$$
K S=\max _{\tau}\left|\sum_{i=1}^{\tau} I_{\left[\mu_{j}<\frac{\tau}{T}\right]}-\frac{z}{T}\right| \quad \sqrt{n}(\hat{S}-S) \xrightarrow{d} N\left(0,7-\frac{\mu \mu_{3}}{\sigma^{4}}+\frac{\mu^{2}\left(\mu_{4}-\sigma^{4}\right)}{4 \sigma^{6}}\right)
$$

Univariate Time Series Analysis

Kevin Sheppard
https://kevinsheppard.com/teaching/mfe/

$\frac{\mu_{4}}{\left(\sigma^{2}\right)^{2}}=\frac{\mathrm{E}\left[(X-\mathrm{E}[\mathrm{X}])^{4}\right]}{\mathrm{E}\left[\left(\mathrm{X}-\mathrm{E}[\mathrm{X})^{2}\right]^{2}\right.}=\mathrm{E}\left[z^{4}\right] \quad N\left(\mu_{1}+\boldsymbol{\beta}^{\prime}\left(\mathrm{x}_{2}-\mu_{2}\right), \Sigma_{11}-\boldsymbol{\beta}^{\prime} \Sigma_{22} \boldsymbol{\beta}\right)$

$\underset{\beta}{\operatorname{argmin}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\lambda \sum_{j=1}^{k}\left|\beta_{j}\right|$

$$
\left[\begin{array}{c}
\Delta x_{t} \\
\Delta y_{t}
\end{array}\right]=\frac{\pi_{e s}}{\pi_{e s}}+\frac{\alpha_{2} \hat{\epsilon}_{t}}{\alpha_{2} c_{t}}+\pi_{2}\left[\begin{array}{c}
\Delta x_{1-1} \\
\Delta y_{t-1}
\end{array}\right]+\ldots+\pi_{\rho}\left[\begin{array}{l}
\Delta x_{t+p} \\
\Delta y_{t-p}
\end{array}\right]+\left[\begin{array}{l}
\eta_{2+t} \\
\eta_{2, t}
\end{array}\right]
$$

$\begin{aligned} & f(x ; p)=p^{x}(1-p)^{1-x}, p \geq 0 \\ & f(p \mid x) \propto p^{x}(1-p)^{1-x} \times \frac{p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha, \beta)}\end{aligned} \quad E\left[\left(\beta\left(1+r_{j, t+1}\right)\left(\frac{U^{\prime}\left(c_{t+1}\right)}{U^{\prime}\left(c_{t}\right)}\right)-1\right) z_{t}\right]=0 \quad l$

$$
W=n(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{\mathbf{X X}}^{-1} \mathbf{R}^{\prime}\right]^{-\mathbf{1}}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \xrightarrow{d} \chi_{m}^{2}
$$

$\quad(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) \xrightarrow{d} \chi_{m}^{2}$
$g(e)=\frac{7}{T h} \sum_{t=1}^{T} K\left(\frac{\hat{e}_{t}-e}{h}\right)$

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{12}^{\prime} & \Sigma_{22}
\end{array}\right]
$$

$\mu_{r} \equiv \mathrm{E}\left[(X-\mu)^{r}\right]=\int_{-\infty}^{\infty}(x-\mu)^{r} f(x) \mathrm{d} x$

$$
\begin{gathered}
\hat{\mathrm{S}}^{N \omega}=\hat{\Gamma}_{o}+\sum_{i=1}^{\prime} \frac{1+1-i}{1+1}\left(\hat{\Gamma}_{i}+\hat{\Gamma}_{t}^{\prime}\right) \\
\cup
\end{gathered}
$$

$\rho_{s}=\frac{\gamma_{s}}{\gamma_{0}}=\frac{E\left[\left(y_{t}-E\left[y_{t}\right]\right)\left(y_{t-s}-E\left[y_{t-s}\right]\right)\right]}{V\left[y_{t}\right]} \Rightarrow-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=0 \quad \begin{aligned}-2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=-2 \mathbf{X}^{\prime} \hat{\boldsymbol{\epsilon}}=0 \\ \end{aligned} \quad \beta \approx \frac{\partial Y_{i}}{\partial X_{i}} \frac{X_{i}}{Y_{i}}=E_{y, x}$

$\frac{\partial I(\boldsymbol{\theta} ; \mathbf{y})}{\partial \mu}=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu\right)}{\sigma^{2}}$ $c\left(u_{1}, u_{2}, \ldots, u_{k}\right)=\frac{\partial^{k} C\left(u_{1}, u_{2}, \ldots, u_{k}\right)}{\partial u_{1} \partial u_{2} \ldots \partial u_{k}}$ $\ln \left(7-\hat{\lambda}_{i}\right) \quad f\left(x_{1} \mid x_{2} \in B\right)=\frac{\int_{\mathrm{B}} f\left(x_{1}, x_{2}\right) d x_{2}}{\int_{\mathrm{B}} f_{2}\left(x_{2}\right) d x_{2}}$ $\mathbf{z}_{t}=\Upsilon \mathbf{z}_{t-1}+\boldsymbol{\xi}_{t} \quad \sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}+\beta \sigma_{t-1}^{2}$

Modules

Overview

- Key Concepts in Time Series Analysis
- Model Components
- Deterministic Processes: Trends and Seasonality
- Cyclical Processes: Autoregressive Moving-Average Processes
- Properties of ARMA Processes
- Autocorrelations and Partial Autocorrelations
- Parameter Estimation
- Model Building and Diagnostics
- Forecasting and Forecast Evaluation
- Cyclical Seasonality and Seasonal Differencing
- Random Walks and Unit Roots
- Non-linear Models for the mean

Course Structure

- Course presented through two overlapping channel:

1. In-person lectures
2. Notes that accompany the lecture content
\triangleright Read before or after the lecture or when necessary for additional background

- Slides are primary - material presented during lecturers is examinable
- Notes are secondary and provide more background for the slides
- Slides are derived from notes so there is a strong correspondence

Monitoring Your Progress

- Self assessment
- Review questions in printer-friendly version of slides
\triangleright Self-assessment
- Multiple choice questions on Canvas made available each week
\triangleright Answers available immediately
- Long-form problem distributed each week
\triangleright Answers presented in a subsequent class
- Marked Assessment
- Empirical projects applying the material in the lectures
- Each empirical assignment will have a written and code component

Stochastic Processes

Definition (Stochastic Process)

A stochastic process is a collection of random variables $\left\{Y_{t}\right\}$ defined on a common probability space indexed by a set \mathcal{T} usually defined as \mathbb{N} for discrete time processes or $[0, \infty)$ for continuous time processes.

Basic Example: An i.i.d. time series

$$
Y_{t} \stackrel{\text { i.i.d. }}{\sim} N(0,1)
$$

More Complex Examples

- Random Walk

$$
Y_{t}=Y_{t-1}+\epsilon_{t}, \epsilon_{t} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)
$$

- ARMA(1,1)

$$
Y_{t}=\phi_{1} Y_{t-1}+\theta \epsilon_{t-1}+\epsilon_{t}
$$

- Series focuses on ARMA
- $\operatorname{GARCH}(1,1)$

$$
\begin{gathered}
Y_{t} \sim N\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{gathered}
$$

- GARCH and other non-linear processes later
- Ornstein-Uhlenbeck Process

$$
Y(t)=e^{-\beta t} Y(0)+\sigma \int_{0}^{t} e^{-\beta(t-s)} \mathrm{d} W(s)
$$

The Default Premium

Curvature of Yield Curve

Industrial Production

Housing Starts

Review

Stochastic Processes
Key Concepts
Stochastic Process

Questions

- What are the requirements for a sequence of random variables to be a stochastic process?
- Are cross-sectional random variables indexed by i a stochastic process?
- Are the observations of stochastic processes always regularly spaced in time?

Autocovariance

Definition (Autocovariance)
The autocovariance of a covariance stationary scalar process $\left\{Y_{t}\right\}$ is defined

$$
\gamma_{s}=\mathrm{E}\left[\left(Y_{t}-\mu\right)\left(Y_{t-s}-\mu\right)\right]
$$

where $\mu=\mathrm{E}\left[Y_{t}\right]$. Note that $\gamma_{0}=\mathrm{E}\left[\left(Y_{t}-\mu\right)\left(Y_{t}-\mu\right)\right]=\mathrm{V}\left[Y_{t}\right]$.

- Covariance of a process at different points in time
- Otherwise identical to usual covariance

Stationarity

Key concept

- Stationarity is a statistically meaningful form of regularity
- First type:

Definition (Covariance Stationarity)

A stochastic process $\left\{Y_{t}\right\}$ is covariance stationary if

$$
\begin{aligned}
\mathrm{E}\left[Y_{t}\right]=\mu & \text { for } t=1,2, \ldots \\
\mathrm{~V}\left[Y_{t}\right]=\sigma^{2}<\infty & \text { for } t=1,2, \ldots \\
\mathrm{E}\left[\left(Y_{t}-\mu\right)\left(Y_{t-s}-\mu\right)\right]=\gamma_{s} & \text { for } t=1,2, \ldots, s=1,2, \ldots, t-1
\end{aligned}
$$

- Unconditional mean, variance and autocovariance do not depend on time

Stationarity

Second type (stronger):

Definition (Strict Stationarity)

A stochastic process $\left\{Y_{t}\right\}$ is strictly stationary if the joint distribution of $\left\{Y_{t}, Y_{t+1}, \ldots, Y_{t+h}\right\}$ only depends only on h and not on t.

- Entire joint distribution does not depend on time.
- Examples of stationary time series:
- i.i.d. : Always strict, covariance if $\sigma^{2}<\infty$
- i.i.d. sequence of t_{2} random variables, strict only
- Multivariate normal, both
- $\operatorname{AR}(1): Y_{t}=\phi_{1} Y_{t-1}+\epsilon_{t}$, covariance if $\left|\phi_{1}\right|<1$ and $\mathrm{V}\left[\epsilon_{t}\right]<\infty$, strict is ϵ_{t} is i.i.d.
- ARCH(1): $Y_{t} \sim N\left(0, \sigma_{t}^{2}\right), \sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}$ both if $\alpha<1$.

Nonstationarity defined

- Any series which is not stationary is nonstationary
- Four major types
- Seasonality
\triangleright Only slightly problematic
\triangleright Can often be analyzed using standard tools and Box-Jenkins
- Deterministic trends: growth over time
\triangleright Linear
\triangleright Polynomial
\triangleright Exponential
- Random walks or unit roots
- Structural breaks

What processes are not stationary?

Nonstationary time series

- Seasonalities, Diurnality, Hebdomadality: $Y_{t}=\mu+\beta I_{[\operatorname{Quarter}(t)=Q 1]}+\epsilon_{t}$
- $\mathrm{E}\left[Y_{t}\right]$ is different in Q1 than in other quarters
- Time trends: $Y_{t}=t+\epsilon_{t}$
- $\mathrm{E}\left[Y_{t}\right]=t$
- Random walks: $Y_{t}=Y_{t-1}+\epsilon_{t}$
- $\mathrm{V}\left[Y_{t}\right]=t \sigma^{2}$
- Processes with structural breaks: $Y_{t}=\mu_{1}+\epsilon_{t}$ if $t<1974, Y_{t}=\mu_{2}+\epsilon_{t}, t \geq 1974$.
- $\mathrm{E}\left[Y_{t}\right]=\mu_{1}+\left(\mu_{2}-\mu_{1}\right)\left(1-I_{t<1974}\right)$

Review

Key Concepts
Covariance Stationarity, Strict Stationarity
Questions

- Why is stationarity important when modeling and forecasting a time series?
- What is the difference between strict and covariance stationarity?
- What are the four main sources of non-stationarity in a time series?

Problems

1. Why are the two processes below non-stationary when $\epsilon_{t} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$?
a. $Y_{t}=0.3 t+\epsilon_{t}$
b. $Y_{t}=0.7+0.2 I_{[t>2020]}+\epsilon_{t}$.

White noise

Definition (White Noise)

A process $\left\{\epsilon_{t}\right\}$ is known as white noise if

$$
\begin{aligned}
\mathrm{E}\left[\epsilon_{t}\right]=0 & \text { for } t=1,2, \ldots \\
\mathrm{~V}\left[\epsilon_{t}\right]=\sigma^{2}<\infty & \text { for } t=1,2, \ldots \\
\mathrm{E}\left[\epsilon_{t} \epsilon_{t-j}\right]=0 & \text { for } t=1,2, \ldots, j \neq 0
\end{aligned}
$$

- Not necessarily independent
- ARCH(1) process $Y_{t} \sim N\left(0, \sigma_{t}^{2}\right), \sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}$
- Variance is dependent, mean is not

White noise

Linear Time-series Processes

Standard tool of time-series analysis

- Linear time series process can always be expressed as

$$
Y_{t}=\delta_{t}+Y_{0}+\sum_{i=0}^{t} \theta_{i} \epsilon_{t-i}
$$

- Linear in the errors
- δ_{t} is a purely deterministic process
- $\left\{\epsilon_{t}\right\}$ is a White Noise process
- Example of non-linear processes
- $\operatorname{GARCH}(1,1)$

$$
\begin{gathered}
Y_{t} \sim N\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2}=\omega+\alpha Y_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{gathered}
$$

- Threshold Autoregression

$$
Y_{t}=\phi_{s} Y_{t-1}+\epsilon_{t}, \phi_{s}=1 \text { if } L<Y_{t-1}<U \text { otherwise } 0.9
$$

Component View of a Time Series

$$
Y_{t}=\underbrace{\text { Trend }+ \text { Seasonal }+ \text { Cyclical }}_{\text {Predictable }}+\underbrace{\text { Noise }}_{\text {Unpredictable }}
$$

Trend

- Linear, Quadratic
- Exponential
- Linear in the log
- Deterministic - depends on the time period t

Seasonal

- Seasonal Summies
- Fourier Series
- Deterministic - depends on the time period t Cyclical
- Autoregressive Moving Average Processes
- Stochastic - depends on past shocks

Deterministic trends

- Two key types
- Polynomial

$$
Y_{t}=\phi_{0}+\delta_{1} t+\delta_{2} t^{2}+\ldots+\delta_{o} t^{o}+\epsilon_{t}
$$

\triangleright Linear (important special case)

$$
Y_{t}=\phi_{0}+\delta_{1} t+\epsilon_{t}
$$

\triangleright Exponential

$$
\ln Y_{t}=\phi_{0}+\delta_{1} t+\epsilon_{t}
$$

- Mean depends on time

$$
Y_{t}=\phi_{0}+\delta_{1} t+\epsilon_{t} \Rightarrow \mathrm{E}\left[Y_{t}\right]=\phi_{0}+\delta_{1} t
$$

Deterministic Seasonality

Seasonal dummy variables

$$
\left.Y_{t}=\sum_{j=0}^{s-1} \beta_{j} I_{[t} \bmod s=j\right]+\epsilon_{t}
$$

Seasonal Fourier series

$$
Y_{t}=\sum_{j=0}^{k} \lambda_{j} \sin \left(2 \pi j \frac{t}{s}\right)+\kappa_{j} \cos \left(2 \pi j \frac{t}{s}\right)+\epsilon_{t}
$$

- Capture seasonal patterns using fewer terms
- $k=2$ in monthly data
- 4 rather than 12 parameters
- Multiple fourier terms with different s capture additional determinstic patterms
- Electricity: day of year, day of week, hour of day

Detrending

$\left.Y_{t}=\phi_{0}+\delta_{1} t+\ldots+\delta_{o} t^{o}+\sum_{i=0}^{s-1} \beta_{i} I_{[t} \bmod s=i\right]+\sum_{j=0}^{k} \lambda_{j} \sin \left(2 \pi j \frac{t}{s}\right)+\kappa_{j} \cos \left(2 \pi j \frac{t}{s}\right)+\epsilon_{t}$

- Detrended series is a stationary process
- Detrending depends only on time t
- Incorporate trends with ARMA models to capture predictable component
- Parameter estimation using OLS
- Key problem - most trending economic time series contains unit roots
- Still not stationary even after detrending
- Alternative: transform to remove the determinstic effects
- More later

Trending Time Series

Detrended Residuals

ARMA Processes

- Inclusive class of all linear time-series processes

Definition (Autoregressive-Moving Average Process)

An Autoregressive Moving Average process with orders P and Q, abbreviated ARMA (P, Q), has dynamics which follow

$$
Y_{t}=\phi_{0}+\sum_{p=1}^{P} \phi_{p} Y_{t-p}+\sum_{q=1}^{Q} \theta_{q} \epsilon_{t-q}+\epsilon_{t}
$$

where ϵ_{t} is a white noise process with the additional property that $E_{t-1}\left[\epsilon_{t}\right]=0$.

- ARMA(1,1)

$$
Y_{t}=\phi_{1} Y_{t-1}+\theta_{1} \epsilon_{t-1}+\epsilon_{t}
$$

Special case: Moving Average

- ARMA family compromises two sub-classes

Definition (Moving Average Process of Order Q)

A Moving Average process of order Q, abbreviated MA(Q), has dynamics which follow

$$
Y_{t}=\phi_{0}+\sum_{q=1}^{Q} \theta_{q} \epsilon_{t-q}+\epsilon_{t}
$$

where ϵ_{t} is white noise series with the additional property that $E_{t-1}\left[\epsilon_{t}\right]=0$.

- $1^{\text {st }}$ order Moving Average (MA(1))

$$
Y_{t}=\phi_{0}+\theta_{1} \epsilon_{t-1}+\epsilon_{t}
$$

- Simplest non-degenerate time series process

Special cases of ARMA processes: Autoregression

- Other sub-class of ARMA

Definition (Autoregressive Process of Order P)

An Autoregressive process of order P, abbreviated $A R(P)$, has dynamics which follow

$$
Y_{t}=\phi_{0}+\sum_{p=1}^{P} \phi_{p} Y_{t-p}+\epsilon_{t}
$$

where ϵ_{t} is white noise series with the additional property that $E_{t-1}\left[\epsilon_{t}\right]=0$.

- $1^{\text {st }}$ order Autoregression (AR(1))

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\epsilon_{t}
$$

Moments and Autocovariances

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\epsilon_{t}
$$

- Unconditional Mean

$$
\mathrm{E}\left[Y_{t}\right]
$$

- Unconditional Variance

$$
\gamma_{0}=\mathrm{V}\left[Y_{t}\right]
$$

- Autocovariance

$$
\gamma_{s}=\mathrm{E}\left[\left(Y_{t}-\mathrm{E}\left[Y_{t}\right]\right)\left(Y_{t-s}-\mathrm{E}\left[Y_{t-s}\right]\right)\right]
$$

- Conditional Mean

$$
\mathrm{E}_{t}\left[Y_{t+1}\right]=\mathrm{E}\left[Y_{t+1} \mid \mathcal{F}_{t}\right]
$$

- Conditional Variance

$$
\mathrm{V}_{t}\left[Y_{t+1}\right]=\mathrm{E}_{t}\left[\left(Y_{t+1}-\mathrm{E}_{t}\left[Y_{t+1}\right]\right)^{2}\right]
$$

Review

Key Concepts

White Noise, Linear Stochastic Process, Autoregression, Moving Average, ARMA, Conditional Moment

Questions

- Is White Noise covariance stationary?
- Is White Noise homoskedastic?
- Is an i.i.d. sequence White Noise?
- Is an i.i.d. normal sequence White Noise?
- In what sense is a linear process linear?
- Why are linear processes important in the context of covariance stationary time series?
- What is the difference between a conditional and an unconditional moment?
- What is the difference between an AR and an MA model?

How to work with ARMA processes: $\operatorname{AR}(1)$
The MA (∞) Representation

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\epsilon_{t}
$$

- Use backward substitution (assume $\left|\phi_{1}\right|<1$)

$$
\begin{aligned}
Y_{t} & =\phi_{0}+\phi_{1} Y_{t-1}+\epsilon_{t} \\
& =\phi_{0}+\phi_{1}\left(\phi_{0}+\phi_{1} Y_{t-2}+\epsilon_{t-1}\right)+\epsilon_{t} \\
& =\phi_{0}+\phi_{1} \phi_{0}+\phi_{1}^{2} Y_{t-2}+\phi_{1} \epsilon_{t-1}+\epsilon_{t} \\
& =\phi_{0}+\phi_{1} \phi_{0}+\phi_{1}^{2}\left(\phi_{0}+\phi_{1} Y_{t-3}+\epsilon_{t-2}\right)+\phi_{1} \epsilon_{t-1}+\epsilon_{t} \\
& =\phi_{0} \sum_{j=0}^{\infty} \phi_{1}^{j}+\sum_{i=0}^{\infty} \phi_{1}^{i} \epsilon_{t-i} \\
& =\frac{\phi_{0}}{1-\phi_{1}}+\sum_{i=0}^{\infty} \phi_{1}^{i} \epsilon_{t-i}
\end{aligned}
$$

- $\lim _{s \rightarrow \infty} \sum_{i=0}^{s} \phi_{1}^{i}=1 /\left(1-\phi_{1}\right)$

Properties of an $\mathrm{AR}(1)$

$$
\begin{aligned}
\mathrm{E}\left[Y_{t}\right] & =\mathrm{E}\left[\frac{\phi_{0}}{1-\phi_{1}}+\sum_{i=0}^{\infty} \phi_{1}^{i} \epsilon_{t-i}\right] \\
& =\frac{\phi_{0}}{1-\phi_{1}}+\sum_{i=0}^{\infty} \phi_{1}^{i} \mathrm{E}\left[\epsilon_{t-i}\right] \\
& =\frac{\phi_{0}}{1-\phi_{1}}+\sum_{i=0}^{\infty} \phi_{1}^{i} 0 \\
& =\frac{\phi_{0}}{1-\phi_{1}}
\end{aligned}
$$

- In general $\mathrm{AR}(\mathrm{P}): \mathrm{E}\left[Y_{t}\right]=\frac{\phi_{0}}{1-\phi_{1}-\phi_{2}-\ldots-\phi_{P}}$
- Only sensible if $\phi_{1}+\phi_{2}+\ldots+\phi_{P}<1$
- Variance can be shown in same manner
- $\mathrm{AR}(1): \mathrm{V}\left[Y_{t}\right]=\frac{\sigma^{2}}{1-\phi_{1}^{2}}$
- $\mathrm{AR}(\mathrm{P}): \mathrm{V}\left[Y_{t}\right]=\frac{\sigma^{2}}{1-\rho_{1} \phi_{1}-\rho_{2} \phi_{2}-\ldots-\rho_{P} \phi_{P}}$
$\triangleright \rho$ s are autocorrelations

Autocovariance of an $\operatorname{AR}(1)$

$$
\begin{aligned}
\mathrm{E}\left[\left(Y_{t}-\mathrm{E}\left[Y_{t}\right]\right)\left(Y_{t-s}-\mathrm{E}\left[Y_{t-s}\right]\right)\right] & =\mathrm{E}\left[\left(\sum_{i=0}^{\infty} \phi_{1}^{i} \epsilon_{t-i}\right)\left(\sum_{j=0}^{\infty} \phi_{1}^{j} \epsilon_{t-s-j}\right)\right] \\
& =\mathrm{E}[(\underbrace{\sum_{i=0}^{s-1} \phi_{1}^{i} \epsilon_{t-i}}_{\text {Aftert }-s}+\underbrace{\sum_{k=s}^{\infty} \phi_{1}^{k} \epsilon_{t-k}}_{t-s \text { and later }})\left(\sum_{j=0}^{\infty} \phi_{1}^{j} \epsilon_{t-s-j}\right)] \\
& =\phi_{1}^{s} \frac{\sigma^{2}}{1-\phi_{1}^{2}}
\end{aligned}
$$

- Full details in notes
- The autocovariance function

$$
\gamma_{s}=\phi_{1}^{|s|}\left\{\frac{\sigma^{2}}{1-\phi_{1}^{2}}\right\}
$$

- Autocovariance declines geometrically with the lag length
- Requires $\phi_{1}^{2}<1$ to exist
- Same condition as the mean

Stationarity of ARMA processes

- Primarily interested in covariance stationarity
- Stationarity depends on parameters of $A R$ portion
- $\mathrm{AR}(0)$ or finite order MA: always stationary
- AR(1) or ARMA(1,Q): $Y_{t}=\phi_{1} Y_{t-1}+\mathrm{MA}+\epsilon_{t}$
- $\left|\phi_{1}\right|<1$
- $\operatorname{AR}(\mathrm{P})$ or $\operatorname{ARMA}(\mathrm{P}, \mathrm{Q}) Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\ldots+\phi_{P} Y_{t-P}+\mathrm{MA}+\epsilon_{t}$
- Rewrite $Y_{t}-\phi_{1} Y_{t-1}-\phi_{2} Y_{t-2}-\ldots-\phi_{P} Y_{t-P}=\mathrm{MA}+\epsilon_{t}$
- Easy to determine using the characteristic equation and corresponding characteristic roots

The characteristic equation

Definition (Characteristic Equation)

Let Y_{t} follow a $\mathrm{P}^{\text {th }}$ order linear difference equation

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\ldots+\phi_{P} Y_{t-P}+x_{t}
$$

which can be rewritten as

$$
\begin{aligned}
Y_{t}-\phi_{1} Y_{t-1}-\phi_{2} Y_{t-2}-\ldots-\phi_{P} Y_{t-P} & =\phi_{0}+x_{t} \\
\left(1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{P} L^{P}\right) Y_{t} & =\phi_{0}+x_{t}
\end{aligned}
$$

The characteristic equation of this process is

$$
z^{P}-\phi_{1} z^{P-1}-\phi_{2} z^{P-2}-\ldots-\phi_{P-1} z-\phi_{P}=0
$$

- Key is in the forming of the characteristic equation and its roots
- L is known as "lag operator"

Characteristic roots

Definition (Characteristic Root)

Let

$$
z^{P}-\phi_{1} z^{P-1}-\phi_{2} z^{P-2}-\ldots-\phi_{P-1} z-\phi_{P}=0
$$

be the characteristic polynomial associated with some $\mathrm{P}^{\text {th }}$ order linear difference equation. The P characteristic roots, $c_{1}, c_{2}, \ldots, c_{P}$ are defined as the solution to this polynomial

$$
\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{P}\right)=0 .
$$

- The roots are $c_{1}, c_{2}, \ldots, c_{P}$
- $\operatorname{AR}(\mathrm{P})$ or $\operatorname{ARMA}(\mathrm{P}, \mathrm{Q})$ is covariance stationary if $\left|c_{j}\right|<1$ for all j
- If complex, $\left|c_{j}\right|=\left|a_{j}+b_{j} i\right|=\sqrt{a^{2}+b^{2}}$ (complex modulus)

Characteristic roots example

- Difficult to determine by inspection

Example 1

$$
Y_{t}=.1 Y_{t-1}+.7 Y_{t-2}+.2 Y_{t-3}+\epsilon_{t}
$$

- Characteristic equation

$$
z^{3}-.1 z^{2}-.7 z^{1}-.2
$$

- Roots: $1,-.5$, and $-.4 \Rightarrow$ nonstationary

Example 2

$$
Y_{t}=1.7 Y_{t-1}-.72 Y_{t-2}+\epsilon_{t}
$$

- Characteristic equation

$$
z^{2}-1.7 z^{1}+.72
$$

- Roots: . 9 and $.8 \Rightarrow$ stationary

Fitting a Basic ARMA
YoY \% change in Industrial Production

Parameter Estimates

AR2

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\epsilon_{2}
$$

Parameter Estimates

	Estimate	s.e.	Z	p -value
ϕ_{0}	0.1106	0.045	2.453	0.014
ϕ_{1}	1.3187	0.017	79.114	0.000
ϕ_{2}	-0.3643	0.018	-20.624	0.000
σ^{2}	1.3635	0.028	48.775	0.000

Roots of Characteristic Polynomial

c_{1}	c_{2}
0.924852	0.39388

Residuals

Review

Key Concepts

Backward Substitution, Characteristic Equation, Characteristic Root

Questions

- What role so the MA component play in determining stationarity?
- What is the key condition for stationarity of an ARMA model?
- What is complex modulus and why is it needed?

Problems

1. Which of the models listed below are covariance stationary?
a. $Y_{t}=1.8 Y_{t-1}-0.8 Y_{t-2}+\epsilon_{t}$
b. $Y_{t}=0.4-0.75 Y_{t-1}-0.25 Y_{t-2}+\epsilon_{t}$
c. $Y_{t}=10+\sum_{j=1}^{100} 0.01 Y_{t-j}+\epsilon_{t}$
2. Write the ARMA(1,1) $Y_{t}=\phi_{1} Y_{t-1}+\theta_{1} \epsilon_{t-1}+\epsilon_{t}$ as a function of $\epsilon_{t}, \epsilon_{t-1}, \epsilon_{t-2}, \ldots, \epsilon_{t-h}$ and Y_{t-h} using backward substitution.
3. Use backward substitution to write the model $Y_{t}=-0.5 \epsilon_{t-1}+\epsilon_{t}$ as an $\mathrm{AR}(\infty)$ using the relationship that $Y_{t-1}=-0.5 \epsilon_{t-2}+\epsilon_{t-1}$ implies $\epsilon_{t-1}=Y_{t-1}+0.5 \epsilon_{t-2}$.

Autocorrelations and the ACF

- Autocorrelations are a key element of model building

Definition (Autocorrelation)

The autocorrelation of a covariance stationary scalar process is defined

$$
\rho_{s}=\frac{\gamma_{s}}{\gamma_{0}}
$$

where $\gamma_{s}=\mathrm{E}\left[\left(Y_{t}-\mu\right)\left(Y_{t-s}-\mu\right)\right]$.

- Measures the correlation of a process at different points in time
- $\mathrm{AR}(1)$:

$$
\rho_{s}=\phi_{1}^{s}
$$

- One of two possibilities
- Decay geometrically if $0<\phi_{1}<1$
- Oscillate and decay $-1<\phi_{1}<0$

Partial Autocorrelations (PACF)

- Partial Autocorrelation is the other key element of model building
- More complicated than autocorrelations:
- Regression interpretation of $s^{\text {th }}$ partial autocorrelation:

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\ldots+\phi_{s-1} Y_{t-s+1}+\varphi_{s} Y_{t-s}+\epsilon_{t}
$$

- φ_{s} is the $s^{\text {th }}$ partial autocorrelation
- Population (not sample) value of φ_{s}
- AR(1):

$$
\varphi_{s}=\left\{\begin{array}{l}
\phi_{1}^{|s|} \text { for } s=-1,0,1 \\
0 \text { otherwise }
\end{array}\right.
$$

- Partial autocorrelation function maps the parameters of a process to the $s^{\text {th }}$ autocorrelation, $\varphi(s)$

Using the ACF and PACF to categorize processes

- ACF and PACF are useful when choosing models

Process	ACF	PACF
White Noise	All 0	All 0
AR(1)	$\rho_{s}=\phi_{1}^{s}$	0 beyond lag 2
AR(P)	Decays toward zero	Non-zero through lag P,
exponentially	0 thereafter	
MA(1)	$\rho_{1} \neq 0, \rho_{s}=0, s>0$	Decays toward zero
		exponentially
MA(Q)	$\rho_{s} \neq 0 s \leq Q$,	Decays toward zero
	$\rho_{s}=0, s>Q$	exponentially, possible oscillating
ARMA(P,Q)	Exponential Decay	Exponential Decay

Autocorrelation for ARMA processes

$$
\operatorname{AR}(1), \phi_{1}=0.9
$$

Autocorrelation for ARMA processes

$\mathrm{MA}(1), \theta_{1}=0.8$

Autocorrelation for ARMA processes

$\operatorname{ARMA}(1,1), \phi_{1}=0.9, \theta_{1}=-0.8$

Autocorrelation for ARMA processes

Review

Autocorrelation and Partial Autocorrelation
Key Concepts
Autocorrelation, Partial Autocorrelation
Questions

- What is the difference between the h-lag autocorrelation and the h-lag partial autocorrelation?
- When are the autocorrelation and partial autocorrelation always the same for any DGP?
- What shape would you expect in the ACF and PACF of an AR(3)?
- What shape would you expect in the ACF and PACF of an MA(12)?

Problems

1. What is the ACF and PACF of an $\operatorname{AR}(1) Y_{t}=\phi_{1} Y_{t-1}+\epsilon_{t}$?
2. What is the ACF of an $\operatorname{MA}(2) Y_{t}=\theta_{1} \epsilon_{t-1}+\theta_{2} \epsilon_{t-2}+\epsilon_{t}$?

Sample ACF and PACF

- Sample autocorrelations

$$
\hat{\rho}_{s}=\frac{\sum_{t=s+1}^{T} Y_{t}^{*} Y_{t-s}^{*}}{\sum_{t=1}^{T} Y_{t}^{* 2}}=\frac{\hat{\gamma}_{s}}{\hat{\gamma}_{0}}
$$

- $Y_{t}^{*}=Y_{t}-\bar{Y}$ where $\bar{Y}=T^{-1} \sum_{t=1}^{T} Y_{t}$
- Some prefer the small-sample-size corrected version

$$
\hat{\rho}_{s}=\frac{\sum_{t=s+1}^{T} Y_{t}^{*} Y_{t-s}^{*}}{\sqrt{\sum_{t=s+1}^{T} Y_{t}^{* 2} \sum_{t=1}^{T-s} Y_{t}^{* 2}}} .
$$

- Sample partial autocorrelations
- Run regression to estimate $\hat{\varphi}_{s}$

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\ldots+\varphi_{s} Y_{t-s}+\epsilon_{t}
$$

- More efficient ways to compute PACF using Yule-Walker (see notes)

Testing autocorrelations and partial ACs

- Inference on autocorrelations:

$$
\begin{aligned}
\mathrm{V}\left[\hat{\rho}_{s}\right]=T^{-1} & \text { for } s=1 \\
=T^{-1}\left(1+2 \sum_{j=1}^{s-1} \hat{\rho}_{j}^{2}\right) & \text { for } s>1 \\
\frac{\hat{\rho}_{s}}{\sqrt{\mathrm{~V}\left[\hat{\rho}_{s}\right]}} \stackrel{A}{\sim} N(0,1) . &
\end{aligned}
$$

- Standard t-stats
- Inference on partial autocorrelations:

$$
\mathrm{V}\left[\hat{\varphi}_{s}\right] \approx T^{-1}
$$

- Standard t-stats

$$
T^{\frac{1}{2}} \hat{\varphi}_{s} \stackrel{A}{\sim} N(0,1)
$$

Autocorrelations

The Default Premium

Autocorrelations

Monthly Housing Start Growth Rate

Autocorrelations

Value Weighted Market Return

Testing multiple autocorrelations

- Testing multiple autocorrelations: Ljung-Box $Q, H_{0}: \rho_{1}=\ldots=\rho_{s}=0$

$$
Q=T(T+2) \sum_{k=1}^{s} \frac{\hat{\rho}_{k}^{2}}{T-k} \sim \chi_{s}^{2}
$$

- Note: Not heteroskedasticity robust, use LM test for serial correlation

Definition (LM test for serial correlation)

Under the null, $\mathrm{E}\left[Y_{t}^{*} Y_{t-j}^{*}\right]=0$ for $1 \leq j \leq s$. The LM-test for serial correlation is constructed by defining the score vector $\mathbf{s}_{t}=Y_{t}^{*}\left[Y_{t-1}^{*} Y_{t-2}^{*} \ldots Y_{t-s}^{*}\right]^{\prime}$,

$$
L M=T \overline{\mathbf{s}}^{\prime} \hat{\mathbf{S}}^{-1} \overline{\mathbf{s}} \xrightarrow{d} \chi_{s}^{2}
$$

where $\overline{\mathbf{s}}=T^{-1} \sum_{t=1}^{T} \mathbf{s}_{t}, \hat{\mathbf{S}}=T^{-1} \sum_{t=1}^{T} \mathbf{s}_{t} \mathbf{s}_{t}^{\prime}$ and $Y_{t}^{*}=Y_{t}-\bar{Y}$ where $\bar{Y}=T^{-1} \sum_{t=1}^{T} Y_{t}$.

Review

Sample Autocorrelations and Partial Autocorrelations

Key Concepts

Sample Autocorrelation, Sample Partial Autocorrelation, Ljung-Box Test, LM Test for Serial Correlation

Questions

- What is the asymptotic distribution of estimated autocorrelations and partial autocorrelations?
- Where does the rule-of-thump $2 / \sqrt{T}$ come from when plotting sample autocorrelations?
- What is the difference between the Q-test and an LM test for serial correlation?
- If you computed a sample autocorrelation in Excel using the correlfunction by copying and shifting a variable by h places, would you get the usual sample autocorrelation estimator?

