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Volatility Overview
■ What is volatility?
■ Why does it change?
■ What are ARCH, GARCH, TARCH, EGARCH, SWARCH, ZARCH, APARCH,

STARCH, etc. models?
■ What does time-varying volatility look like?
■ What are the basic properties of ARCH and GARCH models?
■ What is the news impact curve?
■ How are the parameters of ARCH models estimated? What about inference?
■ Twists on the standard model
■ Forecasting conditional variance
■ Realized Variance
■ Implied Volatility

2



What is volatility?
■ Volatility

▶ Standard deviation
■ Realized Volatility

σ̂ =

√√√√T−1

T∑
t=1

(rt − µ̂)2

▶ Other meaning: variance computed from ultra-high frequency (UHF) data
■ Conditional Volatility

Et[σt+1]

■ Implied Volatility
■ Annualized Volatility (

√
252×daily,

√
12×monthly)

▶ Mean scales linearly with time (252×daily, 12×monthly)
■ Variance is squared volatility
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Why does volatility change?
■ Possible explanations:

▶ News Announcements
▶ Leverage
▶ Volatility Feedback
▶ Illiquidity
▶ State Uncertainty

■ None can explain all of the time-variation
■ Most theoretical models have none
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Review
Key Concepts
Leverage Effect, Liquidity, Volatility Feedback
Questions

■ What factors are used to convert daily, weekly, and monthly volatility to annual?
■ What factor would you use to convert daily volatility to annual if an asset traded 7

days a week?
Problems

1. If the annualized volatility of an asset is 48%, what is its daily, weekly, and monthly
volatility?

2. If the daily return of an asset is .0476% and its daily volatility is 1.512%, what is the
asset’s annual Sharpe ratio?



A basic volatility model: the ARCH(1) model

rt = ϵt

σ2t = ω + α1ϵ
2
t−1

ϵt = σtet

et
i.i.d.∼ N(0, 1)

■ Autoregressive Conditional Heteroskedasticity
■ Key model parameters

▶ ω sets the long run level
▶ α determines both the persistence and volatility of volatility (VoVo or VolVol)
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Key Properties
■ Conditional Mean: Et−1[rt] = Et−1[ϵt] = 0
■ More on this later

▶ Unconditional Mean: E[ϵt] = 0

▷ Follows directly from the conditional mean and the LIE

■ Conditional Variance: Et−1[r
2
t ] = Et−1[ϵ

2
t ] = σ2t

■ σ2t and e2t are independent
■ Et−1[e

2
t ] = E[e2t ] = 1

■ 1− α1 > 0 : Required for stationarity, also α1 ≥ 0
▶ ω > 0 is also required for stationarity (technical, but obvious)
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Unconditional Variance
■ Unconditional Variance

E[ϵ2t ] =
ω

1− α1

■ Unconditional relates the dynamic parameters to average variance

E[σ2t ] =
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More properties of the ARCH(1)
■ ARCH models are really Autoregressions in disguise
■ Add ϵ2t − σ2t to both sides

σ2t = ω + α1ϵ
2
t−1

σ2t + ϵ2t − σ2t = ω + α1ϵ
2
t−1 + ϵ2t − σ2t

ϵ2t = ω + α1ϵ
2
t−1 + ϵ2t − σ2t

ϵ2t = ω + α1ϵ
2
t−1 + νt

yt = ϕ0 + ϕ1yt−1 + νt

▶ AR(1) in ϵ2t
▶ νt = ϵ2t − σ2

t is a mean 0 white noise (WN) process
▶ νt Captures variance surprise : ϵ2t − σ2

t = σ2
t (e

2
t − 1)
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Autocovariance/Autocorrelations
■ First Autocovariance

E[(ϵ2t − σ̄2)(ϵ2t−1 − σ̄2)] = α1V[ϵ
2
t ]

▶ Same as in AR(1)
■ jth Autocovariance is

αj
1V[ϵ2t ]

■ jth Autocorrelation is

Corr(ϵ2t , ϵ
2
t−j) =

αj
1V[ϵ2t ]

V[ϵ2t ]
= αj

1

■ Again, same as AR(1)
■ ARCH(P) is AR(P)

▶ Just apply results from AR models
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Kurtosis
■ Kurtosis effect is important
■ Variance is not constant ⇒ Volatility of Volatility > 0

κ =
E
[
ϵ4t
]

E
[
ϵ2t
]2 = ≥ 3

■ Alternative: E[σ4t ] = V[σ2t ] + E[σ2t ]
2

▶ Law of Iterated Expectations
■ In ARCH(1):

κ =
3(1− α2

1)

(1− 3α2
1)
> 3

■ Finite if α1 <
√

1
3 ≈ .577
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Describing Tail Risks
■ “Fat-tailed” and “Thin-tailed”

Definition (Leptokurtosis)
A random variable xt is said to be leptokurtotic if its kurtosis,

κ =
E[(xt − E[xt])

4]

E[(xt − E[xt])2]2

is greater than that of a normal (κ > 3). Leptokurtotic variables are also known as “heavy tailed” or “fat tailed”.

Definition (Platykurtosis)
A random variable xt is said to be platykurtotic if its kurtosis,

κ =
E[(xt − E[xt])

4]

E[(xt − E[xt])2]2

is less than that of a normal (κ < 3). Platykurtotic variables are also known as “thin tailed”.
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The ARCH(P) model

Definition (Pth Order ARCH)

An Autoregressive Conditional Heteroskedasticity process or order P is given by

rt = µt + ϵt

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2 + . . .+ αP ϵ

2
t−P

ϵt = σtet

et
i.i.d.∼ N(0, 1).

■ Mean µt can be an appropriate form - AR, MA, ARMA, ARMAX, etc.
▶ Et [rt − µt] = 0

■ et is the standardized residual, often assumed normal
■ σ2

t is the conditional variance
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Alternative expression of an ARCH(P)
■ Model where both mean and variance are time varying

▶ Natural extension of model definition for time varying mean model

rt|Ft−1 ∼ N(µt, σ
2
t )

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

σ2t = ω + α1ϵ
2
t−1 + α2ϵ

2
t−2 + . . .+ αP ϵ

2
t−P

ϵt = rt − µt

■ “rt given the information set at time t− 1 is conditionally normal with mean µt and
variance σ2t ”
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Review
Key Concepts
ARCH Model, Volatility Clustering, Conditional Variance, Unconditional Variance,
Leptokurtosis
Questions

■ Why does time-varying volatility always increase kurtosis?
■ How is an ARCH(1) model like an AR(1)?



The data
■ S&P 500

▶ Source: Yahoo! Finance
▶ Daily January 1, 1999 - December 31, 2021
▶ 5,575 observations

■ WTI Spot Prices
▶ Source: EIA
▶ Daily January 1, 1999 - December 31, 2021
▶ 5,726 observations

■ All represented as 100× log returns
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Graphical Evidence of ARCH
S&P 500 Returns
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Graphical Evidence: Squared Data Plot
Squared S&P 500 Returns
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Graphical Evidence: Absolute Data Plot
Absolute S&P 500 Returns
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A simple GARCH(1,1)

rt = ϵt

σ2t = ω + α1ϵ
2
t−1 + β1σ

2
t−1

ϵt = σtet

et
i.i.d.∼ N(0, 1)

■ Adds lagged variance to the ARCH model
■ ARCH(∞) in disguise

σ2t =
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Important Properties

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1

■ Unconditional Variance
σ̄2 = E[σ2

t ] =
ω

1− α1 − β1
■ Kurtosis

κ =
3(1 + α1 + β1)(1− α1 − β1)

1− 2α1β1 − 3α2
1 − β2

1

> 3

■ Stationarity
▶ α1 + β1 < 1
▶ ω > 0, α1 ≥ 0, β1 ≥ 0
▶ ARMA in disguise

σ2
t + ϵ2t − σ2

t = ω + α1ϵ
2
t−1 + β1σ

2
t−1 + ϵ2t − σ2

t

ϵ2t = ω + α1ϵ
2
t−1 + β1σ

2
t−1 + ϵ2t − σ2

t

ϵ2t = ω + α1ϵ
2
t−1 + β1ϵ

2
t−1 − β1νt−1 + νt

ϵ2t = ω + (α1 + β1)ϵ
2
t−1 − β1νt−1 + νt
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The Complete GARCH model

Definition (GARCH(P,Q) process)

A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process of orders
P and Q is defined as

rt = µt + ϵt

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

σ2t = ω +

P∑
p=1

αpϵ
2
t−p +

Q∑
q=1

βqσ
2
t−q

ϵt = σtet, et
i.i.d.∼ N(0, 1)

■ Mean model can be altered to fit data – AR(S) here
■ Adds lagged variance to ARCH
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Exponentially Weighted Moving Average Variance
A special case of a GARCH(1,1)

■ Restricted model where µt = 0 for all t, ω = 0 and α = 1− β

σ2t = (1− λ) r2t−1 + λσ2t−1

σ2t = (1− λ)
∞∑
i=0

λir2t−i−1

■ Note that
∑∞

i=0 λ
i = 1/1−λ so that (1− λ)

∑∞
i=0 λ

i = 1
▶ Leads to random-walk-like features
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Review
Key Concepts
Generalized ARCH, EWMA Variance
Questions

■ How does GARCH improve ARCH?
■ How many lags are needed in an ARCH to match the fit of a GARCH?
■ What restrictions are needed on a GARCH model produce an EWMA variance?



Glosten-Jagannathan-Runkle GARCH
■ Extends GARCH(1,1) to include an asymmetric term

Definition (Glosten-Jagannathan-Runkle (GJR) GARCH process)

A GJR-GARCH(P,O,Q) process is defined as

rt = µt + ϵt

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

σ2
t = ω +

P∑
p=1

αpϵ
2
t−p +

O∑
o=1

γoϵ
2
t−oI[ϵt−o<0] +

Q∑
q=1

βqσ
2
t−q

ϵt = σtet

et
i.i.d.∼ N(0, 1)

where I[ϵt−o<0] is an indicator function that takes the value 1 if ϵt−o < 0 and 0 otherwise.
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GJR-GARCH(1,1,1) example
■ GJR(1,1,1) model

σ2t = ω+α1ϵ
2
t−1 + γ1ϵ

2
t−1I[ϵt−1<0] + β1σ

2
t−1

α1 + γ1 ≥ 0

α1 ≥ 0

β1 ≥ 0

ω > 0

■ γ1ϵ
2
t−1I[ϵt−1<0]: Variances are larger after negative shocks than after positive shocks

■ “Leverage Effect”
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Threshold ARCH
■ Threshold ARCH is similar to GJR-GARCH
■ Also known as ZARCH (Zakoain (1994)) or AVGARCH when symmetric

Definition (Threshold ARCH (TARCH) process)

A TARCH(P,O,Q) process is defined

rt = µt + ϵt

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

σt = ω +

P∑
p=1

αp|ϵt−p|+
O∑

o=1

γo|ϵt−o|I[ϵt−o<0] +

Q∑
q=1

βqσt−q

ϵt = σtet

et
i.i.d.∼ N(0, 1)

where I[ϵt−o<0] is an indicator function that is 1 if ϵt−o < 0 and 0 otherwise.
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TARCH(1,1,1) example
■ TARCH(1,1,1) model

σt = ω+α1|ϵt−1|+ γ1|ϵt−1|I[ϵt−1<0] + β1σt−1

α1 + γ1 ≥ 0

ω > 0, α1 ≥ 0, β1 ≥ 0

■ Note the different power: σt and |ϵt−1|
▶ Model for conditional standard deviation

■ Nonlinear variance models complicate some things
▶ Forecasting
▶ Memory of volatility
▶ News impact curves

■ GARCH(P,Q) becomes TARCH(P,O,Q) or GJR-GARCH(P,O,Q)
■ TARCH and GJR-GARCH are sometimes (wrongly) used interchangeably.
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EGARCH

Definition (EGARCH(P,O,Q) process)

An Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH)
process of order P, O and Q is defined

rt = µt + ϵt

µt = ϕ0 + ϕ1rt−1 + . . .+ ϕsrt−S

ln(σ2t ) = ω +

P∑
p=1

αp

(∣∣∣∣ ϵt−p

σt−p

∣∣∣∣−
√

2

π

)
+

O∑
o=1

γo
ϵt−o

σt−o
+

Q∑
q=1

βq ln(σ
2
t−q)

ϵt = σtet

et
i.i.d.∼ N(0, 1)

In the original parametrization of Nelson (1991), P and O were required to be identical.
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EGARCH(1,1,1)
■ EGARCH(1,1,1)

rt = µ+ ϵt

ln(σ2t ) = ω + α1

(∣∣∣∣ ϵt−1

σt−1

∣∣∣∣−
√

2

π

)
+ γ1

ϵt−1

σt−1
+ β1 ln(σ

2
t−1)

ϵt = σtet, et
i.i.d.∼ N(0, 1)

■ Modeling using ln removes any parameter restrictions (|β1| < 1)
■ AR(1) with two shocks

ln(σ2t ) = ω + α1

(
|et−1| −

√
2

π

)
+ γ1et−1 + β1 ln(σ

2
t−1)

▶ Symmetric shock
(
|et−1| −

√
2
π

)
and asymmetric shock et−1

▷ Note, shocks are standardized residuals (unit variance)
■ Often provides a better fit that GARCH(P,Q)
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Asymmetric Power ARCH
■ Nests ARCH, GARCH, TARCH, GJR-GARCH, EGARCH (almost) and other

specifications
■ Only present the APARCH(1,1,1):

σδt = ω+α1 (|ϵt−1|+ γ1ϵt−1)
δ + β1σ

δ
t−1

α1 > 0, −1 ≤ γ1 ≤ 1, δ > 0, β1 ≥ 0, ω > 0

■ Parametrizes the “power” parameter
■ Different values for δ affect the persistence.

▶ Lower values ⇒ higher persistence of shocks
▷ ARCH: γ = 0, β = 0, δ = 2
▷ GARCH: γ = 0, δ = 2
▷ GJR-GARCH: δ = 2
▷ AVGARCH: γ = 0, δ = 1
▷ TARCH: δ = 1
▷ EGARCH: (almost) lim δ → 0
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Review
Key Concepts
Threshold ARCH, GJR-GARCH, Exponential GARCH, Asymmetric Power ARCH
Questions

■ How goes a GJR-GARCH model improve a GARCH model?
■ How do TARCH and EGARCH differ from GJR-GARCH?
■ Why does the EGARCH model contains the term −

√
2
π?

■ Do the asymmetric models allow asymmetries in both directions (i.e., more sensitive
to positive than negative, or more sensitive to negative than to positive)?

Problems
1. Show that APARCH and GARCH are equivalent under the necessary parameter

restrictions.



S&P Results
ARCH(5)

ω α1 α2 α3 α4 α5 Log Lik.

0.288
(0.000)

0.104
(0.000)

0.199
(0.000)

0.182
(0.000)

0.194
(0.000)

0.152
(0.000)

−6712

GARCH(1,1)
ω α1 β1 Log Lik.

0.019
(0.000)

0.106
(0.000)

0.881
(0.000)

−6597

EGARCH(1,1,1)
ω α1 γ1 β1 Log Lik.

0.000
(0.983)

0.137
(0.000)

−0.153
(0.000)

0.974
(0.000)

−6484
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Comparing different models
■ Comparing models which are not nested can be difficult
■ The News Impact Curve provides one method
■ Defined:

n(et) = σ2t+1(et|σ2t = σ̄2)

NIC(et) = n(et)− n(0)

■ Measures the effect of a shock starting at the unconditional variance
■ Allows for asymmetric shapes

GARCH(1,1)
NIC(et) = α1σ̄

2e2t

GJR-GARCH(1,1,1)
NIC(et) = (α1 + γ1I[et<0])σ̄

2e2t

TARCH(1,1,1)

NIC(et) = (α1 + γ1I[ϵt<0])
2σ̄2e2t + (2ω + 2β1σ̄)(α1 + γ1I[et<0])|et|
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Review
Key Concepts
News Impact Curve
Questions

■ How are News Impact Curves used?
■ Why is the unconditional variance/volatility used in NICs?



