Source code for linearmodels.asset_pricing.covariance

"""
Covariance estimators for linear factor models
"""

from __future__ import annotations

import numpy
from numpy import empty
from numpy.linalg import inv

from linearmodels.iv.covariance import (
    KERNEL_LOOKUP,
    cov_kernel,
    kernel_optimal_bandwidth,
)
import linearmodels.typing.data


class _HACMixin:
    def __init__(self, kernel: str, bandwidth: float | None) -> None:
        self._kernel: str | None = None
        self._bandwidth: float | None = None  # pragma: no cover
        self._moments: numpy.ndarray = empty((0,))  # pragma: no cover
        self._check_kernel(kernel)
        self._check_bandwidth(bandwidth)

    @property
    def kernel(self) -> str:
        """Kernel used in estimation"""
        assert self._kernel is not None
        return self._kernel

    @property
    def bandwidth(self) -> float:
        """Bandwidth used in estimation"""
        if self._bandwidth is None:
            assert self._moments is not None
            moments = self._moments
            m = moments / moments.std(0)[None, :]
            m = m.sum(1)
            bw = kernel_optimal_bandwidth(m, kernel=self.kernel)
            self._bandwidth = bw

        return self._bandwidth

    def _check_kernel(self, kernel: str) -> None:
        if not isinstance(kernel, str):
            raise TypeError("kernel must be the name of a kernel")
        self._kernel = kernel.lower()
        if self._kernel not in KERNEL_LOOKUP:
            raise ValueError("Unknown kernel")

    def _check_bandwidth(self, bandwidth: float | None) -> None:
        self._bandwidth = bandwidth
        if bandwidth is not None:
            try:
                assert bandwidth is not None
                bandwidth = float(bandwidth)
            except (TypeError, ValueError):
                raise TypeError("bandwidth must be either None or a float")
            if bandwidth < 0:
                raise ValueError("bandwidth must be non-negative.")

    def _kernel_cov(
        self, z: linearmodels.typing.data.Float64Array
    ) -> linearmodels.typing.data.Float64Array:
        nobs = z.shape[0]
        bw = self.bandwidth
        kernel = self._kernel
        assert kernel is not None
        kernel_estimator = KERNEL_LOOKUP[kernel]
        weights = kernel_estimator(bw, nobs - 1)
        out = cov_kernel(z, weights)
        return (out + out.T) / 2


