linearmodels.asset_pricing.covariance.KernelCovariance¶
-
class linearmodels.asset_pricing.covariance.KernelCovariance(xe: ndarray[tuple[int, ...], dtype[float64]], *, jacobian: ndarray | None =
None, inv_jacobian: ndarray | None =None, kernel: str | None =None, bandwidth: float | None =None, center: bool =True, debiased: bool =False, df: int =0)[source]¶ Heteroskedasticity-autocorrelation (HAC) robust covariance estimator
- Parameters:¶
- xe: ndarray[tuple[int, ...], dtype[float64]]¶
The scores (moment) conditions.
- jacobian: ndarray | None =
None¶ Jacobian. One and only one of jacobian and inv_jacobian must be provided.
- inv_jacobian: ndarray | None =
None¶ Inverse jacobian. One and only one of jacobian and inv_jacobian must be provided.
- kernel: str | None =
None¶ Kernel name. See notes for available kernels. The default is “bartlett”.
- bandwidth: float | None =
None¶ Non-negative integer bandwidth. If None, the optimal bandwidth is estimated.
- center: bool =
True¶ Flag indicating to center the scores when computing the covariance.
- debiased: bool =
False¶ Flag indicating to use a debiased estimator.
- df: int =
0¶ Degree of freedom value ot use if debiasing.
See also
linearmodels.iv.covariance.kernel_weight_bartlett,linearmodels.iv.covariance.kernel_weight_parzen,linearmodels.iv.covariance.kernel_weight_quadratic_spectralMethods
Properties
Bandwidth used in estimation
Compute parameter covariance
Inverse Jacobian
The Jacobian
Kernel used in estimation
Score/moment condition covariance
Flag indicating if jacobian is square