linearmodels.panel.covariance.FamaMacBethCovariance¶
-
class linearmodels.panel.covariance.FamaMacBethCovariance(y: ndarray, x: ndarray, params: ndarray, all_params: DataFrame, *, debiased: bool =
False
, bandwidth: float | None =None
, kernel: str | None =None
)[source]¶ HAC estimator for Fama-MacBeth estimator
- Parameters:¶
- y: ndarray¶
(entity x time) by 1 stacked array of dependent
- x: ndarray¶
(entity x time) by variables stacked array of exogenous
- params: ndarray¶
(variables by 1) array of estimated model parameters
- all_params: DataFrame¶
(nobs by variables) array of all estimated model parameters
- debiased: bool =
False
¶ Flag indicating whether to debias the estimator.
- bandwidth: float | None =
None
¶ Non-negative integer to use as bandwidth. Set to 0 to disable autocorrelation robustness. If not provided a rule-of- thumb value is used.
- kernel: str | None =
None
¶ Name of one of the supported kernels. If None, uses the Newey-West kernel.
Notes
Covariance is a Kernel covariance of all estimated parameters.
Methods
Covariance calculation deferred until executed
Properties
The set of parameters estimated for each of the time periods
Estimator bandwidth
Estimated covariance
Model residuals
Covariance estimator name
Error variance