linearmodels.asset_pricing.model.LinearFactorModelGMM.fit¶
-
LinearFactorModelGMM.fit(*, center: bool =
True
, use_cue: bool =False
, steps: int =2
, disp: int =10
, max_iter: int =1000
, cov_type: str ='robust'
, debiased: bool =True
, starting: ndarray | DataArray | DataFrame | Series | None =None
, opt_options: dict[str, Any] | None =None
, **cov_config: bool | int | str) GMMFactorModelResults [source]¶ Estimate model parameters
- Parameters:¶
- center: bool =
True
¶ Flag indicating to center the moment conditions before computing the weighting matrix.
- use_cue: bool =
False
¶ Flag indicating to use continuously updating estimator
- steps: int =
2
¶ Number of steps to use when estimating parameters. 2 corresponds to the standard efficient GMM estimator. Higher values will iterate until convergence or up to the number of steps given
- disp: int =
10
¶ Number of iterations between printed update. 0 or negative values suppresses output
- max_iter: int =
1000
¶ Maximum number of iterations when minimizing objective. Must be positive.
- cov_type: str =
'robust'
¶ Name of covariance estimator
- debiased: bool =
True
¶ Flag indicating whether to debias the covariance estimator using a degree of freedom adjustment
- starting: ndarray | DataArray | DataFrame | Series | None =
None
¶ Starting values to use in optimization. If not provided, 2SLS estimates are used.
- opt_options: dict[str, Any] | None =
None
¶ Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except
fun
,x0
, andargs
can be overridden.- **cov_config: bool | int | str¶
Additional covariance-specific options. See Notes.
- center: bool =
- Returns:¶
Results class with parameter estimates, covariance and test statistics
- Return type:¶
Notes
The kernel covariance estimator takes the optional arguments
kernel
, one of “bartlett”, “parzen” or “qs” (quadratic spectral) andbandwidth
(a positive integer).