linearmodels.system.covariance.HomoskedasticCovariance¶
-
class linearmodels.system.covariance.HomoskedasticCovariance(x: list[numpy.ndarray], eps: linearmodels.typing.data.Float64Array, sigma: linearmodels.typing.data.Float64Array, full_sigma: linearmodels.typing.data.Float64Array, *, gls: bool =
False
, debiased: bool =False
, constraints: LinearConstraint | None =None
)[source]¶ Homoskedastic covariance estimation for system regression
- Parameters:¶
- x: list[numpy.ndarray]¶
List of regressor arrays (ndependent)
- eps: linearmodels.typing.data.Float64Array¶
Model residuals, ndependent by nobs
- sigma: linearmodels.typing.data.Float64Array¶
Covariance matrix estimator of eps
- gls: bool =
False
¶ Flag indicating to compute the GLS covariance estimator. If False, assume OLS was used
- debiased: bool =
False
¶ Flag indicating to apply a small sample adjustment
- constraints: LinearConstraint | None =
None
¶ Constraints used in estimation, if any
Notes
If GLS is used, the covariance is estimated by
\[(X'\Omega^{-1}X)^{-1}\]where X is a block diagonal matrix of exogenous variables. When GLS is not used, the covariance is estimated by
\[(X'X)^{-1}(X'\Omega X)(X'X)^{-1}\]Methods
Properties
Parameter covariance
Optional configuration information used in covariance
Error covariance