Lesson 3
Problem: Importing Modules¶
Python is a general-purpose programming language and is not specialized for numerical or statistical computation. The core modules that enable Python to store and access data efficiently and that provide statistical algorithms are located in modules. The most important are:
- NumPy (
numpy
) - provide the basic array block used throughout numerical Python - pandas (
pandas
) - provides DataFrames which are used to store data in an easy-to-use format - SciPy (
scipy
) - Basic statistics and random number generators. The most important submodule isscipy.stats
- matplotlib (
matplotlib
) - graphics. The most important submodule ismatplotlib.pyplot
. - statsmodels (
statsmodels
) - statistical models such as OLS. The most important submodules arestatsmodels.api
andstatsmodels.tsa.api
.
Begin by importing the important modules.
In [ ]:
Problem: Canonical Names¶
Use the as
keyword to import the modules using their canonical names:
Module | Canonical Name |
---|---|
numpy | np |
pandas | pd |
scipy | sp |
scipy.stats | stats |
matplotlib.pyplot | plt |
statsmodels.api | sm |
statsmodels.tsa.api | tsa |
Import the core modules using import
module as
canonical.
In [ ]:
Problem: Importing individual functions¶
- Import
array
,sqrt
,log
andexp
from NumPy. - Import
OLS
fromstatsmodels.regression.linear_model
- Import the
stats
module fromscipy
In [ ]:
In [ ]:
# Setup: A simple 2 by 2 array to use with det
import numpy as np
x = np.array([[2,3],[1,2]])
print(x)
In [ ]:
In [ ]:
In [ ]:
In [ ]: