arch.univariate.ARCH¶
- class
arch.univariate.ARCH(p=1)[source]¶ ARCH process
- Parameters
p (int) -- Order of the symmetric innovation
Examples
ARCH(1) process
>>> from arch.univariate import ARCH
ARCH(5) process
>>> arch = ARCH(p=5)
Notes
The variance dynamics of the model estimated
\[\sigma_t^{2}=\omega+\sum_{i=1}^{p}\alpha_{i}\epsilon_{t-i}^{2}\]Methods
backcast(resids)Construct values for backcasting to start the recursion
backcast_transform(backcast)Transformation to apply to user-provided backcast values
bounds(resids)Returns bounds for parameters
compute_variance(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Construct parameter constraints arrays for parameter estimation
forecast(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values(resids)Returns starting values for the ARCH model
variance_bounds(resids[, power])Construct loose bounds for conditional variances.
Properties
The name of the volatilty process
Index to use to start variance subarray selection
Index to use to stop variance subarray selection