linearmodels.iv.model.IVLIML.predict¶
-
IVLIML.predict(params: ndarray | DataArray | DataFrame | Series, *, exog: IVData | ndarray | DataArray | DataFrame | Series | None =
None
, endog: IVData | ndarray | DataArray | DataFrame | Series | None =None
, data: DataFrame | None =None
, eval_env: int =4
) DataFrame ¶ Predict values for additional data
- Parameters:¶
- params: ndarray | DataArray | DataFrame | Series¶
Model parameters (nvar by 1)
- exog: IVData | ndarray | DataArray | DataFrame | Series | None =
None
¶ Exogenous regressors (nobs by nexog)
- endog: IVData | ndarray | DataArray | DataFrame | Series | None =
None
¶ Endogenous regressors (nobs by nendog)
- data: DataFrame | None =
None
¶ Values to use when making predictions from a model constructed from a formula
- eval_env: int =
4
¶ Depth of use when evaluating formulas.
- Returns:¶
Fitted values from supplied data and parameters
- Return type:¶
Notes
The number of parameters must satisfy nvar = nexog + nendog.
When using exog and endog, regressor matrix is constructed as [exog, endog] and so parameters must be aligned to this structure. The the the same structure used in model estimation.
If data is not none, then exog and endog must be none. Predictions from models constructed using formulas can be computed using either exog and endog, which will treat these are arrays of values corresponding to the formula-processed data, or using data which will be processed using the formula used to construct the values corresponding to the original model specification.