Source code for linearmodels.panel.results

from __future__ import annotations

from linearmodels.compat.statsmodels import Summary

from collections.abc import Mapping
import datetime as dt
from functools import cached_property
from typing import Any, Union

from formulaic.utils.context import capture_context
import numpy as np
import pandas
from pandas import DataFrame, Series, concat
from scipy import stats
from statsmodels.iolib.summary import SimpleTable, fmt_2cols, fmt_params

from linearmodels.iv.results import default_txt_fmt, stub_concat, table_concat
from linearmodels.shared.base import _ModelComparison, _SummaryStr
from linearmodels.shared.hypotheses import WaldTestStatistic, quadratic_form_test
from linearmodels.shared.io import _str, add_star, pval_format
from linearmodels.shared.utility import AttrDict
import linearmodels.typing.data

__all__ = [
    "PanelResults",
    "PanelEffectsResults",
    "RandomEffectsResults",
    "FamaMacBethResults",
    "compare",
]


[docs] class PanelResults(_SummaryStr): """ Results container for panel data models that do not include effects """ def __init__(self, res: AttrDict): self._params = res.params.squeeze() self._deferred_cov = res.deferred_cov self._debiased = res.debiased self._df_resid = res.df_resid self._df_model = res.df_model self._nobs = res.nobs self._name = res.name self._var_names = res.var_names self._residual_ss = res.residual_ss self._total_ss = res.total_ss self._r2 = res.r2 self._r2w = res.r2w self._r2b = res.r2b self._r2o = res.r2o self._c2w = res.c2w self._c2b = res.c2b self._c2o = res.c2o self._s2 = res.s2 self._entity_info = res.entity_info self._time_info = res.time_info self.model = res.model self._cov_type = res.cov_type self._datetime = dt.datetime.now() self._resids = res.resids self._wresids = res.wresids self._index = res.index self._f_info = res.f_info self._f_stat = res.f_stat self._loglik = res.loglik self._fitted = res.fitted self._effects = res.effects self._idiosyncratic = res.idiosyncratic self._original_index = res.original_index self._not_null = res.not_null @property def params(self) -> Series: """Estimated parameters""" return Series(self._params, index=self._var_names, name="parameter") @cached_property def cov(self) -> DataFrame: """Estimated covariance of parameters""" return DataFrame( self._deferred_cov(), columns=self._var_names, index=self._var_names ) @property def std_errors(self) -> Series: """Estimated parameter standard errors""" return Series(np.sqrt(np.diag(self.cov)), self._var_names, name="std_error") @property def tstats(self) -> Series: """Parameter t-statistics""" return Series(self._params / self.std_errors, name="tstat") @cached_property def pvalues(self) -> Series: """ Parameter p-vals. Uses t(df_resid) if ``debiased`` is True, else normal """ abs_tstats = np.abs(self.tstats) if self._debiased: pv = 2 * (1 - stats.t.cdf(abs_tstats, self.df_resid)) else: pv = 2 * (1 - stats.norm.cdf(abs_tstats)) return Series(pv, index=self._var_names, name="pvalue") @property def df_resid(self) -> int: """ Residual degree of freedom Notes ----- Defined as nobs minus nvar minus the number of included effects, if any. """ return self._df_resid @property def df_model(self) -> int: """ Model degree of freedom Notes ----- Defined as nvar plus the number of included effects, if any. """ return self._df_model @property def nobs(self) -> int: """Number of observations used to estimate the model""" return self._nobs @property def name(self) -> str: """Model name""" return self._name @property def total_ss(self) -> float: """Total sum of squares""" return self._total_ss @property def model_ss(self) -> float: """Residual sum of squares""" return self._total_ss - self._residual_ss @property def resid_ss(self) -> float: """Residual sum of squares""" return self._residual_ss @property def rsquared(self) -> float: """Model Coefficient of determination""" return self._r2 @property def rsquared_between(self) -> float: """ Between Coefficient of determination Returns ------- float Between coefficient of determination Notes ----- The between rsquared measures the fit of the time-averaged dependent variable on the time averaged dependent variables. It accounts for the weights used in the estimation of the model. See the mathematical reference in the documentation for the formal definition of this measure. """ return self._r2b @property def rsquared_within(self) -> float: """ Within coefficient of determination Returns ------- float Within coefficient of determination Notes ----- The within rsquared measures the fit of the dependent purged of entity effects on the exogenous purged of entity effects. It accounts for the weights used in the estimation of the model. See the mathematical reference in the documentation for the formal definition of this measure. """ return self._r2w @property def rsquared_overall(self) -> float: """ Overall coefficient of determination Returns ------- float Between coefficient of determination Notes ----- The overall rsquared measures the fit of the dependent variable on the dependent variables ignoring any included effects. It accounts for the weights used in the estimation of the model. See the mathematical reference in the documentation for the formal definition of this measure. """ return self._r2o @property def corr_squared_between(self) -> float: r""" Between Coefficient of determination using squared correlation Returns ------- float Between coefficient of determination Notes ----- The between rsquared measures the fit of the time-averaged dependent variable on the time averaged dependent variables. This measure is based on the squared correlation between the entity-wise averaged dependent variables and their average predictions. .. math:: Corr[\bar{y}_i, \bar{x}_i\hat{\beta}] This measure **does not** account for weights. """ return self._c2b @property def corr_squared_within(self) -> float: r""" Within coefficient of determination using squared correlation Returns ------- float Within coefficient of determination Notes ----- The within rsquared measures the fit of the dependent purged of entity effects on the exogenous purged of entity effects. This measure is based on the squared correlation between the entity-wise demeaned dependent variables and their demeaned predictions. .. math:: Corr[y_{it}-\bar{y}_i, (x_{it}-\bar{x}_i)\hat{\beta}] This measure **does not** account for weights. """ return self._c2w @property def corr_squared_overall(self) -> float: r""" Overall coefficient of determination using squared correlation Returns ------- float Between coefficient of determination Notes ----- The overall rsquared measures the fit of the dependent variable on the dependent variables ignoring any included effects. This measure is based on the squared correlation between the dependent variables and their predictions. .. math:: Corr[y_{it}, x_{it}\hat{\beta}] This measure **does not** account for weights. """ return self._c2o @property def s2(self) -> float: """Residual variance estimator""" return self._s2 @property def entity_info(self) -> Series: """Statistics on observations per entity""" return self._entity_info @property def time_info(self) -> Series: """Statistics on observations per time interval""" return self._time_info
[docs] def conf_int(self, level: float = 0.95) -> DataFrame: """ Confidence interval construction Parameters ---------- level : float Confidence level for interval Returns ------- DataFrame Confidence interval of the form [lower, upper] for each parameters Notes ----- Uses a t(df_resid) if ``debiased`` is True, else normal. """ ci_quantiles = [(1 - level) / 2, 1 - (1 - level) / 2] if self._debiased: q = stats.t.ppf(ci_quantiles, self.df_resid) else: q = stats.norm.ppf(ci_quantiles) q = q[None, :] params = np.asarray(self.params)[:, None] ci = params + np.asarray(self.std_errors)[:, None] * q return DataFrame(ci, index=self._var_names, columns=["lower", "upper"])
