randomstate.prng.pcg32.
random_integers
(low, high=None, size=None)¶Random integers of type np.int between low and high, inclusive.
Return random integers of type np.int from the “discrete uniform” distribution in the closed interval [low, high]. If high is None (the default), then results are from [1, low]. The np.int type translates to the C long type used by Python 2 for “short” integers and its precision is platform dependent.
This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.
Parameters: |
|
---|---|
Returns: | out – size-shaped array of random integers from the appropriate distribution, or a single such random int if size not provided. |
Return type: | int or ndarray of ints |
See also
random.randint()
Notes
To sample from N evenly spaced floating-point numbers between a and b, use:
a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)
Examples
>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],
[3, 3],
[4, 5]])
Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set \({0, 5/8, 10/8, 15/8, 20/8}\)):
>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])
Roll two six sided dice 1000 times and sum the results:
>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2
Display results as a histogram:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()