linearmodels.system.covariance.HomoskedasticCovariance

class linearmodels.system.covariance.HomoskedasticCovariance(x: list[numpy.ndarray], eps: linearmodels.typing.data.Float64Array, sigma: linearmodels.typing.data.Float64Array, full_sigma: linearmodels.typing.data.Float64Array, *, gls: bool = False, debiased: bool = False, constraints: LinearConstraint | None = None)[source]

Homoskedastic covariance estimation for system regression

Parameters:
x: list[numpy.ndarray]

List of regressor arrays (ndependent)

eps: linearmodels.typing.data.Float64Array

Model residuals, ndependent by nobs

sigma: linearmodels.typing.data.Float64Array

Covariance matrix estimator of eps

gls: bool = False

Flag indicating to compute the GLS covariance estimator. If False, assume OLS was used

debiased: bool = False

Flag indicating to apply a small sample adjustment

constraints: LinearConstraint | None = None

Constraints used in estimation, if any

Notes

If GLS is used, the covariance is estimated by

\[(X'\Omega^{-1}X)^{-1}\]

where X is a block diagonal matrix of exogenous variables. When GLS is not used, the covariance is estimated by

\[(X'X)^{-1}(X'\Omega X)(X'X)^{-1}\]

Methods

Properties

cov

Parameter covariance

cov_config

Optional configuration information used in covariance

sigma

Error covariance