S&P 500 News Impact Curves
S&P 500 News Impact Curve
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Estimation
rt = µt + ϵt

σ2t = ω + α1ϵ
2
t−1 + β1σ

2
t−1

ϵt = σtet

et
i.i.d.∼ N(0, 1)

■ So:
rt|Ft−1 ∼ N(µt, σ

2
t )

■ Need initial values for σ20 and ϵ20 to start recursion
▶ Normal Maximum Likelihood is a natural choice

f(r;θ) =
T∏

t=1

(2πσ2
t )

− 1
2 exp

(
− (rt − µt)

2

2σ2
t

)

l(θ; r) =
T∑

t=1

−1

2
log(2π)− 1

2
log(σ2

t )−
(rt − µt)

2

2σ2
t

.
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Inference
■ MLE are asymptotically normal

√
T (θ̂ − θ0)

d→ N(0, I−1), I = −E

[
∂2l(θ0; rt)

∂θ∂θ′

]
■ If data are not conditionally normal, Quasi MLE (QMLE)

√
T (θ̂ − θ0)

d→ N(0, I−1J I−1), J = E

[
∂l(θ0; rt)

∂θ

∂l(θ0; rt)

∂θ′

]
■ Known as Bollerslev-Wooldridge Covariance estimator in GARCH models

▶ Also known as a “sandwich” covariance estimator
▶ Default cov_type="robust" in arch package code
▶ White and Newey-West Covariance estimators are also sandwich estimators
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Independence of the mean and variance
■ Use LS to estimate mean parameters, then use estimated residuals in GARCH
■ Efficient estimates one of two ways
■ Joint estimation of mean and variance parameters using MLE
■ GLS estimation

▶ Estimate mean and variance in 2-steps as above
▶ Re-estimate mean using GLS
▶ Re-estimate variance using new set of residuals

The mean and the variance can be estimated consistently using 2-stages. Standard errors
are also correct as long as a robust VCV estimator is used.
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Review
Key Concepts
Quasi MLE, 2-step estimation, Bollerslev-Wooldridge Covariance
Questions

■ How are parameters of ARCH model estimated?
■ When are Bollerslev-Wooldridge standard errors needed?
■ Under what condition is 2-step estimation consistent?
■ What is needed when making inference about the mean parameters when using

2-step estimation?



Alternative Distributional Assumptions
■ Equity returns are not conditionally normal
■ Can replace the normal likelihood with a more realistic one
■ Common choices:
■ Standardized Student’s t

▶ Nests the normal as ν → ∞
■ Generalized error distribution

▶ Nests the normal when ν = 2

■ Hansen’s Skew-T
▶ Captures both skewness and heavy tails
▶ Use hyperparameters to control shape (ν and λ)

■ All can have heavy tails
■ Only Skew-T is skewed
■ Dozens more in academic research
■ But for what gain?
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Review
Key Concepts
GARCH-in-mean, Standardized Student’s t, Generalized Error Distribution, Skew t
Distribution
Questions

■ Why can GARCH models be estimated in 2 steps while GARCH-in-mean cannot?
■ What features are missing from the normal distribution when modeling financial

return data?



S&P 500 Density
Empirical
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Effect of dist. choice on estimated volatility
S&P 500
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Model Building
■ ARCH and GARCH models are essentially ARMA models

▶ Box-Jenkins Methodology
▷ Parsimony principle

Steps:
1. Inspect the ACF and PACF of ϵ2t

ϵ2t = ω + (α+ β)ϵ2t−1 − βνt−1 + νt

▷ ACF indicates α (or ARCH of any kind)
▷ PACF indicates β

2. Build initial model based on these observation
3. Iterate between model and ACF/PACF of ê2t =

ϵ2t
σ̂2
t
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S&P 500 ϵ2t ACF/PACF
Squared Residuals ACF Squared Residuals PACF
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WTI ϵ2t ACF/PACF
Squared Residuals ACF Squared Residuals PACF
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How I built a model for the S&P 500
α1 α2 γ1 γ2 β1 β2 Log Lik.

GARCH(1,1) 0.106
(0.000)

0.881
(0.000)

−6597.4

GARCH(1,2) 0.106
(0.000)

0.881
(0.000)

0.000
(0.999)

−6597.4

GARCH(2,1) 0.073
(0.002)

0.049
(0.105)

0.861
(0.000)

−6594.1

GJR-GARCH(1,1,1) 0.000
(0.999)

0.184
(0.000)

0.889
(0.000)

−6491.0

GJR-GARCH(1,2,1) 0.000
(0.999)

0.165
(0.000)

0.024
(0.603)

0.885
(0.000)

−6490.7

TARCH(1,1,1)⋆ 0.000
(0.999)

0.173
(0.000)

0.907
(0.000)

−6469.4

TARCH(1,2,1) 0.000
(0.999)

0.169
(0.000)

0.005
(0.888)

0.907
(0.000)

−6469.4

TARCH(2,1,1) 0.000
(0.999)

0.003
(0.938)

0.172
(0.000)

0.906
(0.000)

−6469.3

EGARCH(1,0,1) 0.217
(0.000)

0.978
(0.000)

−6619.9

EGARCH(1,1,1) 0.137
(0.000)

−0.153
(0.000)

0.974
(0.000)

−6484.3

EGARCH(1,2,1) 0.129
(0.000)

−0.212
(0.000)

0.067
(0.055)

0.976
(0.000)

−6479.5

EGARCH(2,1,1) 0.029
(0.535)

0.121
(0.014)

−0.161
(0.000)

0.970
(0.000)

−6476.8
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Testing for (G)ARCH
■ ARCH is autocorrelation in ϵ2t
■ All ARCH processes have this, whether GARCH or EGARCH or other

▶ ARCH-LM test
▶ Directly test for autocorrelation:

ϵ2t = ϕ0 + ϕ1ϵ
2
t−1 + . . .+ ϕP ϵ

2
t−P + ηt

▶ H0 : ϕ1 = ϕ2 = . . . = ϕP = 0

▶ T ×R2 d→ χ2
P

▶ Standard LM test from a regression.
▶ More powerful test: Fit an ARCH(P) model
▶ The forbidden hypothesis

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1

H0 : α1 = 0, H1 : α > 0
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Review
Key Concepts
ARCH-LM test
Questions

■ How is model building of ARCH models similar to model building of ARMA models?
■ What does an ARCH-LM test detect?



Forecasting: ARCH(1)
■ Simple ARCH model

ϵt ∼ N(0, σ2t )

σ2t = ω + α1ϵ
2
t−1

▶ 1-step ahead forecast is known today
▶ All ARCH-family models have this property

ϵt ∼N(0, σ2
t )

σ2
t =ω + α1ϵ

2
t−1

Et[σ
2
t+1] =Et[ω + α1ϵ

2
t ]

=ω + α1ϵ
2
t

▶ Note: Et[ϵ
2
t+1] = Et[e

2
t+1σ

2
t+1] = σ2

t+1Et[e
2
t+1] = σ2

t+1
▶ Further: Et[ϵ

2
t+h] = Et[Et+h−1[e

2
t+hσ

2
t+h]] = Et[Et+h−1[e

2
t+h]σ

2
t+h] = Et[σ

2
t+h]
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Forecasting: ARCH(1)
■ 2-step ahead

Et[σ
2
t+2] =

■ h-step ahead forecast

Et[σ
2
t+h] =

h−1∑
i=0

αi
1ω + αh

1ϵ
2
t

▶ Just the AR(1) forecasting formula
▷ Why?
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Forecasting: GARCH(1,1)
■ 1-step ahead

Et[σ
2
t+1] = Et[ω + α1ϵ

2
t + β1σ

2
t ]

= ω + α1ϵ
2
t + β1σ

2
t

■ 2-step ahead

Et[σ
2
t+2] =
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Forecasting: GARCH(1,1)
■ h-step ahead

Et[σ
2
t+h] =

h−1∑
i=0

(α1 + β1)
iω + (α1 + β1)

h−1(α1ϵ
2
t + β1σ

2
t )

■ Also essentially an AR(1), technically ARMA(1,1)
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Forecasting: TARCH(1,0,0)
■ This one is a mess

▶ Nonlinearities cause problems
▷ All ARCH-family models are nonlinear, but some are linearity in ϵ2t
▷ Others are not

σt = ω + α1|ϵt−1|
▶ Forecast for t+ 1 is known at time t

▷ Always, always, always, . . .

Et[σ
2
t+1] = Et[(ω + α1|ϵt|)2]

= Et[ω
2 + 2ωα1|ϵt|+ α2

1ϵ
2
t ]

= ω2 + 2ωα1Et[|ϵt|] + α2
1Et[ϵ

2
t ]

= ω2 + 2ωα1|ϵt|+ α2
1ϵ

2
t
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TARCH(1,0,0) continued...
■ Multi-step is less straightforward

Et[σ
2
t+2] = Et[(ω + α1|ϵt+1|)2]

= Et[ω
2 + 2ωα1|ϵt+1|+ α2

1ϵ
2
t+1]

= ω2 + 2ωα1Et[|ϵt+1|] + α2
1Et[ϵ

2
t+1]

= ω2 + 2ωα1Et[|et+1|σt+1] + α2
1Et[e

2
tσ

2
t+1]

= ω2 + 2ωα1Et[|et+1|]Et[σt+1] + α2
1Et[e

2
t ]Et[σ

2
t+1]

= ω2 + 2ωα1Et[|et+1|](ω + α1|ϵt|) + α2
1 · 1 · (ω2 + 2ωα1|ϵt|+ α2

1ϵ
2
t )

If et+1 ∼ N(0, 1), E[|et+1|] =
√

2
π

Et[σ
2
t+2] = ω2 + 2ωα1

√
2

π
(ω + α1|ϵt|) + α2

1(ω
2 + 2ωα1|ϵt|+ α2

1ϵ
2
t )
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Simulation-based Forecasting
■ Multi-step forecasting using simulation is simple
■ Two options

▶ Parametric: et
i.i.d.∼ F

(
0, 1, θ̂

)
▶ Bootstrap: Sample i.i.d. from {êi}ti=1 where êi = ϵ̂i/σ̂i = (ri−µ̂i)/σ̂i

Algorithm (Simulation-based Forecast)
For b = 1, . . . , B do:

1. Sample h− 1 i.i.d. values from either the parametric or bootstrap distribution

2. Simulate the model for h periods and store σ̂2
t+h|t,b

Construct the forecast as σ̂2
t+h|t = B−1 ∑B

b=1 σ̂
2
t+h|t,j

Notes
■ If model parametrizes g

(
σ2
t

)
than at each period h > 1 the simulated value is

ϵt+h,j =

√
g−1

(
g
(
σ2
t+h|t,j

))
ηh,j where ηh,j are the i.i.d.samples

■ σ2
t+1|t is always known at time t and so simulation is never needed for 1-step forecasting
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Review
Key Concepts
Linearity in ϵ2t , Iterated Expectations
Questions

■ What property do all ARCH models share in terms of their forecasts?
■ What happens to the long-run forecast from an ARCH model?
■ Why do models that are linear in ϵ2t simple to use in forecasting?
■ Why are models like TARCH difficult to forecast over multiple steps?

Problems
1. If Yt = ϕYt−1 + ϵt where |ϕ| < 1 and σ2t = ω + αϵ2t−1, what are the 1 and 2-step

forecasts of Vt [ϵt+h]?
2. What are the 1 and 2-step forecasts of Vt [Yt+h]?



Assessing forecasts: Augmented MZ
■ Start from Et[r

2
t+h] ≈ σ2

t+h|t
▶ Standard Augmented MZ regression:

ϵ2t+h − σ̂2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt + ηt

▶ ηt is heteroskedastic in proportion to σ2
t : Use GLS.

▶ An improved GMZ regression (GMZ-GLS)

ϵ2t+h − σ̂2
t+h|t

σ̂2
t+h|t

= γ0
1

σ̂2
t+h|t

+ γ11 + γ2
z1t

σ̂2
t+h|t

+ . . .+ γK+1
zKt

σ̂2
t+h|t

+ νt

▶ Better to use Realized Variance to evaluate forecasts

RVt+h − σ̂2
t+h|t = γ0 + γ1σ̂

2
t+h|t + γ2z1t + . . .+ γK+1zKt + ηt

▶ Also can use GLS version
▶ Both RVt+h and ϵ2t+h are proxies for the variance at t+ h

▷ RV is just better, often 10×+ more precise
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Assessing forecasts: Diebold-Mariano
■ Relative forecast performance

▶ MSE loss
δt =

(
ϵ2t+h − σ̂2

A,t+h|t

)2
−
(
ϵ2t+h − σ̂2

B,t+h|t

)2
▶ H0 : E[δt] = 0, HA

1 : E[δt] < 0, HB
1 : E[δt] > 0

ˆ̄δ = R−1
R∑

r=1

δr

▶ Standard t-test, 2-sided alternative
▶ Newey-West covariance always needed
▶ Better DM using QLIK loss (Normal log-likelihood “Kernel”)

δt =

(
ln(σ̂2

A,t+h|t) +
ϵ2t+h

σ̂2
A,t+h|t

)
−
(
ln(σ̂2

B,t+h|t) +
ϵ2t+h

σ̂2
B,t+h|t

)
▶ Patton & Sheppard (2009)
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Review
Key Concepts
Mincer-Zarnowitz GLS, QLIK loss
Questions

■ Why is GLS useful in forecast evaluation?
■ Why is the QLIK loss preferred to MSE in volatility model evaluation?



Realized Variance
■ Variance measure computed using ultra-high-frequency data (UHF)

▶ Uses all available information to estimate the variance over some period
▷ Usually 1 day

▶ Variance estimates from RV can be treated as “observable”
▷ Standard ARMA modeling
▷ Variance estimates are consistent
▷ Asymptotically unbiased
▷ Variance converges to 0 as the number of samples increases

▶ Problems arise when applied to market data
▷ Noise (bid-ask bounce)
▷ Market closure
▷ Prices discrete
▷ Prices not continuously observable
▷ Data quality
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Realized Variance
■ Assumptions

▶ Log-prices are generated by an arbitrage-free semi-martingale
▷ Prices are observable
▷ Prices can be sampled often

▶ Defined

RV
(m)
t =

m∑
i=1

(pi,t − pi−1,t)
2
=

m∑
i=1

r2i,t.

▷ m-sample Realized Variance
▷ pi,t is the ith log-price on day t
▷ ri,t is the ith return on day t

▶ Only uses information on day t to estimate the variance on day t
▶ Consistent estimator of the integrated variance∫ t+1

t

σ2
sds

▶ “Total variance” on day t
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Why Realized Variance Works
■ Consider a simple Brownian motion

dpt = µdt+ σ dWt

■ m-sample Realized Variance

RV
(m)
t =

m∑
i=1

r2i,t

■ Returns are i.i.d. normal

ri,t
i.i.d.∼ N

(
µ

m
,
σ2

m

)
■ Nearly unbiased

E
[
RV

(m)
t

]
=
µ2

m
+ σ2

■ Variance close to 0

V
[
RV

(m)
t

]
= 4

µ2σ2

m2
+ 2

σ4

m
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Why Realized Variance Works
■ Works for models with time-varying drift and stochastic volatility

dpt = µt dt+ σt dWt

▶ No arbitrage imposes some restrictions on µt

▶ Works with price processes with jumps
▶ In the general case:

RV
(m)
t

p→
∫ t+1

t

σ2
sds+

N∑
n=1

J2
n

▶ Jn are jumps
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Why Realized Variance Doesn’t Work
■ Multiple prices at the same time

▶ Define the price as the average share price (volume weighted price)
▶ Use simple average or median
▶ Not a problem

■ Prices only observed on a discrete grid
▶ $.01 or £.0025
▶ Nothing can be done
▶ Small problem

■ Data quality
▶ UHF price data is generally messy
▶ Typos
▶ Wrong time-stamps
▶ Pre-filter to remove obvious errors
▶ Often remove “round trips”

■ No price available at some point in time
▶ Use the last observed price: last price interpolation
▶ Averaging prices before and after leads to bias
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Solutions to bid-ask bounce type noise
■ Bid-ask bounce is a critical issue

▶ Simple model with “pure” noise
pi,t = p∗i,t + νi,t

▷ pi,t is the observed price with noise
▷ p∗i,t is the unobserved efficient price
▷ νi,t is the noise

▶ Easy to show
ri,t = r∗i,t + ηi,t

▷ r∗i,t is the unobserved efficient return
▷ ηi,t = νi,t − νi−1,t is a MA(1) error

▶ RV is badly biased
RV

(m)
t ≈ R̂V t +mτ2

▷ Bias is increasing in m
▷ Variance is also increasing in m
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Simple solution
■ Do not sample frequently

▶ 5-30 minutes
▷ Better than daily but still inefficient

▶ Remove MA(1) by filtering
▷ ηi,t is an MA(1)
▷ Fit an MA(1) to observed returns

ri,t = θϵi−1,t + ϵi,t

▷ Use fit residuals ϵ̂i,t to compute RV
▷ Generally biased downward

▶ Use mid-quotes
▷ A little noise
▷ My usual solution
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A modified Realized Variance estimator: RV AC1

■ Best solution is to use a modified RV estimator
▶ RV AC1

RV
AC1(m)
t =

m∑
i=1

r2i,t + 2
m∑
i=2

ri,tri−1,t

▶ Adds a term to RV to capture the MA(1) noise
▶ Looks like a simple Newey-West estimator
▶ Unbiased in pure noise model
▶ Not consistent
▶ Realized Kernel Estimator

▷ Adds more weighted cross-products
▷ Consistent in the presence of many realistic noise processes
▷ Fairly easy to implement
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One final problem
■ Market closure

▶ Markets do not operate 24 hours a day (in general)
▶ Add in close-to-open return squared

RV
(m)
t = r2CtO,t +

m∑
i=1

r2i,t

▷ rCtO,t = pOpen,t − pClose,t−1

▶ Compute a modified RV by weighting the overnight and open hour estimates differently

R̃V
(m)

t = λ1r
2
CtO,t + λ2RV

(m)
t
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The volatility signature plot
■ Hard to know how often to sample

▶ Visual inspection may be useful

Definition (Volatility Signature Plot)

The volatility signature plot displays the time-series average of Realized Variance

RV
(m)
t = T−1

T∑
t=1

RV
(m)
t

as a function of the number of samples, m. An equivalent representation displays the
amount of time, whether in calendar time or tick time (number of trades between
observations) along the X-axis.
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Review
Key Concepts
Realized Variance, RV AC1, Volatility Signature Plot, Bid-Ask Bounce
Questions

■ What does RV estimate?
■ What are the key issues in real data that prevent the literal application of RV to tick

data?
■ How can RV be modified to account for closed periods even if prices change during

these periods?
■ How is the volatility signature plot used?



Some empirical results
■ S&P 500 Depository Receipts

▶ SPiDeRs
▶ AMEX: SPY
▶ Exchange Traded Fund
▶ Ultra-liquid

▷ 100M shares per day
▷ Over 100,000 trades per day
▷ 23,400 seconds in a typical trading day

▶ January 1, 2007 – December 31, 2018
▶ Filtered by daily High-Low data
▶ Some cleaning of outliers
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SPDR Realized Variance (RV )
RV , 15 seconds RV , 1 minute
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SPDR Realized Variance (RV AC1)
RV AC1, 15 seconds RV AC1, 1 minute
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Volatility Signature Plots
Volatility Signature Plot for SPDR RV
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Bitcoin Realized Variance
5-second RV
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Modeling Realized Variance
■ Two choices
■ Treat volatility as observable and model as ARMA

▶ Really simply to do
▶ Forecasts are equally simple
▶ Theoretical motivation why RV may be well modeled by an ARMA(P ,1)

■ Continue to treat volatility as latent and use ARCH-type model
▶ Realized Variance is still measured with error
▶ A more precise measure of conditional variance that daily returns squared, r2t , but

otherwise similar
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Treating σ2
t as observable

■ If RV is σ2t ,then variance is observable
■ Main model used is a Heterogeneous Autoregression
■ Restricted AR(22) in levels

RVt = ϕ0 + ϕ1RVt−1 + ϕ5RV 5,t−1 + ϕ22RV 22,t−1 + ϵt

■ Or in logs

lnRVt = ϕ0 + ϕ1 lnRVt−1 + ϕ5 lnRV 5,t−1 + ϕ22 lnRV 22,t−1 + ϵt

where RV j,t−1 = j−1
∑j

i=1RVt−i is a j lag moving average
■ Model picks up volatility changes at the daily, weekly, and monthly scale
■ Fits and forecasts RV fairly well

▶ MA term may still be needed
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Leaving σ2
t latent

■ Alternative if to treat RV as a proxy of the latent variance and use a non-negative
multiplicative error model (MEM)

■ MEMs specify the mean of a process as µt × ψt where ψt is a mean 1 shock.
■ A χ2

1 is a natural choice here
■ ARCH models are special cases of a non-negative MEM model
■ Easy to model RV using existing ARCH models

1. Construct r̃t = sign (rt)
√
RVt

2. Use standard ARCH model building to construct a model for r̃t

σ2
t = ω + α1r̃

2
t−1 + γ1r̃

2
t−1I[r̃t−1<0] + β1σ

2
t−1

becomes
σ2
t = ω + α1RVt−1 + γ1RVt−1I[rt−1<0] + β1σ

2
t−1
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Review
Key Concepts
Heterogeneous Autoregression, Multiplicative Error Model
Questions

■ How is a HAR related to an AR?
■ What feature does the lag structure of a HAR capture?
■ How are forecasts of lnRV transformed into forecasts of RV ?
■ What transformation is used to model RV as a MEM (ARCH-type model)?



Implied Volatility and VIX
■ Implied volatility is very different from ARCH and Realized measures
■ Market based: Level of volatility is calculated from options prices
■ Forward looking: Options depend on future price path
■ “Classic” implied relies on the Black-Scholes pricing formula
■ “Model free” implied volatility exploits a relationship between the second derivative of

the call price with respect to the strike and the risk neutral measure
■ VIX is a Chicago Board Options Exchange (CBOE) index based on a model free

measure
■ Allows volatility to be directly traded
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Black-Scholes Implied Volatility
■ Black-Scholes Options Pricing
■ Prices follow a geometric Brownian Motion

dSt = µStdt+ σStdWt

■ Constant drift and volatility
■ Price of a call is

C(T,K) = SΦ(d1) +Ke−rTΦ(d2)

where

d1 =
ln (S/K) +

(
r + σ2/2

)
T

σ
√
T

d2 =
ln (S/K) +

(
r − σ2/2

)
T

σ
√
T

.

■ Can invert to produce a formula for the volatility given the call price C(T,K)

σImplied
t = g (Ct(T,K), St,K, T, r)
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Model Free Implied Volatility
■ Model free uses the relationship between option prices and RN density
■ The price of a call option with strike K and maturity t is

C(t,K) =

∫ ∞

K

(St −K)ϕt (St) dSt

■ ϕt (St) is the risk-neutral density at maturity t

■ Differentiating with respect to strike yields

∂C(t,K)

∂K
= −

∫ ∞

K

ϕt (St) dSt

■ Differentiating again with respect to strike yields

∂2C(t,K)

∂K2
= ϕt (K)

■ The change in an option price as a function of the strike K is the probability of the stock price having
value K at time t

■ Allows for risk-neutral density to be recovered from a continuum of options without assuming a model
for stock prices
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Model Free Implied Volatility
■ The previous result allows a model free IV to be computed from

EF

[∫ t

0

(
∂Fs

Fs

)2

ds

]
= 2

∫ ∞

0

CF (t,K)− (F0 −K)
+

K2
dK = 2

∫ ∞

0

CF (t,K)− (F0 −K)
+

K︸ ︷︷ ︸
Height

dK
K︸︷︷︸

Width

■ Devil is in the details
▶ Only finitely many calls
▶ Thin trading
▶ Truncation

M∑
m=1

[g(T,Km) + g(T,Km−1)] (Km −Km−1)

where

g(T,K) =
C(t,K/B(0, t))− (S0 −K)

+

K2

■ See Jiang & Tian (2005, RFS) for a very useful discussion
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VIX
■ VIX is continuously computed by the CBOE
■ Uses a model-free style formula
■ Uses both calls and puts
■ Focuses on out-of-the-money options

▶ OOM options are more liquid
■ Formula:

σ2 =
2

T
erT

N∑
i=1

Q(Ki)

Ki︸ ︷︷ ︸
Height

∆Ki

Ki︸ ︷︷ ︸
Width

− 1

T

(
F0

K0
− 1

)2

▶ Q(Ki) is the mid-quote for a strike of Ki, K0 is the first strike below the forward index
level

▶ Only uses out-of-the-money options
▶ VIX appears to have information about future realized volatility that is not in other

backward looking measures (GARCH/RV)
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Model-Free Example
■ MFIV works under weak conditions on the underlying price process

▶ Geometric Brownian motion is included
■ Put and call options prices computed from Black-Scholes

▶ Annualized volatility either 20% or 60%
▶ Risk-free rate 2%, time-to-maturity 1 month (T = 1/12)
▶ Current price 100 (normalized to moneyness), strikes every 4%

■ Contribution is 2
T e

rT ∆Ki

K2
i
Q(Ki)

Strike Call Put Abs. Diff. VIX Contrib.

88 12.17 0.02 12.15 0.0002483
92 8.33 0.17 8.15 0.0019314
96 4.92 0.76 4.16 0.0079299
100 2.39 2.22 0.17 0.0221168
104 0.91 4.74 3.83 0.0080904
108 0.27 8.09 7.82 0.0022259
112 0.06 11.88 11.81 0.0004599
116 0.01 15.82 15.81 7.146e-05

Total 0.0430742
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Model-Free Example
20% Annualized Volatility
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VIX against TARCH(1,1,1) Forward-vol
VIX and Forward Volatility
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Variance Risk Premium
■ Difference between VIX and forward volatility is a measure of the return to selling

volatility
■ Variance Risk Premium is strictly forward looking

EQ
t

[∫ t+h

0

(
∂Fs

Fs

)2

ds

]
− EP

t

[∫ t+h

t

(
∂Fs

Fs

)2

ds

]
■ Defined as the difference between RN

(
EQ) and physical

(
EP) variance

▶ RN variance measured using VIX or other MFIV
▶ Physical forecast from HAR or other model based on Realized Variance

▷ RV matters, using daily is sufficiently noisy that prediction is not useful
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Review
Key Concepts
Black-Scholes Implied Volatility, Model-free Implied Volatility, Variance Risk Premium
Questions

■ Why does BSIV curves smile or smirk? What would generate the difference between
the two shapes?

■ How is MFIV computed, and how does this differ from BSIV?
■ What determines the variance risk premium?