@property def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Notes ----- Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = self.name + " Estimation Summary" mod = self.model top_left = [ ("Dep. Variable:", mod.dependent.vars[0]), ("Estimator:", self.name), ("No. Observations:", self.nobs), ("Date:", self._datetime.strftime("%a, %b %d %Y")), ("Time:", self._datetime.strftime("%H:%M:%S")), ("Cov. Estimator:", self._cov_type), ("", ""), ("Entities:", str(int(self.entity_info["total"]))), ("Avg Obs:", _str(self.entity_info["mean"])), ("Min Obs:", _str(self.entity_info["min"])), ("Max Obs:", _str(self.entity_info["max"])), ("", ""), ("Time periods:", str(int(self.time_info["total"]))), ("Avg Obs:", _str(self.time_info["mean"])), ("Min Obs:", _str(self.time_info["min"])), ("Max Obs:", _str(self.time_info["max"])), ("", ""), ] is_invalid = np.isfinite(self.f_statistic.stat) f_stat = _str(self.f_statistic.stat) if is_invalid else "--" f_pval = pval_format(self.f_statistic.pval) if is_invalid else "--" f_dist = self.f_statistic.dist_name if is_invalid else "--" f_robust = _str(self.f_statistic_robust.stat) if is_invalid else "--" f_robust_pval = ( pval_format(self.f_statistic_robust.pval) if is_invalid else "--" ) f_robust_name = self.f_statistic_robust.dist_name if is_invalid else "--" top_right = [ ("R-squared:", _str(self.rsquared)), ("R-squared (Between):", _str(self.rsquared_between)), ("R-squared (Within):", _str(self.rsquared_within)), ("R-squared (Overall):", _str(self.rsquared_overall)), ("Log-likelihood", _str(self._loglik)), ("", ""), ("F-statistic:", f_stat), ("P-value", f_pval), ("Distribution:", f_dist), ("", ""), ("F-statistic (robust):", f_robust), ("P-value", f_robust_pval), ("Distribution:", f_robust_name), ("", ""), ("", ""), ("", ""), ("", ""), ] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt["data_fmts"][1] = "%18s" top_right = [("%-21s" % (" " + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) param_data = np.c_[ self.params.values[:, None], self.std_errors.values[:, None], self.tstats.values[:, None], self.pvalues.values[:, None], self.conf_int(), ] data = [] for row in param_data: txt_row = [] for i, v in enumerate(row): f = _str if i == 3: f = pval_format txt_row.append(f(v)) data.append(txt_row) title = "Parameter Estimates" table_stubs = list(self.params.index) header = ["Parameter", "Std. Err.", "T-stat", "P-value", "Lower CI", "Upper CI"] table = SimpleTable( data, stubs=table_stubs, txt_fmt=fmt_params, headers=header, title=title ) smry.tables.append(table) return smry @property def resids(self) -> Series: """ Model residuals Notes ----- These residuals are from the estimated model. They will not have the same shape as the original data whenever the model is estimated on transformed data which has a different shape.""" return Series(self._resids.squeeze(), index=self._index, name="residual") def _out_of_sample( self, exog: linearmodels.typing.data.ArrayLike | None, data: pandas.DataFrame | None, missing: bool, context: Mapping[str, Any] | None = None, ) -> DataFrame: """Interface between model predict and predict for OOS fits""" if exog is not None and data is not None: raise ValueError( "Predictions can only be constructed using one " "of exog or data, but not both." ) pred = self.model.predict(self.params, exog=exog, data=data, context=context) if not missing: pred = pred.loc[pred.notnull().all(axis=1)] return pred
[docs] def predict( self, exog: linearmodels.typing.data.ArrayLike | None = None, *, data: pandas.DataFrame | None = None, fitted: bool = True, effects: bool = False, idiosyncratic: bool = False, missing: bool = False, ) -> DataFrame: """ In- and out-of-sample predictions Parameters ---------- exog : array_like Exogenous values to use in out-of-sample prediction (nobs by nexog) data : DataFrame DataFrame to use for out-of-sample predictions when model was constructed using a formula. fitted : bool Flag indicating whether to include the fitted values effects : bool Flag indicating whether to include estimated effects idiosyncratic : bool Flag indicating whether to include the estimated idiosyncratic shock missing : bool Flag indicating to adjust for dropped observations. if True, the values returns will have the same size as the original input data before filtering missing values Returns ------- DataFrame DataFrame containing columns for all selected output Notes ----- `data` can only be used when the model was created using the formula interface. `exog` can be used for both a model created using a formula or a model specified with dependent and exog arrays. When using `exog` to generate out-of-sample predictions, the variable order must match the variables in the original model. Idiosyncratic errors and effects are not available for out-of-sample predictions. """ if not (exog is None and data is None): context = capture_context(1) return self._out_of_sample(exog, data, missing, context=context) out = [] if fitted: out.append(self.fitted_values) if effects: out.append(self.estimated_effects) if idiosyncratic: out.append(self.idiosyncratic) if len(out) == 0: raise ValueError("At least one output must be selected") out_df: pandas.DataFrame = concat(out, axis=1) if missing: index = self._original_index out_df = out_df.reindex(index) return out_df
@property def fitted_values(self) -> Series: """Fitted values""" return self._fitted @property def estimated_effects(self) -> Series: """ Estimated effects Notes ----- NaN filled when models do not include effects. """ return self._effects @property def idiosyncratic(self) -> Series: """ Idiosyncratic error Notes ----- Differs from resids since this is the estimated idiosyncratic shock from the data. It has the same dimension as the dependent data. The shape and nature of resids depends on the model estimated. These estimates only depend on the model estimated through the estimation of parameters and inclusion of effects, if any. """ return self._idiosyncratic @property def wresids(self) -> Series: """Weighted model residuals""" return Series( self._wresids.squeeze(), index=self._index, name="weighted residual" ) @property def f_statistic_robust(self) -> WaldTestStatistic: r""" Joint test of significance for non-constant regressors Returns ------- WaldTestStatistic Statistic value, distribution and p-value Notes ----- Implemented as a Wald test using the estimated parameter covariance, and so inherits any robustness that the choice of covariance estimator provides. .. math:: W = \hat{\beta}_{-}' \hat{\Sigma}_{-}^{-1} \hat{\beta}_{-} where :math:`\hat{\beta}_{-}` does not include the model constant and :math:`\hat{\Sigma}_{-}` is the estimated covariance of the parameters, also excluding the constant. The test statistic is distributed as :math:`\chi^2_{k}` where k is the number of non- constant parameters. If ``debiased`` is True, then the Wald statistic is divided by the number of restrictions and inference is made using an :math:`F_{k,df}` distribution where df is the residual degree of freedom from the model. """ from linearmodels.panel.model import _deferred_f return _deferred_f( self.params, self.cov, self._debiased, self.df_resid, self._f_info ) @property def f_statistic(self) -> WaldTestStatistic: r""" Joint test of significance for non-constant regressors Returns ------- WaldTestStatistic Statistic value, distribution and p-value Notes ----- Classical F-stat that is only correct under an assumption of homoskedasticity. The test statistic is defined as .. math:: F = \frac{(RSS_R - RSS_U)/ k}{RSS_U / df_U} where :math:`RSS_R` is the restricted sum of squares from the model where the coefficients on all exog variables is zero, excluding a constant if one was included. :math:`RSS_U` is the unrestricted residual sum of squares. k is the number of non-constant regressors in the model and :math:`df_U` is the residual degree of freedom in the unrestricted model. The test has an :math:`F_{k,df_U}` distribution. """ return self._f_stat @property def loglik(self) -> float: """Log-likelihood of model""" return self._loglik
[docs] def wald_test( self, restriction: ( linearmodels.typing.data.Float64Array | pandas.DataFrame | None ) = None, value: linearmodels.typing.data.Float64Array | pandas.Series | None = None, *, formula: str | list[str] | None = None, ) -> WaldTestStatistic: r""" Test linear equality constraints using a Wald test Parameters ---------- restriction : {ndarray, DataFrame} q by nvar array containing linear weights to apply to parameters when forming the restrictions. It is not possible to use both restriction and formula. value : {ndarray, Series} q element array containing the restricted values. formula : Union[str, list[str]] formulaic linear constraints. The simplest formats are one of: * A single comma-separated string such as "x1=0, x2+x3=1" * A list of strings where each element is a single constraint such as ["x1=0", "x2+x3=1"] * A single string without commas to test simple constraints such as "x1=x2=x3=0" * A dictionary where each key is a parameter restriction and the corresponding value is the restriction value, e.g., {"x1": 0, "x2+x3": 1}. It is not possible to use both ``restriction`` and ``formula``. Returns ------- WaldTestStatistic Test statistic for null that restrictions are valid. Notes ----- Hypothesis test examines whether :math:`H_0:C\theta=v` where the matrix C is ``restriction`` and v is ``value``. The test statistic has a :math:`\chi^2_q` distribution where q is the number of rows in C. Examples -------- >>> from linearmodels.datasets import wage_panel >>> import statsmodels.api as sm >>> import numpy as np >>> import pandas as pd >>> data = wage_panel.load() >>> year = pd.Categorical(data.year) >>> data = data.set_index(["nr", "year"]) >>> data["year"] = year >>> from linearmodels.panel import PanelOLS >>> exog_vars = ["expersq", "union", "married", "year"] >>> exog = sm.add_constant(data[exog_vars]) >>> mod = PanelOLS(data.lwage, exog, entity_effects=True) >>> fe_res = mod.fit() Test the restriction that union and married have 0 coefficients >>> restriction = np.zeros((2, 11)) >>> restriction[0, 2] = 1 >>> restriction[1, 3] = 1 >>> value = np.array([0, 0]) >>> wald_res = fe_res.wald_test(restriction, value) The same test using formulas >>> formula = "union = married = 0" >>> wald_res = fe_res.wald_test(formula=formula) """ return quadratic_form_test( self.params, self.cov, restriction=restriction, value=value, formula=formula )
[docs] class PanelEffectsResults(PanelResults): """ Results container for panel data models that include effects """ def __init__(self, res: AttrDict) -> None: super().__init__(res) self._other_info = res.other_info self._f_pooled = res.f_pooled self._entity_effect = res.entity_effects self._time_effect = res.time_effects self._other_effect = res.other_effects self._rho = res.rho self._sigma2_eps = res.sigma2_eps self._sigma2_effects = res.sigma2_effects self._r2_ex_effects = res.r2_ex_effects self._effects = res.effects @property def f_pooled(self) -> WaldTestStatistic: r""" Test that included effects are jointly zero. Returns ------- WaldTestStatistic Statistic value, distribution and p-value Notes ----- Joint test that all included effects are zero. Only correct under an assumption of homoskedasticity. The test statistic is defined as .. math:: F = \frac{(RSS_{pool}-RSS_{effect})/(df_{pool}-df_{effect})} {RSS_{effect}/df_{effect}} where :math:`RSS_{pool}` is the residual sum of squares from a no- effect (pooled) model. :math:`RSS_{effect}` is the residual sum of squares from a model with effects. :math:`df_{pool}` is the residual degree of freedom in the pooled regression and :math:`df_{effect}` is the residual degree of freedom from the model with effects. The test has an :math:`F_{k,df_{effect}}` distribution where :math:`k=df_{pool}-df_{effect}`. """ return self._f_pooled @property def included_effects(self) -> list[str]: """List of effects included in the model""" entity_effect = self._entity_effect time_effect = self._time_effect other_effect = self._other_effect effects = [] if entity_effect or time_effect or other_effect: if entity_effect: effects.append("Entity") if time_effect: effects.append("Time") if other_effect: oe = self.model._other_effect_cats.dataframe for c in oe: effects.append("Other Effect (" + str(c) + ")") return effects @property def other_info(self) -> pandas.DataFrame | None: """Statistics on observations per group for other effects""" return self._other_info @property def rsquared_inclusive(self) -> float: """Model Coefficient of determination including