linearmodels.iv.model.IVLIML¶
-
class linearmodels.iv.model.IVLIML(dependent: IVData | ndarray | DataArray | DataFrame | Series, exog: IVData | ndarray | DataArray | DataFrame | Series | None, endog: IVData | ndarray | DataArray | DataFrame | Series | None, instruments: IVData | ndarray | DataArray | DataFrame | Series | None, *, weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None, fuller: int | float =0, kappa: int | float | None =None)[source]¶ Limited information ML and k-class estimation of IV models
- Parameters:¶
- dependent: IVData | ndarray | DataArray | DataFrame | Series¶
Endogenous variables (nobs by 1)
- exog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Exogenous regressors (nobs by nexog)
- endog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Endogenous regressors (nobs by nendog)
- instruments: IVData | ndarray | DataArray | DataFrame | Series | None¶
Instrumental variables (nobs by ninstr)
- weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None¶ Observation weights used in estimation
- fuller: int | float =
0¶ Fuller’s alpha to modify LIML estimator. Default returns unmodified LIML estimator.
- kappa: int | float | None =
None¶ Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate.
Notes
kappaandfullershould not be used simultaneously since Fuller’s alpha applies an adjustment tokappa, and so the same result can be computed using onlykappa. Fuller’s alpha is used to adjust the LIML estimate of \(\kappa\), which is computed wheneverkappais not provided.The LIML estimator is defined as
\[\begin{split}\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z'\end{split}\]where \(Z\) contains both the exogenous regressors and the instruments. \(\kappa\) is estimated as part of the LIML estimator.
When using Fuller’s \(\alpha\), the value used is modified to
\[\kappa-\alpha/(n-n_{instr})\]Todo
VCV: bootstrap
Methods
estimate_parameters(x, y, z, kappa)Parameter estimation without error checking
fit(*[, cov_type, debiased])Estimate model parameters
from_formula(formula, data, *[, weights, ...])predict(params, *[, exog, endog, data, eval_env])Predict values for additional data
resids(params)Compute model residuals
wresids(params)Compute weighted model residuals
Properties
Formula used to create the model
Flag indicating the model includes a constant or equivalent
Locations of observations with missing values
Locations of observations included in estimation