linearmodels.iv.gmm.IVGMMCovariance¶
-
class linearmodels.iv.gmm.IVGMMCovariance(x: ndarray[Any, dtype[float64]], y: ndarray[Any, dtype[float64]], z: ndarray[Any, dtype[float64]], params: ndarray[Any, dtype[float64]], w: ndarray[Any, dtype[float64]], cov_type: str =
'robust'
, debiased: bool =False
, **cov_config: str | bool)[source]¶ Covariance estimation for GMM models
- Parameters:¶
- x: ndarray[Any, dtype[float64]]¶
Model regressors (nobs by nvar)
- y: ndarray[Any, dtype[float64]]¶
Series ,modeled (nobs by 1)
- z: ndarray[Any, dtype[float64]]¶
Instruments used for endogenous regressors (nobs by ninstr)
- params: ndarray[Any, dtype[float64]]¶
Estimated model parameters (nvar by 1)
- w: ndarray[Any, dtype[float64]]¶
Weighting matrix used in GMM estimation
- cov_type: str =
'robust'
¶ Covariance estimator to use Valid choices are
”unadjusted”, “homoskedastic” - Assumes moment conditions are homoskedastic
”robust”, “heteroskedastic” - Allows for heteroskedasticity by not autocorrelation
”kernel” - Allows for heteroskedasticity and autocorrelation
”clustered” - Allows for one-way cluster dependence
- debiased: bool =
False
¶ Flag indicating whether to debias the covariance estimator
- **cov_config: str | bool¶
Optional keyword arguments that are specific to a particular cov_type
Notes
Optional keyword argument for specific covariance estimators:
kernel
kernel
: Name of kernel to use. SeeKernelCovariance
for details on available kernelsbandwidth
: Bandwidth to use when computing the weight. If not provided, nobs - 2 is used.
cluster
clusters
: Array containing the cluster indices. SeeClusteredCovariance
See also
linearmodels.iv.covariance.HomoskedasticCovariance
,linearmodels.iv.covariance.HeteroskedasticCovariance
,linearmodels.iv.covariance.KernelCovariance
,linearmodels.iv.covariance.ClusteredCovariance
Methods
Properties
Covariance of estimated parameters
Flag indicating if covariance is debiased
Score covariance estimate
Estimated variance of residuals.