linearmodels.iv.covariance.ClusteredCovariance¶
- class ClusteredCovariance(x, y, z, params, clusters=None, debiased=False, kappa=1)[source]¶
Covariance estimation for clustered data
- Parameters:
- x
ndarray
Model regressors (nobs by nvar)
- y
ndarray
Series ,modeled (nobs by 1)
- z
ndarray
Instruments used for endogenous regressors (nobs by ninstr)
- params
ndarray
Estimated model parameters (nvar by 1)
- debiasedbool
Flag indicating whether to use a small-sample adjustment
- clusters
ndarray
Cluster group assignment. If not provided, uses clusters of 1. Either nobs by ncluster where ncluster is 1 or 2.
- kappa
float
Value of kappa in k-class estimator
- x
Notes
Covariance is estimated using
\[n^{-1} V^{-1} \hat{S} V^{-1}\]where
\[\begin{split}\hat{S} & = n^{-1} (G/(G-1)) \sum_{g=1}^G \xi_{g}^\prime \xi_{g} \\ \xi_{g} & = \sum_{i\in\mathcal{G}_g} \hat{\epsilon}_i \hat{x}_i \\\end{split}\]where \(\hat{\gamma}=(Z'Z)^{-1}(Z'X)\) and \(\hat{x}_i = z_i\hat{\gamma}\). \(\mathcal{G}_g\) contains the indices of elements in cluster g. If
debiased
is true, then \(S\) is scaled by g(n - 1) / ((g-1)(n-k)) where g is the number of groups..\[V = n^{-1} X'Z(Z'Z)^{-1}Z'X\]where \(X\) is the matrix of variables included in the model and \(Z\) is the matrix of instruments, including exogenous regressors.
- Attributes:
Methods
Properties
Covariance of estimated parameters
Flag indicating if covariance is debiased
Clustered estimator of score covariance
Estimated variance of residuals.