linearmodels.system.gmm.HeteroskedasticWeightMatrix¶
-
class linearmodels.system.gmm.HeteroskedasticWeightMatrix(center: bool =
False
, debiased: bool =False
)[source]¶ Heteroskedasticity robust weight estimation
- Parameters:¶
Notes
The weight matrix estimator is
\[\begin{split}W & = n^{-1}\sum_{i=1}^{n}g'_ig_i \\ g_i & = (z_{1i}\epsilon_{1i},z_{2i}\epsilon_{2i},\ldots,z_{ki}\epsilon_{ki})\end{split}\]where \(g_i\) is the vector of scores across all equations for observation i. \(z_{ji}\) is the vector of instruments for equation j and \(\epsilon_{ji}\) is the error for equation j for observation i. This form allows for heteroskedasticity and arbitrary cross-sectional dependence between the moment conditions.
Methods
sigma
(eps, x)Estimate residual covariance.
weight_matrix
(x, z, eps, *[, sigma])Construct a GMM weight matrix for a model.
Properties
Weight estimator configuration