linearmodels.iv.model.IVLIML¶
- 
class linearmodels.iv.model.IVLIML(dependent: IVData | ndarray | DataArray | DataFrame | Series, exog: IVData | ndarray | DataArray | DataFrame | Series | None, endog: IVData | ndarray | DataArray | DataFrame | Series | None, instruments: IVData | ndarray | DataArray | DataFrame | Series | None, *, weights: IVData | ndarray | DataArray | DataFrame | Series | None = None, fuller: int | float =0, kappa: int | float | None =None)[source]¶
- Limited information ML and k-class estimation of IV models - Parameters:¶
- dependent: IVData | ndarray | DataArray | DataFrame | Series¶
- Endogenous variables (nobs by 1) 
- exog: IVData | ndarray | DataArray | DataFrame | Series | None¶
- Exogenous regressors (nobs by nexog) 
- endog: IVData | ndarray | DataArray | DataFrame | Series | None¶
- Endogenous regressors (nobs by nendog) 
- instruments: IVData | ndarray | DataArray | DataFrame | Series | None¶
- Instrumental variables (nobs by ninstr) 
- weights: IVData | ndarray | DataArray | DataFrame | Series | None = None¶
- Observation weights used in estimation 
- fuller: int | float = 0¶
- Fuller’s alpha to modify LIML estimator. Default returns unmodified LIML estimator. 
- kappa: int | float | None = None¶
- Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate. 
 
 - Notes - kappaand- fullershould not be used simultaneously since Fuller’s alpha applies an adjustment to- kappa, and so the same result can be computed using only- kappa. Fuller’s alpha is used to adjust the LIML estimate of \(\kappa\), which is computed whenever- kappais not provided.- The LIML estimator is defined as \[\begin{split}\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z'\end{split}\]- where \(Z\) contains both the exogenous regressors and the instruments. \(\kappa\) is estimated as part of the LIML estimator. - When using Fuller’s \(\alpha\), the value used is modified to \[\kappa-\alpha/(n-n_{instr})\]- Todo - VCV: bootstrap 
 - Methods - estimate_parameters(x, y, z, kappa)- Parameter estimation without error checking - fit(*[, cov_type, debiased])- Estimate model parameters - from_formula(formula, data, *[, weights, ...])- predict(params, *[, exog, endog, data, eval_env])- Predict values for additional data - resids(params)- Compute model residuals - wresids(params)- Compute weighted model residuals - Properties - Formula used to create the model - Flag indicating the model includes a constant or equivalent - Locations of observations with missing values - Locations of observations included in estimation