fit of included effects""" return self._r2_ex_effects @property def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Notes ----- Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ smry = super().summary is_invalid = np.isfinite(self.f_pooled.stat) f_pool = _str(self.f_pooled.stat) if is_invalid else "--" f_pool_pval = pval_format(self.f_pooled.pval) if is_invalid else "--" f_pool_name = self.f_pooled.dist_name if is_invalid else "--" extra_text = [] if is_invalid: extra_text.append(f"F-test for Poolability: {f_pool}") extra_text.append(f"P-value: {f_pool_pval}") extra_text.append(f"Distribution: {f_pool_name}") extra_text.append("") if self.included_effects: effects = ", ".join(self.included_effects) extra_text.append("Included effects: " + effects) if self.other_info is not None: nrow = self.other_info.shape[0] plural = "s" if nrow > 1 else "" extra_text.append(f"Model includes {nrow} other effect{plural}") for c in self.other_info.T: col = self.other_info.T[c] extra_text.append(f"Other Effect {c}:") stats = "Avg Obs: {0}, Min Obs: {1}, Max Obs: {2}, Groups: {3}" stats = stats.format( _str(col["mean"]), _str(col["min"]), _str(col["max"]), int(col["total"]), ) extra_text.append(stats) smry.add_extra_txt(extra_text) return smry @property def variance_decomposition(self) -> Series: """Decomposition of total variance into effects and residuals""" vals = [self._sigma2_effects, self._sigma2_eps, self._rho] index = ["Effects", "Residual", "Percent due to Effects"] return Series(vals, index=index, name="Variance Decomposition")
[docs] class RandomEffectsResults(PanelResults): """ Results container for random effect panel data models """ def __init__(self, res: AttrDict) -> None: super().__init__(res) self._theta = res.theta self._sigma2_effects = res.sigma2_effects self._sigma2_eps = res.sigma2_eps self._rho = res.rho @property def variance_decomposition(self) -> Series: """Decomposition of total variance into effects and residuals""" vals = [self._sigma2_effects, self._sigma2_eps, self._rho] index = ["Effects", "Residual", "Percent due to Effects"] return Series(vals, index=index, name="Variance Decomposition") @property def theta(self) -> DataFrame: """Values used in generalized demeaning""" return self._theta
PanelModelResults = Union[PanelEffectsResults, PanelResults, RandomEffectsResults]
[docs] class FamaMacBethResults(PanelResults): """ Results container for Fama MacBeth panel data models """ def __init__(self, res: AttrDict): super().__init__(res) self._all_params = res.all_params self._avg_r2 = res.avg_r2 self._avg_adj_r2 = res.avg_adj_r2 @property def all_params(self) -> DataFrame: """ The set of parameters estimated for each of the time periods Returns ------- DataFrame The parameters (nobs, nparam). """ return self._all_params @property def avg_rsquared(self) -> float: """ The average coefficient of determination This value contains the average of the individual adjusted rsquared values across the nobs cross-sectional regressions. An rsquare value is only included in the average if a cross-section has full rank. """ return self._avg_r2 @property def avg_adj_rsquared(self) -> float: """ The average coefficient of determination, adjusted for sample size. This value contains the average of the individual adjusted rsquared values across the nobs cross-sectional regressions. An rsquare value is only included in the average if a cross-section has full rank and if the number of dependent variables in a cross-section is larger than the number of regressors. """ return self._avg_adj_r2
[docs] class PanelModelComparison(_ModelComparison): """ Comparison of multiple models Parameters ---------- results : {list, dict} Set of results to compare. If a dict, the keys will be used as model names. precision : {"tstats","std_errors", "std-errors", "pvalues"} Estimator precision estimator to include in the comparison output. Default is "tstats". stars : bool Add stars based on the p-value of the coefficient where 1, 2 and 3-stars correspond to p-values of 10%, 5% and 1%, respectively. """ _supported = ( PanelEffectsResults, PanelResults, RandomEffectsResults, FamaMacBethResults, ) def __init__( self, results: list[PanelModelResults] | dict[str, PanelModelResults], *, precision: str = "tstats", stars: bool = False, ) -> None: super().__init__(results, precision=precision, stars=stars) @property def rsquared_between(self) -> Series: """Coefficients of determination (R**2)""" return self._get_property("rsquared_between") @property def rsquared_within(self) -> Series: """Coefficients of determination (R**2)""" return self._get_property("rsquared_within") @property def rsquared_overall(self) -> Series: """Coefficients of determination (R**2)""" return self._get_property("rsquared_overall") @property def estimator_method(self) -> Series: """Estimation methods""" return self._get_property("name") @property def cov_estimator(self) -> Series: """Covariance estimator descriptions""" return self._get_property("_cov_type") @property def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Notes ----- Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ smry = Summary() models = list(self._results.keys()) title = "Model Comparison" stubs = [ "Dep. Variable", "Estimator", "No. Observations", "Cov. Est.", "R-squared", "R-Squared (Within)", "R-Squared (Between)", "R-Squared (Overall)", "F-statistic", "P-value (F-stat)", ] dep_name = {} for key in self._results: dep_name[key] = self._results[key].model.dependent.vars[0] vals = concat( [ Series(dep_name), self.estimator_method, self.nobs, self.cov_estimator, self.rsquared, self.rsquared_within, self.rsquared_between, self.rsquared_overall, self.f_statistic, ], axis=1, ) vals_lst = [[i for i in v] for v in vals.T.values] vals_lst[2] = [str(v) for v in vals_lst[2]] for i in range(4, len(vals_lst)): f = _str if i == 9: f = pval_format vals_lst[i] = [f(v) for v in vals_lst[i]] params = self.params precision = getattr(self, self._precision) pvalues = np.asarray(self.pvalues) params_fmt = [] params_stub: list[str] = [] for i in range(len(params)): formatted_and_starred = [] for v, pv in zip(params.values[i], pvalues[i]): formatted_and_starred.append(add_star(_str(v), pv, self._stars)) params_fmt.append(formatted_and_starred) precision_fmt = [] for v in precision.values[i]: v_str = _str(v) v_str = f"({v_str})" if v_str.strip() else v_str precision_fmt.append(v_str) params_fmt.append(precision_fmt) params_stub.append(str(params.index[i])) params_stub.append(" ") vals_lst = table_concat((vals_lst, params_fmt)) stubs = stub_concat((stubs, params_stub)) all_effects = [] for key in self._results: res = self._results[key] effects = getattr(res, "included_effects", []) all_effects.append(effects) neffect = max(map(len, all_effects)) effects = [] effects_stub = ["Effects"] for i in range(neffect): if i > 0: effects_stub.append("") row = [] for j in range(len(self._results)): effect = all_effects[j] if len(effect) > i: row.append(effect[i]) else: row.append("") effects.append(row) if effects: vals_lst = table_concat((vals_lst, effects)) stubs = stub_concat((stubs, effects_stub)) txt_fmt = default_txt_fmt.copy() txt_fmt["data_aligns"] = "r" txt_fmt["header_align"] = "r" table = SimpleTable( vals_lst, headers=models, title=title, stubs=stubs, txt_fmt=txt_fmt ) smry.tables.append(table) prec_type = self._PRECISION_TYPES[self._precision] smry.add_extra_txt([f"{prec_type} reported in parentheses"]) return smry
[docs] def compare( results: list[PanelModelResults] | dict[str, PanelModelResults], *, precision: str = "tstats", stars: bool = False, ) -> PanelModelComparison: """ Compare the results of multiple models Parameters ---------- results : {list, dict} Set of results to compare. If a dict, the keys will be used as model names. precision : {"tstats","std_errors", "std-errors", "pvalues"} Estimator precision estimator to include in the comparison output. Default is "tstats". stars : bool Add stars based on the p-value of the coefficient where 1, 2 and 3-stars correspond to p-values of 10%, 5% and 1%, respectively. Returns ------- PanelModelComparison The model comparison object. """ return PanelModelComparison(results, precision=precision, stars=stars)