linearmodels.panel.model.FamaMacBeth.fit¶
- FamaMacBeth.fit(cov_type='unadjusted', debiased=True, bandwidth=None, kernel=None)[source]¶
Estimate model parameters
- Parameters:
- cov_type
str
Name of covariance estimator (see notes). Default is “unadjusted”.
- debiasedbool
Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment.
- bandwidth
float
The bandwidth to use when cov_type is “kernel”. If None, it is automatically computed.
- kernel
str
The kernel to use. None chooses the default kernel.
- cov_type
- Returns:
PanelResults
Estimation results
Notes
Two covariance estimators are supported:
“unadjusted”, “homoskedastic”, “robust”, “heteroskedastic” use the standard covariance estimator of the T parameter estimates.
“kernel” is a HAC estimator. Configurations options are:
Examples
>>> from linearmodels import FamaMacBeth >>> mod = FamaMacBeth(y, x) >>> res = mod.fit(cov_type="kernel", kernel="Parzen")
- Return type: