arch.unitroot.cointegration.DynamicOLSResults¶
- class arch.unitroot.cointegration.DynamicOLSResults(params: Series, cov: DataFrame, resid: Series, lags: int, leads: int, cov_type: str, kernel_est: CovarianceEstimator, num_x: int, trend: 'n' | 'c' | 'ct' | 'ctt', reg_results: RegressionResults, df_adjust: bool)[source]¶
- Estimation results for Dynamic OLS models - Parameters:¶
- params: Series¶
- The estimated model parameters. 
- cov: DataFrame¶
- The estimated parameter covariance. 
- resid: Series¶
- The model residuals. 
- lags: int¶
- The number of lags included in the model. 
- leads: int¶
- The number of leads included in the model. 
- cov_type: str¶
- The type of the parameter covariance estimator used. 
- kernel_est: CovarianceEstimator¶
- The covariance estimator instance used to estimate the parameter covariance. 
- reg_results: RegressionResults¶
- Regression results from fitting statsmodels OLS. 
- df_adjust: bool¶
- Whether to degree of freedom adjust the estimator. 
 
 - Methods - summary([full])- Summary of the model, containing estimated parameters and std. - Properties - The bandwidth used in the parameter covariance estimation - The estimated parameter covariance of the cointegrating vector - The type of parameter covariance estimator used - Parameter covariance of the all model parameters, incl. - The complete set of parameters, including leads and lags - The kernel used to estimate the covariance - The number of lags included in the model - The number of leads included in the model - The long-run variance of the regression residual. - The estimated parameters of the cointegrating vector - P-value of the parameters in the cointegrating vector - The model residuals - The variance of the regression residual. - The model R² - The degree-of-freedom adjusted R² - Standard errors of the parameters in the cointegrating vector - T-statistics of the parameters in the cointegrating vector