randomstate.prng.dsfmt.multivariate_normal

randomstate.prng.dsfmt.multivariate_normal(mean, cov[, size, check_valid, tol])

Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of the one-dimensional normal distribution.

Parameters:
  • mean (1-D array_like, of length N) – Mean of the N-dimensional distribution.
  • cov (2-D array_like, of shape (N, N)) – Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling.
  • size (int or tuple of ints, optional) – Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.
  • check_valid ({ 'warn', 'raise', 'ignore' }, optional) – Behavior when the covariance matrix is not positive semidefinite.
  • tol (float, optional) – Tolerance when checking the singular values in covariance matrix.
  • method (str, optional) – Either ‘bm’ or ‘zig’. ‘bm’ uses the default Box-Muller transformations method. ‘zig’ uses the much faster Ziggurat method of Marsaglia and Tsang.
Returns:

out – The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the distribution.

Return type:

ndarray

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\). The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

  • Spherical covariance (cov is a multiple of the identity matrix)
  • Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]]  # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed.

References

[1]Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.
[2]Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True]