linearmodels.iv.gmm.IVGMMCovariance¶
- class IVGMMCovariance(x, y, z, params, w, cov_type='robust', debiased=False, **cov_config)[source]¶
Covariance estimation for GMM models
- Parameters
- x
ndarray
Model regressors (nobs by nvar)
- y
ndarray
Series ,modeled (nobs by 1)
- z
ndarray
Instruments used for endogenous regressors (nobs by ninstr)
- params
ndarray
Estimated model parameters (nvar by 1)
- w
ndarray
Weighting matrix used in GMM estimation
- cov_type
str
Covariance estimator to use Valid choices are
“unadjusted”, “homoskedastic” - Assumes moment conditions are homoskedastic
“robust”, “heteroskedastic” - Allows for heteroskedasticity by not autocorrelation
“kernel” - Allows for heteroskedasticity and autocorrelation
“cluster” - Allows for one-way cluster dependence
- debiasedbool
Flag indicating whether to debias the covariance estimator
- cov_config
Optional keyword arguments that are specific to a particular cov_type
- x
See also
Notes
Optional keyword argument for specific covariance estimators:
kernel
kernel
: Name of kernel to use. SeeKernelCovariance
for details on available kernelsbandwidth
: Bandwidth to use when computing the weight. If not provided, nobs - 2 is used.
cluster
clusters
: Array containing the cluster indices. SeeClusteredCovariance
- Attributes
Methods
Properties
Covariance of estimated parameters
Flag indicating if covariance is debiased
Score covariance estimate
Estimated variance of residuals.