Conditional MLE

- Conditional MLE assuming distribution of $Y_{t} \mid Y_{t-1}, \epsilon_{t-1}, Y_{t-2}, \epsilon_{t-2}, \ldots$ is $N\left(0, \sigma^{2}\right)$
- If $\epsilon_{t-1}, \epsilon_{t-2}, \ldots, \epsilon_{t-Q}$ are observable, identical to least squares

$$
\underset{\phi, \boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=P+1}^{T}\left(Y_{t}-\phi_{0}-\phi_{1} Y_{t-1}-\ldots-\phi_{P} Y_{t-P}-\theta_{1} \epsilon_{t-1}-\ldots-\theta_{Q} \epsilon_{t-Q}\right)^{2}
$$

- Ignore distribution of $Y_{1}, \ldots Y_{P}$ in fit
- Finite sample effects, asymptotically irrelevant
- If $\epsilon_{P-1}, \ldots, \epsilon_{P-Q}$ are observable, can recursively compute $\epsilon_{P} \ldots, \epsilon_{T}$ for a set of parameters $\phi, \boldsymbol{\theta}$
- Overcome missing initial shocks by assuming $\epsilon_{P-1}=\ldots=\epsilon_{P-Q}=0$

Ordinary Least Squares

- If $Q=0$, conditional MLE simplifies

$$
\underset{\phi}{\operatorname{argmin}} \sum_{t=P+1}^{T}\left(Y_{t}-\phi_{0}-\phi_{1} Y_{t-1}-\ldots-\phi_{P} Y_{t-P}\right)^{2}
$$

- Conditional MLE is identical to OLS
- Inference is identical
- Use classical or White's covariance estimator as appropriate
- Can also incorporate deterministic terms such as time trends while maintaining simplicity of OLS

Exact MLE

- Define the vector of data

$$
\mathbf{y}=\left[Y_{1}, Y_{2}, \ldots, Y_{T-1} Y_{T}\right]^{\prime}
$$

- Γ be the T by T covariance matrix of \mathbf{y}

$$
\boldsymbol{\Gamma}=\left[\begin{array}{ccccccc}
\gamma_{0} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \ldots & \gamma_{T-2} & \gamma_{T-1} \\
\gamma_{1} & \gamma_{0} & \gamma_{1} & \gamma_{2} & \ldots & \gamma_{T-3} & \gamma_{T-2} \\
\gamma_{2} & \gamma_{1} & \gamma_{0} & \gamma_{1} & \ldots & \gamma_{T-4} & \gamma_{T-3} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
\gamma_{T-2} & \gamma_{T-3} & \gamma_{T-4} & \gamma_{T-5} & \ldots & \gamma_{0} & \gamma_{1} \\
\gamma_{T-1} & \gamma_{T-2} & \gamma_{T-3} & \gamma_{T-4} & \ldots & \gamma_{1} & \gamma_{0}
\end{array}\right]
$$

- The joint likelihood of \mathbf{y}

$$
f\left(\mathbf{y} \mid \boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}\right)=(2 \pi)^{-\frac{T}{2}}|\boldsymbol{\Gamma}|^{-\frac{T}{2}} \exp \left(-\frac{\mathbf{y}^{\prime} \boldsymbol{\Gamma}^{-1} \mathbf{y}}{2}\right)
$$

- Log-likelihood

$$
l\left(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln |\boldsymbol{\Gamma}|-\frac{1}{2} \mathbf{y}^{\prime} \boldsymbol{\Gamma}^{-1} \mathbf{y}
$$

Review

Parameter Estimation
Key Concepts
Conditional Maximum Likelihood, Exact Maximum Likelihood
Questions

- How are missing initial innovations addressed in conditional MLE?
- What is the key advantage of exact MLE over conditional MLE?
- When does conditional MLE reduce to OLS?
- How is the autocovariance matrix computed in exact MLE?

Model building the Box-Jenkins way

- Model building is similar to cross-section regression
- Can use same techniques
- General to Specific or Specific to General
- Information criteria: AIC, BIC
- Box-Jenkins is dominant methodology, 2-steps
- Identification: Use ACF and PACF to choose model
- Estimation: Estimate model and do diagnostic checks
- Two principles
- Parsimony
- Invertibility

Strategies

- General to Specific
- Fit largest specification
- Drop regressor with largest p-value
- Refit
- Stop if all p-values indicate significance using a size of α $\triangleright \alpha$ is the econometrician's choice
- Specific to General
- Fit all specifications with a single variable
- Retail variable with smallest p-value
- Extend this model adding on additional variables one at a time
- Stop if the p-values of all excluded variables are larger than α

Information Criteria

- Information Criteria
- Akaike Information Criterion (AIC)

$$
A I C=\ln \hat{\sigma}^{2}+k \frac{2}{T}
$$

- Schwartz (Bayesian) Information Criterion (SIC/BIC)

$$
B I C=\ln \hat{\sigma}^{2}+k \frac{\ln T}{T}
$$

- Both have versions suitable for likelihood based estimation
- Reward for better fit: Reduce $\ln \hat{\sigma}^{2}$
- Penalty for more parameters: $k \frac{2}{T}$ or $k \frac{\ln T}{T}$
- Choose model with smallest IC
- AIC has fixed penalty \Rightarrow inclusion of extraneous variables
- BIC has larger penalty if $\ln T>2(T>7)$

Model Building: Specific-to-General

The Default Premium
AR(1)

	Estimate	s.e.	Z	p-value
ϕ_{0}	3.4827	1.205	2.891	0.004
ϕ_{1}	0.9652	0.007	139.901	0.000

MA(1)

	Estimate	s.e.	Z	p-value
ϕ_{0}	101.2112	2.446	41.378	0.000
θ_{1}	0.9218	0.008	118.011	0.000

Model Building: Specific-to-General

The Default Premium
AR(2)

	Estimate	s.e.	Z	p -value
ϕ_{0}	4.5373	1.171	3.874	0.000
ϕ_{1}	1.2718	0.021	61.901	0.000
ϕ_{2}	-0.3169	0.020	-15.506	0.000

ARMA(1,1)

	Estimate	s.e.	Z	p -value
ϕ_{0}	5.7953	1.587	3.652	0.000
ϕ_{1}	0.9423	0.009	99.314	0.000
θ_{1}	0.3911	0.021	18.501	0.000

Model Building: Specific-to-General

The Default Premium
ARMA $(2,1)$

	Estimate	s.e.	Z	p-value
ϕ_{0}	5.8678	1.631	3.597	0.000
ϕ_{1}	0.8930	0.057	15.715	0.000
ϕ_{2}	0.0486	0.056	0.873	0.383
θ_{1}	0.4337	0.052	8.412	0.000

ARMA $(1,2)$

	Estimate	s.e.	Z	p-value
ϕ_{0}	5.5511	1.590	3.491	0.000
ϕ_{1}	0.9447	0.010	96.942	0.000
θ_{1}	0.3814	0.024	16.024	0.000
θ_{2}	-0.0217	0.023	-0.949	0.343

Model Building: Information Criteria

The Default Premium

Model Diagnostics

- Important to assess whether your model "fits"
- Are the residuals white noise?
\triangleright Eye-ball test
\triangleright Ljung-Box Q stat or LM serial correlation test of $H_{0}: \rho_{1}=\ldots=\rho_{s}=0$.
\triangleright SACF/SPACF of the residuals
- Are there any large outliers?
\triangleright Eye-ball test
- What to do if there are problems?
- Use SPACF/SACF to repeat Box-Jenkins and augment your model with correct dynamics to pick up problem
- Repeat diagnostics
- Concern: Repeated testing may render critical values misleading

Ljung-Box on Residuals

LM test for Serial Correlation on Residuals ARMA(1,1)

Review

Model Selection

Key Concepts

Invertibility, Parsimony, AIC, BIC

Questions

- How are the ACF and PACF used to identify candidate models?
- How does GtS differ in an ARMA from application to a linear regression?
- Which chooses a larger model, AIC or BIC, and why?
- What property should residuals have from a well specified model?
- What use is the parsimony principle?
- What does invertibility ensure?

The information set and the law of iterated expectations

- Information set: \mathcal{F}_{t}
- Contains a lot of information!
- Every time t measurable event
- Observed variables: prices, returns, GDP, interest rates, FX rates
- Functions of these
- Excludes variables which are latent: volatility
- Conditional expectation:

$$
\mathrm{E}\left[Y_{t+1} \mid \mathcal{F}_{t}\right]
$$

Conditional Variance

$$
\mathrm{V}\left[Y_{t+1} \mid \mathcal{F}_{t}\right]
$$

- Shorthand $\mathrm{E}_{t}\left[Y_{t+1}\right]$ and $\mathrm{V}_{t}\left[Y_{t+1}\right]$
- Law of Iterated Expectation (LIE):

$$
E_{t}\left[E_{t+1}\left[Y_{t+2}\right]\right]=E_{t}\left[Y_{t+2}\right]
$$

- Monday's belief about what Tuesday's belief about Wednesday is the same as Monday's belief of Wednesday

Forecasting

- A h-step ahead forecast, $\hat{Y}_{t+h \mid t}$, is designed to minimize a loss function
- MSE: $\left(Y_{t+h}-\hat{Y}_{t+h \mid t}\right)^{2}$
- MAD: $\left|Y_{t+h}-\hat{Y}_{t+h \mid t}\right|$
- Quad-Quad: $\alpha_{1}\left(Y_{t+h}-\hat{Y}_{t+h \mid t}\right)^{2}+\alpha_{2} I_{\left[Y_{t+h}-\hat{Y}_{t+h \mid t}<0\right]}\left(Y_{t+h}-\hat{Y}_{t+h \mid t}\right)^{2}$
\triangleright Asymmetric if $\alpha_{1} \neq \alpha_{2}$

The MSE Optimal Forecast is the conditional mean

- Let $Y_{t+h}^{*}=\mathrm{E}_{t}\left[Y_{t+h}\right]$
- Let \tilde{Y}_{t+h} be any other value

$$
\begin{aligned}
\mathrm{E}_{t}\left[\left(Y_{t+h}-\tilde{Y}_{t+h}\right)^{2}\right] & =\mathrm{E}_{t}\left[\left(\left(Y_{t+h}-Y_{t+h}^{*}\right)+\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\left(Y_{t+h}-Y_{t+h}^{*}\right)^{2}+2\left(Y_{t+h}-Y_{t+h}^{*}\right)\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)+\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)^{2}\right] \\
& =\mathrm{V}_{t}\left[Y_{t+h}\right]+2 \mathrm{E}_{t}\left[\left(Y_{t+h}-Y_{t+h}^{*}\right)\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)\right]+\mathrm{E}_{t}\left[\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)^{2}\right] \\
& =\mathrm{V}_{t}\left[Y_{t+h}\right]+2\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right) \mathrm{E}_{t}\left[\left(Y_{t+h}-Y_{t+h}^{*}\right)\right]+\mathrm{E}_{t}\left[\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)^{2}\right] \\
& =\mathrm{V}_{t}\left[Y_{t+h}\right]+2\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right) \cdot 0+\mathrm{E}_{t}\left[\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)^{2}\right] \\
& =\mathrm{V}_{t}\left[Y_{t+h}\right]+\left(Y_{t+h}^{*}-\tilde{Y}_{t+h}\right)^{2}
\end{aligned}
$$

Forecasting

- MSE optimal forecast for an $\operatorname{AR}(1)$:

$$
\begin{aligned}
Y_{t} & =\phi_{1} Y_{t-1}+\epsilon_{t} \\
\mathrm{E}_{t}\left[Y_{t+1}\right] & =\mathrm{E}_{t}\left[\phi_{1} Y_{t}+\epsilon_{t+1}\right] \\
& =\phi_{1} \mathrm{E}_{t}\left[Y_{t}\right]+\mathrm{E}_{t}\left[\epsilon_{t+1}\right] \\
& =\phi_{1} Y_{t}+0 \\
\mathrm{E}_{t}\left[Y_{t+2}\right] & =\mathrm{E}_{t}\left[\phi_{1} Y_{t+1}+\epsilon_{t+2}\right] \\
& =\phi_{1} \mathrm{E}_{t}\left[Y_{t+1}\right]+\mathrm{E}_{t}\left[\epsilon_{t+2}\right] \\
& =\phi_{1}\left(\phi_{1} Y_{t}\right)+0 \\
& =\phi_{1}^{2} Y_{t}+0
\end{aligned}
$$

Note: Long-run forecast is always $\mathrm{E}\left[Y_{t}\right]$ for a covariance stationary process

Forecasting

AR(1) for M2 Growth

Forecast Errors

$$
\begin{aligned}
\mathrm{V}_{t}\left[Y_{t+1}\right] & =\mathrm{E}_{t}\left[\left(Y_{t+1}-\mathrm{E}_{t}\left[Y_{t+1}\right]\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\left(\phi Y_{t}+\epsilon_{t+1}-\phi Y_{t}\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\epsilon_{t+1}^{2}\right]=\sigma^{2} \text { if homoskedastic }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{t}\left[Y_{t+2}\right] & =\mathrm{E}_{t}\left[\left(Y_{t+2}-\mathrm{E}_{t}\left[Y_{t+2}\right]\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\left(\phi^{2} Y_{t}+\phi \epsilon_{t+1}+\epsilon_{t+2}-\phi^{2} Y_{t}\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\left(\phi \epsilon_{t+1}+\epsilon_{t+2}\right)^{2}\right] \\
& =\phi^{2} \mathrm{E}_{t}\left[\epsilon_{t+1}^{2}\right]+\mathrm{E}_{t}\left[\epsilon_{t+2}^{2}\right]=\left(1+\phi^{2}\right) \sigma^{2} \text { if homoskedastic }
\end{aligned}
$$

Note: Long-run forecast error variance is always $\mathrm{V}\left[Y_{t}\right]$ for a covariance stationary process

Forecast Error Autocorrelation

Recursive AR(1) for M2 Growth

Review

Forecasting
Key Concepts
Mean Square Error, Conditional Expectation

Questions

- How is the MSE optimal forecast related to the conditional mean? What about the conditional median?
- What is the key principle for producing multi-step forecasts?
- What does the long-run forecast for a covariance stationary time series always converge to? What is the long-run variance of the error?

Problems

1. What are the first three forecasts from the model $Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\theta_{1} \epsilon_{t-1}+\epsilon_{t}$?
2. What are the first three forecasts errors?
3. What is the variance of the first three forecast errors?

Forecast evaluation

Mincer-Zarnowitz regressions

- Objective Forcecast Evaluation

$$
Y_{t+h}=\alpha+\beta \hat{Y}_{t+h \mid t}+\eta_{t}
$$

- $H_{0}: \alpha=0, \beta=1, H_{1}: \alpha \neq 0 \cup \beta \neq 1$
- Use any test: Wald, LR, LM
- Can be generalized to include any variable available when the forecast was produced

$$
Y_{t+h}=\alpha+\beta \hat{Y}_{t+h \mid t}+\gamma \mathbf{x}_{t}+\eta_{t}
$$

- $H_{0}: \alpha=0, \beta=1, \gamma=\mathbf{0}, H_{1}: \alpha \neq 0 \cup \beta \neq 1 \cup \gamma_{j} \neq 0$
- x_{t} must be in the time t information set
- Important when working with macro data

Mincer-Zarnwotz

AR(1) for M2 Grwoth
Standard Form

$$
Y_{t+1}=\alpha+\beta \hat{Y}_{t+1 \mid t}+\eta_{t}
$$

	Estimate	s.e.	Z	p-value
α	0.0004	0.000	0.936	0.350
β	0.8481	0.061	13.985	0.000

Simplified Form

$Y_{t+1}-\hat{Y}_{t+1 \mid t}=\alpha+\gamma \hat{Y}_{t+1 \mid t}+\eta_{t}$				
	Estimate	s.e.	Z	p -value
α	0.0004	0.000	0.936	0.350
γ	-0.1519	0.061	-2.505	0.013

Mincer-Zarnwotz

AR(1) for M2 Grwoth

Relative evaluation: Diebold-Mariano

- Two forecasts, $\hat{Y}_{t+h \mid t}^{A}$ and $\hat{Y}_{t+h \mid t}^{B}$
- Two losses, $l_{t}^{A}=\left(Y_{t+h}-\hat{Y}_{t+h \mid t}^{A}\right)^{2}$ and $l_{t}^{B}=\left(Y_{t+h}-\hat{Y}_{t+h \mid t}^{B}\right)^{2}$
- Losses do not need to be MSE
- If equally good or bad, $\mathrm{E}\left[l_{t}^{A}\right]=\mathrm{E}\left[l_{t}^{B}\right]$ or $\mathrm{E}\left[l_{t}^{A}-l_{t}^{B}\right]=0$
- Define $\delta_{t}=l_{t}^{A}-l_{t}^{B}$

Relative evaluation: Diebold-Mariano

- Implemented as a t-test that $\mathrm{E}\left[\delta_{t}\right]=0$
- $H_{0}: \mathrm{E}\left[\delta_{t}\right]=0, H_{1}^{A}: \mathrm{E}\left[\delta_{t}\right]<0, H_{1}^{B}: \mathrm{E}\left[\delta_{t}\right]>0$
- Composite alternative
- Sign indicates which model is favored

$$
D M=\frac{\bar{\delta}}{\sqrt{\widehat{\mathrm{V}[\bar{\delta}]}}}=\frac{T^{-1} \sum_{t=1}^{T} \delta_{t}}{\sqrt{\frac{\hat{\sigma}_{N W}^{2}}{T}}}
$$

- One complication: $\left\{\delta_{t}\right\}$ cannot be assumed to be uncorrelated, so a more complicated variance estimator is required
- Newey-West covariance estimator:

$$
\hat{\sigma}_{N W}^{2}=\hat{\gamma}_{0}+2 \sum_{l=1}^{L}\left[1-\frac{l}{L+1}\right] \hat{\gamma}_{l}
$$

Implementing a Diebold-Mariano Test

$$
D M=\frac{\bar{\delta}}{\sqrt{\widehat{\mathrm{V}[\bar{\delta}}]}}
$$

Algorithm (Diebold-Mariano Test)

1. Using the two forecasts, $\hat{Y}_{t+h \mid t}^{A}$ and $\hat{Y}_{t+h \mid t}^{B}$, compute $\delta_{t}=l_{t}^{A}-l_{t}^{B}$
2. Run the regression

$$
\delta_{t}=\beta+\eta_{t}
$$

3. Use a Newey-West covariance estimator (cov_type="HAC")
4. T-test $H_{0}: \beta=0$ against $H_{1}^{A}: \beta<0$, and $H_{1}^{B}: \beta>0$
5. Reject if $|t|>C_{\alpha}$ where C_{α} is the critical value for a 2-sided test using a normal distribution with a size of α. If significant, reject in favor of model A if test statistic is negative or in favor of model B if test statistic is positive.

Diebold-Mariano Testing

M2 Growth: AR(1) vs a Random Walk

Mean Square Error

$L\left(Y_{t+1}, \hat{Y}_{t+1 \mid t}\right)=\left(Y_{t+1}-\hat{Y}_{t+1 \mid t}\right)^{2}$			
Estimate s.e. Z p-value δ -4.365×10^{-6} 2.16×10^{-6} -2.017			

Mean Absolute Error

| $L\left(Y_{t+1}, \hat{Y}_{t+1 \mid t}\right)=\left\|Y_{t+1}-\hat{Y}_{t+1 \mid t}\right\|$ | | | |
| :---: | :---: | :---: | :---: | | Estimate | s.e. | Z | p -value |
| :---: | :---: | :---: | :---: |
| δ | -0.0003 | 0.000 | -2.358 |

- OLS on a constant using Newey-West with $\left\lfloor T^{1 / 3}\right\rfloor$

Autocorrelation of MAE δ_{t}

M2 Growth: AR(1) vs a Random Walk

Review

Forecast Evaluation

Key Concepts

Objective Forecast Evaluation, Relative Forecast Evaluation, Mincer-Zarnowitz Test, Diebold-Mariano Test, Newey-West Variance Estimator

Questions

- What is the difference between objective and relative forecast evaluation?
- Why is a Newey-West covariance estimator used in Diebold-Mariano test?
- How is rejection of the null in a Newey-West test different from most tests?
- Why is a multi-step forecast be sensitive to a future realization of the time series between the current period and the forecast horizon?
- How is a MZ regression transformed to an Augmented MZ regression?

The Lag Operator

- The Lag Operator is a useful tool in time series
- Simplifies expressing complex models with seasonal dynamics
- Key properties

1. $L Y_{t}=Y_{t-1}$
2. $L^{2} Y_{t}=L Y_{t-1}=L\left(L Y_{t}\right)=Y_{t-2}$
3. $L^{a} L^{b}=L^{(a+b)}$
4. $L c=c$ where c is a constant

Seasonality

- Seasonality is technically a form of non-stationarity
- Mean explicitly depends on the quarter, month, day or minute
- Three types:

Definition (Seasonality)

Data are said to be seasonal if they exhibit a non-constant deterministic pattern on an annual basis.

Definition (Hebdomadality)

Data which exhibit day-of-week deterministic effects are said to be hebdomadal.

Definition (Diurnality)

Data which exhibit intra-daily deterministic effects are said to be diurnal.

Seasonality

- Simpler to think of processes with seasonality as having two models
- Short-run AR and MA dynamics
- Seasonal AR and MA dynamics
- Model building is standard with these two goals in mind

ARMA Modeling of Seasonality

Four Components

- Observation AR

$$
\left(1-\phi_{1} L\right) Y_{t}=\phi_{0}+\epsilon_{t}
$$

- Seasonal AR

$$
\left(1-\phi_{s} L^{s}\right) Y_{t}=\phi_{0}+\epsilon_{t}
$$

- Observation MA

$$
Y_{t}=\phi_{0}+\left(1+\theta_{1} L^{1}\right) \epsilon_{t}
$$

- Seasonal MA

$$
Y_{t}=\phi_{0}+\left(1+\theta_{s} L^{s}\right) \epsilon_{t}
$$

- Combined Model

$$
\begin{aligned}
\left(1-\phi_{1} L\right)\left(1-\phi_{s} L^{s}\right) Y_{t}= & \left(1+\theta_{1} L^{1}\right)\left(1+\theta_{s} L^{s}\right) \epsilon_{t} \\
Y_{t}= & \phi_{0}+\phi_{1} Y_{t-1}+\phi_{s} Y_{t-s}-\phi_{1} \phi_{s} Y_{t-s-1} \\
& +\theta_{1} \epsilon_{t-1}+\theta_{s} \epsilon_{t-s}+\theta_{1} \theta_{s} \epsilon_{t-s-1}+\epsilon_{t}
\end{aligned}
$$

ARMA Modeling of Seasonality

Four Components

- Generalizes to higher orders of each term
- Known as SARIMA $(p, 0, q) \times(P, 0, Q, s)$
- Imposes restrictions on parameters due to multiplication of terms
- Can estimate unrestricted equivalent

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{s} Y_{t-s}+\phi_{s+1} Y_{t-s-1}+\theta_{1} \epsilon_{t-1}+\theta_{s} \epsilon_{t-s}+\theta_{s+1} \epsilon_{t-s-1}+\epsilon_{t}
$$

- Can test $H_{0}: \phi_{s+1}=\phi_{1} \phi_{s} \cap \theta_{s+1}=\theta_{1} \theta_{s}$

Housing Starts

YoY Growth in Housing Starts

YoY Growth in Housing Starts Autocorrelation

Modeling YoY Growth in Housing Starts

AR(1) Residuals

Modeling Housing Starts

$\operatorname{SARIMAX}(2,0,0) \times(0,0,1,12)$

	Estimate	s.e.	Z	p-value
ϕ_{1}	0.6809	0.034	20.284	0.000
ϕ_{2}	0.2824	0.034	8.233	0.000
$\theta_{s, 12}$	-0.8795	0.017	-50.520	0.000

Modeling Housing Starts

$\operatorname{SARIMAX}(2,0,0) \times(0,0,1,12)$

Modeling Housing Starts

Seasonal DIfferencing
$\operatorname{SARIMAX}(1,0,1) \times(0,1,1,12)$

	Estimate	s.e.	Z	p -value
ϕ_{1}	0.9779	0.008	127.034	0.000
θ_{1}	-0.3129	0.033	-9.361	0.000
$\theta_{s, 12}$	-0.8775	0.018	-48.079	0.000

Modeling Housing Starts

Seasonal Dlfferencing
$\operatorname{SARIMAX}(1,0,1) \times(0,1,1,12)$

Modeling Housing Starts

SARIMAX $(2,1,0)$ with Seasonal Dummies

	Estimate	s.e.	Z	p -value
ϕ_{0}	0.0002	0.004	0.046	0.964
Feb	0.0358	0.012	2.965	0.003
Mar	0.3075	0.012	24.776	0.000
Apr	0.4289	0.015	29.516	0.000
May	0.4669	0.018	26.260	0.000
Jun	0.4697	0.019	25.309	0.000
Jul	0.4328	0.019	23.265	0.000
Aug	0.4117	0.019	22.227	0.000
Sep	0.3657	0.017	21.803	0.000
Oct	0.3921	0.015	26.253	0.000
Nov	0.2169	0.013	16.943	0.000
Dec	0.0502	0.010	5.242	0.000
ϕ_{1}	-0.2675	0.033	-8.114	0.000
ϕ_{2}	-0.1107	0.034	-3.276	0.001

Modeling Housing Starts

Seasonal Dummies

Review

Seasonality

Key Concepts

Seasonality, Lag Operator, SARIMA, Deterministic Trend, Exponential Trend Questions

- How can seasonality be modeled in an ARMA model?
- Define diurnality, hebdomadality and seasonality.
- What are seasonal determinist terms and how do they differ from seasonal AR and MA terms?
- What is an exponential trend?
- What do the orders in a SARIMA mean?
- How could a standard AR be used to model a time series with a seasonal AR component?

Stochastic trends

- Stochastic trends are similar to deterministic trends
- Dominant feature of a process

$$
Y_{t}=\text { stochastic trend }+ \text { stationary component }+ \text { noise }
$$

- Most common stochastic trend is a unit root
- There are others (generally non-linear)
- Removed using stochastic detrending (differencing)
- Meaningfully different that deterministic detrending

Short-run Dynamics in a Unit Root process

- Unit root processes, in the long-run, behave like random walks
- In the short run, can have stationary dynamics

$$
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-3}+\epsilon_{t}
$$

- If this process contains a unit root, $\phi_{1}+\phi_{2}+\phi_{3}=1$
- Can see the SR dynamics by differencing

$$
\begin{aligned}
Y_{t} & =\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-2}-\phi_{3} Y_{t-2}+\phi_{3} Y_{t-3}+\epsilon_{t} \\
Y_{t} & =\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-2}-\phi_{3} \Delta Y_{t-2}+\epsilon_{t} \\
Y_{t}-Y_{t-1} & =\left(\phi_{1}+\phi_{2}+\phi_{3}-1\right) Y_{t-1}-\left(\phi_{2}+\phi_{3}\right) \Delta Y_{t-1}-\phi_{3} \Delta Y_{t-2}+\epsilon_{t} \\
\Delta Y_{t} & =\pi_{1} \Delta Y_{t-1}+\pi_{2} \Delta Y_{t-2}+\epsilon_{2}
\end{aligned}
$$

What's the problem with unit roots?

