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Modules
Overview

■ Key Concepts in Time Series Analysis
■ Model Components
■ Deterministic Processes: Trends and Seasonality
■ Cyclical Processes: Autoregressive Moving-Average Processes
■ Properties of ARMA Processes
■ Autocorrelations and Partial Autocorrelations
■ Parameter Estimation
■ Model Building and Diagnostics
■ Forecasting and Forecast Evaluation
■ Cyclical Seasonality and Seasonal Differencing
■ Random Walks and Unit Roots
■ Non-linear Models for the mean
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Course Structure
■ Course presented through two overlapping channel:

1. In-person lectures
2. Notes that accompany the lecture content

– Read before or after the lecture or when necessary for additional background

■ Slides are primary – material presented during lecturers is examinable
■ Notes are secondary and provide more background for the slides
■ Slides are derived from notes so there is a strong correspondence
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Monitoring Your Progress
■ Self assessment

▶ Review questions in printer-friendly version of slides
– Self-assessment

▶ Multiple choice questions on Canvas made available each week
– Answers available immediately

▶ Long-form problem distributed each week
– Answers presented in a subsequent class

■ Marked Assessment
▶ Empirical projects applying the material in the lectures
▶ Each empirical assignment will have a written and code component
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Stochastic Processes



Stochastic Processes

Definition (Stochastic Process)

A stochastic process is a collection of random variables {Yt} defined on a common
probability space indexed by a set T usually defined as N for discrete time processes or
[0,∞) for continuous time processes.

Basic Example: An i.i.d. time series

Yt
i.i.d.∼ N(0, 1)
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More Complex Examples
■ Random Walk

Yt = Yt−1 + ϵt, ϵt
i.i.d.∼ N

(
0, σ2

)
■ ARMA(1,1)

Yt = ϕ1Yt−1 + θϵt−1 + ϵt
▶ Series focuses on ARMA

■ GARCH(1,1)

Yt ∼ N(0, σ2
t )

σ2
t = ω + αY 2

t−1 + βσ2
t−1

▶ GARCH and other non-linear processes later
■ Ornstein-Uhlenbeck Process

Y (t) = e−βtY (0) + σ

∫ t

0
e−β(t−s)dW (s)
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The Default Premium
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Curvature of Yield Curve
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Industrial Production
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Housing Starts
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Autocovariance



Autocovariance

Definition (Autocovariance)

The autocovariance of a covariance stationary scalar process {Yt} is defined

γs = E [(Yt − µ)(Yt−s − µ)]

where µ = E [Yt]. Note that γ0 = E [(Yt − µ)(Yt − µ)] = V [Yt].

■ Covariance of a process at different points in time
■ Otherwise identical to usual covariance
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Stationarity



Stationarity
The future resembles the past

Key concept
■ Stationarity is a statistically meaningful form of regularity
■ First type:

Definition (Covariance Stationarity)

A stochastic process {Yt} is covariance stationary if

E [Yt] = µ for t = 1, 2, . . .

V [Yt] = σ2 < ∞ for t = 1, 2, . . .

E [(Yt − µ)(Yt−s − µ)] = γs for t = 1, 2, . . . , s = 1, 2, . . . , t− 1

■ Unconditional mean, variance and autocovariance do not depend on time
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Stationarity
Second type (stronger):

Definition (Strict Stationarity)

A stochastic process {Yt} is strictly stationary if the joint distribution of {Yt, Yt+1, . . . , Yt+h}
only depends only on h and not on t.

■ Entire joint distribution does not depend on time.
■ Examples of stationary time series:

▶ i.i.d. : Always strict, covariance if σ2 < ∞
▶ i.i.d. sequence of t2 random variables, strict only
▶ Multivariate normal, both
▶ AR(1): Yt = ϕ1Yt−1 + ϵt, covariance if |ϕ1| < 1 and V[ϵt] < ∞, strict is ϵt is i.i.d.
▶ ARCH(1): Yt ∼ N(0, σ2

t ),σ2
t = ω + αY 2

t−1 both if α < 1.
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Nonstationarity defined
■ Any series which is not stationary is nonstationary
■ Four major types

▶ Seasonality
– Only slightly problematic
– Can often be analyzed using standard tools and Box-Jenkins

▶ Deterministic trends: growth over time
– Linear
– Polynomial
– Exponential

▶ Random walks or unit roots
▶ Structural breaks
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What processes are not stationary?
Nonstationary time series

■ Seasonalities, Diurnality, Hebdomadality: Yt = µ+ βI[Quarter(t) = Q1] + ϵt
▶ E[Yt] is different in Q1 than in other quarters

■ Time trends: Yt = t+ ϵt
▶ E[Yt] = t

■ Random walks: Yt = Yt−1 + ϵt
▶ V[Yt] = tσ2

■ Processes with structural breaks: Yt = µ1 + ϵt if t < 1974, Yt = µ2 + ϵt, t ≥ 1974.
▶ E[Yt] = µ1 + (µ2 − µ1)(1− It<1974)
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White Noise



White noise
Essential Building Block of Time Series

Definition (White Noise)

A process {ϵt} is known as white noise if

E [ϵt] = 0 for t = 1, 2, . . .

V [ϵt] = σ2 < ∞ for t = 1, 2, . . .