[docs] class HeteroskedasticCovariance: """ Heteroskedasticity robust covariance estimator Parameters ---------- xe : ndarray Scores/moment conditions jacobian : ndarray Jacobian. One and only one of jacobian and inv_jacobian must be provided inv_jacobian : {ndarray, None} Inverse jacobian. One and only one of jacobian and inv_jacobian must be provided. Default is None. center : bool Flag indicating to center the scores when computing the covariance. Default is true. debiased : bool Flag indicating to use a debiased estimator. Default is False. df : int Degree of freedom value ot use if debiasing. Default is 0. """ def __init__( self, xe: linearmodels.typing.data.Float64Array, *, jacobian: numpy.ndarray | None = None, inv_jacobian: numpy.ndarray | None = None, center: bool = True, debiased: bool = False, df: int = 0, ) -> None: self._moments = self._xe = xe self._jac = jacobian self._inv_jac = inv_jacobian self._center = center if (jacobian is not None) == (inv_jacobian is not None): raise ValueError( "One and only one of jacobian or inv_jacobian must be provided." ) self._debiased = debiased self._df = df if jacobian is not None: self._square = jacobian.shape[0] == jacobian.shape[1] else: assert inv_jacobian is not None self._square = inv_jacobian.shape[0] == inv_jacobian.shape[1] def __str__(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: return self.__str__() + f", id: {hex(id(self))}" @property def config(self) -> dict[str, str | float]: return {"type": self.__class__.__name__} @property def s(self) -> linearmodels.typing.data.Float64Array: """ Score/moment condition covariance Returns ------- ndarray Covariance of the scores or moment conditions """ xe = self._xe nobs = xe.shape[0] if self._center: xe = xe - xe.mean(0)[None, :] out = xe.T @ xe / nobs return (out + out.T) / 2 @property def jacobian(self) -> linearmodels.typing.data.Float64Array: """The Jacobian""" if self._jac is None: assert self._inv_jac is not None self._jac = inv(self._inv_jac) assert self._jac is not None return self._jac @property def inv_jacobian(self) -> linearmodels.typing.data.Float64Array: """Inverse Jacobian""" if self._inv_jac is None: assert self._jac is not None self._inv_jac = inv(self._jac) assert self._inv_jac is not None return self._inv_jac @property def square(self) -> bool: """Flag indicating if jacobian is square""" return self._square @property def cov(self) -> linearmodels.typing.data.Float64Array: """ Compute parameter covariance Returns ------- ndarray Parameter covariance """ s = self.s nobs = self._xe.shape[0] scale = 1 / (nobs - int(self._debiased) * self._df) if self.square: ji = self.inv_jacobian out = ji @ s @ ji.T else: j = self.jacobian out = inv(j.T @ inv(s) @ j) out = (scale / 2) * (out + out.T) return out
[docs] class KernelCovariance(HeteroskedasticCovariance, _HACMixin): """ Heteroskedasticity-autocorrelation (HAC) robust covariance estimator Parameters ---------- xe : ndarray The scores (moment) conditions. jacobian : ndarray Jacobian. One and only one of jacobian and inv_jacobian must be provided. inv_jacobian : ndarray Inverse jacobian. One and only one of jacobian and inv_jacobian must be provided. kernel : str Kernel name. See notes for available kernels. The default is "bartlett". bandwidth : int Non-negative integer bandwidth. If None, the optimal bandwidth is estimated. center : bool Flag indicating to center the scores when computing the covariance. debiased : bool Flag indicating to use a debiased estimator. df : int Degree of freedom value ot use if debiasing. See Also -------- linearmodels.iv.covariance.kernel_weight_bartlett, linearmodels.iv.covariance.kernel_weight_parzen, linearmodels.iv.covariance.kernel_weight_quadratic_spectral """ def __init__( self, xe: linearmodels.typing.data.Float64Array, *, jacobian: numpy.ndarray | None = None, inv_jacobian: numpy.ndarray | None = None, kernel: str | None = None, bandwidth: float | None = None, center: bool = True, debiased: bool = False, df: int = 0, ) -> None: kernel = "bartlett" if kernel is None else kernel _HACMixin.__init__(self, kernel, bandwidth) super().__init__( xe, jacobian=jacobian, inv_jacobian=inv_jacobian, center=center, debiased=debiased, df=df, ) def __str__(self) -> str: descr = f", Kernel: {self._kernel}, Bandwidth: {self.bandwidth}" return self.__class__.__name__ + descr @property def config(self) -> dict[str, str | float]: out = super().config out["kernel"] = self.kernel out["bandwidth"] = self.bandwidth return out @property def s(self) -> linearmodels.typing.data.Float64Array: """ Score/moment condition covariance Returns ------- ndarray Covariance of the scores or moment conditions """ xe = self._xe out = self._kernel_cov(xe) return (out + out.T) / 2
class HeteroskedasticWeight: """ GMM weighing matrix estimation Parameters ---------- moments : ndarray Moment conditions (nobs by nmoments) center : bool Flag indicating to center the moments when computing the weights """ def __init__( self, moments: linearmodels.typing.data.Float64Array, center: bool = True ) -> None: self._moments = moments self._center = center def w( self, moments: linearmodels.typing.data.Float64Array ) -> linearmodels.typing.data.Float64Array: """ Score/moment condition weighting matrix Parameters ---------- moments : ndarray Moment conditions (nobs by nmoments) Returns ------- ndarray Weighting matrix computed from moment conditions """ if self._center: moments = moments - moments.mean(0)[None, :] nobs = moments.shape[0] out = moments.T @ moments / nobs return inv((out + out.T) / 2.0) class KernelWeight(HeteroskedasticWeight, _HACMixin): """ HAC GMM weighing matrix estimation Parameters ---------- moments : ndarray Moment conditions (nobs by nmoments) center : bool Flag indicating to center the moments when computing the weights kernel : str Kernel name. See notes for available kernels. If None, the kernel is set to "bartlett". bandwidth : int. Non-negative integer bandwidth. If None, the optimal bandwidth is estimated. """ def __init__( self, moments: linearmodels.typing.data.Float64Array, center: bool = True, kernel: str | None = None, bandwidth: float | None = None, ): kernel = "bartlett" if kernel is None else kernel _HACMixin.__init__(self, kernel, bandwidth) super().__init__(moments, center=center) def w( self, moments: linearmodels.typing.data.Float64Array ) -> linearmodels.typing.data.Float64Array: """ Score/moment condition weighting matrix Parameters ---------- moments : ndarray Moment conditions (nobs by nmoments) Returns ------- ndarray Weighting matrix computed from moment conditions """ if self._center: moments = moments - moments.mean(0)[None, :] out = self._kernel_cov(moments) return inv(out)