Skip to content
logo
linearmodels 6.1
linearmodels.system.gmm.KernelWeightMatrix.sigma
Initializing search
    linearmodels
    linearmodels
    • Instrumental Variable Estimation
    • Panel Data Model Estimation
    • Linear Factor Models for Asset Pricing
    • System Regression Models
      • Examples
      • Using formulas to specify models
      • Three-stage Least Squares (3SLS)
      • Module Reference
        • System Regression Estimators
        • Estimation Results
        • System Regression Estimator Covariance Estimation
        • GMM Moment Weighting
          • linearmodels.system.gmm.HomoskedasticWeightMatrix
          • linearmodels.system.gmm.HeteroskedasticWeightMatrix
          • linearmodels.system.gmm.KernelWeightMatrix
            • Clinearmodels.system.gmm.KernelWeightMatrix
              • linearmodels.system.gmm.KernelWeightMatrix.sigma
                • MKernelWeightMatrix.sigma
                  • Parameters
                    • peps
                    • px
                  • Returns
                  • Return type
              • linearmodels.system.gmm.KernelWeightMatrix.weight_matrix
              • linearmodels.system.gmm.KernelWeightMatrix.bandwidth
              • linearmodels.system.gmm.KernelWeightMatrix.config
              • linearmodels.system.gmm.KernelWeightMatrix.kernel
      • Seemingly Unrelated Regression (SUR/SURE)
      • Covariance Estimation
      • Memory efficient calculations
      • Three Stage Least Squares (3SLS)
      • System Generalized Method of Moments (GMM)
      • Testing Covariance and Correlations
      • System Measures of Fit (R^{2})
    • Utilities
    • Compatibility
    • Type Aliases
    • Module Plans
    • Contributing
    • Change Log
    • References
    • MKernelWeightMatrix.sigma
      • Parameters
        • peps
        • px
      • Returns
      • Return type

    linearmodels.system.gmm.KernelWeightMatrix.sigma¶

    KernelWeightMatrix.sigma(eps: ndarray, x: Sequence[ndarray]) → ndarray¶

    Estimate residual covariance.

    Parameters:¶
    eps: ndarray¶

    The residuals from the system of equations.

    x: Sequence[ndarray]¶

    A list of the regressor matrices for each equation in the system.

    Returns:¶

    The estimated covariance matrix of the residuals.

    Return type:¶

    numpy.ndarray

    Previous linearmodels.system.gmm.KernelWeightMatrix
    Next linearmodels.system.gmm.KernelWeightMatrix.weight_matrix
    © Copyright 2021, Kevin Sheppard.
    Created using Sphinx 8.0.2. and Sphinx-Immaterial