E [ϵtϵt−j ] = 0 for t = 1, 2, . . . , j ̸= 0

■ Not necessarily independent
▶ ARCH(1) process Yt ∼ N(0, σ2

t ), σ2
t = ω + αY 2

t−1
▶ Variance is dependent, mean is not
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White noise
Gaussian Student’s t3
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Linear Time Series Processes



Linear Time-series Processes
Standard tool of time-series analysis

■ Linear time series process can always be expressed as

Yt = δt + Y0 +

t∑
i=0

θiϵt−i

▶ Linear in the errors
▶ δt is a purely deterministic process
▶ {ϵt} is a White Noise process

■ Example of non-linear processes
▶ GARCH(1,1)

Yt ∼ N(0, σ2
t )

σ2
t = ω + αY 2

t−1 + βσ2
t−1

▶ Threshold Autoregression

Yt = ϕsYt−1 + ϵt, ϕs = 1 if L < Yt−1 < U otherwise 0.9
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Model Components



Component View of a Time Series

Yt = Trend + Seasonal + Cyclical︸ ︷︷ ︸
Predictable

+ Noise︸ ︷︷ ︸
Unpredictable

Trend
■ Linear, Quadratic
■ Exponential

▶ Linear in the log
■ Deterministic - depends on the time period t

Seasonal
■ Seasonal Summies
■ Fourier Series
■ Deterministic - depends on the time period t

Cyclical
■ Autoregressive Moving Average Processes
■ Stochastic - depends on past shocks
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Deterministic trends
■ Two key types

▶ Polynomial
Yt = ϕ0 + δ1t+ δ2t

2 + . . .+ δot
o + ϵt

– Linear (important special case)
Yt = ϕ0 + δ1t+ ϵt

– Exponential
lnYt = ϕ0 + δ1t+ ϵt

■ Mean depends on time

Yt = ϕ0 + δ1t+ ϵt ⇒ E [Yt] = ϕ0 + δ1t
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Deterministic Seasonality
Seasonal dummy variables

Yt =

s−1∑
j=0

βjI[t mod s=j] + ϵt

Seasonal Fourier series

Yt =

k∑
j=0

λj sin

(
2πj

t

s

)
+ κj cos

(
2πj

t

s

)
+ ϵt

■ Capture seasonal patterns using fewer terms
▶ k = 2 in monthly data
▶ 4 rather than 12 parameters

■ Multiple fourier terms with different s capture additional determinstic patterms
▶ Electricity: day of year, day of week, hour of day
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Detrending

Yt = ϕ0 + δ1t+ . . .+ δot
o +

s−1∑
i=0

βiI[t mod s=i] +

k∑
j=0

λj sin

(
2πj

t

s

)
+ κj cos

(
2πj

t

s

)
+ ϵt

■ Detrended series is a stationary process
■ Detrending depends only on time t

■ Incorporate trends with ARMA models to capture predictable component
■ Parameter estimation using OLS
■ Key problem - most trending economic time series contains unit roots

▶ Still not stationary even after detrending
▶ Alternative: transform to remove the determinstic effects
▶ More later

22



Trending Time Series
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Detrended Residuals
ϵ̂t = Yt − ϕ̂0 − δ̂1t
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Autoregressive-Moving Average Processes



ARMA Processes
■ Inclusive class of all linear time-series processes

Definition (Autoregressive-Moving Average Process)

An Autoregressive Moving Average process with orders P and Q, abbreviated
ARMA(P,Q), has dynamics which follow

Yt = ϕ0 +

P∑
p=1

ϕpYt−p +

Q∑
q=1

θqϵt−q + ϵt

where ϵt is a white noise process with the additional property that Et−1 [ϵt] = 0.

■ ARMA(1,1)
Yt = ϕ1Yt−1 + θ1ϵt−1 + ϵt
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Special case: Moving Average
■ ARMA family compromises two sub-classes

Definition (Moving Average Process of Order Q)

A Moving Average process of order Q, abbreviated MA(Q), has dynamics which follow

Yt = ϕ0 +

Q∑
q=1

θqϵt−q + ϵt

where ϵt is white noise series with the additional property that Et−1 [ϵt] = 0.

■ 1st order Moving Average (MA(1))

Yt = ϕ0 + θ1ϵt−1 + ϵt

■ Simplest non-degenerate time series process
26



Special cases of ARMA processes: Autoregression
■ Other sub-class of ARMA

Definition (Autoregressive Process of Order P )

An Autoregressive process of order P, abbreviated AR(P), has dynamics which follow

Yt = ϕ0 +

P∑
p=1

ϕpYt−p + ϵt

where ϵt is white noise series with the additional property that Et−1 [ϵt] = 0.

■ 1st order Autoregression (AR(1))

Yt = ϕ0 + ϕ1Yt−1 + ϵt
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Conditional Moments



Moments and Autocovariances

Yt = ϕ0 + ϕ1Yt−1 + ϵt

■ Unconditional Mean
E [Yt]

■ Unconditional Variance
γ0 = V [Yt]

■ Autocovariance
γs = E [(Yt − E [Yt]) (Yt−s − E [Yt−s])]

■ Conditional Mean
Et[Yt+1] = E[Yt+1|Ft]

■ Conditional Variance
Vt[Yt+1] = Et[(Yt+1 − Et[Yt+1])

2]

28



Moments of an AR(1) Process



How to work with ARMA processes: AR(1)
The MA(∞) Representation

Yt = ϕ0 + ϕ1Yt−1 + ϵt

■ Use backward substitution (assume |ϕ1| < 1)

Yt = ϕ0 + ϕ1Yt−1 + ϵt

= ϕ0 + ϕ1(ϕ0 + ϕ1Yt−2 + ϵt−1) + ϵt

= ϕ0 + ϕ1ϕ0 + ϕ2
1Yt−2 + ϕ1ϵt−1 + ϵt

= ϕ0 + ϕ1ϕ0 + ϕ2
1(ϕ0 + ϕ1Yt−3 + ϵt−2) + ϕ1ϵt−1 + ϵt

= ϕ0

∞∑
j=0

ϕj
1 +

∞∑
i=0

ϕi
1ϵt−i

=
ϕ0

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i

■ lims→∞
∑s

i=0 ϕ
i
1 = 1/(1− ϕ1)
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Properties of an AR(1)

E[Yt] = E

[
ϕ0

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i

]

=
ϕ0

1− ϕ1
+

∞∑
i=0

ϕi
1E [ϵt−i]

=
ϕ0

1− ϕ1
+

∞∑
i=0

ϕi
10

=
ϕ0

1− ϕ1

■ In general AR(P): E[Yt] = ϕ0

1−ϕ1−ϕ2−...−ϕP
■ Only sensible if ϕ1 + ϕ2 + . . .+ ϕP < 1
■ Variance can be shown in same manner

▶ AR(1): V[Yt] =
σ2

1−ϕ2
1

▶ AR(P): V[Yt] =
σ2

1−ρ1ϕ1−ρ2ϕ2−...−ρPϕP

– ρs are autocorrelations
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Autocovariance of an AR(1)

E [(Yt − E[Yt])(Yt−s − E[Yt−s])] = E

[(
∞∑
i=0

ϕi
1ϵt−i

)(
∞∑
j=0

ϕj
1ϵt−s−j

)]

= E




s−1∑
i=0

ϕi
1ϵt−i︸ ︷︷ ︸

Aftert−s

+
∞∑
k=s

ϕk
1ϵt−k︸ ︷︷ ︸

t−s and later


(

∞∑
j=0

ϕj
1ϵt−s−j

)
= ϕs

1
σ2

1− ϕ2
1

■ Full details in notes
■ The autocovariance function

γs = ϕ
|s|
1

{
σ2

1− ϕ2
1

}
■ Autocovariance declines geometrically with the lag length
■ Requires ϕ2

1 < 1 to exist
▶ Same condition as the mean
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Stationarity of AR Processes



Stationarity of ARMA processes
■ Primarily interested in covariance stationarity
■ Stationarity depends on parameters of AR portion
■ AR(0) or finite order MA: always stationary
■ AR(1) or ARMA(1,Q): Yt = ϕ1Yt−1 + MA + ϵt

▶ |ϕ1| < 1

■ AR(P) or ARMA(P,Q) Yt = ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕPYt−P + MA + ϵt
■ Rewrite Yt − ϕ1Yt−1 − ϕ2Yt−2 − . . .− ϕPYt−P = MA + ϵt
■ Easy to determine using the characteristic equation and corresponding characteristic

roots
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The characteristic equation

Definition (Characteristic Equation)

Let Yt follow a Pth order linear difference equation

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕPYt−P + xt

which can be rewritten as

Yt − ϕ1Yt−1 − ϕ2Yt−2 − . . .− ϕPYt−P = ϕ0 + xt

(1− ϕ1L− ϕ2L
2 − . . .− ϕPL

P )Yt = ϕ0 + xt

The characteristic equation of this process is

zP − ϕ1z
P−1 − ϕ2z

P−2 − . . .− ϕP−1z − ϕP = 0

■ Key is in the forming of the characteristic equation and its roots
■ L is known as “lag operator”
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Characteristic roots

Definition (Characteristic Root)

Let
zP − ϕ1z

P−1 − ϕ2z
P−2 − . . .− ϕP−1z − ϕP = 0

be the characteristic polynomial associated with some Pth order linear difference equation.
The P characteristic roots, c1, c2, . . . , cP are defined as the solution to this polynomial

(z − c1)(z − c2) . . . (z − cP ) = 0.

■ The roots are c1, c2, . . . , cP
■ AR(P) or ARMA(P,Q) is covariance stationary if |cj | < 1 for all j
■ If complex, |cj | = |aj + bji| =

√
a2 + b2 (complex modulus)
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Characteristic roots example
■ Difficult to determine by inspection

Example 1
Yt = .1Yt−1 + .7Yt−2 + .2Yt−3 + ϵt

■ Characteristic equation
z3 − .1z2 − .7z1 − .2

■ Roots: 1, −.5, and −.4 ⇒ nonstationary
Example 2

Yt = 1.7Yt−1 − .72Yt−2 + ϵt

■ Characteristic equation
z2 − 1.7z1 + .72

■ Roots: .9 and .8 ⇒ stationary
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Fitting a Basic ARMA
YoY % change in Industrial Production
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Parameter Estimates
AR2

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + ϵ2

Parameter Estimates

Estimate s.e. Z p-value

ϕ0 0.1106 0.045 2.453 0.014
ϕ1 1.3187 0.017 79.114 0.000
ϕ2 -0.3643 0.018 -20.624 0.000
σ2 1.3635 0.028 48.775 0.000

Roots of Characteristic Polynomial

c1 c2

0.924852 0.39388
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Residuals

1969 1979 1989 1999 2009 2019

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

38



Autocorrelations and Partial Autocorrelations



Autocorrelations and the ACF
■ Autocorrelations are a key element of model building

Definition (Autocorrelation)

The autocorrelation of a covariance stationary scalar process is defined

ρs =
γs
γ0

where γs = E [(Yt − µ)(Yt−s − µ)].

■ Measures the correlation of a process at different points in time
■ AR(1):

ρs = ϕs
1

■ One of two possibilities
▶ Decay geometrically if 0 < ϕ1 < 1
▶ Oscillate and decay −1 < ϕ1 < 0
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Partial Autocorrelations (PACF)
■ Partial Autocorrelation is the other key element of model building
■ More complicated than autocorrelations:
■ Regression interpretation of sth partial autocorrelation:

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕs−1Yt−s+1 + φsYt−s + ϵt

■ φs is the sth partial autocorrelation
▶ Population (not sample) value of φs

■ AR(1):

φs =

{
ϕ
|s|
1 for s= − 1, 0, 1

0 otherwise

■ Partial autocorrelation function maps the parameters of a process to the sth

autocorrelation, φ(s)
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Autocorrelations Structure of ARMA Processes



Using the ACF and PACF to categorize processes
■ ACF and PACF are useful when choosing models

Process ACF PACF
White Noise All 0 All 0

AR(1) ρs = ϕs
1 0 beyond lag 2

AR(P) Decays toward zero Non-zero through lag P,
exponentially 0 thereafter

MA(1) ρ1 ̸= 0, ρs = 0, s > 0 Decays toward zero
exponentially

MA(Q) ρs ̸= 0 s ≤ Q, Decays toward zero
ρs = 0, s > Q exponentially, possible oscillating

ARMA(P,Q) Exponential Decay Exponential Decay
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Autocorrelation for ARMA processes
ACF PACF
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Autocorrelation for ARMA processes
ACF PACF

AR(1), ϕ1 = −0.9
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Autocorrelation for ARMA processes
ACF PACF

MA(1), θ1 = −0.8
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Autocorrelation for ARMA processes

ACF PACF
Random Walk, Yt = Yt−1 + ϵt
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Estimating Autocorrelations and Partial Auocorreations



Sample ACF and PACF
■ Sample autocorrelations

ρ̂s =

∑T
t=s+1 Y

∗
t Y

∗
t−s∑T

t=1 Y
∗
t
2

=
γ̂s
γ̂0

▶ Y ∗
t = Yt − Ȳ where Ȳ = T−1

∑T
t=1 Yt

■ Some prefer the small-sample-size corrected version

ρ̂s =

∑T
t=s+1 Y

∗
t Y

∗
t−s√∑T

t=s+1 Y
∗
t
2
∑T−s

t=1 Y ∗
t
2
.

■ Sample partial autocorrelations
▶ Run regression to estimate φ̂s

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + . . .+ φsYt−s + ϵt

■ More efficient ways to compute PACF using Yule-Walker (see notes)
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Testing Autocorrelations and Partial Auocorreations



Testing autocorrelations and partial ACs
■ Inference on autocorrelations:

V[ρ̂s] = T−1 for s = 1

= T−1(1 + 2

s−1∑
j=1

ρ̂2j ) for s > 1
■ Standard t-stats

ρ̂s√
V[ρ̂s]

A∼ N(0, 1).

■ Inference on partial autocorrelations:

V[φ̂s] ≈ T−1

■ Standard t-stats
T

1
2 φ̂s

A∼ N(0, 1)
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Autocorrelations
The Default Premium
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Autocorrelations
Monthly Housing Start Growth Rate
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Autocorrelations
Value Weighted Market Return
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Testing multiple autocorrelations
■ Testing multiple autocorrelations: Ljung-Box Q, H0 : ρ1 = . . . = ρs = 0

Q = T (T + 2)

s∑
k=1

ρ̂2k
T − k

∼ χ2
s

■ Note: Not heteroskedasticity robust, use LM test for serial correlation

Definition (LM test for serial correlation)

Under the null, E[Y ∗
t Y

∗
t−j ] = 0 for 1 ≤ j ≤ s. The LM-test for serial correlation is

constructed by defining the score vector st = Y ∗
t

[
Y ∗
t−1 Y

∗
t−2 . . . Y ∗

t−s

]′,
LM = T s̄′Ŝ−1s̄

d→ χ2
s

where s̄ = T−1
∑T

t=1 st, Ŝ = T−1
∑T

t=1 sts
′
t and Y ∗

t = Yt − Ȳ where Ȳ = T−1
∑T

t=1 Yt.
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Parameter Estimation



Conditional MLE
■ Conditional MLE assuming distribution of Yt|Yt−1, ϵt−1, Yt−2, ϵt−2, . . . is N

(
0, σ2

)
■ If ϵt−1, ϵt−2, ..., ϵt−Q are observable, identical to least squares

argmin
ϕ,θ

T∑
t=P+1

(Yt − ϕ0 − ϕ1Yt−1 − . . .− ϕPYt−P − θ1ϵt−1 − . . .− θQϵt−Q)
2

■ Ignore distribution of Y1, . . . YP in fit
▶ Finite sample effects, asymptotically irrelevant

■ If ϵP−1, . . . , ϵP−Q are observable, can recursively compute ϵP . . . . , ϵT for a set of
parameters ϕ,θ

■ Overcome missing initial shocks by assuming ϵP−1 = . . . = ϵP−Q = 0
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Ordinary Least Squares
■ If Q = 0, conditional MLE simplifies

argmin
ϕ

T∑
t=P+1

(Yt − ϕ0 − ϕ1Yt−1 − . . .− ϕPYt−P )
2

■ Conditional MLE is identical to OLS
■ Inference is identical
■ Use classical or White’s covariance estimator as appropriate
■ Can also incorporate deterministic terms such as time trends while maintaining

simplicity of OLS
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Exact MLE
■ Define the vector of data

y = [Y1, Y2, . . . , YT−1 YT ]
′

■ Γ be the T by T covariance matrix of y

Γ =



γ0 γ1 γ2 γ3 . . . γT−2 γT−1

γ1 γ0 γ1 γ2 . . . γT−3 γT−2

γ2 γ1 γ0 γ1 . . . γT−4 γT−3

...
...

...
... . . .

...
...

γT−2 γT−3 γT−4 γT−5 . . . γ0 γ1
γT−1 γT−2 γT−3 γT−4 . . . γ1 γ0


■ The joint likelihood of y

f(y|ϕ,θ, σ2) = (2π)−
T
2 |Γ|−

T
2 exp

(
−y′Γ−1y

2

)
■ Log-likelihood

l(ϕ,θ, σ2;y) = −T

2
ln(2π)− T

2
ln |Γ| − 1

2
y′Γ−1y

54



Model Building



Model building the Box-Jenkins way
■ Model building is similar to cross-section regression
■ Can use same techniques

▶ General to Specific or Specific to General
▶ Information criteria: AIC, BIC

■ Box-Jenkins is dominant methodology, 2-steps
▶ Identification: Use ACF and PACF to choose model
▶ Estimation: Estimate model and do diagnostic checks

■ Two principles
▶ Parsimony
▶ Invertibility
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Strategies
■ General to Specific

▶ Fit largest specification
▶ Drop regressor with largest p-value
▶ Refit
▶ Stop if all p-values indicate significance using a size of α

– α is the econometrician’s choice
■ Specific to General

▶ Fit all specifications with a single variable
▶ Retail variable with smallest p-value
▶ Extend this model adding on additional variables one at a time
▶ Stop if the p-values of all excluded variables are larger than α
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Information Criteria
■ Information Criteria

▶ Akaike Information Criterion (AIC)

AIC = ln σ̂2 + k
2

T

▶ Schwartz (Bayesian) Information Criterion (SIC/BIC)

BIC = ln σ̂2 + k
lnT

T

■ Both have versions suitable for likelihood based estimation
■ Reward for better fit: Reduce ln σ̂2

■ Penalty for more parameters: k 2
T or k lnT

T
■ Choose model with smallest IC

▶ AIC has fixed penalty ⇒ inclusion of extraneous variables
▶ BIC has larger penalty if lnT > 2 (T > 7)
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Model Building: Specific-to-General
The Default Premium

AR(1)

Estimate s.e. Z p-value

ϕ0 3.4827 1.205 2.891 0.004
ϕ1 0.9652 0.007 139.901 0.000

MA(1)

Estimate s.e. Z p-value

ϕ0 101.2112 2.446 41.378 0.000
θ1 0.9218 0.008 118.011 0.000
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Model Building: Specific-to-General
The Default Premium

AR(2)

Estimate s.e. Z p-value

ϕ0 4.5373 1.171 3.874 0.000
ϕ1 1.2718 0.021 61.901 0.000
ϕ2 -0.3169 0.020 -15.506 0.000

ARMA(1,1)

Estimate s.e. Z p-value

ϕ0 5.7953 1.587 3.652 0.000
ϕ1 0.9423 0.009 99.314 0.000
θ1 0.3911 0.021 18.501 0.000
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Model Building: Specific-to-General
The Default Premium

ARMA(2,1)

Estimate s.e. Z p-value

ϕ0 5.8678 1.631 3.597 0.000
ϕ1 0.8930 0.057 15.715 0.000
ϕ2 0.0486 0.056 0.873 0.383
θ1 0.4337 0.052 8.412 0.000

ARMA(1,2)

Estimate s.e. Z p-value

ϕ0 5.5511 1.590 3.491 0.000
ϕ1 0.9447 0.010 96.942 0.000
θ1 0.3814 0.024 16.024 0.000
θ2 -0.0217 0.023 -0.949 0.343
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Model Building: Information Criteria
The Default Premium
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Model Diagnostics



Model Diagnostics
■ Important to assess whether your model “fits”

▶ Are the residuals white noise?
– Eye-ball test
– Ljung-Box Q stat or LM serial correlation test of H0 : ρ1 = . . . = ρs = 0.
– SACF/SPACF of the residuals

▶ Are there any large outliers?
– Eye-ball test

■ What to do if there are problems?
▶ Use SPACF/SACF to repeat Box-Jenkins and augment your model with correct

dynamics to pick up problem
▶ Repeat diagnostics

■ Concern: Repeated testing may render critical values misleading
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Ljung-Box on Residuals
ARMA(1,1)
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LM test for Serial Correlation on Residuals
ARMA(1,1)
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The Information Set



The information set and the law of iterated expectations
■ Information set: Ft
■ Contains a lot of information!

▶ Every time t measurable event
▶ Observed variables: prices, returns, GDP, interest rates, FX rates
▶ Functions of these
▶ Excludes variables which are latent: volatility

■ Conditional expectation:
E[Yt+1|Ft]

Conditional Variance
V[Yt+1|Ft]

▶ Shorthand Et[Yt+1] and Vt[Yt+1]
■ Law of Iterated Expectation (LIE):

Et[Et+1[Yt+2]] = Et[Yt+2]

▶ Monday’s belief about what Tuesday’s belief about Wednesday is the same as Monday’s
belief of Wednesday
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Loss Functions



Forecasting
■ A h−step ahead forecast, Ŷt+h|t, is designed to minimize a loss function

▶ MSE: (Yt+h − Ŷt+h|t)
2

▶ MAD: |Yt+h − Ŷt+h|t|
▶ Quad-Quad: α1(Yt+h − Ŷt+h|t)

2 + α2I[Yt+h−Ŷt+h|t<0](Yt+h − Ŷt+h|t)
2

– Asymmetric if α1 ̸= α2
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The MSE Optimal Forecast is the conditional mean
■ Let Y ∗

t+h = Et[Yt+h]

■ Let Ỹt+h be any other value

Et[(Yt+h − Ỹt+h)
2] = Et[

((
Yt+h − Y ∗

t+h

)
+
(
Y ∗
t+h − Ỹt+h

))2
]

= Et[
(
Yt+h − Y ∗

t+h

)2
+ 2

(
Yt+h − Y ∗

t+h

) (
Y ∗
t+h − Ỹt+h

)
+
(
Y ∗
t+h − Ỹt+h

)2
]

= Vt[Yt+h] + 2Et[
(
Yt+h − Y ∗

t+h

) (
Y ∗
t+h − Ỹt+h

)
] + Et[

(
Y ∗
t+h − Ỹt+h

)2
]

= Vt[Yt+h] + 2
(
Y ∗
t+h − Ỹt+h

)
Et[

(
Yt+h − Y ∗

t+h

)
] + Et[

(
Y ∗
t+h − Ỹt+h

)2
]

= Vt[Yt+h] + 2
(
Y ∗
t+h − Ỹt+h

)
· 0 + Et[

(
Y ∗
t+h − Ỹt+h

)2
]

= Vt[Yt+h] +
(
Y ∗
t+h − Ỹt+h

)2
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Forecasting



Forecasting
■ MSE optimal forecast for an AR(1):

Yt = ϕ1Yt−1 + ϵt

Et[Yt+1] = Et[ϕ1Yt + ϵt+1]

= ϕ1Et[Yt] + Et[ϵt+1]

= ϕ1Yt + 0

Et[Yt+2] = Et[ϕ1Yt+1 + ϵt+2]

= ϕ1Et[Yt+1] + Et[ϵt+2]

= ϕ1 (ϕ1Yt) + 0

= ϕ2
1Yt + 0

Note: Long-run forecast is always E [Yt] for a covariance stationary process
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Forecasting
AR(1) for M2 Growth
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Forecast Errors

Vt[Yt+1] = Et

[
(Yt+1 − Et [Yt+1])

2
]

= Et

[
(ϕYt + ϵt+1 − ϕYt)

2
]

= Et

[
ϵ2t+1

]
= σ2 if homoskedastic

Vt[Yt+2] = Et

[
(Yt+2 − Et [Yt+2])

2
]

= Et

[(
ϕ2Yt + ϕϵt+1 + ϵt+2 − ϕ2Yt

)2]
= Et

[
(ϕϵt+1 + ϵt+2)

2
]

= ϕ2Et

[
ϵ2t+1

]
+ Et

[
ϵ2t+2

]
=

(
1 + ϕ2

)
σ2 if homoskedastic

Note: Long-run forecast error variance is always V [Yt] for a covariance stationary process
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Forecast Error Autocorrelation
Recursive AR(1) for M2 Growth
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Mincer-Zarnowitz Tests



Forecast evaluation
Mincer-Zarnowitz regressions

■ Objective Forcecast Evaluation

Yt+h = α+ βŶt+h|t + ηt

■ H0 : α = 0, β = 1, H1 : α ̸= 0 ∪ β ̸= 1
▶ Use any test: Wald, LR, LM

■ Can be generalized to include any variable available when the forecast was produced

Yt+h = α+ βŶt+h|t + γxt + ηt

■ H0 : α = 0, β = 1,γ = 0, , H1 : α ̸= 0 ∪ β ̸= 1 ∪ γj ̸= 0

■ xt must be in the time t information set
■ Important when working with macro data

72



Mincer-Zarnwotz
AR(1) for M2 Grwoth

Standard Form

Yt+1 = α+ βŶt+1|t + ηt

Estimate s.e. Z p-value

α 0.0004 0.000 0.936 0.350
β 0.8481 0.061 13.985 0.000

Simplified Form

Yt+1 − Ŷt+1|t = α+ γŶt+1|t + ηt

Estimate s.e. Z p-value

α 0.0004 0.000 0.936 0.350
γ -0.1519 0.061 -2.505 0.013
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Mincer-Zarnwotz
AR(1) for M2 Grwoth
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Ŷt+1|t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Y
t+

1

45o line

Regression line

74



Diebold-Mariano Tests



Relative evaluation: Diebold-Mariano
■ Two forecasts, Ŷ A

t+h|t and Ŷ B
t+h|t

■ Two losses, lAt = (Yt+h − Ŷ A
t+h|t)

2 and lBt = (Yt+h − Ŷ B
t+h|t)

2

▶ Losses do not need to be MSE
■ If equally good or bad, E[lAt ] = E[lBt ] or E[lAt − lBt ] = 0

■ Define δt = lAt − lBt

75



Relative evaluation: Diebold-Mariano
■ Implemented as a t-test that E[δt] = 0

■ H0 : E[δt] = 0, HA
1 : E[δt] < 0, HB

1 : E[δt] > 0
▶ Composite alternative
▶ Sign indicates which model is favored

DM =
δ√
V̂[δ]

=
T−1

∑T
t=1 δt√

σ̂2
NW
T

■ One complication: {δt} cannot be assumed to be uncorrelated, so a more
complicated variance estimator is required

■ Newey-West covariance estimator:

σ̂2
NW = γ̂0 + 2

L∑
l=1

[
1− l

L+ 1

]
γ̂l
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Implementing a Diebold-Mariano Test

DM =
δ√
V̂[δ]

Algorithm (Diebold-Mariano Test)

1. Using the two forecasts, Ŷ A
t+h|t and Ŷ B

t+h|t, compute δt = lAt − lBt

2. Run the regression
δt = β + ηt

3. Use a Newey-West covariance estimator (cov_type="HAC")
4. T-test H0 : β = 0 against HA

1 : β < 0, and HB
1 : β > 0

5. Reject if |t| > Cα where Cα is the critical value for a 2-sided test using a normal
distribution with a size of α. If significant, reject in favor of model A if test statistic is
negative or in favor of model B if test statistic is positive.
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Diebold-Mariano Testing
M2 Growth: AR(1) vs a Random Walk

Mean Square Error

L
(
Yt+1, Ŷt+1|t

)
=

(
Yt+1 − Ŷt+1|t

)2

Estimate s.e. Z p-value

δ -4.365×10-6 2.16×10-6 -2.017 0.044

Mean Absolute Error
L
(
Yt+1, Ŷt+1|t

)
=

∣∣∣Yt+1 − Ŷt+1|t

∣∣∣
Estimate s.e. Z p-value

δ -0.0003 0.000 -2.358 0.018

■ OLS on a constant using Newey-West with ⌊T 1/3⌋
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Autocorrelation of MAE δt
M2 Growth: AR(1) vs a Random Walk
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The Lag Operator



The Lag Operator
■ The Lag Operator is a useful tool in time series
■ Simplifies expressing complex models with seasonal dynamics
■ Key properties

1. LYt = Yt−1

2. L2Yt = LYt−1 = L(LYt) = Yt−2

3. LaLb = L(a+b)

4. Lc = c where c is a constant
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Seasonality



Seasonality
■ Seasonality is technically a form of non-stationarity

▶ Mean explicitly depends on the quarter, month, day or minute
■ Three types:

Definition (Seasonality)

Data are said to be seasonal if they exhibit a non-constant deterministic pattern on an
annual basis.

Definition (Hebdomadality)

Data which exhibit day-of-week deterministic effects are said to be hebdomadal.

Definition (Diurnality)

Data which exhibit intra-daily deterministic effects are said to be diurnal.
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Seasonality
■ Simpler to think of processes with seasonality as having two models

▶ Short-run AR and MA dynamics
▶ Seasonal AR and MA dynamics

■ Model building is standard with these two goals in mind
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ARMA Modeling of Seasonality

Univariate Time Series Analysis
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ARMA Modeling of Seasonality
Four Components

■ Observation AR
(1− ϕ1L)Yt = ϕ0 + ϵt

■ Seasonal AR
(1− ϕsL

s)Yt = ϕ0 + ϵt

■ Observation MA
Yt = ϕ0 +

(
1 + θ1L

1
)
ϵt

■ Seasonal MA
Yt = ϕ0 + (1 + θsL

s) ϵt

■ Combined Model

(1− ϕ1L) (1− ϕsL
s)Yt =

(
1 + θ1L

1
)
(1 + θsL

s) ϵt

Yt =ϕ0 + ϕ1Yt−1 + ϕsYt−s − ϕ1ϕsYt−s−1

+ θ1ϵt−1 + θsϵt−s + θ1θsϵt−s−1 + ϵt
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ARMA Modeling of Seasonality
Four Components

■ Generalizes to higher orders of each term
■ Known as SARIMA(p, 0, q)× (P, 0, Q, s)

■ Imposes restrictions on parameters due to multiplication of terms
■ Can estimate unrestricted equivalent

Yt = ϕ0 + ϕ1Yt−1 + ϕsYt−s + ϕs+1Yt−s−1 + θ1ϵt−1 + θsϵt−s + θs+1ϵt−s−1 + ϵt

■ Can test H0 : ϕs+1 = ϕ1ϕs ∩ θs+1 = θ1θs
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Housing Starts
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YoY Growth in Housing Starts
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YoY Growth in Housing Starts Autocorrelation
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Modeling YoY Growth in Housing Starts
AR(1) Residuals
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Modeling Housing Starts
Levels

SARIMAX(2, 0, 0)× (0, 0, 1, 12)

Estimate s.e. Z p-value

ϕ1 0.6809 0.034 20.284 0.000
ϕ2 0.2824 0.034 8.233 0.000
θs,12 -0.8795 0.017 -50.520 0.000
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Modeling Housing Starts
Levels

SARIMAX(2, 0, 0)× (0, 0, 1, 12)
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Modeling Housing Starts
Seasonal DIfferencing

SARIMAX(1, 0, 1)× (0, 1, 1, 12)

Estimate s.e. Z p-value

ϕ1 0.9779 0.008 127.034 0.000
θ1 -0.3129 0.033 -9.361 0.000
θs,12 -0.8775 0.018 -48.079 0.000
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Modeling Housing Starts
Seasonal DIfferencing

SARIMAX(1, 0, 1)× (0, 1, 1, 12)
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Modeling Housing Starts
Seasonal Dummies

SARIMAX(2, 1, 0) with Seasonal Dummies

Estimate s.e. Z p-value

ϕ0 0.0002 0.004 0.046 0.964
Feb 0.0358 0.012 2.965 0.003
Mar 0.3075 0.012 24.776 0.000
Apr 0.4289 0.015 29.516 0.000
May 0.4669 0.018 26.260 0.000
Jun 0.4697 0.019 25.309 0.000
Jul 0.4328 0.019 23.265 0.000
Aug 0.4117 0.019 22.227 0.000
Sep 0.3657 0.017 21.803 0.000
Oct 0.3921 0.015 26.253 0.000
Nov 0.2169 0.013 16.943 0.000
Dec 0.0502 0.010 5.242 0.000
ϕ1 -0.2675 0.033 -8.114 0.000
ϕ2 -0.1107 0.034 -3.276 0.001
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Modeling Housing Starts
Seasonal Dummies
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Review
Seasonality

Key Concepts
Seasonality, Lag Operator, SARIMA, Deterministic Trend, Exponential Trend
Questions

■ How can seasonality be modeled in an ARMA model?
■ Define diurnality, hebdomadality and seasonality.
■ What are seasonal determinist terms and how do they differ from seasonal AR and

MA terms?
■ What is an exponential trend?
■ What do the orders in a SARIMA mean?
■ How could a standard AR be used to model a time series with a seasonal AR

component?
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Random Walks, Unit Roots and Stochastic Trends



Stochastic trends
■ Stochastic trends are similar to deterministic trends

▶ Dominant feature of a process

Yt = stochastic trend + stationary component + noise

■ Most common stochastic trend is a unit root
■ There are others (generally non-linear)
■ Removed using stochastic detrending (differencing)

▶ Meaningfully different that deterministic detrending
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Short-run Dynamics in a Unit Root process
■ Unit root processes, in the long-run, behave like random walks
■ In the short run, can have stationary dynamics

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ϕ3Yt−3 + ϵt

■ If this process contains a unit root, ϕ1 + ϕ2 + ϕ3 = 1

■ Can see the SR dynamics by differencing

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ϕ3Yt−2 − ϕ3Yt−2 + ϕ3Yt−3 + ϵt

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ϕ3Yt−2 − ϕ3∆Yt−2 + ϵt

Yt − Yt−1 = (ϕ1 + ϕ2 + ϕ3 − 1)Yt−1 − (ϕ2 + ϕ3)∆Yt−1 − ϕ3∆Yt−2 + ϵt

∆Yt = π1∆Yt−1 + π2∆Yt−2 + ϵ2
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What’s the problem with unit roots?
■ Unit roots cause a number of problems

▶ Exploding variance: V[Yt] = tσ2

▶ Parameter estimates converge at different rates
▶ Hypothesis tests have non-standard distributions
▶ No mean reversion in long-run forecasts
▶ Spurious regression

■ Crucial to understand whether a process is stationary or contains a unit root
■ Often has large economic consequences

▶ PPP
▶ Covered interest rate parity
▶ Carry trades
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Testing for Unit Roots



Testing for unit roots
■ Dickey-Fuller looks like a standard t-test

Yt = ϕ1Yt−1 + ϵt

■ H0 : ϕ1 = 1, H1 : ϕ1 < 1
■ Impose the null

Yt − Yt−1 = ϕ1Yt−1 − Yt−1 + ϵt

∆Yt = (ϕ1 − 1)Yt−1 + ϵt

∆Yt = γYt−1 + ϵt

■ New H0 : γ = 0, H1 : γ < 0
■ Test with t-stat
■ Augmented Dickey Fuller (ADF) captures short run dynamics as well

∆Yt = γYt−1 + ρ1∆Yt−1 + ρ2∆Yt−2 + . . .+ ρP∆Yt−P + ϵt

■ Lags of ∆Yt−1 needed to ensure ϵt ∼ WN
(
0, σ2

)
, also reduce variance of residuals
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The problem
■ t-stat is no longer asymptotically normal
■ Requires Dickey-Fuller distribution

