linearmodels.panel.covariance.HomoskedasticCovariance¶
-
class linearmodels.panel.covariance.HomoskedasticCovariance(y, x, params, entity_ids, time_ids, *, debiased=
False
, extra_df=0
)[source]¶ Homoskedastic covariance estimation
- Parameters:¶
- y : ndarray¶
(entity x time) by 1 stacked array of dependent
- x : ndarray¶
(entity x time) by variables stacked array of exogenous
- params : ndarray¶
variables by 1 array of estimated model parameters
- entity_ids : ndarray¶
(entity x time) by 1 stacked array of entity ids
- time_ids : ndarray¶
(entity x time) by 1 stacked array of time ids
- debiased : bool¶
Flag indicating whether to debias the estimator
- extra_df : int¶
Additional degrees of freedom consumed by models beyond the number of columns in x, e.g., fixed effects. Covariance estimators are always adjusted for extra_df irrespective of the setting of debiased
Notes
The estimator of the covariance is
\[s^2\hat{\Sigma}_{xx}^{-1}\]where
\[\hat{\Sigma}_{xx} = X'X\]and
\[s^2 = (n-df)^{-1} \hat{\epsilon}'\hat{\epsilon}\]where df is
extra_df
and n-df is replace by n-df-k ifdebiased
isTrue
.Methods
Covariance calculation deferred until executed
Properties
Estimated covariance
Model residuals
Covariance estimator name
Error variance