randomstate.prng.xorshift128.
noncentral_chisquare
(df, nonc, size=None)¶Draw samples from a noncentral chi-square distribution.
The noncentral \(\chi^2\) distribution is a generalisation of the \(\chi^2\) distribution.
Parameters: |
|
---|---|
Returns: | out – Drawn samples from the parameterized noncentral chi-square distribution. |
Return type: | ndarray or scalar |
Notes
The probability density function for the noncentral Chi-square distribution is
where \(Y_{q}\) is the Chi-square with q degrees of freedom.
In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the probability of killing the point target given by the noncentral chi-squared distribution.
References
[1] | Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”, Metrika, Volume 15, Number 1 / December, 1970. |
[2] | Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution |
Examples
Draw values from the distribution and plot the histogram
>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()
Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()
Demonstrate how large values of non-centrality lead to a more symmetric distribution.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()