- Unit roots cause a number of problems
- Exploding variance: $\mathrm{V}\left[Y_{t}\right]=t \sigma^{2}$
- Parameter estimates converge at different rates
- Hypothesis tests have non-standard distributions
- No mean reversion in long-run forecasts
- Spurious regression
- Crucial to understand whether a process is stationary or contains a unit root
- Often has large economic consequences
- PPP
- Covered interest rate parity
- Carry trades

Testing for unit roots

- Dickey-Fuller looks like a standard t-test

$$
Y_{t}=\phi_{1} Y_{t-1}+\epsilon_{t}
$$

- $H_{0}: \phi_{1}=1, H_{1}: \phi_{1}<1$
- Impose the null

$$
\begin{aligned}
Y_{t}-Y_{t-1} & =\phi_{1} Y_{t-1}-Y_{t-1}+\epsilon_{t} \\
\Delta Y_{t} & =\left(\phi_{1}-1\right) Y_{t-1}+\epsilon_{t} \\
\Delta Y_{t} & =\gamma Y_{t-1}+\epsilon_{t}
\end{aligned}
$$

- New $H_{0}: \gamma=0, H_{1}: \gamma<0$
- Test with t-stat
- Augmented Dickey Fuller (ADF) captures short run dynamics as well

$$
\Delta Y_{t}=\gamma Y_{t-1}+\rho_{1} \Delta Y_{t-1}+\rho_{2} \Delta Y_{t-2}+\ldots+\rho_{P} \Delta Y_{t-P}+\epsilon_{t}
$$

- Lags of ΔY_{t-1} needed to ensure $\epsilon_{t} \sim W N\left(0, \sigma^{2}\right)$, also reduce variance of residuals

The problem

- t-stat is no longer asymptotically normal
- Requires Dickey-Fuller distribution
- Most software packages contain the correct critical value
- Many processes with unit roots also contain deterministic components
- Asymptotic distribution depends on choice of model:

$$
\begin{array}{lr}
\Delta Y_{t}=\gamma Y_{t-1}+\sum_{p=1}^{P} \phi_{p} \Delta Y_{t-p}+\epsilon_{t} & \quad \text { (No trend) } \\
\Delta Y_{t}=\delta_{0}+\gamma Y_{t-1}+\sum_{p=1}^{P} \phi_{p} \Delta Y_{t-p}+\epsilon_{t} & \text { (Constant, linear in } Y_{t} \text {) } \\
\Delta Y_{t}=\delta_{0}+\delta_{1} t+\gamma Y_{t-1}+\sum_{p=1}^{P} \phi_{p} \Delta Y_{t-p}+\epsilon_{t} & \text { (Constant, quadratic in } Y_{t} \text {) }
\end{array}
$$

- More deterministic regressors lower the critical value
- Reject null of unit root if t-stat of γ is negative and below the critical value

The Role of The Deterministic Terms

- ADF tests include deterministic terms to remove these effects from Y_{t-1}
- Suppose Y_{t} is a pure time trend process

$$
Y_{t}=\alpha+\beta t+\epsilon_{t}
$$

- The differenced value is

$$
\begin{aligned}
\Delta Y_{t} & =\alpha+\beta t+\epsilon_{t}-\alpha-\beta(t-1)-\epsilon_{t-1} \\
& =\beta-\epsilon_{t-1}+\epsilon_{t}
\end{aligned}
$$

- MA(1) without a trend
- In an ADF with deterministic regressors

$$
\Delta Y_{t}=\delta_{0}+\delta_{1} t+\gamma Y_{t-1}+\epsilon_{t}
$$

- The deterministic terms remove determinitic components from Y_{t-1}
- γ depends on

$$
\operatorname{Cov}\left[\Delta Y_{t}, Y_{t-1}-\alpha-\beta(t-1)\right]=\operatorname{Cov}\left[\beta-\epsilon_{t-1}+\epsilon_{t}, \epsilon_{t-1}\right]=-\sigma^{2}
$$

- Failing to include the deterministic regressors results in γ that depends on

$$
\operatorname{Cov}\left[\Delta Y_{t}, Y_{t-1}\right]=0
$$

- Time trend dominates the other components of Y_{t-1}

The Dickey-Fuller Distributions

Important considerations

- Unit root tests are well known for having low power
- Power = 1-Pr(type II)
- Chance you don't reject when alternative is true
- Some suggestions
- Use a loose model selection when choosing the number of lags of ΔY_{t-j}, e.g. AIC
- Be conservative in excluding deterministic regressors.
\square Including a constant or time-trend when absent hurts power
- Excluding a constant or time-trend when present results in no power
- More powerful tests than the ADF are available: DF-GLS
- Visually inspect the data and differenced data
- Use a general-to-specific search
- Number of differences needed is the order of integration
- Integrated of Order 1 or I(1): Y_{t} is nonstationary but ΔY_{t} is stationary
- $\mathrm{I}(d): Y_{t}$ is nonstationary, $\Delta^{j} Y_{t}$ also nonstationary when $j<d, \Delta^{d} Y_{t}$ is stationary

Unit Root Testing

	ADF Statistic	p -value	Lags	Deterministic
Default	-3.866	0.002	10	c
Curvature	-4.412	0.000	19	c
ln Ind Prod	-2.186	0.211	4	c
	-1.831	0.690	6	ct
	-2.962	0.314	6	ctt
$\quad \ln$ Ind Prod	-11.945	0.000	3	c

- Lags determined using AIC
- Deterministic order increased when null is not rejected

The Role Of Deterministics
Trend Stationary AR(1)

$Y_{t}=$			
ADF Statistic	p-value	Lags	Deterministic
1.934	0.988	9	n
-1.146	0.696	9	c
-6.790	0.000	0	ct
-6.885	0.000	0	ctt

- Correct specification uses "ct"

Seasonal Differencing

- Seasonal series should use seasonal differencing

$$
\Delta_{s} Y_{t}=Y_{t}-Y_{t-s}
$$

- Complete $\operatorname{SARIMA}(P, D, Q) \times\left(P_{s}, D_{s}, Q_{s}, s\right)$ model
- D is order of observational difference
- D_{s} is order of seasonal difference
- P and Q are observational AR and MA orders
- P_{s} and Q_{s} are seasonal AR and MA orders
- Special Cases
- $\operatorname{ARMA}(P, Q): D=D_{s}=P_{s}=Q_{s}=0$
- $\operatorname{ARIMA}(P, D, Q): D_{s}=P_{s}=Q_{s}=0$
- $\operatorname{SARMA}(P, Q) \times\left(P_{s}, Q_{s}, s\right): D=D_{s}=0$

Review

Unit Roots and Integration

Key Concepts

Unit Root, Integrated Process, I(1), Augmented Dickey-Fuller Test, Seasonal Difference Questions

- What happens if a relevant deterministic term is omitted in a ADF test?
- What is the effect of including an unnecessary deterministic in an ADF test?
- How should you decide how many lags of the differenced variable to include in an ADF test?
- When should you use seasonal differencing?
- What is the relationship between a random walk and a unit root process?
- What are the consequences of ignoring a unit root when modeling a time series?

Nonlinear Models for the mean

- Linear time series process

$$
Y_{t}=Y_{0}+\sum_{i=0}^{t} \theta_{i} \epsilon_{t-i}
$$

- Alternatives
- Markov Switching Autoregression (MSAR)
- Threshold Autoregression (TAR) and Self-exciting Threshold Autoregression (SETAR)
- Many, many others
- Nonlinear models can capture different dynamics
- State-dependent parameters

$$
Y_{t}=\phi_{0}^{s_{t}}+\phi_{1}^{s_{t}} Y_{t-1}+\sigma^{s_{t}} \epsilon_{t}
$$

- Models differ in how s_{t} evolves

Markov Switching Example

- Two states, H and L

$$
Y_{t}=\left\{\begin{array}{c}
\phi^{H}+\epsilon_{t} \\
\phi^{L}+\epsilon_{t}
\end{array}\right.
$$

- States evolve according to a $1^{\text {st }}$ order Markov Chain

$$
\left\{s_{t}\right\}=\{H, H, H, L, L, L, H, L, \ldots\}
$$

- Transition Probabilities

$$
\left[\begin{array}{cc}
p_{H H} & p_{H L} \\
p_{L H} & p_{L L}
\end{array}\right]=\left[\begin{array}{cc}
p_{H H} & 1-p_{L L} \\
1-p_{H H} & p_{L L}
\end{array}\right]
$$

- $p_{H H}$ is the probability $s_{t+1}=H$ given $s_{t}=H$.
- Model will switch between a high mean state and a low mean state
- Models like this are very flexible and nest ARMA
- Successful in financial econometrics for asset allocation, volatility modeling, modeling series with business-cycle length patterns: GDP

Markov Switching: i.i.d. Mixture

Markov Switching: Symmetric Persistent

Markov Switching: Asymmetric Persistent

Markov Switching: Different Variances

Review

Non-linear Time Series Models
Key Concepts
Self-exciting Threshold Autoregression, Markov Switching Processe Questions

- It is always necessary to consider nonlinear models to model covariance stationary time series?
- What advantages might a nonlinear model have over a linear model when modeling a covariance stationary time series?

