arch.unitroot.cointegration.CanonicalCointegratingReg¶
- class
arch.unitroot.cointegration.
CanonicalCointegratingReg
(y, x, trend='c', x_trend=None)[source]¶ Canonical Cointegrating Regression cointegrating vector estimation.
- Parameters
y (array_like) -- The left-hand-side variable in the cointegrating regression.
x (array_like) -- The right-hand-side variables in the cointegrating regression.
trend ({{"n","c","ct","ctt"}}, default "c") --
Trend to include in the cointegrating regression. Trends are:
"n": No deterministic terms
"c": Constant
"ct": Constant and linear trend
"ctt": Constant, linear and quadratic trends
x_trend ({None,"c","ct","ctt"}, default None) -- Trends that affects affect the x-data but do not appear in the cointegrating regression. x_trend must be at least as large as trend, so that if trend is "ct", x_trend must be either "ct" or "ctt".
Notes
The cointegrating vector is estimated from the regressions
\[\begin{split}Y_t & = D_{1t} \delta + X_t \beta + \eta_{1t} \\ X_t & = D_{1t} \Gamma_1 + D_{2t}\Gamma_2 + \epsilon_{2t} \\ \eta_{2t} & = \Delta \epsilon_{2t}\end{split}\]or if estimated in differences, the last two lines are
\[\Delta X_t = \Delta D_{1t} \Gamma_1 + \Delta D_{2t} \Gamma_2 + \eta_{2t}\]Define the vector of residuals as \(\eta = (\eta_{1t},\eta'_{2t})'\), and the long-run covariance
\[\Omega = \sum_{h=-\infty}^{\infty} E[\eta_t\eta_{t-h}']\]and the one-sided long-run covariance matrix
\[\Lambda_0 = \sum_{h=0}^\infty E[\eta_t\eta_{t-h}']\]The covariance matrices are partitioned into a block form
\[\begin{split}\Omega = \left[\begin{array}{cc} \omega_{11} & \omega_{12} \\ \omega'_{12} & \Omega_{22} \end{array} \right]\end{split}\]The cointegrating vector is then estimated using modified data
\[\begin{split}X^\star_t & = X_t - \hat{\Lambda}_2'\hat{\Sigma}^{-1}\hat{\eta}_t \\ Y^\star_t & = Y_t - (\hat{\Sigma}^{-1} \hat{\Lambda}_2 \hat{\beta} + \hat{\kappa})' \hat{\eta}_t\end{split}\]where \(\hat{\kappa} = (0,\hat{\Omega}_{22}^{-1}\hat{\Omega}'_{12})\) and the regression
\[Y^\star_t = D_{1t} \delta + X^\star_t \beta + \eta^\star_{1t}\]See 1 for further details.
References
- 1
Park, J. Y. (1992). Canonical cointegrating regressions. Econometrica: Journal of the Econometric Society, 119-143.
Methods
fit
([kernel, bandwidth, force_int, diff, ...])Estimate the cointegrating vector.