▶ Most software packages contain the correct critical value
■ Many processes with unit roots also contain deterministic components
■ Asymptotic distribution depends on choice of model:

∆Yt = γYt−1 +

P∑
p=1

ϕp∆Yt−p + ϵt (No trend)

∆Yt = δ0 + γYt−1 +

P∑
p=1

ϕp∆Yt−p + ϵt (Constant, linear in Yt)

∆Yt = δ0 + δ1t+ γYt−1 +

P∑
p=1

ϕp∆Yt−p + ϵt (Constant, quadratic in Yt)

■ More deterministic regressors lower the critical value
■ Reject null of unit root if t-stat of γ is negative and below the critical value
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The Role of The Deterministic Terms
■ ADF tests include deterministic terms to remove these effects from Yt−1

■ Suppose Yt is a pure time trend process

Yt = α+ βt+ ϵt

■ The differenced value is

∆Yt = α+ βt+ ϵt − α− β (t− 1)− ϵt−1

= β − ϵt−1 + ϵt

▶ MA(1) without a trend
■ In an ADF with deterministic regressors

∆Yt = δ0 + δ1t+ γYt−1 + ϵt

■ The deterministic terms remove determinitic components from Yt−1

■ γ depends on
Cov [∆Yt, Yt−1 − α− β (t− 1)] = Cov [β − ϵt−1 + ϵt, ϵt−1] = −σ2

■ Failing to include the deterministic regressors results in γ that depends on

Cov [∆Yt, Yt−1] = 0

▶ Time trend dominates the other components of Yt−1
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The Dickey-Fuller Distributions
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Important considerations
■ Unit root tests are well known for having low power
■ Power = 1-Pr(type II)

▶ Chance you don’t reject when alternative is true
■ Some suggestions

▶ Use a loose model selection when choosing the number of lags of ∆Yt−j , e.g. AIC
▶ Be conservative in excluding deterministic regressors.

– Including a constant or time-trend when absent hurts power
– Excluding a constant or time-trend when present results in no power

▶ More powerful tests than the ADF are available: DF-GLS
▶ Visually inspect the data and differenced data
▶ Use a general-to-specific search

■ Number of differences needed is the order of integration
▶ Integrated of Order 1 or I(1): Yt is nonstationary but ∆Yt is stationary
▶ I(d): Yt is nonstationary, ∆jYt also nonstationary when j < d, ∆dYt is stationary
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Unit Root Testing

ADF Statistic p-value Lags Deterministic

Default -3.866 0.002 10 c
Curvature -4.412 0.000 19 c
ln Ind Prod -2.186 0.211 4 c

-1.831 0.690 6 ct
-2.962 0.314 6 ctt

∆ ln Ind Prod -11.945 0.000 3 c

■ Lags determined using AIC
■ Deterministic order increased when null is not rejected
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The Role Of Deterministics
Trend Stationary AR(1)

Yt = 0.025t+ 0.7Yt−1 + ϵt

ADF Statistic p-value Lags Deterministic

1.934 0.988 9 n
-1.146 0.696 9 c
-6.790 0.000 0 ct
-6.885 0.000 0 ctt

■ Correct specification uses “ct”
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Seasonal Differencing



Seasonal Differencing
■ Seasonal series should use seasonal differencing

∆sYt = Yt − Yt−s

■ Complete SARIMA(P,D,Q)× (Ps, Ds, Qs, s) model
▶ D is order of observational difference
▶ Ds is order of seasonal difference
▶ P and Q are observational AR and MA orders
▶ Ps and Qs are seasonal AR and MA orders

■ Special Cases
▶ ARMA(P,Q): D = Ds = Ps = Qs = 0
▶ ARIMA(P,D,Q): Ds = Ps = Qs = 0
▶ SARMA(P,Q)× (Ps, Qs, s): D = Ds = 0
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Review
Unit Roots and Integration

Key Concepts
Unit Root, Integrated Process, I(1), Augmented Dickey-Fuller Test, Seasonal Difference
Questions

■ What happens if a relevant deterministic term is omitted in a ADF test?
■ What is the effect of including an unnecessary deterministic in an ADF test?
■ How should you decide how many lags of the differenced variable to include in an

ADF test?
■ When should you use seasonal differencing?
■ What is the relationship between a random walk and a unit root process?
■ What are the consequences of ignoring a unit root when modeling a time series?
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Self-Exciting Threshold Autoregression



Nonlinear Models for the mean
■ Linear time series process

Yt = Y0 +

t∑
i=0

θiϵt−i

■ Alternatives
▶ Markov Switching Autoregression (MSAR)
▶ Threshold Autoregression (TAR) and Self-exciting Threshold Autoregression (SETAR)
▶ Many, many others

■ Nonlinear models can capture different dynamics
▶ State-dependent parameters

Yt = ϕst
0 + ϕst

1 Yt−1 + σstϵt

▶ Models differ in how st evolves
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Markov-Switching Models



Markov Switching Example
■ Two states, H and L

Yt =

{
ϕH + ϵt
ϕL + ϵt

■ States evolve according to a 1st order Markov Chain

{st} = {H,H,H,L,L, L,H,L, . . .}
■ Transition Probabilities[

pHH pHL

pLH pLL

]
=

[
pHH 1− pLL

1− pHH pLL

]
▶ pHH is the probability st+1 = H given st = H.

■ Model will switch between a high mean state and a low mean state
■ Models like this are very flexible and nest ARMA

▶ Successful in financial econometrics for asset allocation, volatility modeling, modeling
series with business-cycle length patterns: GDP
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Markov Switching: i.i.d. Mixture
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Markov Switching: Symmetric Persistent
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Markov Switching: Asymmetric Persistent
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Markov Switching: Different Variances
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Review
Non-linear Time Series Models

Key Concepts
Self-exciting Threshold Autoregression, Markov Switching Processe
Questions

■ It is always necessary to consider nonlinear models to model covariance stationary
time series?

■ What advantages might a nonlinear model have over a linear model when modeling a
covariance stationary time series?
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