.206$	$\mathrm{mse}=3.734$	$\mathrm{mse}=7.377$
samples $=72$	samples $=196$	samples $=316$	samples $=102$
value $=-7.453$	value $=-1.919$	value $=2.055$	value $=6.314$

Cross-validating tree depth

Cross-validating tree leaves

Depth as a function of the pruning penalty

Improvements: Pruning

- Common to prune a tree by recursively removing leaves using a modified objective function

$$
\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\alpha|T|
$$

- \hat{Y}_{i} is the predicted value for a given tree
- $|T|$ is the number of terminal nodes in the tree
- Pruning starts with a large tree with T_{0} nodes that is only terminated when one of the two stopping criteria are satisfied
- For values of α on a grid of plausible values $\left\{\alpha_{1}<\alpha_{2}<\ldots<\alpha_{q}\right\}$ select the corresponding tree that minimizes the modified objective function
- $\hat{\alpha}$ is selected by computing the best cross-validated fit from the set of q trees
- Using $\hat{\alpha}$ and the original data, estimate the regression tree
- Note: While not required, standardizing Y simplifies the interpretation of α

Selecting the pruning penalty

Improvements: Bagging

Bootstrap Aggregation

- Bagging (Bootstrap AGGregation) fits trees to B bootstrapped samples
- Each bootstrap sample is used to generate a tree $\hat{f}^{(b)}(\mathbf{x})$
- The bagged predicted value for \mathbf{x}_{i} is

$$
\hat{f}^{\text {bagged }}\left(\mathbf{x}_{i}\right)=B^{-1} \sum_{b=1}^{B} \hat{f}^{(b)}\left(\mathbf{x}_{i}\right)
$$

Improvements: Random Forests

Extending Bagging to Reduce Prediction Correlation

- Random Forests builds B trees using B bootstrapped samples
- Each tree is built using only $k \approx \sqrt{p}$ of the variables
- Produces a set of trees that are weekly correlated because most regressors are excluded from each tree
- Used when two criteria are met
- p is large
- A small number of strong predictors
- Predictions are produced using the same method as the bagged forecast

$$
\hat{f}^{\mathrm{RF}}\left(\mathbf{x}_{i}\right)=B^{-1} \sum_{b=1}^{B} \hat{f}^{(b)}\left(\mathbf{x}_{i}\right)
$$

- Bagging is a special case of a Random Forest when $k=p$

Random Forest Cross Validation

Maximum \sqrt{m} features

Random Forest Cross Validation

Maximum m features

Improvements: Boosting

- Boosting fits a sequence of trees each with d terminal nodes
- Each tree is fit to the residuals of the previous tree
- Child trees focus on fitting observations that were hard to fit by previous trees
- Nodes are not added for observations that have small prediction errors
- Building a fresh tree collects all observations in to a single leaf
- Allows for models with many low-interaction terms to be built

Algorithm (Boosted Regression Tree)

Compute a boosted regression tree by:

1. Initialize $\hat{f}(\mathbf{x})=0$ and $\epsilon_{i}^{(0)}=Y_{i}$
2. For $b=1, \ldots, B$:
a. Fit a tree with d splits and $d+1$ terminal nodes to $\left(\epsilon_{i}^{(b-1)}, \mathbf{x}_{i}\right)$
b. Update the forecast as $\hat{f}(\mathbf{x})=\hat{f}(\mathbf{x})+\lambda \hat{f}^{(b)}(\mathbf{x})$ and compute $\hat{\epsilon}_{i}^{(b)}=\hat{\epsilon}_{i}^{(b-1)}-\lambda \hat{f}^{(b)}\left(\mathbf{x}_{i}\right)$

Improvements: Boosting

- Predictions are produced from

$$
\hat{f}(\mathbf{x})=\sum_{b=1}^{B} \lambda \hat{f}^{(b)}(\mathbf{x})
$$

- Three tuning parameters
- $\lambda \in(0,1]$ is a tuning parameter that shrinks forecasts towards 0
\triangleright In practice $\lambda \in(0.001,0.2)$
\triangleright Small λ slows learning, and requires large B to fit well
- d controls the individual tree depth
$\triangleright d$ is the maximum number of interaction terms in the regression model representation
\triangleright Often set to 1 (no interactions)
- B controls the depth of the tree
- All three parameter interact and serve as substitutes
- Increase one, decrease the others to maintain approximately constant fit
- Note: Data should be standardized when using boosting

Cross Validation optimization of Boosting

Review Questions

- How is a regression tree a linear regression?
- How are leaf nodes added in a regression tree?
- How does pruning choose the leaves to remove?
- How to bootstrapping and Random Forests improve regression trees?
- Why does boosting a regression tree improve over direct fitting?

