randomstate.prng.sfmt.
multinomial
(n, pvals, size=None)¶Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalisation of the
binomial distribution. Take an experiment with one of p
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents n such experiments. Its values,
X_i = [X_0, X_1, ..., X_p]
, represent the number of times the
outcome was i
.
Parameters: |
|
---|---|
Returns: | out – The drawn samples, of shape size, if that was provided. If not,
the shape is In other words, each entry |
Return type: | ndarray |
Examples
Throw a dice 20 times:
>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])
It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:
>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],
[2, 4, 3, 4, 0, 7]])
For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.
A loaded die is more likely to land on number 6:
>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26])
The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so:
>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62])
not like:
>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
array([100, 0])