linearmodels.panel.model.FamaMacBeth.fit¶
-
FamaMacBeth.fit(cov_type: str =
'unadjusted'
, debiased: bool =True
, bandwidth: float | None =None
, kernel: str | None =None
) FamaMacBethResults [source]¶ Estimate model parameters
- Parameters:¶
- cov_type: str =
'unadjusted'
¶ Name of covariance estimator (see notes). Default is “unadjusted”.
- debiased: bool =
True
¶ Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment.
- bandwidth: float | None =
None
¶ The bandwidth to use when cov_type is “kernel”. If None, it is automatically computed.
- kernel: str | None =
None
¶ The kernel to use. None chooses the default kernel.
- cov_type: str =
- Returns:¶
Estimation results
- Return type:¶
Examples
>>> from linearmodels import FamaMacBeth >>> mod = FamaMacBeth(y, x) >>> res = mod.fit(cov_type="kernel", kernel="Parzen")
Notes
Two covariance estimators are supported:
“unadjusted”, “homoskedastic”, “robust”, “heteroskedastic” use the standard covariance estimator of the T parameter estimates.
“kernel” is a HAC estimator. Configurations options are: