{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Formats for Panel Data Analysis\n", "\n", "There are two primary methods to express data:\n", "\n", " * MultiIndex DataFrames where the outer index is the entity and the inner is the time index. This requires using pandas.\n", " * 3D structures were dimension 0 (outer) is variable, dimension 1 is time index and dimension 2 is the entity index. It is also possible to use a 2D data structure with dimensions (t, n) which is treated as a 3D data structure having dimensions (1, t, n). These 3D data structures can be pandas, NumPy or xarray." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MultiIndex DataFrames\n", "The most precise data format to use is a MultiIndex `DataFrame`. This is the most precise since only single columns can preserve all types within a panel. For example, it is not possible to span a single Categorical variable across multiple columns when using a pandas `Panel`. \n", "\n", "This example uses the job training data to construct a MultiIndex `DataFrame` using the `set_index` command. The entity index is `fcode` and the time index is `year`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from linearmodels.datasets import jobtraining\n", "\n", "data = jobtraining.load()\n", "print(data.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here `set_index` is used to set the MultiIndex using the firm code (entity) and year (time)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mi_data = data.set_index([\"fcode\", \"year\"])\n", "print(mi_data.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `MultiIndex` `DataFrame` can be used to initialized the model. When only referencing a single series, the `MultiIndex` `Series` representation can be used." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from linearmodels import PanelOLS\n", "\n", "mod = PanelOLS(mi_data.lscrap, mi_data.hrsemp, entity_effects=True)\n", "print(mod.fit())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NumPy arrays\n", "3D NumPy arrays can be used to hand panel data where the three axes are `0`, items, `1`, time and `2`, entity. NumPy arrays are not usually the best format for data since the results all use generic variable names. \n", "\n", "Pandas dropped support for their Panel in 0.25." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "np_data = np.asarray(mi_data)\n", "np_lscrap = np_data[:, mi_data.columns.get_loc(\"lscrap\")]\n", "np_hrsemp = np_data[:, mi_data.columns.get_loc(\"hrsemp\")]\n", "nentity = mi_data.index.levels[0].shape[0]\n", "ntime = mi_data.index.levels[1].shape[0]\n", "np_lscrap = np_lscrap.reshape((nentity, ntime)).T\n", "np_hrsemp = np_hrsemp.reshape((nentity, ntime)).T\n", "np_hrsemp.shape = (1, ntime, nentity)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = PanelOLS(np_lscrap, np_hrsemp, entity_effects=True).fit()\n", "print(res)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## xarray DataArrays\n", "\n", "xarray is a relatively new entrant into the set of packages used for data structures. The data structures provided by ``xarray`` are relevant in the context of panel models since pandas `Panel` is scheduled for removal in the futures, and so the only 3d data format that will remain viable is an `xarray` `DataArray`. `DataArray`s are similar to pandas `Panel` although `DataArrays` use some difference notation. In principle it is possible to express the same information in a `DataArray` as one can in a `Panel`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da = mi_data.to_xarray()\n", "da.keys()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = PanelOLS(da[\"lscrap\"].T, da[\"hrsemp\"].T, entity_effects=True).fit()\n", "print(res)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conversion of Categorical and Strings to Dummies\n", "Categorical or string variables are treated as factors and so are converted to dummies. The first category is always dropped. If this is not desirable, you should manually convert the data to dummies before estimating a model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "year_str = mi_data.reset_index()[[\"year\"]].astype(\"str\")\n", "year_cat = pd.Categorical(year_str.iloc[:, 0])\n", "year_str.index = mi_data.index\n", "year_cat.index = mi_data.index\n", "mi_data[\"year_str\"] = year_str\n", "mi_data[\"year_cat\"] = year_cat" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here year has been converted to a string which is then used in the model to produce year dummies." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Exogenous variables\")\n", "print(mi_data[[\"hrsemp\", \"year_str\"]].head())\n", "print(mi_data[[\"hrsemp\", \"year_str\"]].dtypes)\n", "\n", "res = PanelOLS(\n", " mi_data[[\"lscrap\"]], mi_data[[\"hrsemp\", \"year_str\"]], entity_effects=True\n", ").fit()\n", "print(res)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using ``categorical``s has the same effect." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"Exogenous variables\")\n", "print(mi_data[[\"hrsemp\", \"year_cat\"]].head())\n", "print(mi_data[[\"hrsemp\", \"year_cat\"]].dtypes)\n", "\n", "res = PanelOLS(\n", " mi_data[[\"lscrap\"]], mi_data[[\"hrsemp\", \"year_cat\"]], entity_effects=True\n", ").fit()\n", "print(res)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 4 }