Univariate Volatility Modeling

Kevin Sheppard

https://kevinsheppard.com/teaching/mfe/ February 3, 2022

$$
\begin{aligned}
& \Delta y_{t}=\phi_{0}+\delta_{1} t+\gamma y_{t}=+\sum_{k=1}^{\beta} \phi_{\rho} \Delta y_{t=\rho}+r_{t} \quad A I C=\ln \dot{\sigma}^{2}+\frac{2 k}{n} \\
& t=\frac{\sqrt{n}(\mathrm{R} \hat{\theta}-r)}{\sqrt{\mathrm{RG}^{-=} \mathbf{\Sigma}\left(\mathrm{G}^{-3}\right)^{\prime} \mathrm{R}^{\prime}}} \stackrel{\mathrm{Cl}}{\mathrm{~m}}(\mathrm{P}, 7) \\
& B I C=\ln \dot{\sigma}^{2}+k \frac{\ln n}{n} \\
& \frac{\mu_{4}}{\left(\sigma^{2}\right)^{2}}=\frac{\mathrm{E}\left[(x-\mathrm{E}|\mathrm{x}|)^{2}\right]^{2}}{\mathrm{E}\left[(x-\mathrm{E}(x))^{2}\right]^{2}}=\mathrm{E}\left[z^{\prime}\right] \quad N\left(\mu_{1}+\beta^{\prime}\left(x_{2}-\mu_{2}\right), \Sigma_{72}-\beta^{\prime} \Sigma_{22} \beta\right)
\end{aligned}
$$

$f(p \mid x) \times p^{x}(1-p)^{2-x} \times \frac{p^{0-z}(1-p)^{g}=1}{B(\alpha-\beta)} \quad E\left[\left(\beta\left(1+r_{p+1}\right)\left(\frac{U^{\prime}\left(c_{t+1}\right)}{U^{\prime}\left(c_{t}\right)}\right)-1\right) x_{t}\right]=0$
$W=n(\mathbf{R}, \boldsymbol{\beta}-\mathrm{r})^{\prime}\left[\mathbf{R} \Sigma_{\mathrm{XX}}{ }^{1} \mathrm{~S} \Sigma_{\mathrm{Xx}}{ }^{1} \mathbf{R}^{\prime}{ }^{-1}(\mathbf{R}, \boldsymbol{\beta}-\mathbf{r}) \xrightarrow{d} \mathrm{X}_{\mathrm{m}}^{2}\right.$
$g(e)=\frac{1}{T h} \sum_{t=1}^{T} K\left(\frac{\hat{e}_{t}-e}{h}\right)$

$$
p_{s}=\frac{\gamma_{s}}{\gamma_{0}}=\frac{E\left[\left(y_{t}-E\left[y_{t}\right)\left(y_{t-s}-E\left[y_{t-s}\right]\right)\right]\right.}{V\left[y_{t}\right]} \Rightarrow-2 X^{\prime} y+2 X^{\prime} X \beta=0 \quad \beta \approx \frac{\partial Y_{i} X_{i}}{\partial X_{i}} \frac{X_{i}^{\prime} \hat{e}=0}{Y_{i}}=E_{y, x}
$$

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{12} & \Sigma_{12} \\
\Sigma_{12}^{\prime} & \Sigma_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{S}^{\text {NW }}=\hat{\mathrm{I}}_{e}+\sum_{i=1}^{1} \frac{1+1-i}{1+2}\left(\hat{\mathrm{\Gamma}}_{i}+\hat{\mathrm{I}}_{i}^{\prime}\right) \\
& Y_{i}=\beta_{1} X_{i}+\beta_{2} X_{i} I_{\left[X_{i}>k\right]}+\epsilon_{i}
\end{aligned}
$$

$$
\operatorname{VaR}_{t+1}=-\mu-\sigma_{t+1} \sigma_{c F}^{-1}(\alpha) \quad J=\mathrm{E}\left[\frac{\partial I(y: \psi)}{\partial \psi} \frac{\partial I(y \cdot \psi)}{\partial \psi^{\prime}}\right]
$$

$$
\begin{aligned}
& c\left(u_{1}, u_{2}, \ldots, u_{k}\right)=\frac{\partial^{k} C\left(u_{1}, u_{2}, \ldots, u_{k}\right)}{\partial u_{1} \partial u_{2} \ldots \partial u_{k}} \\
& \ln \left(1-\lambda_{i}\right) \quad f\left(x_{1} \mid x_{2} \in \mathrm{~B}\right)=\frac{\int_{\mathrm{B}} f\left(x_{1}, x_{2}\right) d x_{2}}{\int_{\mathrm{B}} f_{2}\left(x_{2}\right) d x_{2}} \\
& =\sigma_{t}^{2}=\omega+\alpha^{\prime} Y_{t-1}^{2}+\beta \sigma_{t-1}^{2} \\
& \Sigma_{t}=\mathbf{C C}^{\prime}+\mathbf{A A}^{\prime} \odot \epsilon_{t-1} \epsilon_{t-1}+B_{B}^{\prime} \odot \Sigma_{t-1}
\end{aligned}
$$

$$
\mathbf{z}_{t}=\Upsilon \mathbf{z}_{t-1}+\xi_{t}
$$

Volatility Overview

- What is volatility?
- Why does it change?
- What are ARCH, GARCH, TARCH, EGARCH, SWARCH, ZARCH, APARCH, STARCH, etc. models?
- What does time-varying volatility look like?
- What are the basic properties of ARCH and GARCH models?
- What is the news impact curve?
- How are the parameters of ARCH models estimated? What about inference?
- Twists on the standard model
- Forecasting conditional variance
- Realized Variance
- Implied Volatility

What is volatility?

- Volatility
- Standard deviation
- Realized Volatility

$$
\hat{\sigma}=\sqrt{T^{-1} \sum_{t=1}^{T}\left(r_{t}-\hat{\mu}\right)^{2}}
$$

- Other meaning: variance computed from ultra-high frequency (UHF) data
- Conditional Volatility

$$
\mathrm{E}_{t}\left[\sigma_{t+1}\right]
$$

- Implied Volatility
- Annualized Volatility ($\sqrt{252} \times$ daily, $\sqrt{12} \times$ monthly)
- Mean scales linearly with time ($252 \times$ daily, $12 \times$ monthly)
- Variance is squared volatility

Why does volatility change?

- Possible explanations:
- News Announcements
- Leverage
- Volatility Feedback
- Illiquidity
- State Uncertainty
- None can explain all of the time-variation
- Most theoretical models have none

ARCH Models

A basic volatility model: the ARCH(1) model

$$
\begin{aligned}
r_{t} & =\epsilon_{t} \\
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2} \\
\epsilon_{t} & =\sigma_{t} e_{t} \\
e_{t} & \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

- Autoregressive Conditional Heteroskedasticity
- Key model parameters
- ω sets the long run level
- α determines both the persistence and volatility of volatility (VoVo or VolVol)

Key Properties

- Conditional Mean: $\mathrm{E}_{t-1}\left[r_{t}\right]=\mathrm{E}_{t-1}\left[\epsilon_{t}\right]=0$
- More on this later
- Unconditional Mean: $\mathrm{E}\left[\epsilon_{t}\right]=0$
- Follows directly from the conditional mean and the LIE
- Conditional Variance: $\mathrm{E}_{t-1}\left[r_{t}^{2}\right]=\mathrm{E}_{t-1}\left[\epsilon_{t}^{2}\right]=\sigma_{t}^{2}$
- σ_{t}^{2} and e_{t}^{2} are independent
- $\mathrm{E}_{t-1}\left[e_{t}^{2}\right]=\mathrm{E}\left[e_{t}^{2}\right]=1$
- $1-\alpha_{1}>0$: Required for stationarity, also $\alpha_{1} \geq 0$
- $\omega>0$ is also required for stationarity (technical, but obvious)

Unconditional Variance

- Unconditional Variance

$$
\mathrm{E}\left[\epsilon_{t}^{2}\right]=\frac{\omega}{1-\alpha_{1}}
$$

- Unconditional relates the dynamic parameters to average variance

$$
\mathrm{E}\left[\sigma_{t}^{2}\right]=
$$

More properties of the $\mathrm{ARCH}(1)$

- ARCH models are really Autoregressions in disguise
- Add $\epsilon_{t}^{2}-\sigma_{t}^{2}$ to both sides

$$
\begin{aligned}
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2} \\
\sigma_{t}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} \\
\epsilon_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} \\
\epsilon_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\nu_{t} \\
y_{t} & =\phi_{0}+\phi_{1} y_{t-1}+\nu_{t}
\end{aligned}
$$

- $\mathrm{AR}(1)$ in ϵ_{t}^{2}
- $\nu_{t}=\epsilon_{t}^{2}-\sigma_{t}^{2}$ is a mean 0 white noise (WN) process
- ν_{t} Captures variance surprise : $\epsilon_{t}^{2}-\sigma_{t}^{2}=\sigma_{t}^{2}\left(e_{t}^{2}-1\right)$

ARCH Process Properties

Autocovariance/Autocorrelations

- First Autocovariance

$$
\mathrm{E}\left[\left(\epsilon_{t}^{2}-\bar{\sigma}^{2}\right)\left(\epsilon_{t-1}^{2}-\bar{\sigma}^{2}\right)\right]=\alpha_{1} \mathrm{~V}\left[\epsilon_{t}^{2}\right]
$$

- Same as in AR(1)
- $\mathrm{j}^{\text {th }}$ Autocovariance is

$$
\alpha_{1}^{j} \mathrm{~V}\left[\epsilon_{t}^{2}\right]
$$

- $\mathrm{j}^{\text {th }}$ Autocorrelation is

$$
\operatorname{Corr}\left(\epsilon_{t}^{2}, \epsilon_{t-j}^{2}\right)=\frac{\alpha_{1}^{j} \mathrm{~V}\left[\epsilon_{t}^{2}\right]}{\mathrm{V}\left[\epsilon_{t}^{2}\right]}=\alpha_{1}^{j}
$$

- Again, same as $\operatorname{AR}(1)$
- $\operatorname{ARCH}(P)$ is $A R(P)$
- Just apply results from AR models

Kurtosis

- Kurtosis effect is important
- Variance is not constant \Rightarrow Volatility of Volatility >0

$$
\kappa=\frac{\mathrm{E}\left[\epsilon_{t}^{4}\right]}{\mathrm{E}\left[\epsilon_{t}^{2}\right]^{2}}=
$$

$$
\geq 3
$$

- Alternative: $\mathrm{E}\left[\sigma_{t}^{4}\right]=\mathrm{V}\left[\sigma_{t}^{2}\right]+\mathrm{E}\left[\sigma_{t}^{2}\right]^{2}$
- Law of Iterated Expectations
- In $\mathrm{ARCH}(1)$:

$$
\kappa=\frac{3\left(1-\alpha_{1}^{2}\right)}{\left(1-3 \alpha_{1}^{2}\right)}>3
$$

- Finite if $\alpha_{1}<\sqrt{\frac{1}{3}} \approx .577$

Describing Tail Risks

- "Fat-tailed" and "Thin-tailed"

Definition (Leptokurtosis)

A random variable x_{t} is said to be leptokurtotic if its kurtosis,

$$
\kappa=\frac{\mathrm{E}\left[\left(x_{t}-\mathrm{E}\left[x_{t}\right]\right)^{4}\right]}{\mathrm{E}\left[\left(x_{t}-\mathrm{E}\left[x_{t}\right]\right)^{2}\right]^{2}}
$$

is greater than that of a normal $(\kappa>3)$. Leptokurtotic variables are also known as "heavy tailed" or "fat tailed".

Definition (Platykurtosis)

A random variable x_{t} is said to be platykurtotic if its kurtosis,

$$
\kappa=\frac{\mathrm{E}\left[\left(x_{t}-\mathrm{E}\left[x_{t}\right]\right)^{4}\right]}{\mathrm{E}\left[\left(x_{t}-\mathrm{E}\left[x_{t}\right]\right)^{2}\right]^{2}}
$$

is less than that of a normal $(\kappa<3)$. Platykurtotic variables are also known as "thin tailed".

The Complete ARCH Model

The ARCH(P) model

Definition (${ }^{\text {th }}$ Order ARCH)

An Autoregressive Conditional Heteroskedasticity process or order P is given by

$$
\begin{aligned}
& r_{t}=\mu_{t}+\epsilon_{t} \\
& \mu_{t}=\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
& \sigma_{t}^{2}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\alpha_{2} \epsilon_{t-2}^{2}+\ldots+\alpha_{P} \epsilon_{t-P}^{2} \\
& \epsilon_{t}=\sigma_{t} e_{t} \\
& e_{t} \stackrel{\text { i.i.d }}{\sim} N(0,1) .
\end{aligned}
$$

- Mean μ_{t} can be an appropriate form - AR, MA, ARMA, ARMAX, etc.
- $\mathrm{E}_{t}\left[r_{t}-\mu_{t}\right]=0$
- e_{t} is the standardized residual, often assumed normal
- σ_{t}^{2} is the conditional variance

Alternative expression of an ARCH(P)

- Model where both mean and variance are time varying
- Natural extension of model definition for time varying mean model

$$
\begin{aligned}
r_{t} \mid \mathcal{F}_{t-1} & \sim N\left(\mu_{t}, \sigma_{t}^{2}\right) \\
\mu_{t} & =\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\alpha_{2} \epsilon_{t-2}^{2}+\ldots+\alpha_{P} \epsilon_{t-P}^{2} \\
\epsilon_{t} & =r_{t}-\mu_{t}
\end{aligned}
$$

- " r_{t} given the information set at time $t-1$ is conditionally normal with mean μ_{t} and variance $\sigma_{t}^{2,}$

The data

- S\&P 500
- Source: Yahoo! Finance
- Daily January 1, 1999 - December 31, 2021
- 5,575 observations
- WTI Spot Prices
- Source: EIA
- Daily January 1, 1999 - December 31, 2021
- 5,726 observations
- All represented as $100 \times$ log returns

Graphical Evidence of ARCH

S\&P 500 Returns

Graphical Evidence: Squared Data Plot

Squared S\&P 500 Returns

Squared WTI Returns

Graphical Evidence: Absolute Data Plot

Absolute S\&P 500 Returns

Absolute WTI Returns

The GARCH Model

A simple GARCH(1,1)

$$
\begin{aligned}
& r_{t}=\epsilon_{t} \\
& \sigma_{t}^{2}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2} \\
& \epsilon_{t}=\sigma_{t} e_{t} \\
& e_{t} \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

- Adds lagged variance to the ARCH model
- $\mathrm{ARCH}(\infty)$ in disguise

$$
\sigma_{t}^{2}=
$$

Important Properties

$$
\sigma_{t}^{2}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}
$$

- Unconditional Variance

$$
\bar{\sigma}^{2}=\mathrm{E}\left[\sigma_{t}^{2}\right]=\frac{\omega}{1-\alpha_{1}-\beta_{1}}
$$

- Kurtosis

$$
\kappa=\frac{3\left(1+\alpha_{1}+\beta_{1}\right)\left(1-\alpha_{1}-\beta_{1}\right)}{1-2 \alpha_{1} \beta_{1}-3 \alpha_{1}^{2}-\beta_{1}^{2}}>3
$$

- Stationarity
- $\alpha_{1}+\beta_{1}<1$
- $\omega>0, \alpha_{1} \geq 0, \beta_{1} \geq 0$
- ARMA in disguise

$$
\begin{aligned}
\sigma_{t}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} \\
\epsilon_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}+\epsilon_{t}^{2}-\sigma_{t}^{2} \\
\epsilon_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \epsilon_{t-1}^{2}-\beta_{1} \nu_{t-1}+\nu_{t} \\
\epsilon_{t}^{2} & =\omega+\left(\alpha_{1}+\beta_{1}\right) \epsilon_{t-1}^{2}-\beta_{1} \nu_{t-1}+\nu_{t}
\end{aligned}
$$

The Complete GARCH model

Definition (GARCH(P,Q) process)

A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process of orders P and Q is defined as

$$
\begin{aligned}
r_{t} & =\mu_{t}+\epsilon_{t} \\
\mu_{t} & =\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
\sigma_{t}^{2} & =\omega+\sum_{p=1}^{P} \alpha_{p} \epsilon_{t-p}^{2}+\sum_{q=1}^{Q} \beta_{q} \sigma_{t-q}^{2} \\
\epsilon_{t} & =\sigma_{t} e_{t}, e_{t} \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

- Mean model can be altered to fit data $-A R(S)$ here
- Adds lagged variance to ARCH

Exponentially Weighted Moving Average Variance

Exponentially Weighted Moving Average Variance

- Restricted model where $\mu_{t}=0$ for all $t, \omega=0$ and $\alpha=1-\beta$

$$
\begin{aligned}
\sigma_{t}^{2} & =(1-\lambda) r_{t-1}^{2}+\lambda \sigma_{t-1}^{2} \\
\sigma_{t}^{2} & =(1-\lambda) \sum_{i=0}^{\infty} \lambda^{i} r_{t-i-1}^{2}
\end{aligned}
$$

- Note that $\sum_{i=0}^{\infty} \lambda^{i}=1 / 1-\lambda$ so that $(1-\lambda) \sum_{i=0}^{\infty} \lambda^{i}=1$
- Leads to random-walk-like features

Asymmetric ARCH Models: GJR-GARCH

Glosten-Jagannathan-Runkle GARCH

- Extends $\operatorname{GARCH}(1,1)$ to include an asymmetric term

Definition (Glosten-Jagannathan-Runkle (GJR) GARCH process)
A GJR-GARCH(P,O,Q) process is defined as

$$
\begin{aligned}
r_{t} & =\mu_{t}+\epsilon_{t} \\
\mu_{t} & =\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
\sigma_{t}^{2} & =\omega+\sum_{p=1}^{P} \alpha_{p} \epsilon_{t-p}^{2}+\sum_{o=1}^{O} \gamma_{o} \epsilon_{t-o}^{2} I_{\left[\epsilon_{t-o}<0\right]}+\sum_{q=1}^{Q} \beta_{q} \sigma_{t-q}^{2} \\
\epsilon_{t} & =\sigma_{t} e_{t} \\
e_{t} & \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

where $I_{\left[\epsilon_{t-o}<0\right]}$ is an indicator function that takes the value 1 if $\epsilon_{t-o}<0$ and 0 otherwise.

GJR-GARCH $(1,1,1)$ example

- GJR($1,1,1$) model

$$
\begin{gathered}
\sigma_{t}^{2}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\gamma_{1} \epsilon_{t-1}^{2} I_{\left[\epsilon_{t-1}<0\right]}+\beta_{1} \sigma_{t-1}^{2} \\
\alpha_{1}+\gamma_{1} \geq 0 \\
\alpha_{1} \geq 0 \\
\beta_{1} \geq 0 \\
\\
\omega>0
\end{gathered}
$$

- $\gamma_{1} \epsilon_{t-1}^{2} I_{\left[\epsilon_{t-1}<0\right]}$: Variances are larger after negative shocks than after positive shocks
- "Leverage Effect"

Asymmetric ARCH Models: TARCH

Threshold ARCH

- Threshold ARCH is similar to GJR-GARCH
- Also known as ZARCH (Zakoain (1994)) or AVGARCH when symmetric

Definition (Threshold ARCH (TARCH) process)

A TARCH(P,O,Q) process is defined

$$
\begin{aligned}
r_{t} & =\mu_{t}+\epsilon_{t} \\
\mu_{t} & =\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
\sigma_{t} & =\omega+\sum_{p=1}^{P} \alpha_{p}\left|\epsilon_{t-p}\right|+\sum_{o=1}^{O} \gamma_{o}\left|\epsilon_{t-o}\right| I_{\left[\epsilon_{t-o}<0\right]}+\sum_{q=1}^{Q} \beta_{q} \sigma_{t-q} \\
\epsilon_{t} & =\sigma_{t} e_{t} \\
e_{t} & \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

where $I_{\left[\epsilon_{t-o}<0\right]}$ is an indicator function that is 1 if $\epsilon_{t-o}<0$ and 0 otherwise.

TARCH(1,1,1) example

- $\operatorname{TARCH}(1,1,1)$ model

$$
\begin{gathered}
\sigma_{t}=\omega+\alpha_{1}\left|\epsilon_{t-1}\right|+\gamma_{1}\left|\epsilon_{t-1}\right| I_{\left[\epsilon_{t-1}<0\right]}+\beta_{1} \sigma_{t-1} \\
\quad \alpha_{1}+\gamma_{1} \geq 0 \\
\quad \omega>0, \alpha_{1} \geq 0, \beta_{1} \geq 0
\end{gathered}
$$

- Note the different power: σ_{t} and $\left|\epsilon_{t-1}\right|$
- Model for conditional standard deviation
- Nonlinear variance models complicate some things
- Forecasting
- Memory of volatility
- News impact curves
- GARCH(P,Q) becomes TARCH(P,O,Q) or GJR-GARCH(P,O,Q)
- TARCH and GJR-GARCH are sometimes (wrongly) used interchangeably.

Asymmetric ARCH Models: Exponential GARCH

EGARCH

Definition (EGARCH(P,O,Q) process)

An Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) process of order P, O and Q is defined

$$
\begin{aligned}
r_{t} & =\mu_{t}+\epsilon_{t} \\
\mu_{t} & =\phi_{0}+\phi_{1} r_{t-1}+\ldots+\phi_{s} r_{t-S} \\
\ln \left(\sigma_{t}^{2}\right) & =\omega+\sum_{p=1}^{P} \alpha_{p}\left(\left|\frac{\epsilon_{t-p}}{\sigma_{t-p}}\right|-\sqrt{\frac{2}{\pi}}\right)+\sum_{o=1}^{O} \gamma_{o} \frac{\epsilon_{t-o}}{\sigma_{t-o}}+\sum_{q=1}^{Q} \beta_{q} \ln \left(\sigma_{t-q}^{2}\right) \\
\epsilon_{t} & =\sigma_{t} e_{t} \\
e_{t} & \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

In the original parametrization of Nelson (1991), P and O were required to be identical.

$\operatorname{EGARCH}(1,1,1)$

- $\operatorname{EGARCH}(1,1,1)$

$$
\begin{aligned}
r_{t} & =\mu+\epsilon_{t} \\
\ln \left(\sigma_{t}^{2}\right) & =\omega+\alpha_{1}\left(\left|\frac{\epsilon_{t-1}}{\sigma_{t-1}}\right|-\sqrt{\frac{2}{\pi}}\right)+\gamma_{1} \frac{\epsilon_{t-1}}{\sigma_{t-1}}+\beta_{1} \ln \left(\sigma_{t-1}^{2}\right) \\
\epsilon_{t} & =\sigma_{t} e_{t}, \quad e_{t} \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

- Modeling using ln removes any parameter restrictions ($\left|\beta_{1}\right|<1$)
- AR(1) with two shocks

$$
\ln \left(\sigma_{t}^{2}\right)=\omega+\alpha_{1}\left(\left|e_{t-1}\right|-\sqrt{\frac{2}{\pi}}\right)+\gamma_{1} e_{t-1}+\beta_{1} \ln \left(\sigma_{t-1}^{2}\right)
$$

- Symmetric shock $\left(\left|e_{t-1}\right|-\sqrt{\frac{2}{\pi}}\right)$ and asymmetric shock e_{t-1}
- Note, shocks are standardized residuals (unit variance)
- Often provides a better fit that GARCH(P,Q)

Asymmetric ARCH Models: Asymmetric Power ARCH

Asymmetric Power ARCH

- Nests ARCH, GARCH, TARCH, GJR-GARCH, EGARCH (almost) and other specifications
- Only present the APARCH(1,1,1):

$$
\begin{aligned}
& \sigma_{t}^{\delta}=\omega+\alpha_{1}\left(\left|\epsilon_{t-1}\right|+\gamma_{1} \epsilon_{t-1}\right)^{\delta}+\beta_{1} \sigma_{t-1}^{\delta} \\
& \quad \alpha_{1}>0, \quad-1 \leq \gamma_{1} \leq 1, \quad \delta>0, \quad \beta_{1} \geq 0, \quad \omega>0
\end{aligned}
$$

- Parametrizes the "power" parameter
- Different values for δ affect the persistence.
- Lower values \Rightarrow higher persistence of shocks
- ARCH: $\gamma=0, \beta=0, \delta=2$
- GARCH: $\gamma=0, \delta=2$
- GJR-GARCH: $\delta=2$
- AVGARCH: $\gamma=0, \delta=1$
- TARCH: $\delta=1$
- EGARCH: (almost) $\lim \delta \rightarrow 0$

S\&P Results

$\mathrm{ARCH}(5)$						
ω	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	Log Lik.
0.288	0.104	0.199	0.182	0.194	0.152	-6712
(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	

$\operatorname{GARCH}(1,1)$

ω	α_{1}	β_{1}	Log Lik.
0.019	0.106	0.881	-6597
(0.000)	(0.000)	(0.000)	

$\operatorname{EGARCH}(1,1,1)$

ω	α_{1}	γ_{1}	β_{1}	Log Lik.
0.000	0.137	-0.153	0.974	-6484
(0.983)	(0.000)	(0.000)	(0.000)	

News Impact Curves

Comparing different models

- Comparing models which are not nested can be difficult
- The News Impact Curve provides one method
- Defined:

$$
\begin{gathered}
n\left(e_{t}\right)=\sigma_{t+1}^{2}\left(e_{t} \mid \sigma_{t}^{2}=\bar{\sigma}^{2}\right) \\
N I C\left(e_{t}\right)=n\left(e_{t}\right)-n(0)
\end{gathered}
$$

- Measures the effect of a shock starting at the unconditional variance
- Allows for asymmetric shapes GARCH(1,1)

$$
N I C\left(e_{t}\right)=\alpha_{1} \bar{\sigma}^{2} e_{t}^{2}
$$

GJR-GARCH(1,1,1)

$$
N I C\left(e_{t}\right)=\left(\alpha_{1}+\gamma_{1} I_{\left[e_{t}<0\right]}\right) \bar{\sigma}^{2} e_{t}^{2}
$$

TARCH(1,1,1)

$$
N I C\left(e_{t}\right)=\left(\alpha_{1}+\gamma_{1} I_{\left[\epsilon_{t}<0\right]}\right)^{2} \bar{\sigma}^{2} e_{t}^{2}+\left(2 \omega+2 \beta_{1} \bar{\sigma}\right)\left(\alpha_{1}+\gamma_{1} I_{\left[e_{t}<0\right]}\right)\left|e_{t}\right|
$$

S\&P 500 News Impact Curves

S\&P 500 News Impact Curve

Estimation and Inference

Estimation

$$
\begin{aligned}
r_{t} & =\mu_{t}+\epsilon_{t} \\
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2} \\
\epsilon_{t} & =\sigma_{t} e_{t} \\
e_{t} & \stackrel{\text { i.i.d. }}{\sim} N(0,1)
\end{aligned}
$$

- So:

$$
r_{t} \mid \mathcal{F}_{t-1} \sim N\left(\mu_{t}, \sigma_{t}^{2}\right)
$$

- Need initial values for σ_{0}^{2} and ϵ_{0}^{2} to start recursion
- Normal Maximum Likelihood is a natural choice

$$
\begin{gathered}
f(\mathbf{r} ; \boldsymbol{\theta})=\prod_{t=1}^{T}\left(2 \pi \sigma_{t}^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{\left(r_{t}-\mu_{t}\right)^{2}}{2 \sigma_{t}^{2}}\right) \\
l(\boldsymbol{\theta} ; \mathbf{r})=\sum_{t=1}^{T}-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log \left(\sigma_{t}^{2}\right)-\frac{\left(r_{t}-\mu_{t}\right)^{2}}{2 \sigma_{t}^{2}} .
\end{gathered}
$$

Inference

- MLE are asymptotically normal

$$
\sqrt{T}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \xrightarrow{d} N\left(0, \mathcal{I}^{-1}\right), \quad \mathcal{I}=-\mathrm{E}\left[\frac{\partial^{2} l\left(\boldsymbol{\theta}_{0} ; r_{t}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right]
$$

- If data are not conditionally normal, Quasi MLE (QMLE)

$$
\sqrt{T}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \xrightarrow{d} N\left(0, \mathcal{I}^{-1} \mathcal{J I}^{-1}\right), \quad \mathcal{J}=\mathrm{E}\left[\frac{\partial l\left(\boldsymbol{\theta}_{0} ; r_{t}\right)}{\partial \boldsymbol{\theta}} \frac{\partial l\left(\boldsymbol{\theta}_{0} ; r_{t}\right)}{\partial \boldsymbol{\theta}^{\prime}}\right]
$$

- Known as Bollerslev-Wooldridge Covariance estimator in GARCH models
- Also known as a "sandwich" covariance estimator
- Default cov_type="robust" in arch package code
- White and Newey-West Covariance estimators are also sandwich estimators

Two-step Estimation

Independence of the mean and variance

- Use LS to estimate mean parameters, then use estimated residuals in GARCH
- Efficient estimates one of two ways
- Joint estimation of mean and variance parameters using MLE
- GLS estimation
- Estimate mean and variance in 2-steps as above
- Re-estimate mean using GLS
- Re-estimate variance using new set of residuals

The mean and the variance can be estimated consistently using 2-stages. Standard errors are also correct as long as a robust VCV estimator is used.

Alternative Distributional Assumptions

Alternative Distributional Assumptions

- Equity returns are not conditionally normal
- Can replace the normal likelihood with a more realistic one
- Common choices:
- Standardized Student's t
- Nests the normal as $\nu \rightarrow \infty$
- Generalized error distribution
- Nests the normal when $\nu=2$
- Hansen's Skew-T
- Captures both skewness and heavy tails
- Use hyperparameters to control shape (ν and λ)
- All can have heavy tails
- Only Skew-T is skewed
- Dozens more in academic research
- But for what gain?

S\&P 500 Density

Empirical

Skew t

Effect of dist. choice on estimated volatility

S\&P 500

Model Building and Specification Analysis

Model Building

- ARCH and GARCH models are essentially ARMA models
- Box-Jenkins Methodology
- Parsimony principle

Steps:

1. Inspect the ACF and PACF of ϵ_{t}^{2}

$$
\epsilon_{t}^{2}=\omega+(\alpha+\beta) \epsilon_{t-1}^{2}-\beta \nu_{t-1}+\nu_{t}
$$

- ACF indicates α (or ARCH of any kind)
- PACF indicates β

2. Build initial model based on these observation
3. Iterate between model and ACF/PACF of $\hat{e}_{t}^{2}=\frac{\epsilon_{t}^{2}}{\hat{\sigma}_{t}^{2}}$

S\&P $500 \epsilon_{t}^{2}$ ACF/PACF

Squared Residuals ACF
Squared Residuals PACF

Std. Squared Residuals ACF

Std. Squared Residuals PACF

WTI ϵ_{t}^{2} ACF/PACF

Squared Residuals ACF

Std. Squared Residuals ACF

Std. Squared Residuals PACF

How I built a model for the S\&P 500

	α_{1}	α_{2}	γ_{1}	γ_{2}	β_{1}	β_{2}	Log Lik.
$\operatorname{GARCH}(1,1)$	$\begin{aligned} & 0.106 \\ & (0.000) \end{aligned}$				$\begin{aligned} & 0.881 \\ & (0.000) \end{aligned}$		-6597.4
$\operatorname{GARCH}(1,2)$	$\begin{aligned} & 0.106 \\ & (0.000) \end{aligned}$				$\begin{gathered} 0.881 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.999) \end{gathered}$	-6597.4
$\operatorname{GARCH}(2,1)$	$\begin{gathered} 0.073 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.105) \end{gathered}$			$\begin{gathered} 0.861 \\ (0.000) \end{gathered}$		-6594.1
GJR-GARCH $(1,1,1)$	$\begin{gathered} 0.000 \\ (0.999) \end{gathered}$		$\begin{gathered} 0.184 \\ (0.000) \end{gathered}$		$\begin{gathered} 0.889 \\ (0.000) \end{gathered}$		-6491.0
GJR-GARCH $(1,2,1)$	$\begin{aligned} & 0.000 \\ & (0.999) \end{aligned}$		$\begin{gathered} 0.165 \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.024 \\ & (0.603) \end{aligned}$	$\begin{aligned} & 0.885 \\ & (0.000) \end{aligned}$		-6490.7
$\operatorname{TARCH}(1,1,1)^{\star}$	$\begin{aligned} & 0.000 \\ & (0.999) \end{aligned}$		$\begin{gathered} 0.173 \\ (0.000) \end{gathered}$		$\begin{gathered} 0.907 \\ (0.000) \end{gathered}$		-6469.4
$\operatorname{TARCH}(1,2,1)$	$\begin{aligned} & 0.000 \\ & (0.999) \end{aligned}$		$\begin{gathered} 0.169 \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.005 \\ & (0.888) \end{aligned}$	$\begin{gathered} 0.907 \\ (0.000) \end{gathered}$		-6469.4
$\operatorname{TARCH}(2,1,1)$	$\begin{aligned} & 0.000 \\ & (0.999) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.938) \end{gathered}$	$\begin{gathered} 0.172 \\ (0.000) \end{gathered}$		$\begin{aligned} & 0.906 \\ & (0.000) \end{aligned}$		-6469.3
EGARCH(1,0,1)	$\begin{aligned} & 0.217 \\ & (0.000) \end{aligned}$				$\begin{gathered} 0.978 \\ (0.000) \end{gathered}$		-6619.9
EGARCH(1,1,1)	$\begin{gathered} 0.137 \\ (0.000) \end{gathered}$		$\begin{gathered} -0.153 \\ (0.000) \end{gathered}$		$\begin{gathered} 0.974 \\ (0.000) \end{gathered}$		-6484.3
EGARCH(1,2,1)	$\begin{gathered} 0.129 \\ (0.000) \end{gathered}$		$\underset{(0.000)}{-0.212}$	$\begin{gathered} 0.067 \\ (0.055) \end{gathered}$	$\begin{aligned} & 0.976 \\ & (0.000) \end{aligned}$		-6479.5
EGARCH(2,1,1)	$\begin{gathered} 0.029 \\ (0.535) \end{gathered}$	$\begin{gathered} 0.121 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.161 \\ (0.000) \end{gathered}$		$\begin{gathered} 0.970 \\ (0.000) \end{gathered}$		-6476.8

Testing for (G)ARCH

- ARCH is autocorrelation in ϵ_{t}^{2}
- All ARCH processes have this, whether GARCH or EGARCH or other
- ARCH-LM test
- Directly test for autocorrelation:

$$
\epsilon_{t}^{2}=\phi_{0}+\phi_{1} \epsilon_{t-1}^{2}+\ldots+\phi_{P} \epsilon_{t-P}^{2}+\eta_{t}
$$

- $H_{0}: \phi_{1}=\phi_{2}=\ldots=\phi_{P}=0$
- $T \times R^{2} \xrightarrow{d} \chi_{P}^{2}$
- Standard LM test from a regression.
- More powerful test: Fit an ARCH(P) model
- The forbidden hypothesis

$$
\begin{gathered}
\sigma_{t}^{2}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2} \\
H_{0}: \alpha_{1}=0, H_{1}: \alpha>0
\end{gathered}
$$

Forecasting

Forecasting: ARCH(1)

- Simple ARCH model

$$
\begin{aligned}
\epsilon_{t} & \sim N\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}
\end{aligned}
$$

- 1-step ahead forecast is known today
- All ARCH-family models have this property

$$
\begin{aligned}
\epsilon_{t} & \sim N\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2} & =\omega+\alpha_{1} \epsilon_{t-1}^{2} \\
\mathrm{E}_{t}\left[\sigma_{t+1}^{2}\right] & =\mathrm{E}_{t}\left[\omega+\alpha_{1} \epsilon_{t}^{2}\right] \\
& =\omega+\alpha_{1} \epsilon_{t}^{2}
\end{aligned}
$$

- Note: $\mathrm{E}_{t}\left[\epsilon_{t+1}^{2}\right]=\mathrm{E}_{t}\left[e_{t+1}^{2} \sigma_{t+1}^{2}\right]=\sigma_{t+1}^{2} \mathrm{E}_{t}\left[e_{t+1}^{2}\right]=\sigma_{t+1}^{2}$
- Further: $\mathrm{E}_{t}\left[\epsilon_{t+h}^{2}\right]=\mathrm{E}_{t}\left[\mathrm{E}_{t+h-1}\left[e_{t+h}^{2} \sigma_{t+h}^{2}\right]\right]=\mathrm{E}_{t}\left[\mathrm{E}_{t+h-1}\left[e_{t+h}^{2}\right] \sigma_{t+h}^{2}\right]=\mathrm{E}_{t}\left[\sigma_{t+h}^{2}\right]$

Forecasting: ARCH(1)

- 2-step ahead

$$
\mathrm{E}_{t}\left[\sigma_{t+2}^{2}\right]=
$$

- h-step ahead forecast

$$
\mathrm{E}_{t}\left[\sigma_{t+h}^{2}\right]=\sum_{i=0}^{h-1} \alpha_{1}^{i} \omega+\alpha_{1}^{h} \epsilon_{t}^{2}
$$

- Just the AR(1) forecasting formula
- Why?

Forecasting: $\operatorname{GARCH}(1,1)$

- 1-step ahead

$$
\begin{aligned}
\mathrm{E}_{t}\left[\sigma_{t+1}^{2}\right] & =\mathrm{E}_{t}\left[\omega+\alpha_{1} \epsilon_{t}^{2}+\beta_{1} \sigma_{t}^{2}\right] \\
& =\omega+\alpha_{1} \epsilon_{t}^{2}+\beta_{1} \sigma_{t}^{2}
\end{aligned}
$$

- 2-step ahead

$$
\mathrm{E}_{t}\left[\sigma_{t+2}^{2}\right]=
$$

Forecasting: $\operatorname{GARCH}(1,1)$

- h-step ahead

$$
\mathrm{E}_{t}\left[\sigma_{t+h}^{2}\right]=\sum_{i=0}^{h-1}\left(\alpha_{1}+\beta_{1}\right)^{i} \omega+\left(\alpha_{1}+\beta_{1}\right)^{h-1}\left(\alpha_{1} \epsilon_{t}^{2}+\beta_{1} \sigma_{t}^{2}\right)
$$

- Also essentially an $\operatorname{AR}(1)$, technically $\operatorname{ARMA}(1,1)$

Forecasting Non-linear ARCH Models

Forecasting: $\operatorname{TARCH}(1,0,0)$

- This one is a mess
- Nonlinearities cause problems
- All ARCH-family models are nonlinear, but some are linearity in ϵ_{t}^{2}
- Others are not

$$
\sigma_{t}=\omega+\alpha_{1}\left|\epsilon_{t-1}\right|
$$

- Forecast for $t+1$ is known at time t
- Always, always, always,

$$
\begin{aligned}
\mathrm{E}_{t}\left[\sigma_{t+1}^{2}\right] & =\mathrm{E}_{t}\left[\left(\omega+\alpha_{1}\left|\epsilon_{t}\right|\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\omega^{2}+2 \omega \alpha_{1}\left|\epsilon_{t}\right|+\alpha_{1}^{2} \epsilon_{t}^{2}\right] \\
& =\omega^{2}+2 \omega \alpha_{1} \mathrm{E}_{t}\left[\left|\epsilon_{t}\right|\right]+\alpha_{1}^{2} \mathrm{E}_{t}\left[\epsilon_{t}^{2}\right] \\
& =\omega^{2}+2 \omega \alpha_{1}\left|\epsilon_{t}\right|+\alpha_{1}^{2} \epsilon_{t}^{2}
\end{aligned}
$$

TARCH(1,0,0) continued...

- Multi-step is less straightforward

$$
\begin{aligned}
\mathrm{E}_{t}\left[\sigma_{t+2}^{2}\right] & =\mathrm{E}_{t}\left[\left(\omega+\alpha_{1}\left|\epsilon_{t+1}\right|\right)^{2}\right] \\
& =\mathrm{E}_{t}\left[\omega^{2}+2 \omega \alpha_{1}\left|\epsilon_{t+1}\right|+\alpha_{1}^{2} \epsilon_{t+1}^{2}\right] \\
& =\omega^{2}+2 \omega \alpha_{1} \mathrm{E}_{t}\left[\left|\epsilon_{t+1}\right|\right]+\alpha_{1}^{2} \mathrm{E}_{t}\left[\epsilon_{t+1}^{2}\right] \\
& =\omega^{2}+2 \omega \alpha_{1} \mathrm{E}_{t}\left[\left|e_{t+1}\right| \sigma_{t+1}\right]+\alpha_{1}^{2} \mathrm{E}_{t}\left[e_{t}^{2} \sigma_{t+1}^{2}\right] \\
& =\omega^{2}+2 \omega \alpha_{1} \mathrm{E}_{t}\left[\left|e_{t+1}\right|\right] \mathrm{E}_{t}\left[\sigma_{t+1}\right]+\alpha_{1}^{2} \mathrm{E}_{t}\left[e_{e}^{2}\right] \mathrm{E}_{t}\left[\sigma_{t+1}^{2}\right] \\
& \left.=\omega^{2}+2 \omega \alpha_{1} \mathrm{E}_{t}\left[\mid e_{t+1}\right]\right]\left(\omega+\alpha_{1}\left|\epsilon_{t}\right|\right)+\alpha_{1}^{2} \cdot 1 \cdot\left(\omega^{2}+2 \omega \alpha_{1}\left|\epsilon_{t}\right|+\alpha_{1}^{2} \epsilon_{t}^{2}\right)
\end{aligned}
$$

If $e_{t+1} \sim N(0,1), E\left[\left|e_{t+1}\right|\right]=\sqrt{\frac{2}{\pi}}$

$$
\mathrm{E}_{t}\left[\sigma_{t+2}^{2}\right]=\omega^{2}+2 \omega \alpha_{1} \sqrt{\frac{2}{\pi}}\left(\omega+\alpha_{1}\left|\epsilon_{t}\right|\right)+\alpha_{1}^{2}\left(\omega^{2}+2 \omega \alpha_{1}\left|\epsilon_{t}\right|+\alpha_{1}^{2} \epsilon_{t}^{2}\right)
$$

Simulation-based Forecasting

- Multi-step forecasting using simulation is simple
- Two options
- Parametric: $e_{t} \stackrel{\text { i.i.d. }}{\sim} F(0,1, \hat{\theta})$
- Bootstrap: Sample i.i.d. from $\left\{\hat{e}_{i}\right\}_{i=1}^{t}$ where $\hat{e}_{i}=\hat{\epsilon}_{i} / \hat{\sigma}_{i}=\left(r_{i}-\hat{\mu}_{i}\right) / \hat{\sigma}_{i}$

Algorithm (Simulation-based Forecast)

For $b=1, \ldots, B$ do:

1. Sample $h-1$ i.i.d. values from either the parametric or bootstrap distribution
2. Simulate the model for h periods and store $\hat{\sigma}_{t+h \mid t, b}^{2}$

Construct the forecast as $\hat{\sigma}_{t+h \mid t}^{2}=B^{-1} \sum_{b=1}^{B} \hat{\sigma}_{t+h \mid t, j}^{2}$
Notes

- If model parametrizes $g\left(\sigma_{t}^{2}\right)$ than at each period $h>1$ the simulated value is $\epsilon_{t+h, j}=\sqrt{g^{-1}\left(g\left(\sigma_{t+h \mid t, j}^{2}\right)\right)} \eta_{h, j}$ where $\eta_{h, j}$ are the i.i.d.samples
- $\sigma_{t+1 \mid t}^{2}$ is always known at time t and so simulation is never needed for 1-step forecasting

Forecasting Evaluation

Assessing forecasts: Augmented MZ

- Start from $\mathrm{E}_{t}\left[r_{t+h}^{2}\right] \approx \sigma_{t+h \mid t}^{2}$
- Standard Augmented MZ regression:

$$
\epsilon_{t+h}^{2}-\hat{\sigma}_{t+h \mid t}^{2}=\gamma_{0}+\gamma_{1} \hat{\sigma}_{t+h \mid t}^{2}+\gamma_{2} z_{1 t}+\ldots+\gamma_{K+1} z_{K t}+\eta_{t}
$$

- η_{t} is heteroskedastic in proportion to σ_{t}^{2} : Use GLS.
- An improved GMZ regression (GMZ-GLS)

$$
\frac{\epsilon_{t+h}^{2}-\hat{\sigma}_{t+h \mid t}^{2}}{\hat{\sigma}_{t+h \mid t}^{2}}=\gamma_{0} \frac{1}{\hat{\sigma}_{t+h \mid t}^{2}}+\gamma_{1} 1+\gamma_{2} \frac{z_{1 t}}{\hat{\sigma}_{t+h \mid t}^{2}}+\ldots+\gamma_{K+1} \frac{z_{K t}}{\hat{\sigma}_{t+h \mid t}^{2}}+\nu_{t}
$$

- Better to use Realized Variance to evaluate forecasts

$$
R V_{t+h}-\hat{\sigma}_{t+h \mid t}^{2}=\gamma_{0}+\gamma_{1} \hat{\sigma}_{t+h \mid t}^{2}+\gamma_{2} z_{1 t}+\ldots+\gamma_{K+1} z_{K t}+\eta_{t}
$$

- Also can use GLS version
- Both $R V_{t+h}$ and ϵ_{t+h}^{2} are proxies for the variance at $t+h$
- RV is just better, often $10 \times+$ more precise

Assessing forecasts: Diebold-Mariano

- Relative forecast performance
- MSE loss

$$
\delta_{t}=\left(\epsilon_{t+h}^{2}-\hat{\sigma}_{A, t+h \mid t}^{2}\right)^{2}-\left(\epsilon_{t+h}^{2}-\hat{\sigma}_{B, t+h \mid t}^{2}\right)^{2}
$$

- $H_{0}: \mathrm{E}\left[\delta_{t}\right]=0, H_{1}^{A}: \mathrm{E}\left[\delta_{t}\right]<0, H_{1}^{B}: \mathrm{E}\left[\delta_{t}\right]>0$

$$
\hat{\bar{\delta}}=R^{-1} \sum_{r=1}^{R} \delta_{r}
$$

- Standard t-test, 2-sided alternative
- Newey-West covariance always needed
- Better DM using QLIK loss (Normal log-likelihood "Kernel")

$$
\delta_{t}=\left(\ln \left(\hat{\sigma}_{A, t+h \mid t}^{2}\right)+\frac{\epsilon_{t+h}^{2}}{\hat{\sigma}_{A, t+h \mid t}^{2}}\right)-\left(\ln \left(\hat{\sigma}_{B, t+h \mid t}^{2}\right)+\frac{\epsilon_{t+h}^{2}}{\hat{\sigma}_{B, t+h \mid t}^{2}}\right)
$$

- Patton \& Sheppard (2009)

Realized Variance

Realized Variance

- Variance measure computed using ultra-high-frequency data (UHF)
- Uses all available information to estimate the variance over some period
- Usually 1 day
- Variance estimates from $R V$ can be treated as "observable"
- Standard ARMA modeling
- Variance estimates are consistent
- Asymptotically unbiased
- Variance converges to 0 as the number of samples increases
- Problems arise when applied to market data
- Noise (bid-ask bounce)
- Market closure
- Prices discrete
- Prices not continuously observable
- Data quality

Realized Variance

- Assumptions
- Log-prices are generated by an arbitrage-free semi-martingale
- Prices are observable
- Prices can be sampled often
- Defined

$$
R V_{t}^{(m)}=\sum_{i=1}^{m}\left(p_{i, t}-p_{i-1, t}\right)^{2}=\sum_{i=1}^{m} r_{i, t}^{2}
$$

- m-sample Realized Variance
- $p_{i, t}$ is the $\mathrm{i}^{\text {th }}$ log-price on day t
- $r_{i, t}$ is the $\mathrm{i}^{\text {th }}$ return on day t
- Only uses information on day t to estimate the variance on day t
- Consistent estimator of the integrated variance

$$
\int_{t}^{t+1} \sigma_{s}^{2} d s
$$

- "Total variance" on day t

Understanding Realized Variance

Why Realized Variance Works

- Consider a simple Brownian motion

$$
d p_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

- m-sample Realized Variance

$$
R V_{t}^{(m)}=\sum_{i=1}^{m} r_{i, t}^{2}
$$

- Returns are i.i.d. normal

$$
r_{i, t} \stackrel{\text { i.i.d. }}{\sim} N\left(\frac{\mu}{m}, \frac{\sigma^{2}}{m}\right)
$$

- Nearly unbiased

$$
\mathrm{E}\left[R V_{t}^{(m)}\right]=\frac{\mu^{2}}{m}+\sigma^{2}
$$

- Variance close to 0

$$
\mathrm{V}\left[R V_{t}^{(m)}\right]=4 \frac{\mu^{2} \sigma^{2}}{m^{2}}+2 \frac{\sigma^{4}}{m}
$$

Why Realized Variance Works

- Works for models with time-varying drift and stochastic volatility

$$
d p_{t}=\mu_{t} d t+\sigma_{t} d W_{t}
$$

- No arbitrage imposes some restrictions on μ_{t}
- Works with price processes with jumps
- In the general case:

$$
R V_{t}^{(m)} \xrightarrow{p} \int_{t}^{t+1} \sigma_{s}^{2} d s+\sum_{n=1}^{N} J_{n}^{2}
$$

- J_{n} are jumps

Realized Variance Limitations

Why Realized Variance Doesn't Work

- Multiple prices at the same time
- Define the price as the average share price (volume weighted price)
- Use simple average or median
- Not a problem
- Prices only observed on a discrete grid
- \$. 01 or $£ .0025$
- Nothing can be done
- Small problem
- Data quality
- UHF price data is generally messy
- Typos
- Wrong time-stamps
- Pre-filter to remove obvious errors
- Often remove "round trips"
- No price available at some point in time
- Use the last observed price: last price interpolation
- Averaging prices before and after leads to bias

Solutions to bid-ask bounce type noise

- Bid-ask bounce is a critical issue
- Simple model with "pure" noise

$$
p_{i, t}=p_{i, t}^{*}+\nu_{i, t}
$$

- $p_{i, t}$ is the observed price with noise
- $p_{i, t}^{*}$ is the unobserved efficient price
- $\nu_{i, t}$ is the noise
- Easy to show

$$
r_{i, t}=r_{i, t}^{*}+\eta_{i, t}
$$

- $r_{i, t}^{*}$ is the unobserved efficient return
- $\eta_{i, t}=\nu_{i, t}-\nu_{i-1, t}$ is a MA(1) error
- $R V$ is badly biased

$$
R V_{t}^{(m)} \approx \widehat{R V}_{t}+m \tau^{2}
$$

- Bias is increasing in m
- Variance is also increasing in m

Simple solution

- Do not sample frequently
- 5-30 minutes
- Better than daily but still inefficient
- Remove MA(1) by filtering
- $\eta_{i, t}$ is an MA(1)
- Fit an MA(1) to observed returns

$$
r_{i, t}=\theta \epsilon_{i-1, t}+\epsilon_{i, t}
$$

- Use fit residuals $\hat{\epsilon}_{i, t}$ to compute $R V$
- Generally biased downward
- Use mid-quotes
- A little noise
- My usual solution

Improving Realized Variance Estimators

A modified Realized Variance estimator: $R V^{A C 1}$

- Best solution is to use a modified $R V$ estimator
- $R V^{A C 1}$

$$
R V_{t}^{A C 1(m)}=\sum_{i=1}^{m} r_{i, t}^{2}+2 \sum_{i=2}^{m} r_{i, t} r_{i-1, t}
$$

- Adds a term to $R V$ to capture the $\mathrm{MA}(1)$ noise
- Looks like a simple Newey-West estimator
- Unbiased in pure noise model
- Not consistent
- Realized Kernel Estimator
- Adds more weighted cross-products
- Consistent in the presence of many realistic noise processes
- Fairly easy to implement

One final problem

- Market closure
- Markets do not operate 24 hours a day (in general)
- Add in close-to-open return squared

$$
R V_{t}^{(m)}=r_{\mathrm{CtO}, t}^{2}+\sum_{i=1}^{m} r_{i, t}^{2}
$$

- $r_{\text {Cto }, t}=p_{\text {Open }, t}-p_{\text {Close }, t-1}$
- Compute a modified $R V$ by weighting the overnight and open hour estimates differently

$$
\widetilde{R V}_{t}^{(m)}=\lambda_{1} r_{\mathrm{COO}, t}^{2}+\lambda_{2} R V_{t}^{(m)}
$$

Optimizing Realized Variance

The volatility signature plot

- Hard to know how often to sample
- Visual inspection may be useful

Definition (Volatility Signature Plot)

The volatility signature plot displays the time-series average of Realized Variance

$$
\overline{R V}_{t}^{(m)}=T^{-1} \sum_{t=1}^{T} R V_{t}^{(m)}
$$

as a function of the number of samples, m. An equivalent representation displays the amount of time, whether in calendar time or tick time (number of trades between observations) along the X -axis.

Some empirical results

- S\&P 500 Depository Receipts
- SPiDeRs
- AMEX: SPY
- Exchange Traded Fund
- Ultra-liquid
- 100M shares per day
- Over 100,000 trades per day
- 23,400 seconds in a typical trading day
- January 1, 2007 - December 31, 2018
- Filtered by daily High-Low data
- Some cleaning of outliers

SPDR Realized Variance ($R V$)
 $R V, 15$ seconds

$R V, 5$ minutes

$R V, 1$ minute

$R V, 15$ minutes

SPDR Realized Variance ($R V^{A C 1}$)

$R V^{A C 1}, 15$ seconds
$R V^{A C 1}, 1$ minute

$R V^{A C 1}, 5$ minutes

$R V^{A C 1}, 15$ minutes

Volatility Signature Plots

Volatility Signature Plot for SPDR $R V$

Volatility Signature Plot for SPDR $R V^{A C 1}$

Bitcoin Realized Variance

5-second $R V$

5-minute $R V$

Modeling Realized Variance

Modeling Realized Variance

- Two choices
- Treat volatility as observable and model as ARMA
- Really simply to do
- Forecasts are equally simple
- Theoretical motivation why RV may be well modeled by an ARMA $(P, 1)$
- Continue to treat volatility as latent and use ARCH-type model
- Realized Variance is still measured with error
- A more precise measure of conditional variance that daily returns squared, r_{t}^{2}, but otherwise similar

Treating σ_{t}^{2} as observable

- If $R V$ is σ_{t}^{2},then variance is observable
- Main model used is a Heterogeneous Autoregression
- Restricted $\mathrm{AR}(22)$ in levels

$$
R V_{t}=\phi_{0}+\phi_{1} R V_{t-1}+\phi_{5} \overline{R V}_{5, t-1}+\phi_{22} \overline{R V}_{22, t-1}+\epsilon_{t}
$$

- Or in logs

$$
\ln R V_{t}=\phi_{0}+\phi_{1} \ln R V_{t-1}+\phi_{5} \ln \overline{R V}_{5, t-1}+\phi_{22} \ln \overline{R V}_{22, t-1}+\epsilon_{t}
$$

where $\overline{R V}_{j, t-1}=j^{-1} \sum_{i=1}^{j} R V_{t-i}$ is a j lag moving average

- Model picks up volatility changes at the daily, weekly, and monthly scale
- Fits and forecasts RV fairly well
- MA term may still be needed

Leaving σ_{t}^{2} latent

- Alternative if to treat RV as a proxy of the latent variance and use a non-negative multiplicative error model (MEM)
- MEMs specify the mean of a process as $\mu_{t} \times \psi_{t}$ where ψ_{t} is a mean 1 shock.
- A χ_{1}^{2} is a natural choice here
- ARCH models are special cases of a non-negative MEM model
- Easy to model RV using existing ARCH models

1. Construct $\tilde{r}_{t}=\operatorname{sign}\left(r_{t}\right) \sqrt{R V_{t}}$
2. Use standard ARCH model building to construct a model for \tilde{r}_{t}

$$
\sigma_{t}^{2}=\omega+\alpha_{1} \tilde{r}_{t-1}^{2}+\gamma_{1} \tilde{r}_{t-1}^{2} I_{\left[\tilde{r}_{t-1}<0\right]}+\beta_{1} \sigma_{t-1}^{2}
$$

becomes

$$
\sigma_{t}^{2}=\omega+\alpha_{1} R V_{t-1}+\gamma_{1} R V_{t-1} I_{\left[r_{t-1}<0\right]}+\beta_{1} \sigma_{t-1}^{2}
$$

Implied Volatility

Implied Volatility and VIX

- Implied volatility is very different from ARCH and Realized measures
- Market based: Level of volatility is calculated from options prices
- Forward looking: Options depend on future price path
- "Classic" implied relies on the Black-Scholes pricing formula
- "Model free" implied volatility exploits a relationship between the second derivative of the call price with respect to the strike and the risk neutral measure
- VIX is a Chicago Board Options Exchange (CBOE) index based on a model free measure
- Allows volatility to be directly traded

Black-Scholes Implied Volatility

- Black-Scholes Options Pricing
- Prices follow a geometric Brownian Motion

$$
\mathrm{d} S_{t}=\mu S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}
$$

- Constant drift and volatility
- Price of a call is

$$
C(T, K)=S \Phi\left(d_{1}\right)+K e^{-r T} \Phi\left(d_{2}\right)
$$

where

$$
\begin{aligned}
d_{1} & =\frac{\ln (S / K)+\left(r+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}} \\
d_{2} & =\frac{\ln (S / K)+\left(r-\sigma^{2} / 2\right) T}{\sigma \sqrt{T}} .
\end{aligned}
$$

- Can invert to produce a formula for the volatility given the call price $C(T, K)$

$$
\sigma_{t}^{\text {Implied }}=g\left(C_{t}(T, K), S_{t}, K, T, r\right)
$$

Model-Free Implied Volatility

Model Free Implied Volatility

■ Model free uses the relationship between option prices and RN density

- The price of a call option with strike K and maturity t is

$$
C(t, K)=\int_{K}^{\infty}\left(S_{t}-K\right) \phi_{t}\left(S_{t}\right) d S_{t}
$$

- $\phi_{t}\left(S_{t}\right)$ is the risk-neutral density at maturity t
- Differentiating with respect to strike yields

$$
\frac{\partial C(t, K)}{\partial K}=-\int_{K}^{\infty} \phi_{t}\left(S_{t}\right) d S_{t}
$$

- Differentiating again with respect to strike yields

$$
\frac{\partial^{2} C(t, K)}{\partial K^{2}}=\phi_{t}(K)
$$

- The change in an option price as a function of the strike K is the probability of the stock price having value K at time t
- Allows for risk-neutral density to be recovered from a continuum of options without assuming a model for stock prices

Model Free Implied Volatility

- The previous result allows a model free IV to be computed from

$$
\mathrm{E}_{\mathbb{F}}\left[\int_{0}^{t}\left(\frac{\partial F_{s}}{F_{s}}\right)^{2} d s\right]=2 \int_{0}^{\infty} \frac{C^{F}(t, K)-\left(F_{0}-K\right)^{+}}{K^{2}} \mathrm{~d} K=2 \int_{0}^{\infty} \underbrace{\frac{C^{F}(t, K)-\left(F_{0}-K\right)^{+}}{K}}_{\text {Height }} \frac{\mathrm{d} K}{K}
$$

- Devil is in the details
- Only finitely many calls
- Thin trading
- Truncation

$$
\sum_{m=1}^{M}\left[g\left(T, K_{m}\right)+g\left(T, K_{m-1}\right)\right]\left(K_{m}-K_{m-1}\right)
$$

where

$$
g(T, K)=\frac{C(t, K / B(0, t))-\left(S_{0}-K\right)^{+}}{K^{2}}
$$

- See Jiang \& Tian (2005, RFS) for a very useful discussion

VIX

- VIX is continuously computed by the CBOE
- Uses a model-free style formula
- Uses both calls and puts
- Focuses on out-of-the-money options
- OOM options are more liquid
- Formula:

$$
\sigma^{2}=\frac{2}{T} e^{r T} \sum_{i=1}^{N} \underbrace{\frac{Q\left(K_{i}\right)}{K_{i}} \frac{\Delta K_{i}}{K_{i}}}_{\text {Height }}-\frac{1}{T}\left(\frac{F_{0}}{K_{0}}-1\right)^{2}
$$

- $Q\left(K_{i}\right)$ is the mid-quote for a strike of K_{i}, K_{0} is the first strike below the forward index level
- Only uses out-of-the-money options
- VIX appears to have information about future realized volatility that is not in other backward looking measures (GARCH/RV)

Understanding Model-Free Implied Volatility

Model-Free Example

- MFIV works under weak conditions on the underlying price process
- Geometric Brownian motion is included
- Put and call options prices computed from Black-Scholes
- Annualized volatility either 20% or 60%
- Risk-free rate 2%, time-to-maturity 1 month ($T=1 / 12$)
- Current price 100 (normalized to moneyness), strikes every 4%
- Contribution is $\frac{2}{T} e^{r T} \frac{\Delta K_{i}}{K_{i}^{2}} Q\left(K_{i}\right)$

Strike	Call	Put	Abs. Diff.	VIX Contrib.
88	12.17	0.02	12.15	0.0002483
92	8.33	0.17	8.15	0.0019314
96	4.92	0.76	4.16	0.0079299
100	2.39	2.22	0.17	0.0221168
104	0.91	4.74	3.83	0.0080904
108	0.27	8.09	7.82	0.0022259
112	0.06	11.88	11.81	0.0004599
116	0.01	15.82	15.81	$7.146 e-05$
Total				0.0430742

Model-Free Example

20\% Annualized Volatility

60\% Annualized Volatility

VIX against TARCH $(1,1,1)$ Forward-vol

VIX and Forward Volatility

VIX Forward Volatility Difference

The Variance Risk Premium

Variance Risk Premium

- Difference between VIX and forward volatility is a measure of the return to selling volatility
- Variance Risk Premium is strictly forward looking

$$
\mathrm{E}_{t}^{\mathbb{Q}}\left[\int_{0}^{t+h}\left(\frac{\partial F_{s}}{F_{s}}\right)^{2} d s\right]-\mathrm{E}_{t}^{\mathbb{P}}\left[\int_{t}^{t+h}\left(\frac{\partial F_{s}}{F_{s}}\right)^{2} d s\right]
$$

- Defined as the difference between $\mathrm{RN}\left(\mathrm{E}^{\mathbb{Q}}\right)$ and physical $\left(\mathrm{E}^{\mathbb{P}}\right)$ variance
- RN variance measured using VIX or other MFIV
- Physical forecast from HAR or other model based on Realized Variance
- RV matters, using daily is sufficiently noisy that prediction is not useful

