linearmodels.iv.model.IVLIML¶
-
class linearmodels.iv.model.IVLIML(dependent: IVData | ndarray | DataArray | DataFrame | Series, exog: IVData | ndarray | DataArray | DataFrame | Series | None, endog: IVData | ndarray | DataArray | DataFrame | Series | None, instruments: IVData | ndarray | DataArray | DataFrame | Series | None, *, weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
, fuller: int | float =0
, kappa: int | float | None =None
)[source]¶ Limited information ML and k-class estimation of IV models
- Parameters:¶
- dependent: IVData | ndarray | DataArray | DataFrame | Series¶
Endogenous variables (nobs by 1)
- exog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Exogenous regressors (nobs by nexog)
- endog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Endogenous regressors (nobs by nendog)
- instruments: IVData | ndarray | DataArray | DataFrame | Series | None¶
Instrumental variables (nobs by ninstr)
- weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
¶ Observation weights used in estimation
- fuller: int | float =
0
¶ Fuller’s alpha to modify LIML estimator. Default returns unmodified LIML estimator.
- kappa: int | float | None =
None
¶ Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate.
Notes
kappa
andfuller
should not be used simultaneously since Fuller’s alpha applies an adjustment tokappa
, and so the same result can be computed using onlykappa
. Fuller’s alpha is used to adjust the LIML estimate of \(\kappa\), which is computed wheneverkappa
is not provided.The LIML estimator is defined as
\[\begin{split}\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z'\end{split}\]where \(Z\) contains both the exogenous regressors and the instruments. \(\kappa\) is estimated as part of the LIML estimator.
When using Fuller’s \(\alpha\), the value used is modified to
\[\kappa-\alpha/(n-n_{instr})\]Todo
VCV: bootstrap
Methods
estimate_parameters
(x, y, z, kappa)Parameter estimation without error checking
fit
(*[, cov_type, debiased])Estimate model parameters
from_formula
(formula, data, *[, weights, ...])predict
(params, *[, exog, endog, data, eval_env])Predict values for additional data
resids
(params)Compute model residuals
wresids
(params)Compute weighted model residuals
Properties
Formula used to create the model
Flag indicating the model includes a constant or equivalent
Locations of observations with missing values
Locations of observations included in estimation