linearmodels.iv.gmm.KernelWeightMatrix¶
-
class linearmodels.iv.gmm.KernelWeightMatrix(kernel: str =
'bartlett'
, bandwidth: int | None =None
, center: bool =False
, debiased: bool =False
, optimal_bw: bool =False
)[source]¶ Heteroskedasticity, autocorrelation robust weight estimation
- Parameters:¶
- kernel: str =
'bartlett'
¶ Name of kernel weighting function to use
- bandwidth: int | None =
None
¶ Bandwidth to use when computing kernel weights
- center: bool =
False
¶ Flag indicating whether to center the moment conditions by subtracting the mean before computing the weight matrix.
- debiased: bool =
False
¶ Flag indicating whether to use small-sample adjustments
- optimal_bw: bool =
False
¶ Flag indicating whether to estimate the optimal bandwidth, when bandwidth is None. If False, nobs - 2 is used
- kernel: str =
Notes
Supported kernels:
“bartlett”, “newey-west” - Bartlett’s kernel
“parzen”, “gallant” - Parzen’s kernel
“qs”, “quadratic-spectral”, “andrews” - The quadratic spectral kernel
\[\begin{split}g_i & =z_i \epsilon_i \\ W & =n^{-1}(\Gamma_0+\sum_{j=1}^{n-1}k(j)(\Gamma_j+\Gamma_j')) \\ \Gamma_j & =\sum_{i=j+1}^n g'_i g_{j-j}\end{split}\]where \(k(j)\) is the kernel weight for lag j and \(z_i\) contains both the exogenous regressors and instruments..
See also
linearmodels.iv.covariance.kernel_weight_bartlett
,linearmodels.iv.covariance.kernel_weight_parzen
,linearmodels.iv.covariance.kernel_weight_quadratic_spectral
Methods
weight_matrix
(x, z, eps)Properties
Actual bandwidth used in estimating the weight matrix
Weight estimator configuration